信号处理与数据分析第十章作业答案(B).邱天爽.

合集下载

4_连续信号的离散化与离散信号的连续化

4_连续信号的离散化与离散信号的连续化
大连理工大学 10

• (3)采样过程的频域分析
– 采样后信号:
x p (t ) x(t ) p(t ), 其中 p(t )
– – 由FT的乘法性质,有
X p j
n
(t nT )

1 X j * P j 2π
2π ( k s ) – 上式中: P j T k
27
• 【拉格朗日线性插值】
x0 , y0 和 x1, y1 ,在上式中取 N 1 – 已知 y f ( x) 的两点,

p1 ( x ) y0 x x1 x x0 y y y1 =y0 1 0 ( x x0 ) x0 x1 x1 x0 x1 x0
cT sin[c (t nT )] xr (t ) x (nT ) c (t nT ) n

2016/6/2
大连理工大学
24
• 理想冲激序列采样的时域分析
– 图中, xr (t ) xp (t )* h(t )
p(t ) x p (t )
n
X j * s X j s

2016/6/2
大连理工大学
11
• 2. 采样过程的频域分析(续)
1 2π 1 X p j X j * P j X j * ( k ) s 2 2 π T k
– 频率混叠一旦出现,信号必然出现失真,无论采用什么 方法再进行后处理,都不能无失真地恢复原始连续时间 信号。 – 常用的方法:预滤波。即利用一个低通滤波器,使滤波 器的截止频率等于想要保留的信号的最高频率分量,而 将高于这个最高频率分量的所有频率成分滤除。 – 这样做看起来会丢失一定的信息,但是实际上对信号采 样的总体结果来说,由于避免了信号的频率混叠,一般 要比丢失一定的频率成分更有利。

信号处理与数据分析 邱天爽作业答案(Part2)

信号处理与数据分析 邱天爽作业答案(Part2)

对于 n 0 ,则有
y ( n)
pn
( 3)

1
p 1
1 1 1 1 3n ( ) n 1 ( ) p ( ) n 1 1 2 3 3 p 0 3 1 3
因此:
3n ,n 0 y (n) 2 ( 1 ), n 0 2
(a)画出 x(t ) 和 h(t ) 的图形如下图所示: 0 1
利用该图形,得到 y(t ) x(t ) h(t ) 如图所示:
因此,
t ,0 t , t 1 y (t ) 1 t ,1 t (1 ) 0, otherwise
k
( 3)
1
1
1
k
u ( n k 1)
k 1
( 3 ) u (n k 1)
k
用 p 代替 k -1 则,
1 y ( n ) ( ) p 1 u ( n p ) p0 3
对于 n 0 ,则有
1 1 1 1 y ( n ) ( ) p 1 1 3 3 2 p 0 1 3
2.(P24,课后习题 1.7)计算卷积并画出结果曲线
1 x ( n) u ( n 1), h( n) u ( n 1) 3
-n
解:利用定义可知,
y ( n) x ( n) h( n)
k
x ( k ) h( n k )

1 ( ) k u ( k 1)u ( n k 1) k 3
1.4
1.2
1
0.8
0.6
0.4
0.2
0 -20

信号处理与数据分析 邱天爽第11章作业答案

信号处理与数据分析 邱天爽第11章作业答案

于是
Pxz ( z ) Pxx ( z ) 0.82 (1 0.6 z 1 )(1 0.6 z ) 0.82 1 0.3 z 1 1 0.3 z 1 2 G ( z )G ( z ) 1 (1 0.6 z )(1 0.6 z ) 1 0.6 z 1 1 0.6 z
Pxx ( s) Pss ( s) Pvv ( s)
其中:
1 1 5 2s 2 G ( s) 2 2 G ( s) 1 s 4s 1 s2 4 s 2
G (s)
2( 2.5 s ) 2( 2.5 s ) , G (s) (1 s )(2 s ) (1 s )(2 s )
2.(书稿 11.18)设系统模型为 x( n 1) 0.6x (n ) w (n ) ,观测方程为 z( n) x( n) v( n) ,其中 w( n) 为方差
2 w 0.82 的白噪声, v(n) 为方差 v2 1 的白噪声, v(n) 与 x ( n ) 互不相关。试求其离散维纳滤波器。
可以得到白化滤波器为
H w ( s) 1 (1 s )(2 s ) G (s) 2( 2.5 s)
又因为 Psx ( s ) Pss ( s ) ,因此可以得到
Psx ( s) Pss ( s ) 1 / (1 s)(1 s) 0.822 0.115 G (s) G (s) 2( 2.5 s) / (1 s)(2 s) 1 s 2.5 s
解:
由给定系统模型知 x n 是一阶广义平稳马尔可夫信号或 AR(1)信号,此信号可用白噪声 n 激励传递函数为
H ( z) 1 线性系统的输出产生。因此 z 0.6

