管道计算

合集下载

管道流量计算方式

管道流量计算方式

管道流量计算方式DN15、DN25、DN50管径的截面积分别为:DN15:15²*3.14/4=176.625平方毫米,合0.0177平方分米。

DN25:25²*3.14/4=490.625平方毫米,合0.0491平方分米。

DN50:50²*3.14/4=1962.5平方毫米,合0.1963平方分米。

设管道流速为V=4米/秒,即V=40分米/秒,且1升=1立方分米,则管道的流量分别为(截面积乘以流速):DN15管道:流量Q=0.0177*40=0.708升/秒,合2.55立方米/小时。

DN25管道:流量Q=0.0491*40=1.964升/秒,合7.07立方米/小时。

DN50管道:流量Q=0.1963*40=7.852升/秒,合28.27立方米/小时。

注:必须给定流速才能计算流量,上述是按照4米/秒计算的。

电缆载流量电缆载流量:电缆载流量是指一条电缆线路在输送电能时所通过的电流量,在热稳定条件下,当电缆导体达到长期允许工作温度时的电缆载流量称为电缆长期允许载流量。

电缆载流量口决估算口诀二点五下乘以九,往上减一顺号走。

三十五乘三点五,双双成组减点五。

条件有变加折算,高温九折铜升级。

穿管根数二三四,八七六折满载流。

说明(1)本节口诀对各种绝缘线(橡皮和塑料绝缘线)的载流量(安全电流)不是直接指出,而是”截面乘上一定的倍数”来表示,通过心算而得。

由表5 3可以看出:倍数随截面的增大而减小。

“二点五下乘以九,往上减一顺号走”说的是2.5mm’及以下的各种截面铝芯绝缘线,其载流量约为截面数的9倍。

如2.5mm’导线,载流量为 2.5×9=22.5(A)。

从4mm’及以上导线的载流量和截面数的倍数关系是顺着线号往上排,倍数逐次减l,即4×8、6×7、10×6、16×5、25×4。

“三十五乘三点五,双双成组减点五”,说的是35mm”的导线载流量为截面数的3.5倍,即35×3.5=122.5(A)。

管道内气体体积计算公式

管道内气体体积计算公式

管道内气体体积计算公式
对于直径较小、长度较长的圆筒形管道,可以使用圆筒形体积计算公式。

假设管道的直径为D,长度为L,则管道的体积可以通过以下公式计算:
V=π*(D/2)²*L
其中V是管道的体积,π是圆周率,D/2是管道的半径。

对于直径较大的管道或者管道中其中一段管道弯曲的情况,需要考虑管道的几何形状,一般可以近似为圆柱体和锥体相结合。

如果管道中存在锥体,其体积可以通过以下公式计算:
Vcone = 1/3 * π * (D1/2)² * h
其中Vcone是锥形部分的体积,D1是锥形底部的直径,h是锥形部分的高度。

如果管道是由圆柱体和锥体相连接而成的,可以将两个部分的体积相加:
Vtotal = Vcylinder + Vcone
其中Vtotal是整个管道的体积,Vcylinder是圆柱体部分的体积。

除了管道形状,管道内气体的状态也会影响体积的计算。

根据理想气体状态方程,理想气体的体积可由以下公式计算:
V=n*R*T/P
其中V是气体的体积,n是气体的物质的量,R是理想气体常量,T 是气体的温度,P是气体的压力。

综上所述,管道内气体体积的计算公式主要取决于管道的形状和气体的状态。

通过合理选择适用的公式,可以准确计算出管道内气体的体积。

管道工程量计算

管道工程量计算

风管计算规则1、管道工程量计算。

风管制作安装按图示不同规格以展开面积计算,不扣除检查孔、测定孔、送风口、吸风口等所占面积,定额计量单位为“10㎡”。

圆管F=ЛDL矩形管F=SL式中:F—风管展开面积(㎡)D—圆形风管直径(m)S—矩形风管周长(m)L—管道中心线长度(m)Л—表示工程量计算时,风管长度一律以施工图中心线为准(立管与支管以其中心线交点划分),包括弯头、三通、四通、变径管、天圆地方等管件的长度,但不包括部件(如阀门)所占长度。

直径和周长按设计图示尺寸为准展开,咬口重叠部分已包括在定额内,不得另行增加。

计算风管长度时,应扣除的部件长度为:蝶阀L=150㎜;对开式多叶调节阀L=210㎜;圆形风管防火阀L=D+240㎜(D为风管直径);矩形风管防火阀L=B+240㎜(B为风管高度);止回阀L=300㎜;密闭式斜插板阀L=D+200㎜(D为风管直径)。

