模拟电子技术基础康华光
电子技术基础模拟部分(第六版) 康华光ch04
止工作状态。
15
华中科技大学 张林
3. I-V 特性曲线及大信号特性方程
(1)输出特性及大信号特性方程
i D f (v DS ) vGS const.
② 可变电阻区 vDS <(vGS-VTN)
2 iD Kn [2(vGS VTN ) vDS vDS ]
预夹断临界点轨迹 iD/mA vDS=vGS-VTN(或 vGD=vGS-vDS=VTN) 3V 饱和区 1.5 2.5V 1 2V 0.5 0 vGS=1.5V 2.5 5 7.5 10 截止区 vDS/V 可变电阻区 2 (非饱和区)
14
华中科技大学 张林
3. I-V 特性曲线及大信号特性方程
(1)输出特性及大信号特性方程
i D f (v DS ) vGS const.
① 截止区
当vGS<VTN时,导电沟道 尚未形成, iD = 0 ,为截
预夹断临界点轨迹 iD/mA vDS=vGS-VTN(或 vGD=vGS-vDS=VTN) 3V 饱和区 1.5 2.5V 1 2V 0.5 0 vGS=1.5V 2.5 5 7.5 10 截止区 vDS/V 可变电阻区 2 (非饱和区)
I-V 特性: iD Kn (vGS VTN )2
vGS K nV ( 1)2 VTN vGS I DO ( 1)2 VTN
2 TN
2 I DO KnVTN 是vGS=2VTN时的iD
必 须 让 FET 工 作 在 饱 和 区 (放大区)才有放大作用。
18
华中科技大学 张林
由于vDS较小,可近似为
iD 2Kn ( vGS VTN ) vDS
rdso dv DS diD
模电 康华光 第六版
第十九页,共28页。
2.4.1 求差电路
从结构上看,它是反相输入和 同相输入相结合的放大电路。
vi2+
R2 P
R3
i2 vp ip + i3
vi2-vi1
vo
根据虚短、虚断和N、P点
vn in -
的KCL得:
2.1 集成电路运算放大器
当Avo(vP-vN) V+ 时 vO= V+
当Avo(vP-vN) V-时 vO= V-
电压传输特性 vO= f (vP-vN)
线性范围内 vO=Avo(vP-vN) Avo——斜率
第七页,共28页。
2.2 理想运算放大器
1. vo的饱和极限值等于运放的电 源电压V+和V-
▪ 输出电阻 ro 100Ω (很小)
vO=Avo(vP-vN)
( V-< vO <V+ )
注意输入输出的相位关系
第五页,共28页。
2.1 集成电路运算放大器
当Avo(vP-vN) V+ 时 vO= V+
当Avo(vP-vN) V-时 vO= V-
电压传输特性 vO= f (vP-vN)
第六页,共28页。
2. 运放的开环电压增益很高
若(vp-vn)>0 则 vo= +Vom=V+ 若(vp-vn)<0 则 vo= –Vom=V-
3. 若V-< vo <V+ 则 (vp-vn)0
4. 输入电阻ri的阻值很高 使 ip≈ 0、in≈ 0
5. 输出电阻很小, ro ≈ 0
理想:
ri≈∞ ro≈0 Avo→∞ vo=Avo(vp-vn)
电子技术基础模拟部分第五版康华光课件
3.2.2 PN结的形成
电子技术基础模拟部分第五版康华 光课件
3.2.2 PN结的形成
电子技术基础模拟部分第五版康华 光课件
在一块本征半导体两侧通过扩散不同的杂质,分 别形成N型半导体和P型半导体。此时将在N型半 导体和P型半导体的结合面上形成如下物理过程:
因浓度差
多子的扩散运动 由杂质离子形成空间电荷区
电子技术基础模拟部分第五版康华 光课件
end
3.2 PN结的形成及特性
3.2.1 载流子的漂移与扩散 3.2.2 PN结的形成 3.2.3 PN结的单向导电性 3.2.4 PN结的反向击穿 3.2.5 PN结的电容效应
电子技术基础模拟部分第五版康华 光课件
3.2.1 载流子的漂移与扩散
漂移运动:
电子技术基础模拟部分第五版康华 光课件
3.3.1 半导体二极管的结构
在PN结上加上引线和封装,就成为一个二极管。 二极管按结构分有点接触型、面接触型两大类。
(1) 点接触型二极管
PN结面积小,结电 容小,用于检波和变 频等高频电路。
二极管的结构示意图