8_数据的误差分析与信号的预处理

8_数据的误差分析与信号的预处理

4
• 信号处理与测试测量密切相关。 • 测量和测试不可回避的问题是误差问题。
• 误差的大致分类:随机误差;系统误差
• 了解误差的产生原因和特性,对误差进行一定 的补偿与处理,从而改善测量精度。 • 这些误差消除的方法,与信号处理中的信号预 处理方法是相似的。 • 此外,测量数据的最小二乘处理方法与回归分 析,是数据分析处理的基本手段和重要内容。
2016/6/2 大连理工大学 9
8.2.2
随机误差
• (1)随机误差的基本概念
–是指在相同条件下,多次测量同一被测量时,测量结 果的大小和符号以不可预知的方式变化的误差,又称为 “偶然误差”或“不定误差”。 –随机误差在一定程度上服从某种统计规律。可以运用 概率统计的方法对随机误差的总体趋势和分布进行估计 ,并采取相应的措施减小其影响。
2016/6/2 大连理工大学 29
8.4.1
最小二乘法基本原理(自行阅读)
• (1)问题描述
–为了确定t个不可直接测量的未知量 X1, X 2 , , X t 的估 计 x1, x2 , , xt ,可对t个未知量有函数关系的直接测量 量Y 进行N次测量,得测量数据 l1 , l2 , , lN ,并设:
N
2
–若各分量的影响是直接的:
其中,uxi 为直接测量值的标准不确定度,ij 为第i个 测量值与第j个测量值之间的相关系数。
2016/6/2 大连理工大学
uc ( y )
2 ( u ) xi i 1
N
27
§8.4 数据处理的最小二乘方 法(自行阅读)
2016/6/2
大连理工大学
28
• 最小二乘的概念
v
–为 多次测量的平均值。

信号处理行业数据分析与应用考试

信号处理行业数据分析与应用考试

信号处理行业数据分析与应用考试(答案见尾页)一、选择题1. 信号处理行业数据分析的常用方法有哪些?A. 波斯谱分析B. 小波变换C. 矩阵分析D. 频谱分析2. 在信号处理中,以下哪个参数常用于评估信号质量?A. 信噪比B. 噪声功率C. 线性度D. 传递函数3. 以下哪个选项是频域分析的代表?A. 能量守恒B. 傅里叶变换C. 矩阵对角化D. 最大似然估计4. 信号处理中,以下哪个技术可用于实现信号的分离和识别?A. 卡尔曼滤波B. 神经网络C. 零均值漂移D. 高斯过程5. 在数字信号处理中,以下哪种算法常用于滤波和信号重建?A. 中值滤波B. 巴特沃斯滤波C. 各向异性扩散D. K-均值聚类6. 信号处理行业中,以下哪个软件或工具常用于分析和处理信号?A. MATLABB. PythonC. SPSSD. Excel7. 以下哪个选项是信号处理中的一种线性变换?A. 平方和B. 微分方程C. 积分D. 快速傅里叶变换(FFT)8. 在信号处理中,以下哪个概念常用于描述信号的周期性?A. 相位B. 指数C. 谐波D. 频率9. 信号处理行业中,以下哪个领域的研究最常涉及算法优化?A. 语音识别B. 图像处理C. 机器学习D. 自动驾驶10. 以下哪个选项是信号处理中的一种非线性变换?A. 对数变换B. 线性回归C. 逻辑回归D. 放射变换11. 信号处理行业数据分析的常用方法有哪些?A. 描述性统计B. 假设检验C. 回归分析D. 时间序列分析E. 机器学习12. 在信号处理行业中,以下哪个参数常用于评估信号质量?A. 信噪比B. 码间干扰C. 谐波失真D. 信号衰减E. 频谱宽度13. 以下哪个选项是信号处理在通信系统中的应用?A. 语音识别B. 图像处理C. 音频编码D. 数据压缩E. 机器学习14. 在数字信号处理中,以下哪个算法用于实现快速傅里叶变换(FFT)?A. 欧拉公式B. 复数指数函数C. 离散余弦函数D. 快速傅里叶级数15. 信号处理行业中,以下哪个技术用于模拟信号的数字化?A. 采样B. 滤波C. 量化D. 编码E. 解码16. 在雷达系统中,以下哪个功能用于检测和定位目标?A. 雷达成像B. 雷达成像处理C. 目标检测D. 目标定位E. 雷达成像重建17. 信号处理在生物医学工程中的应用有哪些?A. 心电图(ECG)B. 脑电图(EEG)C. 成像技术(如MRI和CT)D. 超声波治疗E. 医学图像处理18. 在无线通信系统中,以下哪个技术用于确保信号在传输过程中的稳定性?A. 信道编码B. 信道估计C. 扩频技术D. 调制技术E. 频谱管理19. 信号处理在金融领域的应用有哪些?A. 金融信号分析B. 风险管理C. 投资组合优化D. 交易策略开发E. 信用评分20. 在遥感技术中,以下哪个功能用于从卫星获取地表信息?A. 遥感成像B. 遥感图像解译C. 遥感图像增强D. 遥感图像分类E. 遥感图像三维建模21. 信号处理行业的现状及未来发展趋势是什么?A. 信号处理行业正处于快速发展阶段,未来将更加注重创新和智能化。