2、风管导流叶片的工程量均按图示叶片面积计算。

3、柔性软风管安装工程量按图示管道中心线长度以“m”为单位计量,柔性软风管阀门安装以“个”为单位计量。

4、软管(帆布接口)制作安装工程量,按图示尺寸以“m”为单位计量。

5、风管检查孔工程量,按定额附录四“国际通风部件标准质量表”计算。

6、风管测定孔制作安装工程量,按其型号以“个”为单位计量。

通风空调管道、设备筒体刷油及绝热工程通风空调管道、设备筒体刷油及绝热工程应执行《全国统一安装工程预算定额》第十一册相应子目。

1、管道、设备筒体的除锈、刷油⑴管道、设备筒体的除锈、刷油工程量以表面积“㎡”为单位计量。

⑵通风空调部件和吊托支架的除锈、刷油工程量,以质量“㎏”为单位计量。

⑶各种管件、阀门及设备上人孔、管口凸出部分的除锈、刷油已综合考虑在定额内,不另行计算。

2、管道、设备筒体的防腐⑴管道、设备筒体的防腐工程量以表面积“㎡”为单位计算。

⑵阀门、弯头、法兰的防腐工程量以表面积“㎡”为单位计量。

①阀门表面积计算公:S=Л×D××K×N式中:D—直径K—N—阀门个数Л—②弯头表面积计算公式:S=Л×D××2Л×N/B式中:D—直径N—弯头个数B—90°弯头 B=4,45°弯头B=8Л—③法兰表面积计算公式:S=Л×D××K×N式中:D—直径K—N—法兰个数B—90°弯头 B=4, 45°弯头B=8④设备和管道法兰翻边工程量计算公式:S=Л×(D+A)×A式中:D—直径A—法兰翻边宽。

管道计算

管道计算

四、管道计算(一)1.简单管道的计算简单管道通常指直径相同的管道。

两段直径不相同的串联管道,例如由水泵的汲入管和压出管组成的管道,也属于简单管道。

至于由几种不同直径的管段串联在一起组成的管道,则称为串联管道,属于复杂管道。

在作管道计算时,如果管道较长,沿程阻力比起局部阻力大很多,以致于不考虑后者的时候,对计算结果也无大影响,这时可将局部阻力略去。

管道计算包括下述各种情况:1)计算在一定条件下(某种流体以一定的流量流经某一管道)输送流体时所需外加的能量,即计算风机或泵的功率。

2)计算在一定条件下(某种流体受到一定的压头——包括外加压头的作用,流经一定的管道)流体的流量。

3)计算为着满足一定的流动条件(某种流体在一定压头的作用下达到某一规定的流量)所应该选用的管道直径。

由于计算这些项目时牵涉到能量的关系及阻力的大小,所以计算时的基本公式是柏努利方程式:和阻力公式:或下面举几个例子分别说明这几种情况下的计算。

【例1-15】如图1-53所示,开口水池液面位于水泵下面4米深处。

水泵将水池中温度为20℃的水以10000千克/小时的流量汲起,送到液面距水泵高25米的另一开口水池中。

管道用2″管,总长度为137米。

管道上有90°标准弯头4个,闸阀2个。

要求计算水泵的功率。

已知水泵的效率为75%。

【解】这是属于第一种情况的问题,可以直接使用柏努利方程式及阻力公式求解。

1)取两个水池的液面作1、2截面;以底下的水池液面作基准面,写出截面l与2之间的柏努利方程式:此时,Z1=0,Z2=4+25=29米;两水池液面上均为大气压,p1=p2;水池液面远较管道截面大,故。

于是柏努利方程式简化为:米水柱2)液体的密度取ρ=1000千克/米3,体积流量米3/秒2″普通水管的内径为53毫米,管道截面积米2在管道内液体流速米/秒温度20℃的水粘度为1005³10-6帕²秒,故液流的速度压头米水柱3)沿程压头损失取管子的绝对粗糙度为46³10-3毫米,则相对粗糙度,查图1-48,当Re=66260时,,故米水柱局部阻力损失:从水池进入管道时截面收缩的局部阻力系数ζ=0.5;90°标准弯头的局部阻力系数ζ=0.75;闸阀的局部阻力系数ζ=0.17;从管道流入水池时截面突然扩大的局部阻力系数ζ=1。

