高中数学抛物线及其性质知识点大全
高一抛物线知识点
![高一抛物线知识点](https://img.taocdn.com/s3/m/7d2de040591b6bd97f192279168884868662b841.png)
高一抛物线知识点抛物线是数学中的一个重要概念,也是高中数学中的一个重点内容。
本文将为您介绍高一抛物线的基本概念、性质以及一些常见应用。
一、基本概念抛物线是由平面上一个动点P和一个定点F(称为焦点)确定的,动点P到焦点F的距离等于动点P到一条定直线(称为准线)的距离。
抛物线的准线和焦点之间的距离称为准线焦距。
二、性质1.对称性:抛物线关于准线具有对称性,即准线上任意一点与焦点F到对称点的距离相等。
2.焦距性质:设焦点为F,准线为l,焦点到准线的垂直距离为p,则经过焦点F的直线与抛物线交于两个点P和P',使得FP=FP',且焦点F到直线l的距离等于焦距p。
3.切线性质:在抛物线上任意一点P处,直线PF的斜率等于该点切线的斜率。
4.顶点性质:抛物线的顶点为抛物线与准线的交点,顶点坐标为(h,k),其中h为顶点横坐标,k为顶点纵坐标。
三、常见应用1.抛物线在物理中的应用:抛物线的运动特性使其在物理学中有广泛应用。
例如,抛物线可以用来描述自由落体运动、炮弹的抛射轨迹等。
在研究这些问题时,我们可以利用抛物线的方程来计算物体的轨迹和运动参数。
2.抛物线在光学中的应用:抛物面镜是利用抛物线的性质设计而成的镜面,其反射光线能够集中在焦点上,因此抛物面镜常用于车灯、太阳能、卫星天线等设备的设计中。
3.抛物线在工程中的应用:抛物线的特性使其在工程设计中有很多应用。
例如,喷泉的喷水装置、喇叭的声音扩散、天桥的设计等都利用了抛物线的形状使其更加美观和实用。
总结:高一阶段学习抛物线的基本概念和性质,这些知识点为今后深入学习数学和应用数学打下了基础。
通过学习抛物线,我们能够更好地理解和应用数学知识,将其运用到日常生活和实际工程中。
以上是关于高一抛物线知识点的简要介绍,希望对您的学习有所帮助。
在学习过程中,通过做大量的练习题和实际应用实践,能够更好地掌握和应用抛物线的相关知识。
祝您学业进步!。
高三抛物线相关知识点
![高三抛物线相关知识点](https://img.taocdn.com/s3/m/00db832c1fb91a37f111f18583d049649b660e8b.png)
高三抛物线相关知识点抛物线是数学中一个重要的曲线形状,其具有许多独特的性质和应用。
在高三数学学习中,学生们将接触到抛物线的相关知识点,了解其定义、属性、方程和应用。
本文将介绍高三抛物线相关知识点,让我们一起来了解吧!一、抛物线的定义与性质抛物线是由到一个定点(焦点)距离等于到一条定直线(准线)距离的点的轨迹所组成的曲线。
抛物线以准线为对称轴,焦点为焦点,开口朝上或朝下。
具有以下性质:1. 焦点与准线的距离相等:抛物线上的任意一点到焦点的距离与该点到准线的距离相等。
2. 准线:离焦点等距离的直线,与抛物线具有最小二乘法。
3. 对称性:抛物线以准线为对称轴对称。
4. 顶点:抛物线的最高点或最低点,称为顶点。
二、抛物线方程与图像1. 标准形式:抛物线的标准形式方程为 y = ax² + bx + c。
其中,a、b、c为常数,a≠0。
通过调整a的正负值可以控制抛物线的开口方向。
2. 顶点形式:抛物线的顶点形式方程为 y = a(x - h)² + k。
其中,(h, k)为顶点坐标。
3. 焦点与准线定位:根据抛物线方程可以推导得出,焦点的坐标为 (h, k + 1/(4a)),准线的方程为 y = k - 1/(4a)。
4. 抛物线的图像:根据方程可画出抛物线的图像,根据方程的参数可以控制抛物线的开口大小、坐标等特性。
三、抛物线的应用抛物线作为一种特殊的曲线,在许多领域都有重要的应用,如物理、工程、经济等。
以下是一些常见的应用示例:1. 发射抛物线:抛物线作为物体抛射运动的轨迹,被广泛应用于发射器的设计和计算中。
2. 镜面反射:抛物线是一种反射光线的轨迹,因此在凹面镜和抛物面反射器设计中得到广泛应用。
3. 确定最佳路径:在工程和建筑设计中,抛物线可以用于确定最佳的曲线路径,以便节省材料和能源。
4. 天体运动:抛物线是天体运动中的一种常见形状,例如行星轨道和天体落体运动等。
5. 经济学模型:在经济学中,抛物线可以用于建模和预测市场趋势和销售走势。
高二抛物线的知识点
![高二抛物线的知识点](https://img.taocdn.com/s3/m/ea8a17f888eb172ded630b1c59eef8c75fbf95b1.png)
高二抛物线的知识点抛物线是高二数学中的重要知识点,它在实际生活中的应用非常广泛。
本文将介绍抛物线的定义、性质、标准方程以及它的几个重要应用。
一、抛物线的定义和性质抛物线是指平面上到定点与定直线距离相等的点的轨迹。
其中,定点叫做焦点,定直线叫做准线,焦点和准线之间的垂线称为准线上的高。
1. 抛物线的定义根据抛物线的定义可知,任意一点P到焦点F和准线l的距离相等,即PF = Pl。
这个性质决定了抛物线的形状。
2. 抛物线的性质(1)对称性:抛物线关于准线对称。
(2)焦点和准线的关系:焦点到准线的距离等于焦距的一半。
(3)顶点坐标:抛物线的顶点坐标为(h,k),其中h和k分别为抛物线的平移量。
二、抛物线的标准方程抛物线的标准方程为y = ax^2 + bx + c,其中a、b和c是常数,a不等于0。
标准方程的a决定了抛物线的开口方向,当a大于0时,抛物线开口向上;当a小于0时,抛物线开口向下。
通过顶点坐标(h,k)可以确定抛物线的平移量,进而得到抛物线的顶点形式方程。
三、抛物线的重要应用抛物线在现实生活中有着广泛的应用,下面我们将介绍几个常见的应用场景。
1. 抛物线在物理运动中的应用抛物线是自然界中许多物体运动的轨迹,比如抛物线运动、射击运动等。
例如,抛物线运动是指一个物体在受到水平初速度和竖直初速度的同时,受重力影响进行的运动,这类运动可以描述为抛物线的轨迹。
2. 抛物线在建筑设计中的应用抛物线的对称性和稳定性使得它在建筑设计中得到广泛应用。
例如,拱门的形状就是一个抛物线,它能够在一定程度上分散力量,达到结构稳定的目的。
3. 抛物线在天文学中的应用抛物线在天文学中也有重要的应用,比如描述行星、卫星和彗星的运动轨迹。
例如,行星绕太阳运动的轨迹可以近似为一个抛物线。
总结:抛物线是高二数学中的重要知识点,它的定义、性质、标准方程以及几个重要应用都是我们需要了解的内容。
通过掌握抛物线的知识,可以更好地理解和应用于实际问题中。
抛物线和性质知识点大全
![抛物线和性质知识点大全](https://img.taocdn.com/s3/m/77e3c2e8a48da0116c175f0e7cd184254b351baf.png)
抛物线和性质知识点大全抛物线是一种二次函数图像,具有以下性质:1. 抛物线的对称轴与其开口方向垂直,对称轴方程可以通过将抛物线标准式中的$x$ 替换为 $-c$ 求出,其中 $c$ 是抛物线的横坐标的中心值。
