小学奥数等差数列练习及答案【三篇】

合集下载

(完整word)三年级奥数等差数列求和习题及答案

(完整word)三年级奥数等差数列求和习题及答案

计算(三)等差数列求和知识精讲一、定义:一个数列的前n 项的和为这个数列的和。

二、表达方式:常用n S 来表示 。

三:求和公式:和=(首项+末项)⨯项数2÷,1()2n n s a a n =+⨯÷。

对于这个公式的得到可以从两个方面入手:(思路1)1239899100++++++L11002993985051=++++++++L 1444444442444444443共50个101()()()() 101505050=⨯= (思路2)这道题目,还可以这样理解:23498991001009998973212101101101101101101101+++++++=+++++++=+++++++L L L 和=1+和倍和即,和 (1001)100 2 10150 5050=+⨯÷=⨯=。

四、中项定理:对于任意一个项数为奇数的等差数列,中间一项的值等于所有项的平均数,也等于首项与末项和的一半;或者换句话说,各项和等于中间项乘以项数。

譬如:① 48123236436922091800+++++=+⨯÷=⨯=L (),题中的等差数列有9项,中间一项即第5项的值是20,而和恰等于209⨯; ② 65636153116533233331089++++++=+⨯÷=⨯=L (),题中的等差数列有33项,中间一项即第17项的值是33,而和恰等于3333⨯。

例题精讲:例1:求和:(1)1+2+3+4+5+6 = (2)1+4+7+11+13=(3)1+4+7+11+13+ (85)分析:弄清楚一个数列的首项,末项和公差,从而先根据项数公式求项数,再根据求和公式求和。

例如(3)式项数=(85-1)÷3+1=29和=(1+85)×29÷2=1247答案:(1)21 (2)36 (3)1247例2:求下列各等差数列的和。

(1)1+2+3+4+…+199(2)2+4+6+…+78(3)3+7+11+15+…+207分析:弄清楚一个数列的首项,末项和公差,从而先根据项数公式求项数,再根据求和公式求和。

小学奥数1-2-1-3 等差数列应用题.专项练习及答案解析

小学奥数1-2-1-3 等差数列应用题.专项练习及答案解析

【例 1】 100以内的自然数中。

所有是3的倍数的数的平均数是 。

【考点】等差数列应用题 【难度】1星 【题型】填空 【关键词】希望杯,五年级,复赛,第3题,5分 【解析】 100以内的自然数中是3的倍数的数有0,3,6,9,99共33个,他们的和是()09934179916832+⨯=⨯=,则他们的平均数为1683÷34=49.5。

【答案】49.5【例 2】 一群小猴上山摘野果,第一只小猴摘了一个野果,第二只小猴摘了2个野果,第三只小猴摘了3个野果,依次类推,后面的小猴都比它前面的小猴多摘一个野果。

最后,每只小猴分得8个野果。

这群小猴一共有_________只。

【考点】等差数列应用题 【难度】2星 【题型】填空 【关键词】希望杯,四年级,二试,第7题【解析】 平均每只猴分8个野果,所以最后一只猴摘了821=15⨯-只果,共有15只猴. 【答案】15只猴子【例 3】 15位同学排成一队报数,从左边报起思思报10.从右边报起学学报12.那么学学和思思中间排着有 位同学.【考点】等差数列应用题 【难度】2星 【题型】填空 【关键词】学而思杯,1年级【解析】 因为从左边起思思报10,所以,思思的右边还有15105-=(个);又因为从右边起学学报12,所以,学学的左边还有15123-=(个),15645--=(个)学学和思思中间排着5位同学.<考点> 排队问题 【答案】5位【例 4】 体育课上老师指挥大家排成一排,冬冬站排头,阿奇站排尾,从排头到排尾依例题精讲等差数列应用题次报数。

如果冬冬报17,阿奇报150,每位同学报的数都比前一位多7,那么队伍里一共有多少人?【考点】等差数列应用题【难度】2星【题型】解答【解析】首项=17,末项=150,公差=7,项数=(150-17)÷7+1=20【答案】20【例 5】一个队列按照每排2,4,6,8人的顺序可以一直排到某一排有100人,那么这个队列共有多少人?【考点】等差数列应用题【难度】2星【题型】解答【解析】(方法一)利用等差数列求和公式:通过例1的学习可以知道,这个数列一共有50个数,再将和为102的两个数一一配对,可配成25对.所以2469698100++++++=2+10025=10325=2550()⨯⨯(方法二)根据12398991005050+++++的++++++=,从这个和中减去1357 (99)和,就可得出此题的结果,这样从“反面求解”的思想可以给学生灌输一下,为今后的学习作铺垫.【答案】2550【例 6】有一个很神秘的地方,那里有很多的雕塑,每个雕塑都是由蝴蝶组成的.第一个雕塑有3只蝴蝶,第二个雕塑有5只蝴蝶,第三个雕塑有7只蝴蝶,第四个雕塑有9只蝴蝶,以后的雕塑按照这样的规律一直延伸到很远的地方,学学和思思看不到这排雕塑的尽头在哪里,那么,第102个雕塑是由多少只蝴蝶组成的呢?由999只蝴蝶组成的雕塑是第多少个呢?【考点】等差数列应用题【难度】2星【题型】解答【解析】也就是已知一个数列:3、5、7、9、11、13、15、……,求这个数列的第102项是多少?999是第几项?由刚刚推导出的公式——第n项=首项+公差(),⨯-n1所以,第102项321021205(-);由“项数=(末项-首项)÷公差1=+⨯=+”,999所处的项数是:()-÷+=÷+=+=999321996214981499【答案】499【例 7】如右图,用同样大小的正三角形,向下逐次拼接出更大的正三角形。

小学奥数等差数列练习及答案

小学奥数等差数列练习及答案

小学奥数等差数列练习及答案【三篇】【篇一】知识点:1、数列:按一定顺序排成的一列数叫做数列。

数列中的每一个数都叫做项,第一项称为首项,最后一项称为末项。

数列中共有的项的个数叫做项数。

2、等差数列与公差:一个数列,从第二项起,每一项与与它前一项的差都相等,这样的数列的叫做等差数列,其中相邻两项的差叫做公差。

3、常用公式等差数列的总和=(首项+末项)项数2 项数=(末项-首项)公差+1 末项=首项+公差(项数-1)首项=末项-公差(项数-1)公差=(末项- 首项)(项数-1)等差数列(奇数个数)的总和=中间项项数【篇二】典例剖析:例(1在数列3、6、9……,201中,共有多少数?如果继续写下去,第201个数是多少?分析:(1)因为在这个等差数列中,首项=3,末项=201,公差=3,所以根据公式:项数=(末项-首项)公差+ 1,便可求出(2)根据公式:末项=首项+公差(项数-1 )解:项数=(201-3)3+1=67末项=3+3(201-1)=603答:共有67 个数,第201 个数是603练一练:在等差数列中4、10、16、22、……中,第48项是多少?508是这个数列的第几项?答案:第48项是286,508是第85项例(2)全部三位数的和是多少?分析::所有的三位数就是从1 00~999共900个数,观察100、101、102、……、998、999这一数列,发现这是一个公差为1的等差数列。

要求和可以利用等差数列求和公式来解答。

解:(100+999)9002=10999002=494550答:全部三位数的和是494550。

练一练:求从1 到2000 的自然数中,所有偶数之和与所有奇数之和的差。

答案:1000例(3)求自然数中被10除余1 的所有两位数的和。

分析一:在两位数中,被1 0除余1最小的是1 1 ,的是91 。

从题意可知,本题是求等差数列11、21、31、……、91的和。

它的项数是9,我们可以根据求和公式来计算。

小学奥数:等差数列应用题.专项练习及答案解析

小学奥数:等差数列应用题.专项练习及答案解析

【例 1】 100以内的自然数中。

所有是3的倍数的数的平均数是 。

【考点】等差数列应用题 【难度】1星 【题型】填空【关键词】希望杯,五年级,复赛,第3题,5分【解析】 100以内的自然数中是3的倍数的数有0,3,6,9,99L 共33个,他们的和是()09934179916832+⨯=⨯=,则他们的平均数为1683÷34=49.5。

