正方体的11种展开图32985

合集下载

正方体11种平面展开图(精心整理)

正方体11种平面展开图(精心整理)

正方体的11种平面展开图
正方体的平面展开图共有11种(那些经旋转或翻转后方向不同但实质相同的图形不重复计算),具体来讲分以下4类.
口诀:需背诵
正方体:中间四个面,上下各一面(6种摆法—141)
中间三个面,一二隔河见(3种摆法—132/231)
中间二个面,楼梯天天见(1种摆法—222)
中间没有面,三三连一线(1种摆法—33)
“田”“凹”应弃之
第一类:“1-4—1”型,其特点是有4个连成一排的正方形,两侧又各有1个正方形,共有6种。

口诀:中间四个面,上下各一面(上下面随便放)
第二类:“1—3—2"型,其特点是有3个连成一排的正方形,这一排正方形的一侧有1个正方形,另一侧有2个正方形(其中只有1个与中间那一排相连),共有3种。

口诀:中间三个面,一二隔河见(二三位置是固定的)
第三类:“2—2—2”型,其特点是有2个连成一排的正方形,其两侧又各有2个连成一排的正方形,只有1种。

口诀:中间二个面,楼梯天天见
第四类:“3-3"型,其特点是有3个连成一排的正方形,其一侧还有3个连成一排的正方形,只有1种。

中间没有面,三三连一线(1种摆法—33)。

正方体的11种展开图课件

正方体的11种展开图课件
正方体展开图
2024/6/25
将正方体剪开展成一个平面图形。
2024/6/25
• 1、在正方体的相对的面上标上相同的 数字
• 2、在展开的过程中注意你剪开了几条 棱?
2024/6/25
2024/6/25
“一四一” 型
“二三一” 型
“三三” 型 2024/6/25
“二二二” 型
判断下列图形能不能折成正方体?
2024/6/25
Hale Waihona Puke 圆 柱 圆 锥2024/6/25
三 棱 锥
2024/6/25
四棱锥
五棱锥
(13)
2024/6/25
(14)
2024/6/25
(15 )
2024/6/25
(16)
2024/6/25
(17)
2024/6/25
(18)
2024/6/25
在展开的过程中注意你剪开了几条棱? 将正方体展开成平面图形需要剪开 7条棱(无论用哪种方案展开)
2024/6/25
开始时我们已经在正方体的 相对的面上标上相同的数字, 现在观察一下这些数字在展 开图中有什么规律?
2024/6/25
2024/6/25
“一四一” 型
“二三一” 型
“三三” 型 2024/6/25
“二二二” 型
考考你 下图是正方体的表面展开图。
1、如果“你”在前面,那么谁在后面?
了! 太棒 你们
2024/6/25
2、“坚”在下,“就”在后,“胜”、 “利”在哪里?
坚 持就是
胜 利
2024/6/25
(1)
(2)
2024/6/25
(3)
2024/6/25

(完整版)正方体的十一种平面展开图

(完整版)正方体的十一种平面展开图
A.0,-2,1 B.0,1,-2 C.1,0,-2 D.-2,0,1
例3图15所示的是一个正方体包装盒的表面展开图,各个面上标注的数字分别为1,2,3,4,5,6。现将表面展开图复原为正方体包装盒,则标注数字1和3的两个面是互相平行的,请你写出另一组相互平行的面上所对应的数字:_______。
注:例1、例2、例3的答案分别为:C;A;2与5或4与6。是不是有点多此一举?
中间没有面,三三连一线(1种摆法-33)
例1在图13中(每个小四边形皆为全等的正方形),可以是一个正方体表面展开图的是( ).
例2图14是一个正方体包装盒的表面展开图,若在其中的三个正方形A、B、C内分别填上适当的数,使得这个表面展开图沿虚线折成正方体后,相对面上的两个数互为相反数,则填在A、B、C内的三个数依次是( ).
(四)
■■■■
□□■□
(五)■□
■■■
□□■
(七)
□□■
■■■
□□■
(八)
■□□
■■■
□□■
例4一个无盖的正方体纸盒,将它展开成平面图形,可能情况总共有()。
A.12种B.11种C.9种D.8种
千万注意,你可不要选B呦!选D才对。我又在炫耀了,不过你能很快画出这8个平面展开图吗?
下面是示意图,黑方块表示展开图,白方块表示空缺。
(一)
□■□
■■■
□■□
(二)
■■■■
■□□□
(三)
■■■■
□■□□
正方体的十一种平面展开图可记忆成下面口诀:
一三二,一四一,一在同层可任意,两个三,日状连,三个二,成阶梯,相邻必有日,整体没有田。
相对的两个面之间总隔着一个面
正方体:中间四个面,上下各一面(6种摆法-141)