对称轴上的任何一点都是抛物线的最高点或最低点。
2. 抛物线的焦点是一个特殊的点,它与抛物线的开口方向和大小有关。
焦点是抛物线上所有的反射光线汇聚成的点。
计算焦点可以利用以下公式:$F=\left(\frac{1}{4a},\frac{c}{4a}\right)$,其中 $a$ 是抛物线开口处的系数,$c$ 是对称轴的水平位置。
3. 抛物线上的任何一点到对称轴的距离都等于该点到焦点的距离,这是由于抛物线的定义所决定的。
这个性质可以用来找到抛物线上的点到对称轴的距离,以及在给定焦点和直线上的点的情况下,找到抛物线方程。
5. 抛物线的 $x$ 与 $y$ 轴的交点称为抛物线的零点。
因为抛物线是一个二次函数,所以它最多有两个零点。
6. 抛物线在对称轴两侧的图像是对称的,图像的形状类似于 "U"。
7. 抛物线的开口方向可以使用其系数的正负来确定。
如果系数为正,则抛物线向上开口;如果系数为负,则抛物线向下开口。
8. 当 $a>0$ 时,抛物线开口向上,最低点(即顶点)为全局最小值,并且当 $x$ 的值趋近于正无穷大或负无穷大时,函数值也趋近于正无穷大。
当 $a<0$ 时,抛物线开口向下,最高点(即顶点)为全局最大值,并且当 $x$ 的值趋近于正无穷大或负无穷大时,函数值也趋近于负无穷大。
9. 抛物线的导数是一个一次函数,其斜率在顶点处为零。
10. 任意两个点之间的抛物线弧长可以通过积分抛物线导数的平方再开平方根的方法求出。
高中抛物线知识点总结
![高中抛物线知识点总结](https://img.taocdn.com/s3/m/f7460700ef06eff9aef8941ea76e58fafab045e6.png)
高中抛物线知识点总结高中抛物线知识点总结抛物线是一条二次函数,它的图像呈现出一个弧形,常见于物理、数学和工工科中。
在高中学习中,抛物线是一个重要的数学概念之一,在数学、物理和工程学中都有广泛的应用。
在此本文将为您介绍抛物线的基本概念、性质以及解题方法等知识点。
1. 抛物线的基本概念抛物线的定义是由一个不在同一平面的点P和一条确定的直线l,绕P旋转一周所形成的曲线叫做抛物线。
其中点P叫做焦点,直线l叫做准线。
抛物线的标准方程是 y = ax^2 + bx +c ,其中a,b,c是常数,a 不等于0。
当 a > 0 时,抛物线开口向上,当a < 0 时,抛物线开口向下。
2. 抛物线的性质(1)对称性抛物线的图像具有对称性,也就是有轴对称线。
这条对称线称为抛物线的轴线,它通过焦点和准线的垂线交点。
(2)焦点、准线和顶点的关系对于对称轴y = k,横坐标为h的点P(x,y), 有以下关系式成立:(i)焦点坐标为 F(h,k+p),其中p=1/(4a)(ii)准线的方程为 y = k-p(iii)顶点坐标为 V(h,k)(3)焦距的意义焦距是从焦点到准线的距离,它的值等于 1/(4a)。
焦距的意义在物理学中有广泛应用,例如椭圆轨道和双曲线轨道等。
(4)最值和拐点抛物线最值和拐点是求解抛物线的重要问题:(i)当抛物线开口向上时,最小值就是它的顶点V(h,k),最大值不存在。
(ii)当抛物线咕咕向下时,最大值就是它的顶点V(h,k),最小值不存在。
(iii)抛物线拐点存在的条件为 a 不等于 0。
求抛物线的拐点(x,y),只需要将一阶导数为0的得到解析式,然后代入求y坐标值。
3. 抛物线的应用抛物线在日常生活和工程学中有着广泛的应用,其中的一个典型实例是进行投掷运动的物理解析。
在投射问题中,抛物线成为空气中物体运动的轨迹,其中重力在垂直方向上作用,空气阻力在垂直方向上不作用。
抛物线还有一些其他的应用,包括:(1)建筑物的设计,例如拱形门廊和地理石的建筑设计。
高三抛物线知识点归纳总结
![高三抛物线知识点归纳总结](https://img.taocdn.com/s3/m/f9e10f1c580102020740be1e650e52ea5518ce31.png)
高三抛物线知识点归纳总结抛物线是数学中的一种曲线,它在高三数学课程中占据着重要的地位。
掌握抛物线的相关知识,对于高三学生来说至关重要。
本文将对高三抛物线的知识点进行归纳总结,以帮助学生更好地理解和应用这一概念。
一、抛物线的基本定义和性质抛物线是一条平面曲线,其定义为到一个定点距离与到一条直线距离相等的点的轨迹。
抛物线具有以下基本性质:1. 对称性:抛物线关于其对称轴对称。
2. 定点和定线:抛物线上的每个点到焦点的距离与到直线(准线)的距离相等。
3. 焦距和准线:焦距是定点到准线的距离,准线是焦点垂直平分切线的直线。
4. 弧长和面积:抛物线的弧长和面积计算可以通过积分得到。
二、抛物线的标准方程和一般方程抛物线的标准方程是 y = ax^2 + bx + c,其中 a、b、c 是常数,a ≠ 0。
通过标准方程我们可以了解抛物线的开口方向、顶点坐标以及对称轴的方程。
一般方程是经过对标准方程的平移、旋转、伸缩等变换得到的,形式为 Ax^2 + Bxy + Cy^2 + Dx + Ey + F = 0。
通过一般方程可以确定抛物线的具体形状和位置。
三、抛物线的性质和应用1. 高考重点:掌握抛物线的性质对于应对高考数学考试非常重要。
在高考中,抛物线相关的题目通常包括求焦点、顶点、对称轴、切线等问题,也可能涉及到与其他图形的求交点等问题。
2. 物理应用:抛物线在物理学中有广泛的应用,描述了自由落体、抛体运动等过程。
理解抛物线的性质和应用可以帮助我们更好地理解和解决与自由落体和抛体运动相关的物理问题。
3. 工程应用:抛物线的形状具有美学上的优点,因此在建筑和设计中经常被应用。
例如,拱桥的形状和抛物线非常相似,这是因为抛物线形状具有均匀分散应力的特点,是一种力学上最优的形状。
四、抛物线的图像绘制和计算1. 使用计算机软件绘制抛物线的图像可以辅助我们更好地理解抛物线的形式和变化规律。
常用软件如Geogebra、MATLAB等都可以绘制抛物线的图像。
超详细抛物线知识点归纳总结
![超详细抛物线知识点归纳总结](https://img.taocdn.com/s3/m/2ee8ed6c4a35eefdc8d376eeaeaad1f3469311d3.png)
引言概述:抛物线是高中数学中的重要内容,具有广泛的应用领域,包括物理、工程、经济等。
本文将对抛物线的相关知识进行归纳总结,从定义、性质、方程、焦点与准线、图形以及应用等多个方面进行详细的阐述。
正文内容:一、定义和性质1.抛物线的定义:抛物线是平面内一点到固定点和固定直线的距离之比等于常数的轨迹。
2.焦点与准线的关系:焦点是抛物线上所有点到准线的距离相等的点。
3.对称性:抛物线具有关于准线对称和关于纵轴对称的性质。
4.切线方程:抛物线上任意一点的切线方程为y=mx+c,其中m 是斜率,c是截距。
5.切线与法线的关系:切线与法线互为垂线且交于抛物线上的点。
二、方程和焦点、准线1.标准方程:抛物线的标准方程为y=ax^2+bx+c,其中a、b、c 是常数,a≠0。