【答案】49.5【例 2】 一群小猴上山摘野果,第一只小猴摘了一个野果,第二只小猴摘了2个野果,第三只小猴摘了3个野果,依次类推,后面的小猴都比它前面的小猴多摘一个野果。

最后,每只小猴分得8个野果。

这群小猴一共有_________只。

【考点】等差数列应用题 【难度】2星 【题型】填空【关键词】希望杯,四年级,二试,第7题【解析】 平均每只猴分8个野果,所以最后一只猴摘了821=15⨯-只果,共有15只猴.【答案】15只猴子【例 3】 15位同学排成一队报数,从左边报起思思报10.从右边报起学学报12.那么学学和思思中间排着有 位同学.【考点】等差数列应用题 【难度】2星 【题型】填空【关键词】学而思杯,1年级【解析】 因为从左边起思思报10,所以,思思的右边还有15105-=(个);又因为从右边起学学报12,所以,学学的左边还有15123-=(个),15645--=(个)学学和思思中间排着5位同学.<考点> 排队问题【答案】5位【例 4】 体育课上老师指挥大家排成一排,冬冬站排头,阿奇站排尾,从排头到排尾依次报数。

如果冬冬报17,阿奇报150,每位同学报的数都比前一位多7,那么队伍里一共有多少人?【考点】等差数列应用题 【难度】2星 【题型】解答【解析】 首项=17,末项=150,公差=7,项数=(150-17)÷7+1=20【答案】20【例 5】 一个队列按照每排2,4,6,8人的顺序可以一直排到某一排有100人 ,那么这个队列共有多少人?【考点】等差数列应用题 【难度】2星 【题型】解答【解析】 (方法一)利用等差数列求和公式:通过例1的学习可以知道,这个数列一共有50个数,再将和为102的两个数一一配对,可配成25对.所以2469698100++++++L =2+10025=10325=2550⨯⨯()(方法二)根据12398991005050++++++=L ,从这个和中减去1357...99+++++的和,例题精讲等差数列应用题就可得出此题的结果,这样从“反面求解”的思想可以给学生灌输一下,为今后的学习作铺垫.【答案】2550【例 6】 有一个很神秘的地方,那里有很多的雕塑,每个雕塑都是由蝴蝶组成的.第一个雕塑有3只蝴蝶,第二个雕塑有5只蝴蝶,第三个雕塑有7只蝴蝶,第四个雕塑有9只蝴蝶,以后的雕塑按照这样的规律一直延伸到很远的地方,学学和思思看不到这排雕塑的尽头在哪里,那么,第102个雕塑是由多少只蝴蝶组成的呢?由999只蝴蝶组成的雕塑是第多少个呢?【考点】等差数列应用题 【难度】2星 【题型】解答【解析】 也就是已知一个数列:3、5、7、9、11、13、15、…… ,求这个数列的第102项是多少?999是第几项?由刚刚推导出的公式——第n 项=首项+公差1n ⨯-(), 所以,第102项321021205=+⨯=(-);由“项数=(末项-首项)÷公差1+”,999所处的项数是:999321996214981499-÷+=÷+=+=()【答案】499【例 7】 如右图,用同样大小的正三角形,向下逐次拼接出更大的正三角形。

小学奥数:等差数列计算题.专项练习及答案解析

小学奥数:等差数列计算题.专项练习及答案解析

等差数列的相关公式(1)三个重要的公式 ① 通项公式:递增数列:末项=首项+(项数1-)⨯公差,11n a a n d =+-⨯()递减数列:末项=首项-(项数1-)⨯公差,11n a a n d =--⨯()回忆讲解这个公式的时候可以结合具体数列或者原来学的植树问题的思想,让学生明白 末项其实就是首项加上(末项与首项的)间隔个公差个数,或者从找规律的情况入手.同时还可延伸出来这样一个有用的公式:n m a a n m d -=-⨯(),n m >()② 项数公式:项数=(末项-首项)÷公差+1由通项公式可以得到:11n n a a d =-÷+() (若1n a a >);11n n a a d =-÷+() (若1n a a >).找项数还有一种配组的方法,其中运用的思想我们是常常用到的.譬如:找找下面数列的项数:4、7、10、13、L 、40、43、46 ,分析:配组:(4、5、6)、(7、8、9)、(10、11、12)、(13、14、15)、L 、(46、47、48),注意等差是3 ,那么每组有3个数,我们数列中的数都在每组的第1位,所以46应在最后一组第1位,4到48有484145-+=项,每组3个数,所以共45315÷=组,原数列有15组. 当然还可以有其他的配组方法.③ 求和公式:和=(首项+末项)⨯项数÷2对于这个公式的得到可以从两个方面入手:(思路1) 1239899100++++++L11002993985051=++++++++L 1444444442444444443共50个101()()()()101505050=⨯= (思路2)这道题目,还可以这样理解:23498991001009998973212101101101101101101101+++++++=+++++++=+++++++LLL 和=1+和倍和即,和 (1001)1002101505050=+⨯÷=⨯=(2) 中项定理:对于任意一个项数为奇数的等差数列,中间一项的值等于所有项的平均数,也等于首项与末项和的一半;或者换句话说,各项和等于中间项乘以项数.譬如:① 48123236436922091800+++++=+⨯÷=⨯=L (),题中的等差数列有9项,中间一项即第5项的值是20,而和恰等于209⨯;知识点拨等差数列计算题②65636153116533233331089L(),++++++=+⨯÷=⨯=题中的等差数列有33项,中间一项即第17项的值是33,而和恰等于3333⨯.例题精讲【例 1】用等差数列的求和公式会计算下面各题吗?⑴3456767778+++++++=L⑵13578799L++++++=⑶471013404346L+++++++=【考点】等差数列计算题【难度】2星【题型】计算【解析】⑴根据例1的结果知:算式中的等差数列一共有76项,所以:L()+++++++=+⨯÷=34567677783787623078⑵算式中的等差数列一共有50项,所以:13578799(199)5022500L++++++=+⨯÷=⑶算式中的等差数列一共有15项,所以:L()471013404346446152375+++++++=+⨯÷=【答案】⑴3078⑵2500⑶375【巩固】1+2+……+8+9+10+9+8+……+2+1=_____。