信号处理与数据分析 邱天爽作业答案第四章

信号处理与数据分析 邱天爽作业答案第四章

号恢复 y(t ) 的采样周期 T 的范围。 解: y(t ) 利用傅里叶变换的性质,我们可以得到:
Y ( j)=X 1 ( j)X 2 ( j)
因此 Y ( j )=0, 1000 。这说明 y(t ) 的奈奎斯特采样频率为 2 1000 2000 ,采样周期最多维
2 2000 10 3 sec,因此采样周期 T 必须满足 T 103 sec,才能从采样信号中恢复 y(t ) 。
1 X ( j)=75X ( j) ,因此 0 的最大值为 50 。 T
3.( 书 稿 4.15) 设 x1 ( t ) 和 x2 ( t ) 均 为 带 限 信 号 , 它 们 的 频 谱 满 足 X 1 ( j) 0, | | 1000 ,
X 2 ( j) 0, | | 2000 。若 y (t ) x1 (t ) x2 (t ) ,对 y(t ) 进行单位冲激序列采样,试给出保证能从采样后信
sin(4000 t ) x (t ) t (3)
2
,因此采样频率至少为 2(4000 ) 8000 。
4000
,因此采样频率至少为 2(4000 ) 8000 。
4000
(3) x(t ) 对应的 X ( j) 可以看作两个举行脉冲的卷积,且两脉冲均在 至少为 2(8000 ) 16000 。
100
100

通过冲击序列采样的结果为:
G ( j)= 1 X ( j( ks )) T
其中 T 2 / s 1 / 75 ,因此 G(j) 如下图所示
250
100
100
250