管道常用计算公式

管道常用计算公式

管道常用计算公式管道是一种常见的工程结构,在不同的领域中有着广泛的应用,如供水、石油、天然气、化工等行业。

在设计和运营过程中,需要进行一系列的计算以确保管道的安全性和可靠性。

下面介绍一些管道常用的计算公式。

1.管道内径计算管道内径是指管道的内部直径,是设计和选择管道尺寸的重要参数。

常用于计算管道内流体的流量和压力损失。

公式:D=2×A/π其中,D表示管道内径,A表示管道的截面面积。

2.管道截面积计算管道截面积用于计算管道的流量和速度。

公式:A=π×(D/2)^2其中,A表示管道截面积,D表示管道内径。

3.管道流量计算管道流量是指单位时间内通过管道的气体或液体的体积。

公式:Q=A×V其中,Q表示管道流量,A表示管道截面积,V表示流体的平均速度。

4.管道平均速度计算管道平均速度用于确定流体在管道内的流速情况。

公式:V=Q/A其中,V表示平均速度,Q表示管道流量,A表示管道截面积。

5.管道压降计算管道压降是指流体通过管道时由于阻力而损失的压力。

公式:ΔP=f×(L/D)×(V^2/2g)其中,ΔP表示管道压降,f表示摩擦系数,L表示管道长度,D表示管道内径,V表示流体速度,g表示重力加速度。

6.管道泵功率计算泵是管道系统中常用的设备,用于提供压力并推动流体。

计算泵所需的功率可以帮助选取适当的泵型和确定驱动装置的功率。

公式:P=(Q×ΔP)/η其中,P表示泵的功率,Q表示管道流量,ΔP表示管道压降,η表示泵的效率。

以上仅是管道设计和运营中的一些常用计算公式,在实际应用中还会有更多的细节和参数需要考虑。

此外,还需要根据不同的应用领域和具体情况选择适当的计算方法和公式。

管道截面积计算

管道截面积计算

管道截面积计算
管道截面积是指管道内部截面的面积,通常用于计算管道的流量、水力特性以及管道破裂的承载能力。

正确计算管道截面积对于保障管
道运行的正常和安全至关重要。

管道截面积计算方法有多种,常见的有圆形管道、矩形管道和椭
圆形管道的截面积计算。

对于圆形管道,其截面积可通过公式S=πr²计算,其中S为截面积,r为管道半径。

公式中π代表圆周率,约等于3.14。

因此,如果
已知圆管的直径d,则其半径r=d/2,可带入公式中计算出截面积。

对于矩形管道,截面积的计算公式为S=ab,其中a和b分别为矩
形截面的宽度和高度。

如果已知矩形截面的长度和宽度,则直接将其
带入公式中即可求得截面积。

对于椭圆形管道,其截面积公式为S=πab,其中a和b分别为椭
圆截面的长轴和短轴长度。

同样地,如果已知椭圆截面的长轴和短轴,则可以通过公式计算其截面积。

在实际应用中,为了更加准确地计算管道截面积,需要测量管道
内部的实际尺寸。

测量的方法多种多样,可采用直尺、卷尺等工具。

值得注意的是,在测量时应特别注意内径或外径的测量,以免造成计
算误差。

总之,正确计算管道截面积对于提高管道运行的效率和保障安全
具有十分重要的作用。

在实际应用中,应该根据不同管道形状选用不
同的计算公式,并严格按照测量结果计算,以确保计算结果的准确性。

所有管道计算公式图解

所有管道计算公式图解

所有管道计算公式图解管道是工业生产中常见的输送系统,用于输送液体、气体和固体颗粒等物质。

在设计和运行管道时,需要对管道进行各种计算,以保证其安全、高效地运行。

本文将介绍常见的管道计算公式,并通过图解的方式进行详细解释。

1. 流体的流量计算。

流体的流量是指单位时间内通过管道横截面的流体体积。

计算流体的流量是管道设计中的重要环节,常用的流量计算公式为:Q = A V。

其中,Q表示流量,单位为立方米/秒;A表示管道横截面积,单位为平方米;V表示流体的流速,单位为米/秒。

图解,流体的流量计算公式可以通过管道的横截面积和流速来计算,流速越大,流量越大;横截面积越大,流量也越大。

2. 管道的压降计算。

管道的压降是指流体在管道中由于摩擦和阻力而产生的压力损失。

计算管道的压降是为了保证流体在输送过程中能够保持足够的压力,常用的压降计算公式为:ΔP = f (L/D) (ρ V^2) / 2。

其中,ΔP表示压降,单位为帕斯卡;f表示摩擦系数;L表示管道长度,单位为米;D表示管道直径,单位为米;ρ表示流体密度,单位为千克/立方米;V表示流体流速,单位为米/秒。