高斯小学奥数含答案三年级(上)第21讲等差数列求和

高斯小学奥数含答案三年级(上)第21讲等差数列求和

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -对于一个等差数列而言,除了它的首项、公差、项数和末项很重要之外,数列中所有数之和也是非常重要的.在进行等差数列求和时,最常用的方法就是分组法.以123456789++++++++为例:把上下两行相加,注意上下对齐,不难发现每一对上下对齐的数之和都等于首项加末项()19+,而且共有项数()9那么多对,所以所有数之和等于:首项末项项数因为我们把原来的等差数列写了2遍,所以所有数之和就等于原来等差数列之和的2倍,于是可以+ + + + + + + + 1 23456789+ + + + + + + + 987654321+先把数列正着写一遍:再把数列反着写一遍:第二十一讲等差数列求和得到等差数列求和公式:2和首项末项项数- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -例题1计算下列各题:(1)36912151821242730+++++++++;(2)4137332925211713951++++++++++.分析:试着用公式进行一下计算,首项、末项、项数分别是多少?练习1计算:61116212631364146++++++++.例题2计算下列各题:(1)511177783+++++L ;(2)827772127.分析:要用等差数列求和公式,需要知道整个数列的首项、末项和项数,现在还缺哪些?试着把未知的那些算出来.练习2计算:100928412L.例题3计算下列各题:(1)10121824共项+++L 14444444244444443;(2)131********共项+++L 1444444442444444443.分析:要用等差数列求和公式,需要知道整个数列的首项、末项和项数,现在还缺哪些?试着把未知的那些算出来.练习3计算:12101316共项+++L 14444444244444443.例题4萱萱读一本课外书,第一天读了15页,以后每天都比前一天多读3页,最后一天读了36页,刚好把书读完.请问:萱萱一共读了多少天?这本课外书共有多少页?分析:萱萱每天读书的页数构成了一个等差数列,这个等差数列的首项、末项、项数分别是多少?练习4暑假里,小高练习游泳,第一天他游了200米,以后每一天都比前一天多游50米,最后一天游了600米,请问:小高这些天里一共游了多少米?例题5小华把一些珠子放在桌子上的15个盒子中,已知盒子中的珠子数按盒子从左往右的顺序成一个等差数列,并且从左数第8个盒子中有24颗珠子,请问:这15个盒子中一共有多少颗珠子?分析:奇数项等差数列求和公式?中间数是几?项数有几项?例题6小明从1开始计算若干连续自然数的和,他因为把其中一个数多加了一遍,得到了一个错误的结果2007.小刚也从1开始计算若干连续自然数的和,他因为漏加了其中的一个自然数,也得到了错误结果2007.请问被重复计算和漏掉的两个数之和是多少?分析:等差数列求和接近2007时,这个等差数列的最后一项是几?作业1.计算:.2.计算:.3.计算:.31581114L 144424443共项111825102++++L 7067646158555249+++++++课堂内外高斯是一对普通夫妇的儿子.他的母亲是一个贫穷石匠的女儿,虽然十分聪明,但却没有接受过教育,近似于文盲.在她成为高斯父亲的第二个妻子之前,她从事女佣工作.他的父亲曾做过园丁,工头,商人的助手和一个小保险公司的评估师.高斯三岁时便能够纠正他父亲的借债账目的事情,已经成为一个轶事流传至今.他曾说,他在麦仙翁堆上学会计算.能够在头脑中进行复杂的计算,是上帝赐予他一生的天赋.高斯用很短的时间计算出了小学老师布置的任务:对自然数从1到100的求和.他所使用的方法是:对50对构造成和101的数列求和(1+100,2+99,3+98……),同时得到结果:5050.这一年,高斯9岁.父亲格尔恰尔德·迪德里赫对高斯要求极为严厉,甚至有些过分,常常喜欢凭自己的经验为年幼的高斯规划人生.高斯尊重他的父亲,并且秉承了其父诚实、谨慎的性格.在成长过程中,幼年的高斯主要得力于母亲和舅舅:高斯的母亲罗捷雅、舅舅弗利德里希(Friederich ).弗利德里希富有智慧,为人热情而又聪明能干,投身于纺织贸易颇有成就.他发现姐姐的儿子聪明伶俐,因此他就把一部分精力花在这位小天才身上,用生动活泼的方式开发高斯的智力.若干年后,已成年并成就显赫的高斯回想起舅舅为他所做的一切,深感对他成才之重要,他想到舅舅多产的思想,不无伤感地说,舅舅去世使“我们失去了一位天才”.正是由于弗利德里希慧眼识英才,经常劝导姐夫让孩子向学者方面发展,才使得高斯没有成为园丁或者泥瓦匠.在数学史上,很少有人像高斯一样很幸运地有一位鼎力支持他成才的母亲.罗捷雅直到34岁才出嫁,生下高斯时已有35岁了.她性格坚强、聪明贤慧、富有幽默感.高斯一生下来,就对一切现象和事物十分好奇,而且决心弄个水落石出,这已经超出了一个孩子能被许可的范围.当丈夫为此训斥孩子时,她总是支持高斯,坚决反对顽固的丈夫想把儿子变得跟他一样无知.高斯的故事4.一个等差数列的首项是21,从第二项起每一项都比前一项大2,它的前20项之和是多少?5.馋嘴猴特别爱吃香蕉,它每周吃的香蕉数量成等差数列,已知它第5周吃了18根香蕉.馋嘴猴前9周一共吃了多少根香蕉?第二十一讲等差数列求和1.例题 1答案:(1)165;(2)231详解:(1)()36912151821242730330102165+++++++++=+锤=.(2)()4137332925211713951411112231++++++++++=+锤=.2.例题 2答案:(1)616;(2)712 详解:(1)先求项数=()8356114-?=,再求和:()583142616原式=+锤=.(2)先求项数=()8275116-?=,827162712原式.3.例题 3答案:(1)390;(2)2041详解:(1)先求末项=()12101666+-?,()1218661266102390原式=+++=+锤=L .(2)先求末项=()1931316121--?,()1931871211931211322041原式=+++=+锤=L .4.例题 4答案:(1)8天;(2)204页详解:先求项数,即多少天=()3615318-?=天,()151********2204++鬃?=+锤=,即共有204页.5.例题 5 答案:360颗详解:利用中间数×项数,共有1524360?颗.6.例题 6 答案:63详解:123621953++++=L ,123632016++++=L ,则多加的数为2007195354-=,则漏加的数为201620079-=,则被重复计算和漏掉的两数之和为54963+=.7.练习 1 答案:234简答:()6111621263136414664692234++++++++=+锤=.8.练习 2 答案:672简答:先求项数=()100128112-?=,10012122672原式.9.练习 3 答案:318简答:先求末项=()10121343+-?,()121013161043122318+++=+锤=L 14444444244444443共项.10.练习 4答案:3600米简答:先求项数,有()6002005019-?=天,()200250600200600923600++鬃?=+锤=,即共游了3600米.11.作业 1答案:476简答:首项为70,末项为49,项数为8.(7049)82476原式.12.作业 2答案:791简答:项数为(10211)7114,和为(10211)142791.13.作业 3答案:1550简答:末项为530395,和为(595)3121550.14.作业 4答案:800简答:公差为2,第20项为2119259,和为(2159)202800.15.作业 5答案:162根简答:前9项的中间项是第5项.所以前9项和为189162.。

小学奥数1-2-1-2 等差数列计算题.专项练习及答案解析-精品

小学奥数1-2-1-2 等差数列计算题.专项练习及答案解析-精品

等差数列的相关公式(1)三个重要的公式 ① 通项公式:递增数列:末项=首项+(项数1-)⨯公差,11n a a n d =+-⨯()递减数列:末项=首项-(项数1-)⨯公差,11n a a n d =--⨯() 回忆讲解这个公式的时候可以结合具体数列或者原来学的植树问题的思想,让学生明白 末项其实就是首项加上(末项与首项的)间隔个公差个数,或者从找规律的情况入手.同时还可延伸出来这样一个有用的公式:n m a a n m d -=-⨯(),n m >()② 项数公式:项数=(末项-首项)÷公差+1由通项公式可以得到:11n n a a d =-÷+() (若1n a a >);11n n a a d =-÷+() (若1n a a >).找项数还有一种配组的方法,其中运用的思想我们是常常用到的.譬如:找找下面数列的项数:4、7、10、13、、40、43、46 ,分析:配组:(4、5、6)、(7、8、9)、(10、11、12)、(13、14、15)、、(46、47、48),注意等差是3 ,那么每组有3个数,我们数列中的数都在每组的第1位,所以46应在最后一组第1位,4到48有484145-+=项,每组3个数,所以共45315÷=组,原数列有15组. 当然还可以有其他的配组方法.③ 求和公式:和=(首项+末项)⨯项数÷2对于这个公式的得到可以从两个方面入手:(思路1) 1239899100++++++11002993985051=++++++++共50个101()()()()101505050=⨯= (思路2)这道题目,还可以这样理解:23498991001009998973212101101101101101101101+++++++=+++++++=+++++++和=1+和倍和即,和 (1001)1002101505=+⨯÷=⨯= (2) 中项定理:对于任意一个项数为奇数的等差数列,中间一项的值等于所有项的平均数,也等于首项与末项和的一半;或者换句话说,各项和等于中间项乘以项数.譬如:① 48123236436922091800+++++=+⨯÷=⨯=(), 题中的等差数列有9项,中间一项即第5项的值是20,而和恰等于209⨯;知识点拨等差数列计算题② 65636153116533233331089(),++++++=+⨯÷=⨯=题中的等差数列有33项,中间一项即第17项的值是33,而和恰等于3333⨯.例题精讲【例 1】用等差数列的求和公式会计算下面各题吗?⑴3456767778+++++++=⑵13578799++++++=⑶471013404346+++++++=【考点】等差数列计算题【难度】2星【题型】计算【解析】⑴根据例1的结果知:算式中的等差数列一共有76项,所以:()34567677783787623078+++++++=+⨯÷=⑵算式中的等差数列一共有50项,所以:13578799(199)5022500++++++=+⨯÷=⑶算式中的等差数列一共有15项,所以:()471013404346446152375+++++++=+⨯÷=【答案】⑴3078⑵2500⑶375【巩固】1+2+……+8+9+10+9+8+……+2+1=_____。