ቤተ መጻሕፍቲ ባይዱ
很显然,当不存在频谱交叠时,即 50 , G ( j)=

数字信号处理习题答案作者杨毅明习题解答

数字信号处理习题答案作者杨毅明习题解答

h(n) = −0.5h(n −1) + 2δ (n)
(11.14)
(1)语言法
h(n)是因果序列,它的第一个非 0 值是公式(11.14)的第 2 项 2δ(n)引起的,是在 n=0 的时 候;之后,h(n)都是 h(n-1)的(-0.5)倍引起的。这种过去的输出影响现在的输出的现象叫做 反馈,反馈使得 h(n)循环变化。概括地说,h(n)是等比数列 2(-0.5)n,附加因果条件(2.77), 该系统的单位脉冲响应是
1
第 2 章 练习题解答
1. 用单位脉冲序列表示当天的温度序列是:
x(n)=18δ(n-8)+20δ(n-10)+21δ(n-12)+21δ(n-14)+20δ(n-16)+17δ(n-18) 2. 信号 x(n)分解为单位脉冲序列的组合形式是:
x(n)=0.5δ(n)+0.866δ(n-1)+δ(n-2)+0.866δ(n-3)+0.5δ(n-4) 3. 测量自己的心情变化时,天是自变量 n,心情是因变量 x(n)。高兴的事越多,x(n)的数值
8. 激光唱机处理声音信号的系统有五部分:光电信号转换器、数字信号处理器、数模转换 器、低通滤波器和电声信号转换器。
9. 因为海底的水声是许多种声音的组合,而且远处传来的声音比较微弱,单靠人耳听到的 声音很难判断远处物体发出的声音。
10. 请读者发挥自己的观察力和想象力。 11. 平均每天记忆的单词量=10 天里记忆单词的总量÷10 天,达到阅读英语书籍需要的学习
5. 因为语文成绩的等级是离散的自变量,计算比例和表示比例时都是使用有限长的数字, 所以统计是数字信号处理。
6. 环境的温度变化是非常缓慢的,观察这种变化时没必要连续进行,记录这种温度没必要 也不可能百分之百准确,还是用数字信号处理的方法好。

信号处理与数据分析 邱天爽作业答案第二章(Part2)

信号处理与数据分析 邱天爽作业答案第二章(Part2)
1 j
3.
出 A 的值。 解:我们知道 H ( j)
1 j 1 j 1 2 1 2 1 ,因此 A 1 。
X (e j )
n 0
x ne

j n
n
1 2
n 1
e j n 1 2
n 1

n 1
eቤተ መጻሕፍቲ ባይዱ j n
1 1 1 e j j 2 1 1 2 e 1 1 2 e j 0.75e j 1.25 cos 3e j 5 4cos
1.
(书稿 2.22)计算下列各式的离散时间傅里叶变换:
1 (1) x ( n) 2
n 1
u ( n 1) ;
1 (2) x ( n) 2
| n 1|

(3) x(n) (n 1) (n 1)
解:
(1) x(n) 的离散时间变换为:
X (e j )
n
x(n)e

j n
因此,
FT x(n) X (e j )
由本题(1)可知:
FT x (n) X (e j )
所以,
FT x (n) X (e j )
如若为实信号则有: X (e j )=X (e j ) (书稿 2.31) 一因果稳定 LTI 系统的频率响应为: H j 1 j 。试证明 H j A ,并求
* (2) x ( n)
解: (1)因为
X (e j )
n
x(n)e


j n
我们可以写成:
X (e j )

4_连续信号的离散化与离散信号的连续化

4_连续信号的离散化与离散信号的连续化
– 零阶保持采样系统:
p(t )
1
0
T
t
x(t )

x p (t )
h0 (t )
x0 ( t )
– 零阶保持采样系统实质上是一个单位冲激序列采样系统 与一个零阶保持滤波器的级联。
2016/6/2
大连理工大学
18
• 零阶保持采样系统
• 说明:
• 系统前端为一理想冲激 序列采样系统; • 系统后端级联一个零阶 保持系统,即平滑滤波器;
• 连续时间信号经理想冲
激序列采样后,再经平滑 滤波器保持。
2016/6/2
大连理工大学
19
• (3)零阶保持采样的信号恢复
– 零阶保持采样的信号恢复
p(t )
x(t )
H ( j)

x p (t )
h0 (t )
x0 ( t )
r (t )
hr (t )
– 若虚线框中的 H ( j) 为理想低通滤波器, 则可无失真 恢复原始信号。
1 1 X j * ( k s ) X j ( k s ) T k T k
– 上式说明: – X p j 包含 X j 。
– X p j 是一个关于
X j 的周期性频谱。
2016/6/2
大连理工大学
22
4.3.1
离散时间信号的插值
• (1)信号插值的概念与分类
– 所谓信号的插值(interpolation),是指在离散时 间信号(或称为数据)样本点的基础上补充连续曲 线,使得这条连续曲线通过全部给定的离散数据点, 进而估算出曲线在其他点处的近似值。插值是离散 函数逼近的重要方法,也是离散时间信号连续化的 一种常用的重要手段。 – 常用的插值方法:多项式插值、埃尔米特插值、分 段插值与样条插值、三角函数插值等。

信号处理与数据分析第十章作业答案(A).邱天爽.

信号处理与数据分析第十章作业答案(A).邱天爽.