图解,管道的压降计算公式可以通过摩擦系数、管道长度、管道直径、流体密度和流速来计算,其中摩擦系数和管道长度对压降影响较大。

3. 管道的流速计算。

管道的流速是指流体在管道中的速度,计算管道的流速是为了保证流体在输送过程中不会产生过大的摩擦和阻力。

常用的流速计算公式为:V = (Q / A)。

其中,V表示流速,单位为米/秒;Q表示流量,单位为立方米/秒;A表示管道横截面积,单位为平方米。

图解,管道的流速计算公式可以通过流量和管道横截面积来计算,流量越大,流速越大;横截面积越小,流速也越大。

4. 管道的流体密度计算。

流体的密度是指单位体积内流体的质量,计算流体的密度是为了对流体进行定量分析和计算。

常用的流体密度计算公式为:ρ = m / V。

其中,ρ表示流体密度,单位为千克/立方米;m表示流体的质量,单位为千克;V表示流体的体积,单位为立方米。

管道面积、重量 计算公式

管道面积、重量 计算公式

工程量(面积)计算公式1、除锈、刷油工程。

(1)设备筒体、管道表面积计算公式:S=π×D×L式中π——圆周率;D——设备或管道直径;L——设备筒体高或管道延长米。

(2)计算设备筒体、管道表面积时已包括各种管件、阀门、法兰、人孔、管口凹凸部分,不再另外计算。

2、防腐蚀工程。

(1)设备筒体、管道表面积计算公式同(1)。

(2)阀门表面积计算式:(图一)S=π×D×2.5D×K×N图一式中D——直径;K——1.05;N——阀门个数。

(3)弯头表面积计算式:(图二)图二S=π×D×1.5D×K×2π×N/B式中D——直径;K——1.05;N——弯头个数;B值取定为:90°弯头B=4;45°弯头B=8。

(4)法兰表面积计算式:(图三)S=π×D×1.5D×K×N图三式中D——直径;K——1.05;N——法兰个数。

(5)设备和管道法兰翻边防腐蚀工程量计算式:(图四)图4S=π×(D+A)×A式中D——直径;A——法兰翻边宽。

(6)带封头的设备防腐(或刷油)工程量计算式:(图五)图五S=L×π×D+(D[]22)×π×1.5×N式中N——封头个数;1.5——系数值。

3、绝热工程量。

(1)设备筒体或管道绝热、防潮和保护层计算公式:V=π×(D+1.033δ)×1.033δS=π×(D+2.1δ+0.0082)×L图五式中D——直径1.033、2.1——调整系数;δ——绝热层厚度;L——设备筒体或管道长;0.0082——捆扎线直径或钢带厚。

(2)伴热管道绝热工程量计算式:①单管伴热或双管伴热(管径相同,夹角小于90°时)。

D′=D1+D2 +(10~20mm)式中D′——伴热管道综合值;D1 ——主管道直径;D2 ——伴热管道直径;(10~20mm)——主管道与伴热管道之间的间隙。

管道流量计算方式

管道流量计算方式

管道流量计算方式dn15、dn25、dn50管径的截面积分别为:dn15:15²*3.14/4=176.625平方毫米,合0.0177平方分米。

dn25:25²*3.14/4=490.625平方毫米,合0.0491平方分米。

dn50:50²*3.14/4=1962.5平方毫米,合0.1963平方分米。

设立管道流速为v=4米/秒,即v=40分米/秒,且1再升=1立方分米,则管道的流量分别为(截面积除以流速):dn15管道:流量q=0.0177*40=0.708升/秒,合2.55立方米/小时。