【奥数专题】精编人教版小学数学五年级上册等差数列(试题)含答案与解析

【奥数专题】精编人教版小学数学五年级上册等差数列(试题)含答案与解析

【奥数专题】精编人教版小学数学五年级上册等差数列(试题)含答案与解析奥数专题:精编人教版小学数学五年级上册等差数列(试题)含答案与解析题目一:计算:5, 10, 15, 20, ...第20项是多少?每相邻两项之差是多少?解析一:根据题目,我们可以观察到数列中的每一项相差5,说明这是一个等差数列。

首先,我们可以通过找规律来求解第20项。

观察前几项,我们看到第1项是5,第2项是10,第3项是15,可以发现每一项都是前一项加上5得到,如此往复。

我们可以写出通项公式An = A1 + (n-1)d ,其中An表示第n项,A1表示第1项,d表示公差。

代入题目中的数据:A1 = 5d = 5那么我们可以用公式计算第20项是多少:A20 = A1 + (20-1)dA20 = 5 + 19(5)A20 = 5 + 95A20 = 100所以第20项是100。

接下来我们来计算每相邻两项的差:d = A2 - A1d = 10 - 5d = 5所以每相邻两项之差是5。

题目二:在等差数列2, 5, 8, 11, ...中,求第n项的值,并计算前n项和。

解析二:根据题目,我们可以观察到数列中的每一项相差3,说明这是一个等差数列。

我们同样可以通过找规律来求解第n项。

观察前几项,我们看到第1项是2,第2项是5,第3项是8,可以发现每一项都是前一项加上3得到,如此往复。

我们可以写出通项公式An = A1 + (n-1)d ,其中An表示第n项,A1表示第1项,d表示公差。

代入题目中的数据:A1 = 2d = 3根据通项公式,第n项的值可以计算如下:An = A1 + (n-1)d接下来,我们计算前n项的和,可以利用求和公式Sn = (n/2)(A1 + An):Sn = (n/2)(A1 + An)= (n/2)(2 + A1 + (n-1)d)= (n/2)(2 + 2 + (n-1)3)= (n/2)(4 + 3n - 3)= (n/2)(3n + 1)现在我们可以根据题目来计算第n项的值和前n项的和。

小学奥数:等差数列应用题.专项练习及答案解析

小学奥数:等差数列应用题.专项练习及答案解析

【例 1】 100以内的自然数中。

所有是3的倍数的数的平均数是 。

【考点】等差数列应用题 【难度】1星 【题型】填空【关键词】希望杯,五年级,复赛,第3题,5分【解析】 100以内的自然数中是3的倍数的数有0,3,6,9,99L 共33个,他们的和是()09934179916832+⨯=⨯=,则他们的平均数为1683÷34=49.5。

【答案】49.5【例 2】 一群小猴上山摘野果,第一只小猴摘了一个野果,第二只小猴摘了2个野果,第三只小猴摘了3个野果,依次类推,后面的小猴都比它前面的小猴多摘一个野果。

最后,每只小猴分得8个野果。

这群小猴一共有_________只。

【考点】等差数列应用题 【难度】2星 【题型】填空【关键词】希望杯,四年级,二试,第7题【解析】 平均每只猴分8个野果,所以最后一只猴摘了821=15⨯-只果,共有15只猴.【答案】15只猴子【例 3】 15位同学排成一队报数,从左边报起思思报10.从右边报起学学报12.那么学学和思思中间排着有 位同学.【考点】等差数列应用题 【难度】2星 【题型】填空【关键词】学而思杯,1年级【解析】 因为从左边起思思报10,所以,思思的右边还有15105-=(个);又因为从右边起学学报12,所以,学学的左边还有15123-=(个),15645--=(个)学学和思思中间排着5位同学.<考点> 排队问题【答案】5位【例 4】 体育课上老师指挥大家排成一排,冬冬站排头,阿奇站排尾,从排头到排尾依次报数。

如果冬冬报17,阿奇报150,每位同学报的数都比前一位多7,那么队伍里一共有多少人?【考点】等差数列应用题 【难度】2星 【题型】解答【解析】 首项=17,末项=150,公差=7,项数=(150-17)÷7+1=20【答案】20【例 5】 一个队列按照每排2,4,6,8人的顺序可以一直排到某一排有100人 ,那么这个队列共有多少人?【考点】等差数列应用题 【难度】2星 【题型】解答【解析】 (方法一)利用等差数列求和公式:通过例1的学习可以知道,这个数列一共有50个数,再将和为102的两个数一一配对,可配成25对.所以2469698100++++++L =2+10025=10325=2550⨯⨯()(方法二)根据12398991005050++++++=L ,从这个和中减去1357...99+++++的和,例题精讲等差数列应用题就可得出此题的结果,这样从“反面求解”的思想可以给学生灌输一下,为今后的学习作铺垫.【答案】2550【例 6】 有一个很神秘的地方,那里有很多的雕塑,每个雕塑都是由蝴蝶组成的.第一个雕塑有3只蝴蝶,第二个雕塑有5只蝴蝶,第三个雕塑有7只蝴蝶,第四个雕塑有9只蝴蝶,以后的雕塑按照这样的规律一直延伸到很远的地方,学学和思思看不到这排雕塑的尽头在哪里,那么,第102个雕塑是由多少只蝴蝶组成的呢?由999只蝴蝶组成的雕塑是第多少个呢?【考点】等差数列应用题 【难度】2星 【题型】解答【解析】 也就是已知一个数列:3、5、7、9、11、13、15、…… ,求这个数列的第102项是多少?999是第几项?由刚刚推导出的公式——第n 项=首项+公差1n ⨯-(), 所以,第102项321021205=+⨯=(-);由“项数=(末项-首项)÷公差1+”,999所处的项数是:999321996214981499-÷+=÷+=+=()【答案】499【例 7】 如右图,用同样大小的正三角形,向下逐次拼接出更大的正三角形。

小学生奥数等差数列练习题及答案

小学生奥数等差数列练习题及答案

【导语】等差数列是指从第⼆项起,每⼀项与它的前⼀项的差等于同⼀个常数的⼀种数列,常⽤A、P表⽰。

这个常数叫做等差数列的公差,公差常⽤字母d表⽰。

以下是整理的《⼩学⽣奥数等差数列练习题及答案》相关资料,希望帮助到您。

1.⼩学⽣奥数等差数列练习题及答案 1、下⾯是按规律排列的⼀串数,问其中的第1995项是多少? 解答:2、5、8、11、14、……。

从规律看出:这是⼀个等差数列,且⾸项是2,公差是3,这样第1995项=2+3×(1995-1)=5984 2、在从1开始的⾃然数中,第100个不能被3除尽的数是多少? 解答:我们发现:1、2、3、4、5、6、7、……中,从1开始每三个数⼀组,每组前2个不能被3除尽,2个⼀组,100个就有100÷2=50组,每组3个数,共有50×3=150,那么第100个不能被3除尽的数就是150-1=149。

3、把1988表⽰成28个连续偶数的和,那么其中的那个偶数是多少?。

解答:28个偶数成14组,对称的2个数是⼀组,即最⼩数和数是⼀组,每组和为:1988÷14=142,最⼩数与数相差28-1=27个公差,即相差2×27=54,这样转化为和差问题,数为(142+54)÷2=98。

4、在⼤于1000的整数中,找出所有被34除后商与余数相等的数,那么这些数的和是多少? 解答:因为34×28+28=35×28=980<1000,所以只有以下⼏个数: 34×29+29=35×29 34×30+30=35×30 34×31+31=35×31 34×32+32=35×32 34×33+33=35×33 以上数的和为35×(29+30+31+32+33)=5425 5、盒⼦⾥装着分别写有1、2、3、……134、135的红⾊卡⽚各⼀张,从盒中任意摸出若⼲张卡⽚,并算出这若⼲张卡⽚上各数的和除以17的余数,再把这个余数写在另⼀张黄⾊的卡⽚上放回盒内,经过若⼲次这样的操作后,盒内还剩下两张红⾊卡⽚和⼀张黄⾊卡⽚,已知这两张红⾊的卡⽚上写的数分别是19和97,求那张黄⾊卡⽚上所写的数。