(a)点接触型
电子技术基础模拟部分第五版康华 光课件
(μA)
IS: 反向饱和电流
【可参见教材P6电4子图技术3基.2础.模4拟】部分第五版康华
光课件
3. PN结V-I特性的表达式
u
i IS(e UT1)
i/mA - +
❖ 当加正向电压时:
u为正值,表达 式等效成 :
+-
u
i IS e U T
指数 关系
IF ❖ 当加反向电压时:
i=-IS UBR
- - - - - + + + 多+子+电子
电子技术基础模拟部分第六版康华光
Q 1
3 AVF
得 A(s)
A0
s
Q 0
1 s ( s )2
Q0 0
-20
-40 0.1
关于选择性
+
vO
- (AVF -1)R1
R1 同相比例 放大电路
0.5 1 2 5 Q=10
1
/0
18
华中科技大学 张林
10.3.4 二阶有源带阻滤波电路
可由低通和高通并联得到 必须满足 L H
vI
低通
特征角频率
故,幅频相应为
A(j )
A0
1 ( )2 c
R1
Rf
-
+ vI
R vP C
+ 同相比例 + 放大电路 vO RL
-
-
无源 RC 滤波电路
20lg|
A(j) A0
|/dB
0
-3
实际
理想 -20dB/十倍频程
-20
1
10 /C
6
华中科技大学 张林
10.2 一阶有源滤波电路
2. 高通滤波电路
2
华中科技大学 张林
10 信号处理与信号产生电路
10.1 滤波电路的基本概念与分类 10.2 一阶有源滤波电路 10.3 高阶有源滤波电路 *10.4 开关电容滤波器 10.5 正弦波振荡电路的振荡条件 10.6 RC正弦波振荡电路 10.7 LC正弦波振荡电路 10.8 非正弦信号产生电路
3
华中科技大学 张林
fcC1
fcC2
+
vO
1
2
1
2
T3
C1 T4
C1 1 C2 1 j f
vi T1
T2
Cf -
电子技术基础第五版模拟部分通用课件康华光
由材料缺陷或晶体缺陷引起的噪声。
噪声的抑制方法
增加信号幅度
通过增加信号幅度,降低相对噪声影 响。
滤波
通过使用滤波器滤除特定频率范围的 噪声。
接地
良好的接地可以减少电磁干扰和地线 噪声。
屏蔽
使用屏蔽材料隔离电路和电子设备, 减少外部噪声的影响。
失真的产生与抑制方法
非线性失真
由于电路元件的非线性特性引起的失真,如放大器的增益饱和。
解调技术
解调是将加载在高频载波信号上的低 频信号分离出来的过程。解调技术包 括鉴频、鉴相和鉴幅。
信号的滤波技术
滤波器类型
滤波器根据其频率响应特性可分为低通滤波器、高通滤波器、带通滤波器和带 阻滤波器。
滤波器设计
滤波器的设计需要考虑其传递函数、阻抗比、衰减特性、群时延特性等参数, 以达到所需的信号处理效果。
03
模拟集成电路基础
模拟集成电路的基本概念
模拟集成电路
由模拟元件构成的电路,用于处理连续变化的模拟信号。
模拟信号
表示物理量连续变化的信号,如声音、温度、压力等。
模拟集成电路的特点
具有高精度、低噪声、低失真等特点,广泛应用于信号处理、通信 、测量等领域。
模拟集成电路的工艺技术
半导体工艺
基于半导体材料(如硅、 锗)的制造工艺,包括外 延、氧化、扩散、光刻、 刻蚀等。
集成电路的分类
按工艺技术可分为薄膜集 成电路和厚膜集成电路。
集成电路的封装
将芯片与外部电路连接起 来的封装形式,包括直插 式封装、表面贴装等。
模拟集成电路的设计流程
元器件选择
选择合适的元件, 包括电阻、电容、 电感等。
版图绘制
将电路设计转化为 版图,为制造提供 依据。
《模拟电子技术基础(第五版 康华光主编)》 复习提纲
模拟电子技术基础复习提纲第一章绪论)信号、模拟信号、放大电路、三大指标。
(放大倍数、输入电阻、输出电阻)第三章二极管及其基本电路)本征半导体:纯净结构完整的半导体晶体。
在本征半导体内,电子和空穴总是成对出现的。
N型半导体和P型半导体。
在N型半导体内,电子是多数载流子;在P型半导体内,空穴是多数载流子。
载流子在电场作用下的运动称为漂移;载流子由高浓度区向低浓度区的运动称为扩散。
P型半导体和N型半导体的接触区形成PN结,在该区域中,多数载流子扩散到对方区域,被对方的多数载流子复合,形成空间电荷区,也称耗尽区或高阻区。
空间电荷区内电场产生的漂移最终与扩散达到平衡。