dn25管道:流量q=0.0491*40=1.964升/秒,合7.07立方米/小时。

dn50管道:流量q=0.1963*40=7.852升/秒,合28.27立方米/小时。

注:必须给定流速才能计算流量,上述是按照4米/秒计算的。

电缆有载流量就是指一条电缆线路在运送电能时所通过的电流量,在热平衡条件下,当电缆导体达至长期容许工作温度时的电缆有载流量称作电缆长期容许有载流量。

电缆载流量口决二点五下除以九,往上减一顺号跑。

三十五乘三点五,双双成组减点五。

条件依从提换算,高温九折铜升级。

穿管根数二三四,八七六折满载流。

(1)本节口诀对各种绝缘线(橡皮和塑料绝缘线)的载流量(安全电流)不是轻易表示,而是”横截面乘坐上一定的倍数”去则表示,通过心算而得。

由表中53可以窥见:倍数随其横截面的减小而增大。

“二点五下乘以九,往上减一顺号走”说的是2.5mm’及以下的各种截面铝芯绝缘线,其载流量约为截面数的9倍。

如2.5mm’导线,载流量为2.5×9=22.5(a)。

从4mm’及以上导线的载流量和截面数的倍数关系是顺着线号往上排,倍数逐次减l,即4×8、6×7、10×6、16×5、25×4。

“三十五乘坐三点五,双双成组K53X342TK五”,说道的就是35mm”的导线有载流量为横截面数的3.5倍,即35×3.5=122.5(a)。

管道的横截面积计算公式

管道的横截面积计算公式

管道的横截面积计算公式
【最新版】
目录
1.管道横截面积的定义
2.管道横截面积的计算公式
3.计算公式的应用示例
正文
管道横截面积是指管道在某一特定位置的截面上的面积大小。

在流体力学中,管道横截面积是一个重要的参数,因为它直接影响到流体在管道内的流速和流量。

为了计算管道横截面积,我们需要知道管道的直径或半径以及管道的壁厚。

管道横截面积的计算公式如下:
横截面积 = π * (管道半径)^2
如果管道直径已知,可以通过以下公式计算半径:
管道半径 = 管道直径 / 2
如果管道壁厚已知,可以通过以下公式计算半径:
管道半径 = (管道外径 - 管道壁厚) / 2
现在让我们来看一个应用计算公式的示例。

假设我们有一根直径为20 厘米、壁厚为 2 厘米的圆形管道,我们需要计算其横截面积。

首先,计算管道半径:
管道半径 = 20 厘米 / 2 = 10 厘米
然后,计算横截面积:
横截面积 = π * (10 厘米)^2 = 100π平方厘米
因此,这根圆形管道的横截面积为 100π平方厘米。

需要注意的是,在实际应用中,管道的形状可能有所不同,可能是圆形、矩形或其他形状。

对于不同形状的管道,计算横截面积的公式会有所不同。

管道体积计算公式

管道体积计算公式

管道体积计算公式
计算管道体积的公式取决于管道的形状和尺寸。

以下是四种常见的管
道形状的体积计算公式:圆柱体管道、圆锥体管道、矩形管道和梯形管道。

1.圆柱体管道:
圆柱体管道是最常见的一种管道形状,其体积计算公式为:
V=π*r²*h
其中,V是管道的体积,r是管道的半径,h是管道的高度。

2.圆锥体管道:
圆锥体管道的体积计算公式为:
V=(1/3)*π*r²*h
其中,V是管道的体积,r是管道底部的半径,h是管道的高度。

3.矩形管道:
矩形管道的体积计算公式为:
V=l*w*h
其中,V是管道的体积,l是管道的长度,w是管道的宽度,h是管道
的高度。

4.梯形管道:
梯形管道的体积计算公式可以通过将梯形拆分为一个长方形和一个三
角形来计算。

首先计算长方形的体积,然后计算三角形的体积,最后将两
个体积加起来。

长方形的体积计算公式为:V₁=l*w*h
三角形的体积计算公式为:V₂=(1/2)*b*h*h
梯形管道的总体积为:V=V₁+V₂
其中,V是管道的体积,l是管道的长度,w是管道较长一侧的宽度,h是管道的高度,b是管道较短一侧的底边长度。

管道面积、重量计算公式

管道面积、重量计算公式

工程量〔面积〕计算公式1、除锈、刷油工程。

(1)设备筒体、管道外表积计算公式:S=π×D×L式中π——圆周率;D——设备或管道直径;L——设备筒体高或管道延长米。

(2)计算设备筒体、管道外表积时已包括各种管件、阀门、法兰、人孔、管口凹凸局部,不再另外计算。

2、防腐蚀工程。

(1)设备筒体、管道外表积计算公式同(1)。

(2)阀门外表积计算式:(图一)S=π×D×2.5D×K×N图一式中D——直径;K——1.05;N——阀门个数。

(3)弯头外表积计算式:(图二)图二S=π×D×1.5D×K×2π×N/B式中D——直径;K——1.05;N——弯头个数;B值取定为:90°弯头B=4;45°弯头B=8。