四年级奥数等差数列练习题-含答案

四年级奥数等差数列练习题-含答案

四年级奥数等差数列练习题-含答案1.在等差数列2、4、6、8中,求48是第几项,168是第几项?解析:公差为4-2=2,设48是第n项,则有2+(n-1)×2=48,解得n=24;同理,设168是第m项,则有2+(m-1)×2=168,解得m=84.2.已知等差数列5,8,11…,求出它的第15项和第20项。

解析:公差为8-5=11-8=3,第15项为5+14×3=47,第20项为5+19×3=62.3.按照1、4、7、10、13…,排列的一列数中,第51个数是多少?解析:这是一个公差为3的等差数列,第n项为1+(n-1)×3,所以第51个数为1+50×3=151.4.数列3、12、21、30、39、48、57、66……1)第12个数是多少?2)912是第几个数?解析:这是一个公差为9的等差数列。

1)第12个数为3+(12-1)×9=102.2)设912是第n个数,则有3+(n-1)×9=912,解得n=102.5.已知数列2、5、8、11、14……,53应该是其中的第几项?解析:这是一个公差为3的等差数列,设53是第n项,则有2+(n-1)×3=53,解得n=18.6.在等差数列5、10、15、20中,155是第几项?350是第几项?解析:公差为10-5=15-10=20-15=5,设155是第n项,则有5+(n-1)×5=155,解得n=31;同理,设350是第m项,则有5+(m-1)×5=350,解得m=70.7.在等差数列1、5、9、13、17……401中,401是第几项?第60项是多少?解析:公差为5-1=9-5=13-9=4,设401是第n项,则有1+(n-1)×4=401,解得n=101;第60项为1+(60-1)×4=237.8.在等差数列6、13、20、27……中,第几个数是1994?解析:公差为13-6=20-13=7,设1994是第n个数,则有6+(n-1)×7=1994,解得n=285.9.求6+7+8+9+……+74+75+76的和。

小学三年级奥数练习题(等差数列)

小学三年级奥数练习题(等差数列)

小学三年级奥数练习题(等差数列)小学三年级奥数练习题(等差数列)篇一1、一个递增(后项比前项大)的等差数列公差是5, 第55项比第37项________(多或少)______。

2、一个递增(后项比前项大)的等差数列公差是6, 第55项比第83项________(多或少)______。

3、一个递增(后项比前项大)的等差数列公差是7, 第28项比第73项________(多或少)______。

4、一个递增(后项比前项大)的等差数列公差是8, 第90项比第73项________(多或少)______。

5、一个递增(后项比前项大)的等差数列公差是8, 首项比第73项________(多或少)______。

6、一个递增(后项比前项大)的等差数列公差是4, 首项比第26项________(多或少)______。

7、一个递减(后项比前项小)的等差数列公差是9, 第18项比第32项________(多或少)______。

8、一个递减(后项比前项小)的等差数列公差是4, 第32项比第18项________(多或少)______。

9、一个递减(后项比前项小)的等差数列公差是3, 第74项比第26项________(多或少)______。

10、一个递减(后项比前项小)的等差数列公差是7, 第74项比第91项________(多或少)______。

11、一个递减(后项比前项小)的等差数列公差是8, 第29项比第86项________(多或少)______。

12、一个递减(后项比前项小)的等差数列公差是9, 第123项比第86项________(多或少)______。

13、一个递减(后项比前项小)的等差数列公差是9, 第23项比首项________(多或少)______。

14、一个递减(后项比前项小)的等差数列公差是6, 第46项比首项________(多或少)______。

15、一个递增(后项比前项大)的等差数列公差是3, 有一项比第34项大57, 这一项比第34项________(多或少)________个公差, 这一项是第________项。

小学数学五年级《 等差数列》练习题(含答案)

小学数学五年级《 等差数列》练习题(含答案)

《 等差数列》练习题(含答案)内容概述许多同学都知道这样一个故事:大数学家高斯在很小的时候,就利用巧妙的算法迅速计算出从1到100这100个自然数的总和.大家在佩服赞叹之余,有没有仔细想一想,高斯为什么算得这么快呢?当然,小高斯的聪明和善于观察是不必说了,往深处想,最基本的原因却是这100个数及其排列的方法本身具有极强的规律性——每项都比它前面的一项大1,即它们构成了差相等的数列,而这种数列有极简便的求和方法.通过这一讲的学习,我们回顾加强有关等差数列求和的方法,而且学会利用这种数列来解决许多有趣的问题.【复习1】你能给大家说一说有关等差数列的性质、结论以及相关公式吗?分析:以下答案仅供参考!(1) 先介绍一下一些定义和表示方法:定义:从第二项起,每一项都比前一项大(或小)一个常数(固定不变的数),这样的数列我们称它为等差数列.譬如:2、5、8、11、14、17、20、…… 从第二项起,每一项比前一项大3 ,递增数列 100、95、90、85、80、…… 从第二项起,每一项比前一项小5 ,递减数列(2) 首项:一个数列的第一项,通常用a 1表示;末项:一个数列的最后一项,通常用a n 表示,它也可表示数列的第n 项. 每个数列都有最后一项吗?数列分有限数列和无限数列;项数:一个数列全部项的个数,通常用n 来表示;公差:等差数列每两项之间固定不变得差,通常用d 来表示;和 :一个数列的某些项的和,常用S n 来表示 .(3) 三个重要的公式:① 通项公式:末项=首项+(项数-1)×公差1(1)n a a n d =+-⨯回忆讲解这个公式的时候我们可以结合具体数列或者原来学的植树问题的思想,让同学明白末项其实就是首项加上(末项与首项的)间隔的公差个数,或者从找规律的情况入手.同时我们还可延伸出来这样一个有用的公式:(),()n m a a n m d n m -=-⨯② 项数公式:项数=(末项-首项)÷公差+1 (其实此公式是由①推导出来的,教师也可以帮助同学推导,可以为以后的解方程做好铺垫)由通项公式可以得到: 1()1n n a a d =-÷+ (1na a 若);1n ()1n a a d =-÷+(1n a a 若).找项数还有一种配组的方法,其中运用的思想我们是常常用到的!譬如:找找下面数列的项数:4、7、10、13、……、40、43、46 ,分析:配组:(4、5、6)、(7、8、9)、(10、11、12)、(13、14、15)、……、(46、47、48),注意等差是 3 ,那么每组有3个数,我们数列中的数都在每组的第1位,所以46应在最后一组第1位,4到48有48-4+1=45项,每组3个数,所以共45÷3=15组,原数列有15组. 当然,我们还可以有其他的配组方法.③ 求和公式:和=(首项+末项)×项数÷21()2n n s a a n =+⨯÷对于这个公式的得到我们可以从两个方面入手:(思路1)1+2+3+…+98+99+100=101×50=5050(思路2)这道题目,我们还可以这样理解:即,和= (100+1)×100÷2=101×50=5050(4)中项定理对于任意一个项数为奇数的等差数列,中间一项的值等于所有项的平均数,也等于首相与末项和的一半;或者换句话说,各项和等于中间项乘以项数.譬如:(1)4+8+12+…+32+36=(4+36)×9÷2=20×9=180,题中的等差数列有9项,中间一项即第5项的值是20,而和恰等于20×9 ;(2)65+63+61+…+5+3+1=(1+65)×33÷2=33×33=1089 ,题中的等差数列有33项,中间一项即第17项的值是33,而和恰等于33×33 .如果是一个项数为偶数的等差数列,我们该如何运用这个公式呢?其实我们可以将其去掉一项,变成奇数项,求和之后再加上去掉的那一项 .中项定理也可用在速算与巧算中. 譬如:计算:124.68+324.68+524.68+724.68+924.68分析:这是一列等差数列,项数是奇数,中间数是524.68,所以可以用5×524.68=2623.4 .等差数列是小学奥数的一个重要知识,无论是竞赛还是小升初都是一个考核的重点.一部分题目是直接考数列,但更多的是结合到找规律、周期等问题进行考核.复习题目的重点就是让学生熟练掌握等差数列的求和、末项和项数的求解.不能让学生去单纯的背公式,而应该把原理讲透.【复习2】(1)3、5、7、9、11、13、15、……,这个数列有多少项?它的第102项是多少?(2)已知等差数列2、5、8、11、14 …,问47是其中第几项?(3)如果一等差数列的第4项为21,第6项为33,求它的第8项.分析:(1)它是一个无限数列,所以项数有无限多项.第n项=首项+公差×(n-1),所以,第102项=3+2×(102-1)= 205 ;(2)首项=2 ,公差=3 ,我们可以这样看:2、5、8、11、14 …、47 ,那么这个数列有:n=(47-2)÷3+1=16 ,(熟练后,此步可省略),即47是第16项;(3)要求第8项,必须知道首项和公差.第6项-第4项=(6-4)×公差,所以,公差= 6 ;第4项=首项+3×公差,21=首项+3×6 ,所以,首项=3 ;第8项=首项+7×公差=45 ;【复习3】某剧院有25排座位,后一排比前一排多两个座位,最后一排有70个座位.问:这个剧一共有多少个座位?分析:首项:70-(25-1)×2=22 ,座位总数:(22+70)×25÷2=1150.【复习4】小明从1月1日开始写大字。