2.顶点坐标:抛物线的顶点坐标为(b/2a,f(b/2a)),其中f(x)=ax^2+bx+c。
3.焦点坐标:抛物线的焦点坐标为(h,f(h+1/4a)),其中h=b/2a。
4.准线方程:抛物线的准线方程为y=f(h+1/4a)1/(4a)。
三、图形展示和性质分析1.抛物线的开口方向:a的正负决定抛物线的开口方向,a>0时开口向上,a<0时开口向下。
2.抛物线的焦点位置:焦点在抛物线的顶点上方,焦点的纵坐标为f(h+1/4a)+1/(4a)。
3.抛物线的对称轴:对称轴是通过抛物线的顶点和焦点的直线。
4.抛物线的顶点与焦点距离:顶点与焦点的距离等于抛物线的准线长。
四、应用领域1.物理学应用:抛物线可以描述自由落体运动、抛射运动等。
2.工程学应用:抛物线常用于建筑物的设计、桥梁的设计等。
3.经济学应用:抛物线可以用来表示成本、收入和利润的函数关系。
4.生物学应用:抛物线可用于描述某些生物体运动的轨迹。
5.计算机图像处理应用:抛物线可以用于图像处理算法中的平滑处理。
五、总结本文对抛物线的定义、性质、方程、焦点与准线、图形以及应用进行了详细的阐述。
高中抛物线知识点总结
![高中抛物线知识点总结](https://img.taocdn.com/s3/m/c5d0ab8868dc5022aaea998fcc22bcd126ff4233.png)
高中抛物线知识点总结高中数学抛物线知识点总结抛物线是高中数学中比较基础的一个章节,也是比较重要的一个内容。
在这个章节中,我们需要掌握的主要是抛物线的基本定义、性质、方程式、求零点等方面的知识。
下面,我们就来一起来看一看有关抛物线的知识点吧!一、抛物线的定义抛物线是指平面上到定点 $F$(称为焦点)距离等于到定直线$L$(称为准线)距离的动点 $P$ 所形成的图形。
简单来说,抛物线就是一个动点到定点和定线距离相等的图形。
二、抛物线的性质1. 抛物线的对称轴与准线垂直抛物线的对称轴是通过焦点和抛物线上一点的垂线平分焦点与该点连线的直线,而准线是垂直于对称轴的直线。
因此对称轴与准线垂直。
2. 焦点到对称轴距离等于焦准距的一半对于抛物线上的任意一点 $P$,其到准线距离为 $d_1$,到焦点的距离为 $d_2$,则有 $d_2 = 2d_1$。
这一性质也可表示为$PF=PD$,其中 $D$ 是抛物线上一点,且 $FD$ 为准线垂直于对称轴的交点。
3. 抛物线的开口方向由二次项系数决定抛物线的方程式为 $y=ax^2+bx+c$(或 $x=ay^2+by+c$),其中 $a$ 为二次项系数。
当 $a>0$ 时,抛物线开口向上;当$a<0$ 时,抛物线开口向下。
4. 抛物线在对称轴的焦点处与准线相切抛物线上的任意一点 $P$ 到焦点 $F$ 的距离为 $d_2$,到对称轴的距离为 $d_3$,则有 $d_2=d_3$。
因此,在对称轴上的焦点处抛物线与准线相切。
三、抛物线的方程式抛物线的标准方程式为 $y=ax^2$。
其中,$a$ 表示是抛物线的开口方向和宽度,$x$ 表示横坐标,$y$ 表示纵坐标。
这里的抛物线是以 $y$ 轴为对称轴的,开口朝上或朝下取决于 $a$ 的正负性。
如果是以 $x$ 轴为对称轴的抛物线,其方程式为 $x=ay^2$。
当抛物线的对称轴不与坐标轴重合时,我们可以通过平移坐标系的方式将对称轴移到坐标轴上,再进行求解。
抛物线及其性质知识点大全推荐文档
![抛物线及其性质知识点大全推荐文档](https://img.taocdn.com/s3/m/1002579ec0c708a1284ac850ad02de80d4d806fc.png)
抛物线及其性质知识点大全推荐文档1. 抛物线的定义:抛物线是一个平面曲线,其定义式为y = ax^2 + bx + c,其中a、b、c为常数,a不等于0。
2.抛物线的图像:抛物线的图像呈现出对称性,它的开口方向由抛物线的系数a的正负决定。
当a大于0时,抛物线向上开口;当a小于0时,抛物线向下开口。
3.抛物线的顶点:抛物线的顶点为曲线上的最低点(向上开口)或最高点(向下开口)。
顶点的横坐标为x=-b/(2a),纵坐标为y=f(-b/(2a)),其中f(x)为抛物线的函数。
4. 抛物线的焦点:抛物线的焦点是曲线上与直线y = mx + n相交的点的轨迹,其中m、n为常数。
焦点的横坐标为x = -b/(2a),纵坐标为y = c - (b^2 - 1)/(4a)。
5.抛物线的对称轴:抛物线的对称轴是通过顶点和焦点的垂直平分线。
对称轴的方程为x=-b/(2a)。
6. 抛物线的判别式:抛物线的判别式为Δ = b^2 - 4ac,其中Δ的值决定了抛物线的性质。
若Δ大于0,则抛物线与x轴有两个交点,即开口向上或向下的抛物线。
若Δ等于0,则抛物线与x轴有一个交点,即开口向上或向下的抛物线。
若Δ小于0,则抛物线与x轴没有交点,即开口向上或向下的抛物线。
7.抛物线的焦距:焦点到抛物线上任意一点的距离等于该点到对称轴的距离,即焦距等于对称轴到顶点的距离。
8.抛物线的切线:抛物线上任意一点处的切线与该点的切线斜率相等,切线方程为y-y0=f'(x0)(x-x0),其中f'(x)为抛物线函数的导数。
9.抛物线的性质:抛物线是一条连续曲线,它具有对称性、单调性(a的符号决定)、可导性(除去顶点的地方都可导)、增减性(导数的符号决定)、可微性(除去顶点的地方都可微)、凸凹性(a的符号决定)等性质。
10.抛物线的应用:抛物线在物理学中常用于描述自由落体、抛体运动等;在工程学中常用于设计桥梁、铁轨等;在经济学中常用于描述成本、收益等。
抛物线知识点总结_高三数学知识点总结
![抛物线知识点总结_高三数学知识点总结](https://img.taocdn.com/s3/m/cd880a7ab207e87101f69e3143323968011cf4b8.png)
抛物线知识点总结_高三数学知识点总结
抛物线是数学中的一种曲线,其形状像一个弯曲的弧形。
在高三数学中,我们学习了
抛物线的相关知识,包括定义、性质、方程、图像、焦点和准线等。
下面是抛物线的知识
点总结。
一、定义和性质:
1. 抛物线是平面解析几何的一个曲线,定义为动点P到定点F 的距离等于动点到定
直线l的距离的平方,即PF=PM^2,其中F为焦点,l为准线,M为动点P的投影点。
2. 抛物线对称轴是准线的垂直平分线,焦点到抛物线对称轴的距离称为焦距。
3. 抛物线的顶点是抛物线与对称轴的交点,对称轴的方程为x=h,其中h为顶点的横坐标。
二、方程和图像:
1. 抛物线的一般方程为y=ax^2+bx+c,其中a、b、c为常数,且a≠0。
2. 当a>0时,抛物线开口向上;当a<0时,抛物线开口向下。
3. 抛物线的顶点坐标为(-b/2a,f) ,其中f为抛物线的最小值或最大值,当a>0时,f为最小值,当a<0时,f为最大值。
4. 抛物线与y轴的交点为y轴截距,即(0,c)。
三、焦点和准线:
1. 抛物线的焦点坐标为(F,0),其中F为焦距。