(4)法兰外表积计算式:(图三)S=π×D×1.5D×K×N图三式中D——直径;K——1.05;N——法兰个数。

(5)设备和管道法兰翻边防腐蚀工程量计算式:(图四)图4S=π×(D+A)×A式中D——直径;A——法兰翻边宽。

(6)带封头的设备防腐(或刷油)工程量计算式:(图五)图五S=L×π×D+(D[]22)×π×1.5×N式中N——封头个数;1.5——系数值。

3、绝热工程量。

(1)设备筒体或管道绝热、防潮和保护层计算公式:V=π×(D+1.033δ)×1.033δS=π×(D+2.1δ+0.0082)×L图五式中D——直径1.033、2.1——调整系数;δ——绝热层厚度;L——设备筒体或管道长;0.0082——捆扎线直径或钢带厚。

(2)伴热管道绝热工程量计算式:①单管伴热或双管伴热(管径一样,夹角小于90°时)。

D′=D1+D2 +(10~20mm)式中D′——伴热管道综合值;D1 ——主管道直径;D2 ——伴热管道直径;(10~20mm)——主管道与伴热管道之间的间隙。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

管道计算第一章任务与职责1. 管道柔性设计的任务压力管道柔性设计的任务是使整个管道系统具有足够的柔性,用以防止由于管系的温度、自重、内压和外载或因管道支架受限和管道端点的附加位移而发生下列情况;1) 因应力过大或金属疲劳而引起管道破坏;2) 管道接头处泄漏;3) 管道的推力或力矩过大,而使与管道连接的设备产生过大的应力或变形,影响设备正常运行;4) 管道的推力或力矩过大引起管道支架破坏;2. 压力管道柔性设计常用标准和规范1) GB 50316-2000《工业金属管道设计规范》2) SH/T 3041-2002《石油化工管道柔性设计规范》3) SH 3039-2003《石油化工非埋地管道抗震设计通则》4) SH 3059-2001《石油化工管道设计器材选用通则》5) SH 3073-95《石油化工企业管道支吊架设计规范》6) JB/T 8130.1-1999《恒力弹簧支吊架》7) JB/T 8130.2-1999《可变弹簧支吊架》8) GB/T 12777-1999《金属波纹管膨胀节通用技术条件》9) HG/T 20645-1998《化工装置管道机械设计规定》10) GB 150-1998《钢制压力容器》3. 专业职责1) 应力分析(静力分析动力分析)2) 对重要管线的壁厚进行计算3) 对动设备管口受力进行校核计算4) 特殊管架设计4. 工作程序1) 工程规定2) 管道的基本情况3) 用固定点将复杂管系划分为简单管系,尽量利用自然补偿4) 用目测法判断管道是否进行柔性设计5) L型U型管系可采用图表法进行应力分析6) 立体管系可采用公式法进行应力分析7) 宜采用计算机分析方法进行柔性设计的管道8) 采用CAESAR II 进行应力分析9) 调整设备布置和管道布置10) 设置、调整支吊架11) 设置、调整补偿器12) 评定管道应力13) 评定设备接口受力14) 编制设计文件15) 施工现场技术服务5. 工程规定1) 适用范围2) 概述3) 设计采用的标准、规范及版本4) 温度、压力等计算条件的确定5) 分析中需要考虑的荷载及计算方法6) 应用的计算软件7) 需要进行详细应力分析的管道类别8) 管道应力的安全评定条件9) 机器设备的允许受力条件(或遵循的标准)10)防止法兰泄漏的条件11)膨胀节、弹簧等特殊元件的选用要求12)业主的特殊要求13)计算中的专门问题(如摩擦力、冷紧等的处理方法)14)不同专业间的接口关系15)环境设计荷载16)其它要求第二章压力管道柔性设计1. 管道的基础条件包括:介质温度压力管径壁厚材质荷载端点位移等。