PN结最重要的电特性是单向导电性,PN结加正向电压时,电阻值很小,PN结导通;PN结加反向电压时,电阻值很大,PN结截止。
PN 结反向击穿包括雪崩击穿和齐纳击穿;PN结的电容效应包括扩散电容和势垒电容,前者是正向偏置电容,后者是反向偏置电容。
)二极管的V-I 特性(理论表达式和特性曲线))二极管的三种模型表示方法。
(理想模型、恒压降模型、折线模型)。
(V BE=)第四章双极结型三极管及放大电路基础)BJT的结构、电路符号、输入输出特性曲线。
(由三端的直流电压值判断各端的名称。
由三端的流入电流判断三端名称电流放大倍数))什么是直流负载线什么是直流工作点)共射极电路中直流工作点的分析与计算。
有关公式。
(工作点过高,输出信号顶部失真,饱和失真,工作点过低,输出信号底部被截,截止失真)。
)小信号模型中h ie和h fe含义。
)用h参数分析共射极放大电路。
(画小信号等效电路,求电压放大倍数、输入电阻、输出电阻)。
)常用的BJT放大电路有哪些组态(共射极、共基极、共集电极)。
各种组态的特点及用途。
P147。
(共射极:兼有电压和电流放大,输入输出电阻适中,多做信号中间放大;共集电极(也称射极输出器),电压增益略小于1,输入电阻大,输出电阻小,有较大的电流放大倍数,多做输入级,中间缓冲级和输出级;共基极:只有电压放大,没有电流放大,有电流跟随作用,高频特性较好。
康华光《电子技术基础-模拟部分》(第5版)笔记和课后习题(含考研真题)..
目 录第1章 绪 论1.1 复习笔记1.2 课后习题详解1.3 名校考研真题详解第2章 运算放大器2.1 复习笔记2.2 课后习题详解2.3 名校考研真题详解第3章 二极管及其基本电路3.1 复习笔记3.2 课后习题详解3.3 名校考研真题详解第4章 双极结型三极管及放大电路基础4.1 复习笔记4.2 课后习题详解4.3 名校考研真题详解第5章 场效应管放大电路5.1 复习笔记5.2 课后习题详解5.3 名校考研真题详解第6章 模拟集成电路6.1 复习笔记6.2 课后习题详解6.3 名校考研真题详解第7章 反馈放大电路7.1 复习笔记7.2 课后习题详解7.3 名校考研真题详解第8章 功率放大电路8.1 复习笔记8.2 课后习题详解8.3 名校考研真题详解第9章 信号处理与信号产生电路9.1 复习笔记9.2 课后习题详解9.3 名校考研真题详解第10章 直流稳压电源10.1 复习笔记10.2 课后习题详解10.3 名校考研真题详解第11章 电子电路的计算机辅助分析与设计第1章 绪 论1.1 复习笔记一、电子系统与信号电子系统指若干相互连接、相互作用的基本电路组成的具有特定功能的电路整体。
信号是信息的载体,按照时间和幅值的连续性及离散性可把信号分成4类:①时间连续、数值连续信号,即模拟信号;②时间离散、数值连续信号;③时间连续、数值离散信号;④时间离散、数值离散信号,即数字信号。
二、信号的频谱任意满足狄利克雷条件的周期函数都可展开成傅里叶级数(含有直流分量、基波、高次谐波),从这种周期函数中可以取出所需要的频率信号,过滤掉不需要的频率信号,也可以过滤掉某些频率信号,保留其它频率信号。
幅度频谱:各频率分量的振幅随频率变化的分布。
相位频谱:各频率分量的相位随频率变化的分布。
三、放大电路模型信号放大电路是最基本的模拟信号处理电路,所谓放大作用,其放大的对象是变化量,本质是实现信号的能量控制。
放大电路有以下4种类型:1.电压放大电路电路的电压增益为考虑信号源内阻的电压增益为2.电流放大电路电路的电流增益为考虑信号源内阻的电压增益为3.互阻放大电路电路的互阻增益为4.互导放大电路电路的互导增益为四、放大电路的主要性能指标1输入电阻:输入电压与输入电流的比值,即对输入为电压信号的放大电路,R i越大越好;对输入为电流信号的放大电路,R i越小越好。
模电“电子技术基础”康华光-ch9-1rcforel
新型半导体材料和工艺的发展 将为模拟电路带来新的突破,
提升性能和降低成本。
05
本章习题及解答
本章习题
1. 什么是RC电路?它在 电子技术中有哪些应用?
3. 描述RL电路的特点和计 算方法。
2. 如何计算RC电路的时 间常数?
4. 在RC电路中,如何通 过改变电阻或电容来影响 输出波形?