2. 抛物线的焦点到顶点的距离等于焦点到准线的距离,即PF=pl,其中P为抛物线上的任意一点,l为准线的斜率。
四、其他知识:
1. 抛物线的标准方程为y^2=4ax,其中a为焦距的一半。
2. 抛物线的参数方程为x=t,y=2at^2,其中t为参数。
3. 抛物线的弧长公式为L=∫sqrt(1+(dy/dx)^2)dx,其中∫为积分符号。
抛物线知识点总结
![抛物线知识点总结](https://img.taocdn.com/s3/m/3fbf7b9881eb6294dd88d0d233d4b14e85243ea9.png)
抛物线知识点总结一、抛物线的定义抛物线是一种特殊的二次曲线,它的数学定义是平面上一点到定点和直线的距离相等,这个定点就是抛物线的焦点,直线就是抛物线的准线。
在直角坐标系中,抛物线的标准方程为:y=ax2+bx+c,其中a≠0。
二、抛物线的性质1. 焦点和准线:抛物线的焦点和准线是抛物线的两个重要属性。
焦点是定点,准线是直线,它们共同决定了抛物线的形状和特性。
2. 对称性:抛物线是关于x轴对称的。
3. 切线和法线:抛物线上的任意一点,它的切线和法线都是经过这个点,且与x轴垂直。
4. 定理一:抛物线的焦点到准线的距离等于焦点到抛物线上任意一点的距离。
5. 定理二:抛物线上任意一点到焦点的距离等于该点到准线的距离。
6. 焦距:抛物线上所有点到焦点的距离的最小值称为抛物线的焦距。
7. 平行于准线的矩形,被含在抛物线内部并且对称。
8. 定理三:抛物线的离心率等于1。
三、抛物线的方程1. 标准方程:y=ax2+bx+c,其中a≠0。
2. 顶点坐标:抛物线的顶点坐标为(-b/2a, c-b2/4a)。
3. 焦点坐标:抛物线的焦点坐标为(-b/2a, c-b2/4a+1/4a)。
4. 焦距:抛物线的焦距为1/|4a|。
四、抛物线的应用抛物线作为一种重要的数学曲线,在各种应用中都有着广泛的应用,如物理、工程、建筑等领域。
1. 物理:在物理学中,抛物线曲线被广泛应用于描述抛体运动的轨迹。
比如,抛体在空中的飞行轨迹、抛物线发射器等都涉及到抛物线的运动规律。
2. 工程:在建筑工程和土木工程中,抛物线曲线常常被用于设计拱形结构或者桥梁的曲线轨迹。
抛物线的弧形轨迹具有良好的支撑性能和稳定性,因此在工程设计中得到了广泛应用。
3. 航天航空:在航天航空技术中,抛物线曲线也被用于设计火箭轨迹和飞行器的运动路径。
比如,抛物线曲线可以描述卫星的发射和轨道运行规律。
4. 光学:在光学中,抛物线曲线也被应用于设计反射镜和折射镜的形状。
抛物线反射镜可以将平行光线汇聚到一个焦点上,因此在光学仪器和望远镜中得到了广泛应用。
(完整版)抛物线知识点归纳总结
![(完整版)抛物线知识点归纳总结](https://img.taocdn.com/s3/m/f62590fe64ce0508763231126edb6f1aff0071f4.png)
引言:抛物线是高中数学中重要的曲线之一,具有许多重要的性质和应用。
本文将对抛物线的知识点进行归纳总结,包括抛物线的定义、性质、方程、焦点、准线等。
通过深入理解抛物线的相关概念和性质,读者将能够更好地应用抛物线解决实际问题。
概述:抛物线是一种特殊的曲线,其形状呈现出两侧对称且开口向上或向下的特点。
具体而言,抛物线由一条称为准线的直线和一个称为焦点的特殊点确定。
正文内容:1.抛物线的定义:抛物线是所有到一个定点(焦点)与到一条直线(准线)的距离相等的点的集合。
抛物线也可以通过平面上点的坐标表示,而其坐标满足经典的二次方程形式。
抛物线具有一条对称轴,该对称轴是准线与焦点所在直线的垂直平分线。
2.抛物线的性质:对称性:抛物线是关于对称轴对称的,即对称轴上任意一点关于对称轴上的另一点的坐标对称。
单调性:抛物线开口朝上时,在对称轴上坐标递增;开口朝下时,在对称轴上坐标递减。
切线性质:抛物线上任意一点的切线与焦点到该点的连线垂直,这是抛物线独有的性质。
定理一:抛物线上两个焦点到准线的距离之和等于焦距的两倍。
定理二:抛物线上任意一点到焦点的距离等于该点到准线的距离。
3.抛物线的方程:标准形式:y=ax^2+bx+c,其中a、b、c为实常数,且a≠0。
顶点形式:y=a(xh)^2+k,其中a、h、k为实常数,且a≠0,(h,k)为抛物线的顶点坐标。
焦点形式:4a(yk)=(xh)^2,其中a、h、k为实常数,且a≠0,(h,k)为抛物线的顶点坐标。
4.抛物线的焦点和准线:焦点:抛物线的焦点是准线上一个固定的点,与抛物线的形状和方程相关。
焦距:焦距是焦点到准线的距离,等于焦点到对称轴的距离。
准线:准线是与抛物线的形状和焦点相关的一条直线,与对称轴平行且到焦点的距离等于焦距。
5.抛物线的应用:物理学中的自由落体:抛物线可以用来描述自由落体运动的轨迹,例如抛体的抛射问题。
工程学中的抛物面反射器:抛物面反射器可以将光线从一个点集中集中到另一个点上,常用于太阳能聚焦等应用。
高三抛物线的知识点归纳
![高三抛物线的知识点归纳](https://img.taocdn.com/s3/m/a5087574ef06eff9aef8941ea76e58fafbb04540.png)
高三抛物线的知识点归纳抛物线是高中数学中一个重要的几何形状,它具有很多特殊的性质和应用。
本文将对高三阶段学习抛物线时需要掌握的知识点进行归纳和总结。
一、抛物线的基本定义与性质1. 抛物线的定义:抛物线是平面上到一个定点F(焦点)和一条定直线D(准线)的距离之比为定值(离心率)的点集合。
2. 抛物线的几何特征:对称轴、焦点、准线、顶点。
3. 抛物线的方程:标准形式、一般形式。
4. 抛物线的性质:对称性、单调性、开口方向、顶点坐标计算等。
5. 抛物线的图像与实际应用:拱桥、炮弹运动路径等。
二、抛物线的顶点和焦点1. 抛物线的顶点:抛物线的顶点是抛物线曲线的最高或最低点,对称轴上的点。
2. 求抛物线的顶点:配方法、二次函数的顶点公式。
3. 抛物线的焦点:焦点是指满足抛物线定义的那个固定点,与准线和顶点构成一个等边三角形。
三、抛物线的对称性与轴线方程1. 抛物线的对称轴:对称轴是抛物线的一个特殊直线,使抛物线左右对称。
2. 对称轴的性质:过焦点、顶点的直线,与抛物线的曲线图像有对称关系。
3. 对称轴的方程:求解对称轴的方程,考虑焦点坐标、顶点坐标等信息。
四、抛物线的判定条件1. 抛物线的离心率:离心率决定了抛物线的形状和特征。
2. 离心率的计算和判定:通过焦点和顶点的距离关系计算离心率,在图像上判断抛物线的形状和方向。
五、抛物线的方程及其应用1. 抛物线的标准方程:y = ax^2 + bx + c,其中a、b、c为实数且a不为零。
2. 抛物线方程的求解:已知焦点和准线,求解抛物线的方程。
3. 抛物线方程的应用:物体的抛射运动、摄影、建筑设计等领域。
六、抛物线与其他数学概念的关系1. 抛物线与二次函数:抛物线可以看作是二次函数的一种特殊形式。
2. 抛物线与直线:抛物线与直线有着密切的联系,焦点、准线与直线的交点等。