习题10.5试说明周期图谱估计方法。

解:周期图(periodogram )是一种经典的功率谱密度估计方法,其主要优点是能应用快速傅里叶变换算法来进行谱估计。

当序列的长度足够长时,使用改进的周期图法,可以得到较好的功率谱估值,因而应用很广。

周期图的直接计算公式为:j j *j j 2per 11(e )(e )(e )|(e )|P X X X N Nωωωω==。

此外,功率谱密度还可以根据自相关函数估计的傅里叶变换来进行计算,称为经典谱估计的间接法,又称为BT 法,其计算公式为:j (2)j j 2per 1ˆ(e )()e |(e )|m N m P R m X Nωωω+∞−=−∞==∑,其中(2)ˆ()N R m 为自相关函数的有偏估计。

习题10.18设()x n 为一平稳随机信号,且是各态历经的,现用式()()()1||01ˆ||N m N N n r m x n x n m N m −−==+−∑ 解:估计其自相关函数,求此估计的均值和方差。

偏差的定义:ˆˆbia[()][()}()]rm E r m r m =− 式中1010101ˆ[()][()()]1 [()()]1 () ()N m N N n N m N N n N M n E r m E x n x n m N mE x n x n m N mr m N mr m −−=−−=−−==+−=+−=−=∑∑∑ 所以ˆbia[()]0rm =,即本题的自相关函数的估计是无偏估计。

由定义222ˆˆˆˆˆvar[()][()[()]][()][()]rm E r m E r m E r m E r m =−=−,其中 22ˆ[()]()E r m r m = 所以:1||22(1||)ˆˆvar[()][()()()](||)N m k N m N r m rk r k m r k m N m −−=−−−≈++−−∑。

信号处理与数据分析 邱天爽作业答案第二章(Part1)

信号处理与数据分析 邱天爽作业答案第二章(Part1)

1 1 j j 级数系数为 a0 2, a2 , a2 , a5 , a5 , ak 0 k Z 0, 2, 5 。 2 2 2 2
2.
(书稿 2.11) 计算信号 x(t ) e2(t 1)u (t 1) 的傅里叶变换,并画出其幅频特性曲线。
由题目可知 y (t ) e3t u (t ) e4t u (t ) ,可以计算 Y (j) 为
Y ( j ) 1 1 1 3 j 4 j (3 j)(4 j)
因为 H ( j) 1 (3 j) ,可以得到,
X ( j) Y ( j ) 1 (4 j) H( j)
做 4t u (t )
解:
傅里叶反变换为,
x(t ) (1 2 ) [2 () ( 4 ) ( 4 )]e jt d

(1 2 )[2 e j t e j4 t e j4 t ] 1 (1 2)e j4 t (1 2)e j4 t 1 cos(4 t )
2 t 3
2 2 6 3 , T2 ,可知两者的最小公倍数 T 6 是信号的 2 3 5 3 5
2 。然后计算信号的傅里叶级数系数:将原周期信号适当变形,可得 T 3
5 5

1 j e 2
2 t 3

1 j 3 t 1 j 3 t 1 1 1 1 因此可知其傅里叶 e e 2 e j00 t e j20 t e j20 t e j50 t e j50 t , 2j 2j 2 2 2j 2j
1.
2 5 ,试求其基波频率 (书稿 2.5) 给定连续时间周期信号 x t 2 cos 0 和傅里 t sin t 3 3

数字信号处理第三版第十章答案

数字信号处理第三版第十章答案

数字信号处理第三版第十章答案【篇一:数字信号处理_第十章重点】/p> (1)fir数字滤波器的设计(2)窗函数方法难点:(1)吉布斯效应的产生原因和改善方法【篇二:数字信号处理上机实验答案(全)1】p> 数字信号处理是一门理论和实际密切结合的课程,为深入掌握课程内容,最好在学习理论的同时,做习题和上机实验。