2. 管道的计算温度确定管道的计算温度应根据工艺设计条件及下列要求确定:1) 对于无隔热层管道:介质温度低于65℃时,取介质温度为计算温度;介质温度等于或高于65℃时,取介质温度的95%为计算温度;2) 对于有外隔热层管道,除另有计算或经验数据外,应取介质温度为计算温度;3) 对于夹套管道应取内管或套管介质温度的较高者作为计算温度;4) 对于外伴热管道应根据具体条件确定计算温度;5) 对于衬里管道应根据计算或经验数据确定计算温度;6) 对于安全泄压管道,应取排放时可能出现的最高或最低温度作为计算温度;7) 进行管道柔性设计时,不仅应考虑正常操作条件下的温度,还应考虑开车、停车、除焦、再生及蒸汽吹扫等工况。

3. 管道安装温度宜取20℃(除另有规定外)。

4. 管道计算压力应取计算温度下对应的操作压力。

5. 管道钢材参数按《石油化工管道柔性设计规范》SH/T3041-2002执行1) 钢材平均线膨胀系数可参照附录A选取。

2) 钢材弹性模量可参照附录B选取。

3) 计算二次应力范围时,管材的弹性模量应取安装温度下钢材的弹性模量。

6. 管道壁厚计算1) 内压金属直管的壁厚根据SH 3059-2001《石油化工管道设计器材选用通则》确定:当S0< Do /6时,直管的计算壁厚为:S0 = P D0/(2[σ]tΦ+2PY)直管的选用壁厚为:S = S0 + C式中S0―― 直管的计算壁厚,mm;P――设计压力,MPa;D0――直管外径,mm;[σ]t―― 设计温度下直管材料的许用应力,MPa;Φ――焊缝系数,对无缝钢管,Φ=1;S――包括附加裕量在内的直管壁厚,mm;C―― 直管壁厚的附加裕量,mm;Y――温度修正系数,按下表选取。

当S0≥D0/6或P/[σ]t > 0.385时,直管壁厚应根据断裂理论、疲劳、热应力及材料特性等因素综合考虑确定。

2)对于外压直管的壁厚应根据GB 150-1998《钢制压力容器》规定的方法确定。

7. 管道上的荷载管道上可能承受的荷载有:1)重力荷载,包括管道自重、保温重、介质重和积雪重等;2) 压力荷载,压力荷载包括内压力和外压力;3) 位移荷载,位移荷载包括管道热胀冷缩位移、端点附加位移、支承沉降等;4) 风荷载;5) 地震荷载;6) 瞬变流冲击荷载,如安全阀启跳或阀门的快速启闭时的压力冲击;7) 两相流脉动荷载;8) 压力脉动荷载,如往复压缩机往复运动所产生的压力脉动;9) 机器振动荷载,如回转设备的振动。

8. 管道端点的附加位移在管道柔性设计中,除考虑管道本身的热胀冷缩外,还应考虑下列管道端点的附加位移:1) 静设备热胀冷缩时对连接管道施加的附加位移;2) 转动设备热胀冷缩在连接管口处产生的附加位移;3) 加热炉管对加热炉进出口管道施加的附加位移;4) 储罐等设备基础沉降在连接管口处产生的附加位移;5) 不和主管一起分析的支管,应将分支点处主管的位移作为支管端点的附加位移。

9. 管道布置管道的布置尽量利用自然补偿能力:1) 改变管道的走向,以增加整个管道的柔性;2) 利用弹簧支吊架放松约束;3) 改变设备布置。

4) 对于复杂管道可用固定点将其划分成几个形状较为简单的管段,如L形、Π形、Z形等管段。

确定管道固定点位置时,宜使两固定点间的管段能够自然补偿。

10. 宜采用计算机分析方法进行详细柔性设计的管道1) 操作温度大于400 ℃或小于-50 ℃的管道;2) 进出加热炉及蒸汽发生器的高温管道;3) 进出反应器的高温管道;4) 进出汽轮机的蒸汽管道;5) 进出离心压缩机、往复式压缩机的工艺管道;6) 与离心泵连接的管道,可根据设计要求或按图1-1 确定柔性设计方法;图1-1 与离心泵连接管道柔性设计方法的选择7) 设备管口有特殊受力要求的其他管道;8) 利用简化分析方法分析后,表明需进一步详细分析的管道。

11. 不需要进行计算机应力分析的管道1) 与运行良好的管道柔性相同或基本相当的管道;2) 和已分析管道相比较,确认有足够柔性的管道;3) 对具有同一直径、同一壁厚、无支管、两端固定、无中间约束并能满足式(1) 和式(2) 要求的非极度危害或非高度危害介质管道。