3. 抛物线与导数:通过求解抛物线的导函数,可以得到切线的斜率和切线方程。
七、抛物线的综合应用1. 抛物线在物理学中的应用:炮弹的抛射运动、天体的运动轨迹等。
抛物线知识点归纳总结高中
![抛物线知识点归纳总结高中](https://img.taocdn.com/s3/m/1e3fc8dc70fe910ef12d2af90242a8956becaae7.png)
一、抛物线的定义平面内与一定点 F 和一条定直线 l 的距离相等的点的轨迹叫做抛物线。
点 F 叫做抛物线的焦点,定直线 l 叫做抛物线的准线。
二、抛物线的标准方程1. 焦点在 x 轴正半轴上:\(y^2 = 2px (p>0)\),焦点坐标\(F(\frac{p}{2}, 0)\),准线方程\(x = \frac{p}{2}\)2. 焦点在 x 轴负半轴上:\(y^2 = 2px (p>0)\),焦点坐标\(F(\frac{p}{2}, 0)\),准线方程\(x = \frac{p}{2}\)3. 焦点在 y 轴正半轴上:\(x^2 = 2py (p>0)\),焦点坐标\(F(0, \frac{p}{2})\),准线方程\(y = \frac{p}{2}\)4. 焦点在 y 轴负半轴上:\(x^2 = 2py (p>0)\),焦点坐标\(F(0, \frac{p}{2})\),准线方程\(y = \frac{p}{2}\)三、抛物线的性质1. 范围:对于\(y^2 = 2px (p>0)\),\(x\geq 0\);对于\(y^2 = 2px (p>0)\),\(x\leq 0\);对于\(x^2 = 2py (p>0)\),\(y\geq 0\);对于\(x^2 = 2py (p>0)\),\(y\leq 0\)。
2. 对称性:抛物线关于其对称轴对称。
3. 顶点:抛物线的顶点为坐标原点\((0,0)\)。
4. 离心率:抛物线的离心率\(e = 1\)。
四、抛物线的焦半径对于抛物线\(y^2 = 2px (p>0)\),抛物线上一点\(P(x_0, y_0)\)到焦点的距离称为焦半径,\(|PF| = x_0 + \frac{p}{2}\)五、抛物线的通径通过焦点且垂直于对称轴的弦叫做通径。
通径的长度为\(2p\)六、抛物线中的弦长问题若抛物线\(y^2 = 2px (p>0)\)上两点\(A(x_1, y_1)\),\(B(x_2, y_2)\),则弦长\(|AB| = x_1 + x_2 + p\)七、抛物线与直线的位置关系联立抛物线方程和直线方程,消去一个未知数,得到一个一元二次方程,根据判别式\(\Delta\)的值来判断位置关系:1. \(\Delta > 0\),相交;2. \(\Delta = 0\),相切;3. \(\Delta 0\),相离。
数学高三抛物线知识点
![数学高三抛物线知识点](https://img.taocdn.com/s3/m/b20a425efbd6195f312b3169a45177232e60e46f.png)
数学高三抛物线知识点高中数学的抛物线是一种非常重要的曲线,它在生活中的应用广泛。
在数学高考中,抛物线相关的知识点也是必考内容之一。
本文将详细介绍高三数学中与抛物线相关的重要知识点,帮助高三学生系统地掌握这一部分内容。
一、抛物线的定义及性质抛物线是平面上一点到定直线(称为准线)和定点的距离之比(称为离心率)为常数的轨迹。
它的定义可以用数学方程表示为:y=ax^2+bx+c(a≠0),其中a、b、c为常数,a决定了抛物线的开口方向,当a>0时,抛物线开口向上;当a<0时,抛物线开口向下。
1. 对称性:抛物线关于准线和对称轴对称。
2. 焦点与准线之间的关系:离心率e=焦距f/准线与焦点之间的距离。
3. 切线和法线:抛物线上任意一点的切线与过该点的准线垂直,且过该点的法线经过焦点。
二、抛物线的方程和图像1. 标准方程:当抛物线的顶点为原点时,抛物线的标准方程为y^2=4ax。
2. 顶点坐标:对于标准方程y^2=4ax,抛物线的顶点为(0,0)。
3. 对称轴和焦点坐标:对于标准方程y^2=4ax,抛物线的对称轴为x轴,焦点坐标为(F,0),其中焦距F=a/2。
三、抛物线的平移和旋转1. 平移:抛物线的平移是指将抛物线上所有点的坐标同时增加或减少一个固定的数值。
设抛物线的标准方程为y^2=4ax,平移后的抛物线的方程为(y-k)^2=4a(x-h),其中(h,k)为平移的距离。
2. 旋转:抛物线的旋转是指将抛物线绕原点或其他点旋转一定角度。
抛物线的旋转方程相对复杂,这里不再展开。
四、抛物线的焦点与准线问题1. 已知抛物线方程求焦点和准线:根据抛物线的标准方程或一般方程,可以求得焦点和准线的坐标。
2. 已知焦点和准线求抛物线方程:通过已知的焦点和准线的坐标,可以推导出抛物线的方程。
五、抛物线的应用抛物线在生活中有着广泛的应用,以下举几个例子:1. 投射问题:抛物线可以用来描述抛体的运动轨迹,比如抛物线的顶点表示抛体的最高点,焦点表示抛体的着地点。
高二数学知识点总结抛物线
![高二数学知识点总结抛物线](https://img.taocdn.com/s3/m/12949b44eef9aef8941ea76e58fafab069dc44b4.png)
高二数学知识点总结抛物线抛物线是高中数学中一个重要的几何形状,它具有许多重要的性质和应用。
在高二数学学习中,我们需要掌握抛物线的定义、性质、标准方程和相关的解题方法。
下面将对这些知识点进行总结和概括。
1. 抛物线的定义抛物线是一个平面曲线,其定义是所有到一个定点(焦点F)和到一条直线(准线L)的距离相等的点的轨迹。
这个定点叫做焦点,准线叫做准线。
焦点到准线的距离叫做焦距,用字母p表示。
所有的抛物线都具有这个性质。
2. 抛物线的性质(1) 抛物线是对称的。
对于一个抛物线,以焦点为对称中心,准线为对称轴,抛物线上的每一个点关于对称轴对称。
(2) 抛物线的焦点和准线的位置关系。
焦点在平行于准线的直线上方时,抛物线开口向上;焦点在平行于准线的直线下方时,抛物线开口向下。
(3) 抛物线的顶点位置。
抛物线的顶点是其准线与对称轴的交点,也是其最高或最低点。
3. 抛物线的标准方程抛物线的标准方程是y=ax^2+bx+c。
其中,a、b、c均为实数常数。
(1) 若a>0,则抛物线开口向上。
(2) 若a<0,则抛物线开口向下。
(3) 当抛物线的标准方程为y=ax^2 (a≠0)时,抛物线焦点在原点,准线为y=0轴。
4. 抛物线的平移与图像变换(1) 横向平移:抛物线沿x轴平移h个单位。
平移后的抛物线方程为y=a(x-h)^2+b(x-h)+c。
(2) 纵向平移:抛物线沿y轴平移k个单位。
平移后的抛物线方程为y=a(x^2-2hx+h^2)+b(x-h)+c+k。
5. 抛物线的相关解题方法(1) 求抛物线的焦点坐标:根据焦点的定义,使用平移和对称的思想,通过已知的抛物线方程可以求得焦点坐标。