上机实验不仅可以帮助读者深入的理解和消化基本理论,而且能锻炼初学者的独立解决问题的能力。

本章在第二版的基础上编写了六个实验,前五个实验属基础理论实验,第六个属应用综合实验。

实验一系统响应及系统稳定性。

实验二时域采样与频域采样。

实验三用fft对信号作频谱分析。

实验四 iir数字滤波器设计及软件实现。

实验五 fir数字滤波器设计与软件实现实验六应用实验——数字信号处理在双音多频拨号系统中的应用任课教师根据教学进度,安排学生上机进行实验。

建议自学的读者在学习完第一章后作实验一;在学习完第三、四章后作实验二和实验三;实验四iir数字滤波器设计及软件实现在。

学习完第六章进行;实验五在学习完第七章后进行。

实验六综合实验在学习完第七章或者再后些进行;实验六为综合实验,在学习完本课程后再进行。

10.1 实验一: 系统响应及系统稳定性1.实验目的(1)掌握求系统响应的方法。

(2)掌握时域离散系统的时域特性。

(3)分析、观察及检验系统的稳定性。

2.实验原理与方法在时域中,描写系统特性的方法是差分方程和单位脉冲响应,在频域可以用系统函数描述系统特性。

已知输入信号可以由差分方程、单位脉冲响应或系统函数求出系统对于该输入信号的响应,本实验仅在时域求解。

在计算机上适合用递推法求差分方程的解,最简单的方法是采用matlab语言的工具箱函数filter函数。

也可以用matlab语言的工具箱函数conv函数计算输入信号和系统的单位脉冲响应的线性卷积,求出系统的响应。

系统的时域特性指的是系统的线性时不变性质、因果性和稳定性。

(完整word版)数字信号处理上机实验答案(第三版,第十章)

(完整word版)数字信号处理上机实验答案(第三版,第十章)

第十章上机实验数字信号处理是一门理论和实际密切结合的课程,为深入掌握课程内容,最好在学习理论的同时,做习题和上机实验.上机实验不仅可以帮助读者深入的理解和消化基本理论,而且能锻炼初学者的独立解决问题的能力。

本章在第二版的基础上编写了六个实验,前五个实验属基础理论实验,第六个属应用综合实验。

实验一系统响应及系统稳定性。

实验二时域采样与频域采样。

实验三用FFT对信号作频谱分析。

实验四IIR数字滤波器设计及软件实现。

实验五FIR数字滤波器设计与软件实现实验六应用实验—-数字信号处理在双音多频拨号系统中的应用任课教师根据教学进度,安排学生上机进行实验。

建议自学的读者在学习完第一章后作实验一;在学习完第三、四章后作实验二和实验三;实验四IIR数字滤波器设计及软件实现在。

学习完第六章进行;实验五在学习完第七章后进行。

实验六综合实验在学习完第七章或者再后些进行;实验六为综合实验,在学习完本课程后再进行。

10。

1 实验一:系统响应及系统稳定性1.实验目的(1)掌握求系统响应的方法。

(2)掌握时域离散系统的时域特性。

(3)分析、观察及检验系统的稳定性.2.实验原理与方法在时域中,描写系统特性的方法是差分方程和单位脉冲响应,在频域可以用系统函数描述系统特性.已知输入信号可以由差分方程、单位脉冲响应或系统函数求出系统对于该输入信号的响应,本实验仅在时域求解.在计算机上适合用递推法求差分方程的解,最简单的方法是采用MATLAB 语言的工具箱函数filter 函数。

也可以用MATLAB 语言的工具箱函数conv 函数计算输入信号和系统的单位脉冲响应的线性卷积,求出系统的响应。

系统的时域特性指的是系统的线性时不变性质、因果性和稳定性。

重点分析实验系统的稳定性,包括观察系统的暂态响应和稳定响应.系统的稳定性是指对任意有界的输入信号,系统都能得到有界的系统响应。

或者系统的单位脉冲响应满足绝对可和的条件.系统的稳定性由其差分方程的系数决定。

信号分析与处理课后答案

信号分析与处理课后答案




(6) x(t ) = cos 2πt × u (t )
jΩ ( n + N )
.c
= e jΩn ,因此有 e jΩn = 1 。
om
da
课后答案网
答案: (1) 是周期信号, T =
(8) 是周期信号, T = 16
kh
3.试判断下列信号是能量信号还是功率信号。 (1) x1 (t ) = Ae
−t
t≥0
(2) x 2 (t ) = A cos(ω 0 t + θ )
解: (1) x1 (t ) = Ae
−t
t≥0
2
T →∞ 0
2 A2 A2 ⎛ 1 ⎞ A −2T lim ( e − 1) = − lim ⎜ = − 1⎟ = 2 T →∞ ⎝ e 2T −2 T →∞ ⎠ 2
∴ x1 (t )为能量信号
kh
=∞
da
= lim [ 2T −
sin 4T sin(2 + 2π )T sin(2 − 2π )T sin 4π T ⎤ + − − 4 2 + 2π 2 − 2π 4 ⎥ ⎦
w
sin(2 − 2π )T sin(2 − 2π )T sin 4π T sin 4π T ⎤ − − − 4 − 4π 4 − 4π 8 8 ⎥ ⎦
A2 1 ⎞ ⎛ 1 lim ⎜ − ⎟=0 2T T →∞ 2 2T ⎠ ⎝ 2Te
aw
T