习题答案及解析
答案
RC电路是由电阻(R)和电容(C)组成的电路,通常用于滤波、积分、微分等电子技 术应用。
解析
该题考查了RC电路的基本概念和在电子技术中的应用,需要理解RC电路的组成和作用。
习题答案及解析
2. 答案及解析
1
2
答案:RC电路的时间常数(τ)可以通过公式计 算:τ = R × C。其中,R是电阻的阻值,C是电 容的容量。
3
解析:该题考查了RC电路时间常数的计算方法, 需要掌握时间常数的基本概念和计算公式。
习题答案及解析
答案
RL电路是由电阻(R)和电感(L)组成的电路,其特点是具有感抗,能够阻碍 电流的变化。计算方法包括感抗的计算公式Xl=2πfL。
解析
该题考查了RL电路的特点和计算方法,需要理解RL电路的组成和感抗的概念, 并掌握计算公式。
模电“电子技术基础”康 华光-ch9-1rcforel
• 引言 • 模电的基本概念 • 康华光-ch9-1rcforel章节概述 • 模电的应用与发展趋势 • 本章习题及解答
01
引言
课程背景
电子技术基础是电子、通信、计算机 等相关专业的必修课程,是学习其他 专业课程的基础。
随着信息技术的发展,电子技术基础 课程在各个领域的应用越来越广泛, 对于培养学生的实践能力和创新思维 具有重要意义。
电子技术基础模拟部分(第六版) 康华光ch
全通滤波电路(APF)
对所有频率的信号都有相同的传 递函数。
滤波电路的分析方法
解析法
通过数学公式推导电路的 传递函数和频率响应。
实验法
通过实验测试电路的实际 性能。
近似法
对电路进行近似处理,简 化分析过程。
滤波电路的应用实例
音频信号处理
用于消除噪音、增强音质。
图像信号处理
感谢您的观看
振荡电路用于产生本机振荡信号,用于调制和解调无 线信号。
音频信号处理
振荡电路可以用于产生音频信号,如合成器和效果器 中的音源。
测量仪器
振荡电路用于产生稳定的频率信号,如示波器和频谱 分析仪中的信号源。
06 电源电路
电源电路的组成和工作原理
电源电路的组成
电源电路主要由电源、负载和中间环节组成。电源是产生电 能的装置,负载是消耗电能的装置,中间环节则起到传输电 能的作用。
用于图像增强、去噪。
通信系统
用于信号的提取、抑制干扰。
05 振荡电路
振荡电路的组成和工作原理
1 2 3
组成
振荡电路由放大器、反馈网络和选频网络三个部 分组成。
工作原理
振荡电路通过正反馈和选频网络的选频作用,将 输入信号中的特定频率成分不断放大,最终输出 稳定的振荡信号。
振荡条件
要产生振荡,必须满足一定的相位和幅度条件, 即|AF|=1和ΔΦ=2π(n-1),其中A为放大倍数,F 为反馈系数,n为自然数。
电子技术基础模拟部分(第六版) 康华光ch
目 录
• 电子技术概述 • 模拟电路基础 • 放大电路 • 滤波电路 • 振荡电路 • 电源电路
01 电子技术概述
模电电子教案,康华光
模电电子教案康华光第一章:模拟电子技术基础1.1 课程介绍介绍模拟电子技术的基本概念和重要性概述本章内容和学习目标1.2 模拟电子技术的基本概念模拟信号与数字信号的区别模拟电路与数字电路的区别1.3 模拟电子技术的基本元件电阻、电容、电感的作用和特性半导体器件二极管、晶体管的工作原理和应用1.4 模拟电路的基本分析方法电压电流分析法节点分析和支路分析法第二章:放大电路分析2.1 放大电路的基本概念放大电路的作用和分类放大电路的主要参数和性能指标2.2 放大电路的组成和工作原理单级放大电路的组成和分析多级放大电路的组成和分析2.3 放大电路的设计与调整放大电路的设计原则和方法放大电路的调整方法和技巧2.4 放大电路的应用实例音频放大电路的设计和应用模拟信号处理电路的设计和应用第三章:振荡电路分析3.1 振荡电路的基本概念振荡电路的作用和分类振荡电路的主要参数和性能指标3.2 振荡电路的组成和工作原理LC振荡电路的组成和分析RC振荡电路的组成和分析3.3 振荡电路的设计与调整振荡电路的设计原则和方法振荡电路的调整方法和技巧3.4 振荡电路的应用实例信号发生器的原理和应用无线通信电路的振荡器和调制器的设计和应用第四章:滤波电路分析4.1 滤波电路的基本概念滤波电路的作用和分类滤波电路的主要参数和性能指标4.2 滤波电路的组成和工作原理低通滤波电路的组成和分析高通滤波电路的组成和分析4.3 滤波电路的设计与调整滤波电路的设计原则和方法滤波电路的调整方法和技巧4.4 