(2) 求抛物线的顶点坐标:根据抛物线的对称性和平移性质,将抛物线方程转化为顶点形式,即可得到顶点坐标。
(3) 求抛物线与直线的交点坐标:将抛物线方程与直线方程联立,解方程组得到交点坐标。
(4) 求抛物线与抛物线的交点坐标:将两个抛物线方程联立,解方程组得到交点坐标。
最全抛物线曲线知识点总结
![最全抛物线曲线知识点总结](https://img.taocdn.com/s3/m/c67d185f876fb84ae45c3b3567ec102de2bddf00.png)
最全抛物线曲线知识点总结抛物线是高中数学中经常讨论的曲线之一,具有很多重要的性质和应用。
本文将总结抛物线曲线的相关知识点,帮助读者更好地理解和应用抛物线。
1. 抛物线的定义抛物线是由平面上到定点(焦点)和一条直线(准线)的距离相等的点构成的曲线。
它的数学表达式通常为:y = ax^2 + bx + c,其中a、b、c为常数,且a ≠ 0。
2. 抛物线的性质- 抛物线的对称轴:对称轴是准线的垂直平分线,方程为:x = -b/(2a)。
- 抛物线的焦点:焦点是到定点最短距离的点,焦点的横坐标为:x = -b/(2a),纵坐标为:y = c - (b^2 - 1)/(4a)。
- 抛物线的顶点:顶点是抛物线的最高(或最低)点,顶点的横坐标为:x = -b/(2a),纵坐标为:y = c - (b^2 - 1)/(4a)。
- 抛物线的开口方向:当a > 0时,抛物线开口向上;当a < 0时,抛物线开口向下。
- 抛物线的单调性:当a > 0时,抛物线在对称轴的左侧单调递增,在对称轴的右侧单调递减;当a < 0时,抛物线在对称轴的左侧单调递减,在对称轴的右侧单调递增。
3. 抛物线的应用抛物线在现实生活中有很多应用,例如:- 物体的自由落体运动:自由落体的运动轨迹是一个抛物线。
- 抛射运动:抛掷物体的运动轨迹也是一个抛物线。
- 抛物面反射:光线在抛物面上反射的规律。
4. 抛物线的变形抛物线有一些常见的变形形式,例如:- 平移:在原抛物线的基础上沿 x 轴或 y 轴方向进行平移。
- 缩放:改变抛物线的 a、b、c 的值,实现抛物线的扁平化或拉长。
以上是抛物线曲线的一些基本知识点总结,希望本文能够帮助读者更好地理解和应用抛物线。
如需深入研究,建议参考相关的数学教材和参考资料。
参考文献:。
高三抛物线定理知识点归纳总结
![高三抛物线定理知识点归纳总结](https://img.taocdn.com/s3/m/caedda79e3bd960590c69ec3d5bbfd0a7956d507.png)
高三抛物线定理知识点归纳总结高三学生在学习数学的过程中,会接触到抛物线这一重要的数学概念。
抛物线是数学中的一个曲线,具有许多特殊的性质和定理。
本文将对高三抛物线定理的相关知识点进行归纳总结,以帮助同学们更好地理解和应用抛物线定理。
一、基本概念1. 抛物线的定义:抛物线是平面上一点到定点和定直线的距离之差等于常数的轨迹。
2. 抛物线的标准方程:y = ax^2 + bx + c,其中a、b、c为实数且a ≠ 0。
二、顶点与对称轴1. 顶点的求解:对于标准抛物线方程y = ax^2 + bx + c,顶点坐标为(-b/(2a), f(-b/(2a)))。
2. 对称轴的方程:对于标准抛物线方程y = ax^2 + bx + c,对称轴的方程为x = -b/(2a)。
三、焦点与准线1. 焦点的求解:对于标准抛物线方程y = ax^2 + bx + c,焦点的坐标为(-b/(2a), f(-b/(4a)))。
2. 准线的方程:对于标准抛物线方程y = ax^2 + bx + c,准线的方程为y = (1 - 1/(4a))。
四、判别式与图像开口方向1. 判别式的求解:对于标准抛物线方程y = ax^2 + bx + c,判别式的值Δ = b^2 - 4ac。
a) 当Δ > 0时,抛物线开口向上。
b) 当Δ < 0时,抛物线开口向下。
c) 当Δ = 0时,抛物线开口朝上或朝下,具有最小值或最大值。
五、焦距与准线的关系1. 焦距的求解:对于标准抛物线方程y = ax^2 + bx + c,焦距的值为f = |1/(4a)|。
2. 焦距与准线的关系:焦距的值为准线到焦点的距离,即f = d(P,D)/2,其中P为焦点,D为准线。
六、渐近线1. 抛物线的渐近线:对于标准抛物线方程y = ax^2 + bx + c,纵坐标趋势无限增大时,横坐标趋势无穷大或无穷小,即y趋于∞时,如果a ≠ 0,则直线y = 0为横渐近线;如果a = 0,则不存在横渐近线。
高中抛物线知识点总结
![高中抛物线知识点总结](https://img.taocdn.com/s3/m/56085f47eef9aef8941ea76e58fafab069dc44d1.png)
高中抛物线知识点总结抛物线是数学中一种基本的曲线形状,其形状如同一个U字形。
在高中数学学习中,抛物线是一个重要的内容,需要了解其性质、方程和应用等方面的知识。
本文将就高中抛物线的相关知识点进行总结。
一、抛物线的定义抛物线是指平面上一点到一个定点F(焦点)和一条定直线(准线)的距离之比等于一个常数e(离心率)的轨迹。
抛物线的形状非常特殊,其特点是对称,并且具有无数个焦点和准线。
二、抛物线的性质1. 对称性:抛物线是关于准线的对称图形,即准线是抛物线的对称轴,任意一点与焦点的连线与准线的交点处的切线垂直于准线。
2. 焦准定理:抛物线上任意一点到焦点的距离等于该点到准线的距离。
3. 焦点的坐标:设抛物线的焦点为F(p,0),则焦点的坐标为(p,0)。
4. 焦距的求解:设抛物线的方程为y^2=4ax,则焦距为f=|4a|。
5. 离心率的求解:设抛物线的焦点为F,准线为L,则离心率e=|FP|/|FL|。
三、抛物线的方程1. 首先,根据焦点为(p,0)和准线为x=0,可以得到抛物线的一般方程为y^2=4px。
2. 当抛物线的焦点在y轴上,即p=0时,抛物线方程为x^2=4ay。
3. 当抛物线的焦点在x轴上,即p=∞时,抛物线方程为y^2=4ax。
4. 如果已知抛物线的顶点为V(h,k),则抛物线的方程可以表示为y=a(x-h)^2+k,其中a为抛物线的参数。
四、抛物线的应用抛物线在物理、力学、光学等领域都具有重要的应用价值,以下是抛物线在不同领域的应用示例:1. 物理:在物理学中,抛物线常常被用来描述抛体的运动轨迹,如抛射体的运动轨迹、炮弹的轨迹等。
2. 工程:在工程学中,抛物线也常常被运用于桥梁、建筑物、拱门等的结构设计中,以保证结构的稳定性和美观性。
3. 光学:当光线入射到抛物面上时,会被反射到焦点上,因此抛物线也被广泛应用于望远镜、卫星接收器等光学设备中。
总结:高中抛物线的学习是数学学科中的重要内容,通过对抛物线的性质、方程和应用的了解,可以更好地应用于实际问题的解决。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