正方体的11种展开图形

正方体的11种展开图形

02
CHAPTER
正方体的展开图形分类
一字型展开图形
总结词
一字型展开图形是最简单的正方体展 开图形,它由两个矩形和四个等长的 三角形组成。
详细描述
在展开后,正方体的一个面完全展开 ,与底面平行,其他五个面则形成等 长的三角形。这种展开图形通常用于 折叠正方体纸盒。
L型展开图形
总结词
L型展开图形由一个矩形和两个等长的三角形组成,展开后的形状类似于英文 字母"L"。
VS
详细描述
在正方体的展开图形中,面数相等是判断 是否能够还原成正方体的一个重要标准。 如果展开图形中的面数与正方体的面数相 等,那么这个图形就有可能通过折叠还原 成正方体。
04
CHAPTER
正方体展开图形的应用
折纸艺术
折纸艺术是一种以纸张为主要材料的艺术形式,通过折叠、剪裁、拼贴等手法创 造出各种形态和形象。正方体的展开图形在折纸艺术中有着广泛的应用,如千纸 鹤、纸盒等。
在展开后,正方体的八个角完全展开, 形成等长的三角形,同时还有一个正 方形面完全展开。这种展开图形通常 用于折叠正方体纸盒的顶部和底部以 及四个侧面。
混合型展开图形
总结词
混合型展开图形由多种形状组成,包括矩形、三角形和正方形等。
详细描述
混合型展开图形是最复杂的正方体展开图形,它由多种形状组合而成,通常用于折叠复杂的正方体纸盒结构。这 种展开图形需要较高的空间想象能力和手工技巧才能完成。
谢谢
折纸艺术不仅可以培养人的创造力和动手能力,还可以作为装饰品和礼物赠送给 亲朋好友,传递美好祝福。
空间几何教学
空间几何是数学中的一门学科,主要研究空间图形的性质和 关系。正方体的展开图形是空间几何教学中的一个重要内容 ,通过让学生亲手制作正方体的展开图形,可以帮助学生更 好地理解空间几何的概念和原理。

(完整word版)正方体11种平面展开图(精心整理)

(完整word版)正方体11种平面展开图(精心整理)

正方体的11种平面展开图
正方体的平面展开图共有11种(那些经旋转或翻转后方向不同但实质相同的图形不重复计算),具体来讲分以下4类。

口诀:需背诵
正方体:中间四个面,上下各一面(6种摆法-141)
中间三个面,一二隔河见(3种摆—132/231)
中间二个面,楼梯天天见(1种摆法—222)
中间没有面,三三连一线(1种摆法-33)
“田”“凹”应弃之
第一类:“1—4—1”型,其特点是有4个连成一排的正方形,两侧又各有1个正方形,共有6种.
口诀:中间四个面,上下各一面(上下面随便放)
第二类:“1—3-2”型,其特点是有3个连成一排的正方形,这一排正方形的一侧有1个正方形,另一侧有2个正方形(其中只有1个与中间那一排相连),共有3种.
口诀:中间三个面,一二隔河见(二三位置是固定的)
第三类:“2—2-2”型,其特点是有2个连成一排的正方形,其两侧又各有2个连成一排的正方形,只有1种.
口诀:中间二个面,楼梯天天见
第四类:“3—3"型,其特点是有3个连成一排的正方形,其一侧还有3个连成一排的正方形,只有1种。