滤波电路的应用实例模拟信号滤波处理电路的设计和应用数字信号滤波处理电路的设计和应用第五章:模拟集成电路分析5.1 模拟集成电路的基本概念模拟集成电路的作用和分类模拟集成电路的主要参数和性能指标5.2 模拟集成电路的组成和工作原理放大集成电路的组成和分析滤波集成电路的组成和分析5.3 模拟集成电路的设计与应用模拟集成电路的设计原则和方法模拟集成电路的应用实例5.4 模拟集成电路的测试与维护模拟集成电路的测试方法和指标模拟集成电路的维护和故障排除第六章:数字电子技术基础6.1 课程介绍介绍数字电子技术的基本概念和重要性概述本章内容和学习目标6.2 数字电子技术的基本概念数字信号与模拟信号的区别数字电路与模拟电路的区别6.3 数字电子技术的基本元件逻辑门电路的作用和特性逻辑函数和逻辑门电路的表示方法6.4 数字电路的基本分析方法逻辑函数的化简方法逻辑电路的分析和设计方法第七章:数字电路设计7.1 数字电路设计的基本概念数字电路设计的作用和分类数字电路设计的主要参数和性能指标7.2 数字电路设计的组成和工作原理组合逻辑电路的设计和分析时序逻辑电路的设计和分析7.3 数字电路设计的工具和技术数字电路设计软件的使用硬件描述语言VHDL和Verilog的使用7.4 数字电路设计的应用实例微处理器的设计和应用数字系统的集成和测试第八章:数字电路仿真8.1 数字电路仿真的基本概念数字电路仿真的作用和分类数字电路仿真的主要参数和性能指标8.2 数字电路仿真的原理和工具数字电路仿真原理和方法数字电路仿真软件的使用8.3 数字电路仿真的过程和技巧数字电路仿真的一般步骤数字电路仿真中常见问题和解决方法8.4 数字电路仿真的应用实例数字系统功能验证和性能分析数字电路故障诊断和维修第九章:数字集成电路9.1 数字集成电路的基本概念数字集成电路的作用和分类数字集成电路的主要参数和性能指标9.2 数字集成电路的组成和工作原理数字集成电路的结构和制造工艺数字集成电路的信号传输和噪声分析9.3 数字集成电路的设计和应用数字集成电路的设计原则和方法数字集成电路的应用实例9.4 数字集成电路的测试和维护数字集成电路的测试方法和指标数字集成电路的维护和故障排除第十章:数字信号处理10.1 数字信号处理的基本概念数字信号处理的作用和分类数字信号处理的主要参数和性能指标10.2 数字信号处理的方法和算法数字滤波器的原理和设计方法快速傅里叶变换(FFT)的应用和算法10.3 数字信号处理的应用实例音频信号处理和噪声消除图像信号处理和图像增强10.4 数字信号处理的工具和软件数字信号处理软件的使用数字信号处理器(DSP)的应用和编程重点和难点解析1. 第一章至第五章的模拟电子技术基础部分,涉及了模拟信号与数字信号的区别、模拟电路与数字电路的区别、基本元件的工作原理和应用等。
电子技术基础模拟部分(第六版) 康华光ch05
22
华中科技大学 张林
5.1.4 BJT的主要参数
由PCM、 ICM和V(BR)CEO在输出特性曲线上可以确定 过损耗区、过电流区和击穿区。
过流区
过 压 区
输出特性曲线上的过损耗区和击穿区
23
华中科技大学 张林
5.1.5 温度对BJT参数及特性的影响
时,发射结正偏,集电结反 偏。
17
华中科技大学 张林
5.1.4 BJT的主要参数
1. 电流放大系数
(1) 共发射极直流电流放大系数 β
βICICEO IC
IB
IB
vCE const
(2) 共发射极交流电流放大系数 =IC/IBvCE=const
18
华中科技大学 张林
5.1.4 BJT的主要参数
1. 内部载流子的传输过程 发射区:发射载流子 集电区:收集载流子 基区:传送和控制载流子
(以NPN为例)
IE=IB+ IC IC= ICN+ ICBO
载流子的传输过程
9
华中科技大学 张林
2. 电流分配关系
根据传输过程可知 IE=IB+ IC
设
传输到集电极的电流
发射极注入电流
即 InC
IE
vBE =VCC-iBRb
且电容Cb1充电完成后,其
vs
电压等于VBEQ
输出回路方程相同
vCE=VCC-iCRc
动态时,输入信号vi叠加Cb1上已充的 静态电压VBEQ,然后加在BJT的b-e间, 即
vBE=VBEQ+ vi
40
华中科技大学 张林
5.3.1 BJT放大电路的图解分析法
模电“电子技术基础”康华光-ch1preface
在线课程平台
推荐中国大学MOOC、网易云课 堂等在线课程平台,上面有许多 与电子技术基础相关的课程,可 以作为学习的补充。