抛物线及其性质1.抛物线定义:平面内到一定点F 和一条定直线l 的距离相等的点的轨迹称为抛物线. 2.抛物线四种标准方程的几何性质:图形参数p 几何意义 参数p 表示焦点到准线的距离,p 越大,开口越阔.开口方向 右左上下 标 准方 程 22(0)y px p => 22(0)y px p =-> 22(0)x py p =>22(0)x py p =->焦 点位 置 X 正X 负Y 正Y 负焦 点坐 标 (,0)2p (,0)2p -(0,)2p(0,)2p -准 线方 程 2p x =-2p x =2p y =-2p y =范 围 0,x y R ≥∈0,x y R ≤∈0,y x R ≥∈0,y x R ≤∈对 称轴 X 轴X 轴Y 轴Y 轴顶 点坐 标 (0,0)离心率 1e =通 径 2p焦半径11(,)A x y 12p AF x =+12p AF x =-+12p AF y =+12p AF y =-+焦点弦长AB12()x x p ++ 12()x x p -++ 12()y y p ++ 12()y y p -++焦点弦长AB 的补充11(,)A x y22(,)B x y以AB 为直径的圆必与准线l 相切若AB 的倾斜角为α,22sin p AB α=若AB 的倾斜角为α,则22cos pAB α=2124p x x = 212y y p =-112AF BF AB AF BF AF BF AF BF p++===•• 3.抛物线)0(22>=p px y 的几何性质:(1)范围:因为p>0,由方程可知x ≥0,所以抛物线在y 轴的右侧, 当x 的值增大时,|y |也增大,说明抛物线向右上方和右下方无限延伸.(2)对称性:对称轴要看一次项,符号决定开口方向. (3)顶点(0,0),离心率:1=e ,焦点(,0)2p F ,准线2px -=,焦准距p . (4) 焦点弦:抛物线)0(22>=p px y 的焦点弦AB ,),(11y x A ,),(22y x B ,则p x x AB ++=21||. 弦长|AB|=x 1+x 2+p,当x 1=x 2时,通径最短为2p 。
4.焦点弦的相关性质:焦点弦AB ,),(11y x A ,),(22y x B ,焦点(,0)2pF (1) 若AB 是抛物线22(0)y px p =>的焦点弦(过焦点的弦),且11(,)A x y ,22(,)B x y ,则:2124p x x =,212y y p =-。
(2) 若AB 是抛物线22(0)y px p =>的焦点弦,且直线AB 的倾斜角为α,则22sin P AB α=(α≠0)。
(3) 已知直线AB 是过抛物线22(0)y px p =>焦点F ,112AF BF AB AF BF AF BF AF BF p++===•• (4) 焦点弦中通径最短长为2p 。
通径:过焦点垂直于焦点所在的轴的焦点弦叫做通径.(5) 两个相切:○1以抛物线焦点弦为直径的圆与准线相切.○2过抛物线焦点弦的两端点向准线作垂线,以两垂足为直径端点的圆与焦点弦相切。
5.弦长公式:),(11y x A ,),(22y x B 是抛物线上两点,则221212()()AB x x y y =-+-||11||1212212y y k x x k -+=-+=6.直线与抛物线的位置关系 直线,抛物线,,消y 得:(1)当k=0时,直线l 与抛物线的对称轴平行,有一个交点; (2)当k ≠0时,Δ>0,直线l 与抛物线相交,两个不同交点; Δ=0, 直线l 与抛物线相切,一个切点; Δ<0,直线l 与抛物线相离,无公共点。
(3)若直线与抛物线只有一个公共点,则直线与抛物线必相切吗?(不一定)7.关于直线与抛物线的位置关系问题常用处理方法 直线l :b kx y += 抛物线,)0( p① 联立方程法:⎩⎨⎧=+=pxy bkx y 22⇒0)(2222=+-+b x p kb x k设交点坐标为),(11y x A ,),(22y x B ,则有0 ∆,以及2121,x x x x +,还可进一步求出b x x k b kx b kx y y 2)(212121++=+++=+,2212122121)())((b x x kb x x k b kx b kx y y +++=++=在涉及弦长,中点,对称,面积等问题时,常用此法,比如 a. 相交弦AB 的弦长2122122124)(11x x x x k x x k AB -++=-+=ak ∆+=21 或 2122122124)(1111y y y y k y y k AB -++=-+=ak ∆+=21 b. 中点),(00y x M , 2210x x x +=, 2210y y y += ② 点差法:设交点坐标为),(11y x A ,),(22y x B ,代入抛物线方程,得1212px y = 2222px y =将两式相减,可得)(2))((212121x x p y y y y -=+-2121212y y px x y y +=--a. 在涉及斜率问题时,212y y pk AB +=b. 在涉及中点轨迹问题时,设线段AB 的中点为),(00y x M ,021*******y py p y y p x x y y ==+=--, 即0y p k AB =, 同理,对于抛物线)0(22≠=p py x ,若直线l 与抛物线相交于B A 、两点,点),(00y x M 是弦AB 的中点,则有px p x p x x k AB 0021222==+=(注意能用这个公式的条件:1)直线与抛物线有两个不同的交点,2)直线的斜率存在,且不等于零)【经典例题】(1)抛物线——二次曲线的和谐线椭圆与双曲线都有两种定义方法,可抛物线只有一种:到一个定点和一条定直线的距离相等的所有点的集合.其离心率e=1,这使它既与椭圆、双曲线相依相伴,又鼎立在圆锥曲线之中.由于这个美好的1,既使它享尽和谐之美,又生出多少华丽的篇章.【例1】P 为抛物线px y 22=上任一点,F 为焦点,则以PF 为直径的圆与y 轴( ).A 相交 .B 相切 .C 相离 .D 位置由P 确定【解析】如图,抛物线的焦点为,02p F ⎛⎫⎪⎝⎭,准线是 :2pl x =-.作PH ⊥l 于H ,交y 轴于Q ,那么PF PH =, 且2pQH OF ==.作MN ⊥y 轴于N 则MN 是梯形PQOF 的中位线,()111222MN OF PQ PH PF =+==.故以PF 为直径的圆与y 轴相切,选B.【评注】相似的问题对于椭圆和双曲线来说,其结论则 分别是相离或相交的.(2)焦点弦——常考常新的亮点弦有关抛物线的试题,许多都与它的焦点弦有关.理解并掌握这个焦点弦的性质,对破解这些试题是大有帮助的.【例2】 过抛物线()022p px y =的焦点F 作直线交抛物线于()()1122,,,A x y B x y 两点,求证:(1)12AB x x p =++ (2)pBF AF 211=+ 【证明】(1)如图设抛物线的准线为l ,作1AA l ⊥11111,2p A BB l B AA x ⊥==+于,则AF , 122pBF BB x ==+.