等差数列 三四年级奥数

等差数列 三四年级奥数

【知识与方法】有序的排成一列的数,称为数列。

一些数列中数的排列是很有规律的,通过对这些规律的学习以及推导,我们可以进行相关的计算。

在数列中,所有的排列的数都称为“项”,排在首位的数叫“首项”,一般用字母a1表示;排在第n位的一般用a n ;数列里面数的个数我们说项数。

一般的,在一个有限数列里面(项数确定),我们把最后的那个项叫做末项。

例1:已知数列1、4、7、10、13、16、19、22、25……试求出第2008项,即a2008=?分析:这是一个等差数列。

很明显,我们能够发现后一项总比前一项多3。

数列有这样的规律:a2=a1+3, a3=a2+3, a4=a3+3……即每相邻的两个项之间的差距都是 3.我们把这个差叫做“公差”,习惯上我们用d表示。

如果我们每一项都用a1与d来表示,我们可以有以下的规律:a2=a1+d,a3=a2+d=a1+2d,a4=a3+d=a1+3d,……a n=a n-1+d=a1+(n-1)d……①①式我们通常说成是等差数列的通项公式,就是由a1来表示数列中其它项a n的表示公式。

根据通项公式我们可以很快地求出等差数列中任何一项是多少。

解:根据 an =a1+(n-1)× d已知原数列 a1=1,d=3,n=2008,所以 a2008=1+(2008-1)×3=6022习题1:已知数列2、4、6、8、10……,试求出第2010项是多少?习题2:已知数列1、3、5、7、9……,试求出第2009项是多少?例2:已知一个数列,相邻的两项的差为4,且后一项比前一项大。

第10项为41,试写出这个等差数列。

习题3:一个等差数列,相邻的两项差为3,第10项为35,求这个等差数列。

习题4:一个等差数列,前项比后项大5,第11项为47,求这个等差数列的第1000项是多少?例3:已知一个数列,1、2、3、5、8、13、21……,求它的第20项。

分析:这个数列是一种十分有名的数列,叫做“斐波那契数列”。

(完整版)三年级奥数-等差数列

(完整版)三年级奥数-等差数列

小学三年级奥数专项练题《等差数列(一)》【课前】(★)请观察下面的数列,找规律填数字。

①5,9,13,17,21,_____;②7,11,15,19,_____,27,_____,35;③200,180,160,140,_____;④102,92,82,72,____,52。

【知识要点屋】1.定义:如果一个数列从第二项起,每一项与它的前一项的差等于同一个数,这个数列就叫做等差数列。

2.特点:①相邻两项差值相等;②要么递增,要么递减。

3.名词:公差,首项,末项,项数5 ,9,13,17,21,25(★★★)⑴一个等差数列共有15项,每一项都比它的前一项大3,它的首项是4,那么末项是______;⑵一个等差数列共有13项,每一项都比它的前一项小5,它的第1项是121,那么它的末项是_______。

(★★★)一个等差数列的首项是12,第20项等于392,那么这个等差数列的公差=_____;第19项=______,212是这个数列的第_____项。

【铺垫】(★★)计算下面的数列和:3+7+11+15+19+23+27+31=_____。

(★★★)计算下列各题⑴1+2+3+4+…+23+24+25=_____;⑵1+5+9+13+…+33+37+41=_____。

1、在10和40之间插入四个数,使得这六个数构成一个等差数列。

那么应插入哪些数?2、一个等差数列的首项是6,第8项是55,公差是()。

1、在10和40之间插入四个数,使得这六个数构成一个等差数列。

那么应插入哪些数?解答:d=(40-10)÷(4+1)=6,插入的数是:16、22、28、34。

2、一个等差数列的首项是6,第8项是55,公差是()。

解答:d=(55-6)÷(8-1)=7(1)2、4、6、8、……、28、30这个等差数列有( )项。

(2)2、8、14、20、……62这个数列共有()项。

(1)2、4、6、8、……、28、30这个等差数列有( )项。

三年级奥数 等差数列 习题

三年级奥数 等差数列 习题

等差数列习题1、求出下列各式之和:①9+13+17+21+25+29②1+3+5+7+……+95+97+992、小红读一本长篇小说,第一天读了30页,第二天起,每天读的页数都比前一天多4页,最后一天读了70页,刚好读完,请问这本小说共有多少页?3、求出从0到100之内所有3的倍数的和?4、三个连续自然数的和是31,这三个数中最大的一个是多少?5、有4个数,他们的平均数是32,其中前3个数的平均数是29,后2个的平均数是35,第三个数是多少?答案(附后)1、①可看成首项9,末项29,项数6的等差数列,所以有:(9+29)×6÷2=114②可看成首项1、末项99、公差是2的等差数列。

这个数列的第2项比第1项多2,第3项比第1项多2×2=4,第4项比第1项多3×3=6,……从而我们可以知道:项数=(末项-首项)÷公差+1=(99-1)÷2+1=50所以该式子的和是(1+99)×50÷2=25002、天数(项数)=(末项-首项)÷公差+1=(70-30)÷4+1=11 总页数=(30+70)×11÷2=550页3、100内3的倍数有0,3,6,9,12,……,96,99。

这是首项为0,末项为99,公差为3的等差数列,可以求出它的项数为(99-0)÷3+1=34,所以等差数列的和为:(0+99)×34÷2=99×17=16834、三个连续自然数的平均数就是中间那个数。

先求中间数,在求最大数。

中间数:231÷3=77;最大数:77+1=785、29×3+35×2-32×4=29,第三个数是29。

解此题的关键是发现第三个数是被重复计算的数。

小学数学《等差数列》练习题(含答案)

小学数学《等差数列》练习题(含答案)