学习论坛与社区
参与学习论坛和社区的讨论,如 CSDN论坛、电子发烧友等,与 其他学习者交流心得和经验,有 助于提高学习效果。
05
结语
总结课程亮点
强调电子技术基础的重要性
康华光教授在引言中明确指出,电子技术基础是学习模拟电子线路的先修课程,为后续深 入学习打下坚实基础。
模电“电子技术基础”康 华光-ch1preface
• 引言 • 康华光教授简介 • 电子技术基础的重要性 • 课程内容与学习方法 • 结语
01
引言
主题简介
电子技术基础
本课程主要介绍电子技术的基本原理 和应用,包括电路分析、电子器件、 模拟电路和数字电路等方面的知识。
课程目标
通过本课程的学习,学生将掌握电子 技术的基本概念、原理和方法,培养 分析和解决实际问题的能力,为后续 专业课程的学习打下坚实的基础。
02
职业晋升
电子技术基础是许多工程领域职业晋升的必备条件,如电子工程师、电
气工程师和集成电路设计师等。
03
跨领域应用
电子技术基础不仅在传统电子行业有广泛应用,还涉及到医疗、航空航
天、环保等多个领域,掌握电子技术基础有助于个人在不同领域的发展
和跨界合作。
04
课程内容与学习方法
主要内容概述
电子技术基础概述
他的教材内容深入浅出,注重理论与实践相结 合,受到广大师生的好评和欢迎。
康华光教授的教材不仅在国内高校广泛使用, 还被翻译成多种语言,成为国际上电子技术领 域的经典教材之一。
03
电子技术基础的重要性
康华光模拟电子技术基础课后答案全解
第三部分 习题与解答习题1客观检测题一、填空题1、在杂质半导体中,多数载流子的浓度主要取决于掺入的 杂质浓度 ,而少数载流子的浓度则与 温度 有很大关系。
2、当PN 结外加正向电压时,扩散电流 大于 漂移电流,耗尽层 变窄 。
当外加反向电压时,扩散电流 小于 漂移电流,耗尽层 变宽 。
3、在N 型半导体中,电子为多数载流子, 空穴 为少数载流子。
二.判断题1、由于P 型半导体中含有大量空穴载流子,N 型半导体中含有大量电子载流子,所以P 型半导体带正电,N 型半导体带负电。
( × )2、在N 型半导体中,掺入高浓度三价元素杂质,可以改为P 型半导体。
( √ )3、扩散电流是由半导体的杂质浓度引起的,即杂质浓度大,扩散电流大;杂质浓度小,扩散电流小。
(× )4、本征激发过程中,当激发与复合处于动态平衡时,两种作用相互抵消,激发与复合停止。
( × )5、PN 结在无光照无外加电压时,结电流为零。
( √ )6、温度升高时,PN 结的反向饱和电流将减小。
( × )7、PN 结加正向电压时,空间电荷区将变宽。
(× )三.简答题1、PN 结的伏安特性有何特点?答:根据统计物理理论分析,PN 结的伏安特性可用式)1e (I I T V Vs D -⋅=表示。
式中,I D 为流过PN 结的电流;I s 为PN 结的反向饱和电流,是一个与环境温度和材料等有关的参数,单位与I 的单位一致;V 为外加电压; V T =kT/q ,为温度的电压当量(其单位与V 的单位一致),其中玻尔兹曼常数k .J /K -=⨯2313810,电子电量)(C 1060217731.1q 19库伦-⨯=,则)V (2.11594TV T =,在常温(T=300K )下,V T =25.875mV=26mV 。
当外加正向电压,即V 为正值,且V 比V T 大几倍时,1e TV V >>,于是TV V s eI I ⋅=,这时正向电流将随着正向电压的增加按指数规律增大,PN 结为正向导通状态.外加反向电压,即V 为负值,且|V|比V T 大几倍时,1eTV V <<,于是s I I -≈,这时PN 结只流过很小的反向饱和电流,且数值上基本不随外加电压而变,PN 结呈反向截止状态。
电子技术基础第五模拟部分课件康华光
模拟电路通常用于放大、滤波、解调等信号处理 环节,以及控制和调节系统。
模拟电路的特点与分类
模拟电路具有连续性、线性、时变性等特点 ,可以实现对真实系统或自然现象的逼真模 拟。
模拟电路的分类方法有多种,如按频率分、 按放大倍数分、按功能分等。
04
高精度与低功耗
在追求高性能的同时,如何实 现更低的功耗和更高的精度是 模拟电路设计中的一大挑战。
06
模拟电路实验与案例分析
模拟电路实验的设计与实施
实验目的
掌握模拟电路的基本实验技能,培养分析和 解决实际问题的能力。
实验步骤