中间没有面,三三连一线(1种摆法—33)。

正方体11种平面展开图(精心整理)

正方体11种平面展开图(精心整理)

正方体的11种平面展开图
正方体的平面展开图共有11种(那些经旋转或翻转后方向不同但实质相同的图形不重复计算),具体来讲分以下4类。

口诀:需背诵
正方体:中间四个面,上下各一面(6种摆法-141)
中间三个面,一二隔河见(3种摆法-132/231)
中间二个面,楼梯天天见(1种摆法-222)
中间没有面,三三连一线(1种摆法-33)
“田”“凹”应弃之
第一类:“1—4—1”型,其特点是有4个连成一排的正方形,两侧又各有1个正方形,共有6种。

口诀:中间四个面,上下各一面(上下面随便放)
第二类:“1—3—2”型,其特点是有3个连成一排的正方形,这一排正方形的一侧有1个正方形,另一侧有2个正方形(其中只有1个与中间那一排相连),共有3种。

口诀:中间三个面,一二隔河见(二三位置是固定的)
第三类:“2—2—2”型,其特点是有2个连成一排的正方形,其两侧又各有2个连成一排的正方形,只有1种。

口诀:中间二个面,楼梯天天见
第四类:“3—3”型,其特点是有3个连成一排的正方形,其一侧还有3个连成一排的正方形,只有1种。

中间没有面,三三连一线(1种摆法-33)。

正方体11种平面展开图

正方体11种平面展开图

正方体的11种平面展开图正方体的平面展开图共有11种(那些经旋转或翻转后方向不同但实质相同的图形不重复计算),具体来讲分以下4类。

第一类:“1—4—1”型,其特点是有4个连成一排的正方形,两侧又各有1个正方形,共有6种。

第二类:“1—3—2”型,其特点是有3个连成一排的正方形,这一排正方形的一侧有1个正方形,另一侧有2个正方形(其中只有1个与中间那一排相连),共有3种。

第三类:“2—2—2”型,其特点是有2个连成一排的正方形,其两侧又各有2个连成一排的正方形,只有1种。

第四类:“3—3”型,其特点是有3个连成一排的正方形,其一侧还有3个连成一排的正方形,只有1种。

注:①将长方体、正方体展开:无论怎么剪,都要剪7条棱。

②“隔”的原理:相对的面如果在同一行或同一排,中间一定只隔一个面;相对的面如果不在同一行或同一排,中间可以隔着一些面。

③长方体、正方体中各面的关系:相对、相邻。

每个面都有1个相对的面,4个相邻的面。

注:立体图中相对的面在展开图中符合“隔”的原理,而相邻的面在展开图中不符合“隔”的原理。

④长方体、正方体中最多可以同时看到三个面,且这三个面都是相邻的面。

⑤要区分好是从“立体图”到“展开图”,还是从“展开图”到“立体图”:互逆正方体、长方体展开图⑥长方体(不包含正方体)最多有1组相对的面是正方形;当有2组相对的面是正方形时,长方体就变成了正方体(特殊的长方体)。

长方体(不包含正方体)的6个面中,最多有4个面的面积相等;12条棱中,最多有8条棱长度相等。

(即2个相对的面是正方形,其余四个面变为完全相同的长方形。

)⑦正方体的棱长扩大a倍:棱长和扩大a倍,表面积扩大a2倍,体积扩大a3倍。

(给出其中一个,要能将其余的都求出来)⑧常见的平方、立方(需熟记在心)12=1 22=4 32=9 42=16 52= 25 62=36 72=49 82=64 92=81 ……13=1 23=8 33=27 43=64 53= 125 63=216 ……。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档