小学数学《等差数列》练习题(含答案)你还记得吗【复习1】你能给大家说一说有关等差数列的性质、结论以及相关公式吗?呵呵!快快举手, 多多贏得小印章!分析:以下答案仅供参考!(1)先介绍一下一些定义和表示方法:定义:从第二项起,每一项都比前一项大(或小)一个常数(固定不变的数),这样的数列我们称它为等差数列.譬如:2、5、8、11、14、17、20、……从第二项起,每一项比前一项大3 ,递增数列100、95、90、85、80、••••••从第二项起,每一项比前一项小5 ,递减数列(2)首项:一个数列的第一项,通常用型表示;末项:一个数列的最后一项,通常用爲表示,它也可表示数列的第n项.每个数列都有最后一项吗?数列分有限数列和无限数列;项数:一个数列全部项的个数,通常用n来表示;公差:等差数列每两项之间固定不变得差,通常用d来表示;和:一个数列的某些项的和,常用Sn来表示・(3)三个重要的公式:①通项公式:末项二首项+(项数-DX公差a n =a i+ (n _ 1) Xd回忆讲解这个公式的时候我们可以结合具体数列或者原来学的植树问题的思想,让同学明白末项其实就是首项加上(末项与首项的)间隔的公差个数,或者从找规律的情况入手.同时我们还可延伸出来这样一个有用的公式:aιl-aιlt=(n-m)×cl,②项数公式:项数二(末项-首项)一公差+1 (其实此公式是由①推导出来的,教师也可以帮助同学推导,可以为以后的解方程做好铺垫)由通项公式可以得到:n = (a lt-a l)÷d + \(若U ll);n = (a l-a n)÷d + \(若A a”).找项数还有一种配组的方法,其中运用的思想我们是常常用到的!譬如:找找下面数列的项数:4、7、10、13、•・••••、40、43、46 ,分析:配组:(4、5、6)、(7、8、9)、(10、11、12)、(13、14、15)、……、(46、47、48),注意等差是 3 ,那么每组有3个数,我们数列中的数都在每组的第1位,所以46应在最后一组第1位,4到48 有48-4+1=45项,每组3个数,所以共45÷3=15组,原数列有15组.当然,我们还可以有其他的配组方法.③求和公式;和=(首项+末项)X项数÷2s l,=(a l+a n)×n÷2对于这个公式的得到我们可以从两个方面入手:(思路 1) 1+2+3+…+98+99+100=(1 + IOo) + (2 + 99) + (3 + 98) + …+ (50 +51)V ______________________ iz______________________ >50-MoL= 101x50=5050(思路2)这道题目,我们还可以这样理解:和=1 + 2 + 3+ 4+ ....+ 98+ 99+100 + 和二100+99 + 98+ 97+ ....+ 3+2+12 倍和=101 + 101+101+101+ .. + 101 + 101+101100 --------即,和=(IOO+l)xl00∙j∙2=101x50=5050(4)中项定理对于任意一个项数为奇数的等差数列,中间一项的值等于所有项的平均数,也等于首相与末项和的一半;或者换句话说,各项和等于中间项乘以项数•譬如:(1) 4+8+12+...+32+36= (4+36) ×9÷2=20×9=180 ,题中的等差数列有 9 项, 中间一项即第5项的值是20,而和恰等于20X9 ;(2) 65+63+61 + ...+5+3+1= (1+65) ×33÷2=33X33= 1089 ,题中的等差数列有 33 项,中间一项即第17项的值是33,而和恰等于33X33.如果是一个项数为偶数的等差数列,我们该如何运用这个公式呢?其实我们可以将其去掉一项,变成奇数项,求和之后再加上去掉的那一项.中项定理也可用在速算与巧算中.譬如:计算:124. 68+324. 68+524. 68+724. 68+924. 68分析:这是一列等差数列,项数是奇数,中间数是524. 68,所以可以用5X524. 68=2623.4.等差数列是小学奥数的一个重要知识,无论是竞赛还是小升初都是一个考核的重点. 一部分题目是直接考数列,但更多的是结合到找规律、周期等问题进行考核.复习题目的重点就是让学生熟练掌握等差数列的求和、末项和项数的求解.不能让学生去单纯的背公式,而应该把原理讲透∙【复习2]某剧院有25排座位,后一排比前一排多两个座位,最后一排有70个座位•问: 这个剧一共有多少个座位?分析:首项:70-(25-1)X2=22 ,座位总数:(22+70) × 25÷2=1150 .【复习3】小明从1月1日开始写大字。

小学奥数 等差数列的认识与公式运用 精选练习例题 含答案解析(附知识点拨及考点)

小学奥数  等差数列的认识与公式运用 精选练习例题 含答案解析(附知识点拨及考点)

本讲知识点属于计算板块的部分,难度较三年级学到的该内容稍大,最突出一点就是把公式用字母表示。

要求学生熟记等差数列三个公式,并在公式中找出对应的各个量进行计算。

一、等差数列的定义⑴ 先介绍一下一些定义和表示方法定义:从第二项起,每一项都比前一项大(或小)一个常数(固定不变的数),这样的数列我们称它为等差数列.譬如:2、5、8、11、14、17、20、从第二项起,每一项比前一项大3 ,递增数列100、95、90、85、80、从第二项起,每一项比前一项小5 ,递减数列⑵ 首项:一个数列的第一项,通常用1a 表示末项:一个数列的最后一项,通常用n a 表示,它也可表示数列的第n 项。

项数:一个数列全部项的个数,通常用n 来表示;公差:等差数列每两项之间固定不变的差,通常用d 来表示; 和 :一个数列的前n 项的和,常用n S 来表示 .二、等差数列的相关公式(1)三个重要的公式① 通项公式:递增数列:末项=首项+(项数1-)⨯公差,11n a a n d =+-⨯() 递减数列:末项=首项-(项数1-)⨯公差,11n a a n d =--⨯() 回忆讲解这个公式的时候可以结合具体数列或者原来学的植树问题的思想,让学生明白 末项其知识点拨教学目标等差数列的认识与公式运用实就是首项加上(末项与首项的)间隔个公差个数,或者从找规律的情况入手.同时还可延伸出来这样一个有用的公式:n m a a n m d -=-⨯(),n m >()② 项数公式:项数=(末项-首项)÷公差+1由通项公式可以得到:11n n a a d =-÷+() (若1n a a >);11n n a a d =-÷+() (若1n a a >). 找项数还有一种配组的方法,其中运用的思想我们是常常用到的. 譬如:找找下面数列的项数:4、7、10、13、、40、43、46 ,分析:配组:(4、5、6)、(7、8、9)、(10、11、12)、(13、14、15)、、(46、47、48),注意等差是3 ,那么每组有3个数,我们数列中的数都在每组的第1位,所以46应在最后一组第1位,4到48有484145-+=项,每组3个数,所以共45315÷=组,原数列有15组. 当然还可以有其他的配组方法.③ 求和公式:和=(首项+末项)⨯项数÷2 对于这个公式的得到可以从两个方面入手: (思路1) 1239899100++++++11002993985051=++++++++共50个101()()()()101505050=⨯=(思路2)这道题目,还可以这样理解: 23498991001009998973212101101101101101101101+++++++=+++++++=+++++++和=1+和倍和即,和(1001=+⨯÷=⨯=(2) 中项定理:对于任意一个项数为奇数的等差数列,中间一项的值等于所有项的平均数,也等于首项与末项和的一半;或者换句话说,各项和等于中间项乘以项数.譬如:① 48123236436922091800+++++=+⨯÷=⨯=(),题中的等差数列有9项,中间一项即第5项的值是20,而和恰等于209⨯; ② 65636153116533233331089++++++=+⨯÷=⨯=(),题中的等差数列有33项,中间一项即第17项的值是33,而和恰等于3333⨯.例题精讲模块一、等差数列基本概念及公式的简单应用等差数列的基本认识【例 1】下面的数列中,哪些是等差数列?若是,请指明公差,若不是,则说明理由。