详细描述实验的操作流程,包括实验准备、 电路搭建、数据测量、结果分析等。
。
优化流程
03
先进行系统级仿真,再进行电路级仿真,最后进行版
图级仿真。
基于仿真的优化设计
电路仿真
通过电路仿真软件,如SPICE,对电路性能进行预测 和评估。
参数扫描
在电路仿真中,对关键参数进行扫描,找出最佳性能 参数值。
灵敏度分析
分析电路性能对各个参数的灵敏度,确定对电路性能 影响最大的参数。
基于遗传算法的优化设计
03
模拟电路还用于医疗设备的电 源管理,如为设备提供稳定的 供电和为电池充电。
04
模拟电路在医疗设备中的性能 直接关系到设备的准确性和安 全性。
04
模拟电路的优化设计
优化设计的基本原则和方法
优化设计目标
01
以电路性能指标为优化目标,如功耗、噪声、增益等
。
优化设计准则
02 根据特定应用需求,选择合适的优化算法和仿真工具
01
电子技术基础(模拟部分)第五版课件_康华光
VS ——直流分量 2
2VS ——基波分量 π
2VS 1 ——三次谐波分量 π 3
1.2 信号的频谱
2. 信号的频谱
频谱:将一个信号分解为正弦信号的集合,得到其正弦信号幅值和相位 随角频率变化的分布,称为该信号的频谱。
B. 方波信号
VS 2VS 1 1 v( t ) (sinω0 t sin3ω0 t sin5ω0 t ) 2 π 3 5
四种增益 其中
vo Av vi
io Ai ii
vo Ar ii
io Ag vi
Av、Ai 常用分贝(dB)表示。
电压增益 20lg Av 电流增益 20lg Ai
功率增益 10lg AP
(dB) (dB)
(dB)
1.5 放大电路的主要性能指标
4. 频率响应
A.频率响应及带宽
运算放大器外形图
2.1 集成电路运算放大器
1. 集成电路运算放大器的内部组成单元
集成运算放大器是一种高电压增益,高输入电阻和 低输出电阻的多级直接耦合放大电路。
图2.1.1 集成运算放大器的内部结构框图
V ,V , vP , vN , vO
运算放大器方框图 1. 输入级:均采用差动放大电路组成,可减小温度漂 移的影响,提高整个电路共模抑制比。
由此可见
RL
Ai
要想减小负载的影响,则希望…? 由输入回路得
Ro RL
理想情况 Ro
要想减小对信号源的衰减,则希望…?
Ri Rs 理想情况 Ri 0
1.4 放大电路模型
C. 互阻放大模型(自学) D. 互导放大模型(自学) E. 隔离放大电路模型
输入输出回路没有公共端
模拟电子技术基础(第五版)新 康华光 课件(1)
2. 抑制零点漂移原理 温度变化和电源电压波
动,都将使集电极电流产
生变化。且变化趋势是相 同的, 其效果相当于在两个输 入端加入了共模信号。
2. 抑制零点漂移原理
这一过程类似于分压式射极 偏置电路的温度稳定过程。所
以,即使电路处于单端输出方
式时,仍有较强的抑制零漂能 力。
iC1
iC1 iE1 温度 iC2 iE2
接入负载时
β (R c //R L) A v d = 2 r be
3. 主要指标计算
(1)差模情况
<C> 单端输入
r r o e
6.1 模拟集成电路中的直流偏置技术 6.2 差分式放大电路 6.3 差分式放大电路的传输特性 6.4 集成电路运算放大器 6.5 实际集成运算放大器的主要参数和对应 用电路的影响
6.1 模拟集成电路中 的直流偏置技术
6.1.1 BJT电流源电路
1. 镜像电流源 3. 高输出阻抗电流源
2. 微电流源
4. 组合电流源
6.1.2 FET电流源
1. MOSFET镜像电流源
2. MOSFET多路电流源
3. JFET电流源
6.1.1 BJT电流源电路
1. 镜像电流源
T1、T2的参数全同 即β1=β2,ICEO1=ICEO2
IE2 = IE1 V =V BE2 BE1
IC2 = IC1
当BJT的β较大时,基极电流IB可以忽略
V V ( V ) V V CC BE E E CC E E Io=IC2≈IREF= R R
代表符号
6.1.1 BJT电流源电路
1. 镜像电流源 动态电阻
iC 1 2 r ( ) o IB2 v CE 2
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2. 管耗PT 单个管子在半个周期内的管耗
1
PT1 = 2π
π
0 (VCC
vo )
vo RL
d (
t)
1 2π
π 0
(VCC
Vo
msi
nt
)
Vo