Do•Y/(L-U)2 ≤208.3――(1)Y = (⊿X2+⊿Y2+⊿Z2)1/2 ――(2)式中:DO――管道外径,mm;Y――管道总线位移全补偿值,mm;Δx、Δy、Δz分别为管道沿坐标轴x、y、z方向的线位移全补偿值,mm;L――管系在两固定点之间的展开长度,m;U――管系在两固定点之间的直线距离,m。

式( l )不适用于下列管道:(1) 在剧烈循环条件下运行,有疲劳危险的管道:(2) 大直径薄壁管道(管件应力增强系数i≥5):(3) 不在这接固定点方向的端点附加位移量占总位移量大部分的管道;(4)L/U>2.5的不等腿"U"形弯管,或近似直线的锯齿状管道。

12. 管道端点无附加角位移时管道线位移全补偿值计算当管道端点无附加角位移时,管道线位移全补偿值应按下列公式计算:⊿X=⊿XB-⊿XA-⊿XtAB⊿Y=⊿YB-⊿YA-⊿YtAB⊿Z=⊿ZB-⊿ZA-⊿ZtAB⊿XtAB =α1(XB –XA)(T –T0)⊿YtAB =α1(YB –YA)(T –T0)⊿ZtAB =α1(ZB –ZA)(T –T0)式中:⊿X、⊿Y、⊿Z ――分别为管道沿坐标轴X、Y、Z方向的线位移全补偿值,mm:⊿XA、⊿YA、⊿ZA――分别为管道的始端A沿坐标轴X、Y、Z方向的附加线位移,mm;⊿XB、⊿YB、⊿ZB――分别为管道的末端B沿坐标轴X、Y、Z方向的附加线位移,mm;⊿XtAB、⊿YtAB、⊿ZtAB――分别为管道AB沿坐标轴X、Y、Z方向的热伸长值,mm;αt――管道材料在安装温度与计算温度间的平均线膨胀系数,mm/mm•℃;XA、YA、ZA――管道始端A的坐标值,mm;XB、YB、ZB――管道末端B的坐标值,mm;T――管道计算温度,℃;T0――管道安装温度,℃。

13. 例题利用判别式解题有两种方法:第一种方法注意如下四点和上面“+”、“-”号的取值。

1) 假定一个始端,一个终端2) 始端固定,终端放开3) 热膨胀方向由始端向终端4) 热伸长量取正直第二种方法注意如下四点。

和SH/T 3041-2002中的公式一致1) 假定一个始端,一个终端2) 始端固定,终端放开3) 热膨胀方向由始端向终端4) 建立坐标系,端点附加位移和热伸长量与坐标轴同向取“+”,与坐标轴反向取“-”。

上题计算如下:⊿Y=⊿YB-⊿YA-⊿YtAB = 0-4-12 = -16 mm⊿Y=⊿YB-⊿YA-⊿YtAB = 4-(-5)-(-20) = 29 mm⊿Z=⊿ZB-⊿ZA-⊿ZtAB = 2-0-(-24) = 26 mmY=(⊿Y2+⊿Y2+⊿Z2)1/2 = [(-16)2+292+262]1/2 = 42.1 mmDO.Y/(L-U)2 = 159*42.1/(14-8.4)2 = 6693.9/31.36 = 213.45 > 208.3所以需要进行详细分析,与上面的计算结果不同。

这里需要说明的是,不是计算过程错误,而是新旧标准管径取的不一致,新标准为外径。

第三章补偿器的选用首先应利用改变管道走向获得必要的柔性,但由于布置空间的限制或其他原因也可采用补偿器获得柔性。

1. 补偿器的形式压力管道设计中常用的补偿器有三种:Π型补偿器、波形补偿器、套管式或球形补偿器2. Π型补偿器Π型补偿器结构简单、运行可靠、投资少,在石油化工管道设计中广泛采用。

采用Π形管段补偿时,宜将其设置在两固定点中部,为防止管道横向位移过大,应在Π型补偿器两侧设置导向架。

3. 波形补偿器波形补偿器,补偿能力大、占地小,但制造较为复杂,价格高,适用于低压大直径管道。

1) 波形补偿器条件(1)比用弯管形式补偿器更为经济时或安装位置不够时。

(2)连接两个间距小的设备的管道。

其补偿能力不够时。

(3)为了减少压降,推力或振动,在工艺过程上可行而且在经济上合理时。

相关文档
最新文档