(3) x3 (t ) = sin 2t + sin 2πt
(4) x 4 (t ) = e sin 2t
w
w
T →∞

第10章课后习题解答cxf

第10章课后习题解答cxf

解:(1)
n

X
n
= [(n (x) =
+
1 2
)
]2
l
sin (n + l
1 2
)
x
n
=
0
,
1,
2....
(2)
n

X
n
= ( n l
(x) =
)2 cos
n l
x
n = 0,1, 2....
(3)
n
=
( n )2 b−a


X
n
(
x)
=
−2
[ p2
1 +2

p2
+
1 (m
a
/
l
)2
]
反演可得: Tm
(t)
=
(m
a
A / l)2
− 2
[sin
t

l m a
sin
m l
at
]
(3)此方程为欧拉方程,作变量代换, = et ,带入方程得: d 2R − m2R = 0 dt 2
R()
=
Cemt
+
De−mt

2
l
(4)满足边界条件的级数形式为:
f
(x)
=
n=0
an
cos
n l
x
a0
=
1 l
l 0
xdx
=
l 2

an
=
2 l
l 0
x
cos
n l
x
dx=
2l n2
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

习题10.22已知心电图的频率上限约为50Hz ,因此以200s f =Hz 进行采样。

如果要求的频率
分辨率2f ∆=
Hz 。

试确定做谱估计时每段数据的点数。

解: 频率分辨率与数据长度的关系为:/s f f N ∆=
,其中N 为每段的数据长度。

因此可得,/=100s N f f ≥∆。

所以做谱估计时每段数据的点数不少于100点。

习题10.23试证明:若保证一个p 阶AR 模型在白噪声的激励下的输出()x n 是一个平稳随机
过程,则该AR 模型的极点必须都位于单位圆内。

解:一个p 阶AR 模型的输入、输出关系是:
()()()1p
k k x n a x n k u n ==−−+∑ 及 ()(z)()X z U H z =
式中()u n 是平稳白噪声序列,()U z 是其Z 变换,()11/(1)p
k k k H z a z −==+∑是p 阶AR 模型
的转移函数。

如果()H z 有一个极点在单位圆外,那么,()H z 将是不稳定的,表现在()h n 上是随着n 的增大而呈指数增长,即()h n 中包含e t α的项,1α>。

这样,由于
()()()x n u n h n =∗,
那么()x n 也必定是随n 增大的。

这样,()x n 的均值必然是随时间变化的。

自然,其方差也是随时间变化的,并且当n →∞时,其方差将趋于无穷。

由于()x n 是时变的,所以其自相关函数将和分析的起点有关,而不是仅和两个时间点的差有关。

综上所述,由平稳实际信号的定义,这时的()x n 必然不是宽平稳的。

因此,若要保证()x n 是宽平稳的,()H z 的所有极点必须都在单位圆内。

编程题,可选做:
产生两个长度为8000的白噪声信号,和一个长度为8000的带有白噪声的1kHz 的正弦信号,求两个白噪声信号以及白噪声与带有白噪声的正弦信号的互功率谱,并绘制互功率谱曲线。

FFT 所采用的长度为1024,采用500点的三角窗,并且没有重叠,采样频率为6kHz 。

解:
Clc;clear all;
Fs=6000;
X=randn(8000,1);
Y=randn(8000,1);
Z=2*sin(2*pi*1000*[1, 8000]’/Fs)+randn(8000,1);
[Pxy, f]=csd(x,y,1024,Fs,triang(500),0);
[Pxz,f]=csd(x,z,1024,Fs,triang(500),0);
subplot(211);plot(f,10*log10(Pxy)); grid;
subplot(212);plot(f,10*log10(Pxz));grid;。

相关文档
最新文档