msint
RL
d(
t)
1 2π
π
(VCCVo m
sint
V2 om
sin2t )
d(
t)
0
RL
RL
1 (VCCVom Vom2 )
RL
两管管耗
二极管等效为恒压模型
交流相当于短路
8.4.1 甲乙类双电源互补对称电路
VCE4
R1 R2 R2
VBE4
VBE4可认为是定值
R1、R2不变时,VCE4也 是定值,可看作是一个直流 电源。
8.4.2 甲乙类单电源互补对称电路
静态时,偏置电路使 VK=VC≈VCC/2(电容C充电达到 稳态)。
当有信号vi时 负半周T1导通,有电流通过负载 RL,同时向C充电 正半周T2导通,则已充电的电容 C通过负载RL放电。 只要满足RLC >>T信,电容C就 可充当原来的-VCC。 计算Po、PT、PV和PTm的公式 必须加以修正,以VCC/2代替原 来公式中的VCC。
8.1 功率放大电路的一般问题
1. 功率放大电路的特点及主要研究对象 2. 功率放大电路提高效率的主要途径
1. 功率放大电路的特点及主要研究对象
(1) 功率放大电路的主要特点 功率放大电路是一种以输出较大功率为目的
的放大电路。因此,要求同时输出较大的电压 和电流。管子工作在接近极限状态。
一般直接驱动负载,带载能力要强。
(2) 要解决的问题 ➢ 提高效率 ➢ 减小失真
➢ 管子的保护
2. 功率放大电路提高效率的主要途径
➢ 降低静态功耗,即减小静态电流。 四种工作状态
根据正弦信号整个周期内 三极管的导通情况划分 甲类:一个周期内均导通 乙类:导通角等于180° 甲乙类:导通角大于180° 丙类:导通角小于180°
end
8.3.2 分析计算
图解分析
8.3.2 分析计算
1. 最大不失真输出功率Pomax
(VCC VCES )2
Pomax =
2 RL
(VCC VCES )2 2 RL
忽略VCES时
Pomax
VCC2 2 RL
实际输出功率
Po
= Vo Io
Vo m 2
Vo m
V2 om
2 RL 2RL
8.3.2 分析计算
8.3.3 功率BJT的选择
1. 最大管耗和最大输出功率的关系
因为
PT1
1 RL
(VCCVom π
Vom 2 ) 4
当
Vom
2 π
VCC
≈0.6VCC
时具有最大管耗
PT1m
1 π2
• VC2C RL
≈0.2Pom
选管依据之一
8.3.3 功率BJT的选择
功率与输出幅 度的关系 2. 功率BJT的选择
π
4
PT
= PT1 PT2
2 (VCCVom RL π
Vom2 ) 4
8.3.2 分析计算
3. 电源供给的功率PV
PV = Po PT
2VCCVom πRL
当
Vom
VCC
时,
PVm
2 π
VCC2 RL
4. 效率
= Po π Vom
PV 4 VCC
当
Vom VCC 时,
π 78.5% 4
8.3 乙类双电源互补对称 功率放大电路
8.3.1 电路组成 8.3.2 分析计算 8.3.3 功率BJT的选择
8.3.1 电路组成
1. 电路组成
由一对NPN、PNP特性相同的 互补三极管组成,采用正、负双 电源供电。这种电路也称为OCL 互补功率放大电路。
2. 工作原理
两个三极管在信号正、负 半周轮流导通,使负载得到 一个完整的波形。
(自学)
end
8.4 甲乙类互补对称功率 放大电路
8.4.1 甲乙类双电源互补对称电路 8.4.2 甲乙类单电源互补对称电路
8.4.1 甲乙类双电源互补对称电路
乙类互补对称电路存在的问题
8.4.1 甲乙类双电源互补对称电路
1. 静态偏置
设T3已有合适 的静态工作点
可克服交越失真
2. 动态工作情况
end
8.2 射极输出器——甲类放大的实例
简化电路
带电流源详图的电路图
特点:电压增益近似为1,电流增益很大,可获得较大的功
率增益,输出电阻小,带负载能力强。
8.2 射极输出器——甲类放大的实例
电压与输入电压的关系 vO (vI 0.6)V
设T1的饱和压VCES≈0.2V vO正向振幅最大值
Vom VCC 0.2V
vO负向振幅最大值 若T1首先截止
Vom I R BiAS L
若T3首先出现饱和 Vom VEE 0.2 V
8.2 射极输出器——甲类放大的实例
当 VCC VEE 15V IBiAS 1.85A RL 8 vI VBiAS vi VBIAS=0.6V
放大器的效率 η Pom (PVC PVE )100% 24.7% 效率低 end