两式相加即得:12AB x x p =++(2)当AB ⊥x 轴时,有AF BF p ==,112AF BF p∴+=成立; 当AB 与x 轴不垂直时,设焦点弦AB 的方程为:2p y k x ⎛⎫=-⎪⎝⎭.代入抛物线方程:l XY FA(x,y)11B(x,y)22A 1B 1l2222p k x px ⎛⎫-= ⎪⎝⎭.化简得:()()222222014p k x p k x k -++=∵方程(1)之二根为x 1,x 2,∴1224k x x ⋅=.()122111212121111112224x x p p pp p AF BF AA BB x x x x x x +++=+=+=+++++ ()()121222121222424x x p x x p p p p pp x x p x x ++++===+++++. 故不论弦AB 与x 轴是否垂直,恒有pBF AF 211=+成立. (3)切线——抛物线与函数有缘有关抛物线的许多试题,又与它的切线有关.理解并掌握抛物线的切线方程,是解题者不可或缺的基本功.【例3】证明:过抛物线22y px =上一点M (x 0,y 0)的切线方程是:y 0y=p (x+x 0)【证明】对方程22y px =两边取导数:22.py y p y y''⋅=∴=,切线的斜率 00x x p k y y ='==.由点斜式方程:()()20000001p y y x x y y px px y y -=-⇒=-+20021y px =,代入()即得: y 0y=p (x+x 0)(4)定点与定值——抛物线埋在深处的宝藏抛物线中存在许多不不易发现,却容易为人疏忽的定点和定值.掌握它们,在解题中常会有意想不到的收获.例如:1.一动圆的圆心在抛物线x y 82=上,且动圆恒与直线02=+x 相切,则此动圆必过定点 ( )()()()().4,0.2,0.0,2.0,2A B C D -显然.本题是例1的翻版,该圆必过抛物线的焦点,选B. 2.抛物线22y px =的通径长为2p ;3.设抛物线22y px =过焦点的弦两端分别为()()1122,,,A x y B x y ,那么:212y y p =-以下再举一例【例4】设抛物线22y px =的焦点弦AB 在其准线上的射影是A 1B 1,证明:以A 1B 1为直径的圆必过一定点【分析】假定这条焦点弦就是抛物线的通径,那么A 1B 1=AB=2p ,而A 1B 1与AB 的距离为p ,可知该圆必过抛物线的焦点.由此我们猜想:一切这样的圆都过抛物线的焦点.以下我们对AB 的一般情形给于证明.【证明】如图设焦点两端分别为()()1122,,,A x y B x y ,那么:22121112.y y p CA CB y y p =-⇒⋅==设抛物线的准线交x 轴于C ,那么.CF p =2111111.90A FB CF CA CB A FB ∴∆=⋅∠=︒中故.这就说明:以A 1B 1为直径的圆必过该抛物线的焦点.● 通法 特法 妙法(1)解析法——为对称问题解困排难解析几何是用代数的方法去研究几何,所以它能解决纯几何方法不易解决的几何问题(如对称问题等).【例5】(10.四川文科卷.10题)已知抛物线 y=-x 2+3上存在关于直线x+y=0对称的相异两点A 、B ,则|AB|等于( )A.3B.4C.32D.42【分析】直线AB 必与直线x+y=0垂直,且线段 AB 的中点必在直线x+y=0上,因得解法如下.【解析】∵点A 、B 关于直线x+y=0对称,∴设直线AB 的方程为:y x m =+. 由()223013y x mx x m y x =+⎧⇒++-=⎨=-+⎩设方程(1)之两根为x 1,x 2,则121x x +=-. 设AB 的中点为M (x 0,y 0),则120122x x x +==-.代入x+y=0:y 0=12.故有11,22M ⎛⎫- ⎪⎝⎭. 从而1m y x =-=.直线AB 的方程为:1y x =+.方程(1)成为:220x x +-=.解得: 2,1x =-,从而1,2y =-,故得:A (-2,-1),B (1,2).AB ∴=,选C.(2)几何法——为解析法添彩扬威虽然解析法使几何学得到长足的发展,但伴之而来的却是难以避免的繁杂计算,这又使得许多考生对解析几何习题望而生畏.针对这种现状,人们研究出多种使计算量大幅度减少的优秀方法,其中最有成效的就是几何法.【例6】(11.全国1卷.11题)抛物线24y x =的焦点为F ,准线为l ,经过F 且斜率XYABFA 1B 11MC XOYABMl x y +=ÿXYO F(1,0)AK60°M的直线与抛物线在x 轴上方的部分相交于点A ,AK l ⊥,垂足为K ,则AKF △的面积( )A .4 B. C. D .8 【解析】如图直线AFAFX=60°. △AFK 为正三角形.设准线l 交x 轴于M ,则2,FM p ==且∠KFM=60°,∴24,44AKF KF S ∆==⨯=选C. 【评注】(1)平面几何知识:边长为a 的正三角形的面积用公式2S ∆=计算. (2)本题如果用解析法,需先列方程组求点A 的坐标,,再计算正三角形的边长和面积.虽不是很难,但决没有如上的几何法简单.(3)定义法——追本求真的简单一着许多解析几何习题咋看起来很难.但如果返朴归真,用最原始的定义去做,反而特别简单. 【例7】(07.湖北卷.7题)双曲线22122:1(00)x y C a b a b-=>>,的左准线为l ,左焦点和右焦点分别为1F 和2F ;抛物线2C 的线为l ,焦点为21F C ;与2C 的一个交点为M ,则12112F F MF MF MF -等于( )A .1-B .1C .12-D .12【分析】 这道题如果用解析法去做,计算会特别繁杂,而平面几何知识又一时用不上,那么就从最原始的定义方面去寻找出路吧.如图,我们先做必要的准备工作:设双曲线的半 焦距c ,离心率为e ,作 MH l H ⊥于,令1122,MF r MF r ==.∵点M 在抛物线上,1112222,MF MF r MH MF r e MH MF r ∴=====故,这就是说:12||||MF MF 的实质是离心率e.其次,121||||F F MF 与离心率e 有什么关系?注意到:()1212111122111F F e r r c e a e e MF r r r e +⋅⎛⎫====-=- ⎪⎝⎭. 这样,最后的答案就自然浮出水面了:由于()12112||||11||||F F MF e e MF MF -=-+=-.∴选 A..(4)三角法——本身也是一种解析三角学蕴藏着丰富的解题资源.利用三角手段,可以比较容易地将异名异角的三角函数转化为同名同角的三角函数,然后根据各种三角关系实施“九九归一”——达到解题目的.因此,在解析几何解题中,恰当地引入三角资源,常可以摆脱困境,简化计算.【例8】(09.重庆文科.21题)如图,倾斜角为a 的直线经过抛物线x y 82=的焦点F ,且与抛物线交于A 、B 两点。