高斯小学奥数含答案三年级(上)第20讲等差数列初步

高斯小学奥数含答案三年级(上)第20讲等差数列初步

o6 <依此类推而相邻两项称为末项首项第5项第17项比第9项大几个公差呢?第5项比第2项大几个公差呢? 第7项比第1项大几个公差呢? 在等差数列中,首先要寻找这四个关键量(即最后1 liii 儿秋中北五事少离捱事少囁 j 蚤少載睛第少腿宪?/在上图中,你能看出第 3项比第1项大几个公差吗? 项的的差则被称为公差首项、末项、项数和公差)之间的关系•请看下图第二十讲等差数列初步大,要么每一项都比前一项小,不能出现既有后一项比前一项大,又有后一项比前一项小的情况在等差数列中,称第1个数为第1项,第 一只Ittt-张瞬’两只眼睛四条腿卜 晋貝高吐两张嘴,四只駁睛八奈腿; 三只有吐三张HL 亢只眼睛十二衆胪 四只片魁四张喷,八貝臥隔I 人象亚2个数为第2项,第3个数为第3项别要注意的是,类似于 1 , 2, 3, 2, 1, 2, 3, 2, 1,…和1, 0, 1 , 0, 1, 0,…的数列,虽然相邻两 个数的差都相等,但这样的数列不是等差数列,因为在同一个等差数列中,必须要么每一项都比前一项数列中所有数的个数称为 项数在等差数列中,第n 项与第m 项之间相隔n m 个公差我们把等差数列第1项称为首项 公差末项公差公差公差公差第2项第3项第4项一数列”就是一列数,也就是一些数排成一列.“等差”,就是差相等,也就是相邻两数的差都相等. 特就等于 项数1 •由此,我们就知道末项减去首项等于 项数1个公差的和,因此末项首项项数1 公差由此可以得到等差数列的通项公式:末项首项项数1公差同时我们还可以得到以下这些公式:首项末项 项数1公差公差 末项 首项项数1项数 末项 首项公差1在运用这些公式时, 有一个共同的关键点:某两项之间相差的公差的个数. 抓住这个关键点,很多问题便能迎刃而解.例题1(1) 一个等差数列共有 13项•每一项都比它的前一项大 2,并且首项为33,那么末项是多少?(2) 一个等差数列共有 13项•每一项都比它的前一项小 2,并且首项为33,那么末项是多少? 分析:本题中的首项和末项相差了几个公差?是首项大还是末项大呢?练习1一个等差数列共有10项•每一项都比它的前一项大例题2分析:本题中的首项和末项相差了几个公差?是首项大还是末项大呢?更重要的是,首项其实就是第 1项,末项就是第“项数”项,那么首项和末项之间相隔的公差个数1,并且首项为21,那么末项是多少?(1) 一个等差数列共有 10项•每一项都比它的前一项大 7,并且末项为 125,那么首项是多少? (2) —个等差数列共有 10项•每一项都比它的前一项小7,并且末项为125,那么首项是多少?一个等差数列共有12项•每一项都比它的前一项小4,并且末项为56,那么首项是多少? 例题3(1)一个等差数列首项为7,第10项为61,那么这个等差数列的公差等于多少?(2)—个等差数列第4项为7,第10项为61,那么这个等差数列的公差等于多少?分析:第1项与第10项之间相差几个公差?第4项与第10项之间相差几个公差?7又与61差了几?相当于几个公差?练习3一个等差数列第5项为25,第16项为91,那么这个等差数列的公差等于多少?例题4(1)一个等差数列首项为5,末项为93,公差为8,那么这个等差数列一共有多少项?(2)一个等差数列第3项为50,末项为130,公差为8,那么这个等差数列一共有多少项?分析:首项和末项之间差几?相当于几个公差?公差的数量和项数是什么关系?练习4已知等差数列2、9、16、23、30,……那么709是其中的第几项?例题5一个等差数列的首项为11,第10项为200,这个等差数列的公差等于多少?第19项等于多少?305是第几项?分析:第1项与第10项之间相差几个公差?与第19项呢?305又与200差了几?相当于几个公差?例题6下面的各算式是按规律排列的:1+ 1 , 2+ 3 , 3+ 5 , 1+ 7 , 2+ 9 , 3+ 11 , 1+ 13 , 2+ 15 ,3+ 17 ,……请写出其中所有结果为98的算式.分析:每个算式的第一个数有什么周期规律?第二个数是什么数列?分别求出第98个数是几?咼斯生平高斯,生于不伦瑞克,卒于哥廷根,德国著名数学家、物理学家、天文学家、大地测量学家.1799年高斯于黑尔姆施泰特大学因证明代数基本定理获博士学位.从1807年起担任格丁根大学教授兼格丁根天文台台长直至逝世•高斯和牛顿、阿基米德,被誉为有史以来的三大数学家•高斯是近代数学奠基者之一,在历史上影响之大,可以和阿基米德、牛顿、欧拉并列,有“数学王子”之称.18岁的高斯发现了质数分布定理和最小二乘法•通过对足够多的测量数据的处理后,可以得到一个新的、概率性质的测量结果•在这些基础之上,高斯随后专注于曲面与曲线的计算,并成功得到高斯钟形曲线(正态分布曲线) •其函数被命名为标准正态分布(或高斯分布),并在概率计算中大量使用.高斯的肖像已经被印在从1989年至2001年流通的10德国马克的纸币上.高斯(Johann Carl Friedrich Gauss) (1777 年4 月30 日- 1855年2 月23 日),生于不伦瑞克,卒于哥廷根,德国著名数学家、物理学家、天文学家、大地测量学家•高斯被认为是最重要的数学家,并拥有“数学王子”的美誉.1792年,15岁的高斯进入布伦瑞克(Braunschweig )学院.在那里,高斯开始对高等数学作研究.独立发现了二项式定理的一般形式、数论上的二次互反律” (Law of Quadratic Reciprocity)、质数分布定理 (prime number theorem)及算术几何平均(arithmetic-geometric mean).1795年高斯进入哥廷根大学.1796年,19岁的高斯得到了一个数学史上非常重要的结果,就是《正十七边形尺规作图之理论与方法》1855年2月23日清晨,高斯于睡梦中去世.作业1. 一个等差数列共有10项•每一项都比它的前一项大2,并且末项为75,那么首项是几?一个等差数列共有10项•每一项都比它的前一项小2,并且末项为75,那么首项是几?3. 一个等差数列首项为13,第9项为29,这个等差数列的公差为几?第20项为几?4. 一个等差数列的第5项为47,第15项为87,这个等差数列的公差等于几?63是第几项?1层有1块砖,第2层有5块砖,第3层有9 5. 如图所示,有一堆按规律摆放的砖•从上往下数,第(块砖,…….按照这个规律,第19层有多少块砖?188_ ,……,125差10 1 9 (个)公差9 763125 63 1883. 例题3答案:(1) 6; (2) 9 详解:如下:4. 例题4答案:(1) 12 ; (2) 13 详解:如下: 总差: 93 5 88 总差: 130 50 80 公差数: :88 8 11公差数: :80 8 10项数: 11 1 12项数: 10 12 135. 例题5答案:21; 389; 15 详解:如下图:详解:如下图:第二十讲等差数列初步33 , 35 ,37 ,①33, 31, 29,①差13 112个公差12 2 2433 2457差13 1 12 (个)公差12 2 2433 24 9 _62_,… •…,125①⑩差10 1 9 (个)公差9 7 63总差:61 7 54 总差:617 54公差数:10 1 9 (个) 公差数:10 4 6 (个) 公差:54 96公差:54 692.例题2答案:(1) 62 ; (2)188详解:如下图:125 63 621. 例题 1答案: (1)57;(2)9详解: 如下图:33,35, 37, …… , _57_ 33, 31, 29,… … , _9_①①3. 例题 3答案:( 1 )6;( 2) 9 详解:如下:4. 例题 4 答案:(1)12;(2)13 详解:如下: 总差: 93 5 88总差: 130 50 80 公差数 : 88 8 11 公差数 : 80 8 10 项数: 11 1 12项数: 10 1 2 135. 例题 5答案: 21;389;15 详解:如下图:差13 112个公差12 2 2433 24 572. 例题 2 答案:(1)62;(2)188 详解:如下图: _62_, …… ,125①⑩差10 1 9(个)公差9 7 63 125 63 62差13 1 12(个)公差12 2 2433 24 9188_, …… , 125①⑩差10 1 9(个)公差9 7 63 125 63 188总差: 61 7 54 总差: 61 7 54公差数: 10 1 9 (个) 公差数: 10 4 6 (个) 公差: 54 9 6公差: 54 6 91. 例题 1答案: ( 1 ) 57 ;( 2) 9详解: 如下图:33,35, 37, …… , _57_33, 31, 29,… … , _9_①①3. 例题 3答案:(1) 6;(2) 9 详解:如下:4. 例题 4答案:(1) 12;(2) 13详解:如下: 总差: 93 588总差: 13050 80 公差数 : 88 8 11 公差数 : 80 8 10 项数: 11 1 12项数: 10 12 135. 例题 5答案: 21;389;15 详解:如下图:差 13 112 个公差12 2 2433 24572. 例题 2答案:(1) 62;(2) 188 详解:如下图:_62_,……,125①⑩差10 1 9(个)公差9 7 63125 63 62差13 1 12(个)公差12 2 2433 24 9188_, …… , 125①⑩差10 1 9(个)公差 9 763125 63 188总差: 61 7 54 总差: 61 7 54公差数: 10 1 9 (个) 公差数: 10 4 6 (个) 公差: 54 96公差: 54 69。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

小学奥数等差数列练习及答案【三篇】
【篇一】
知识点:
1、数列:按一定顺序排成的一列数叫做数列。

数列中的每一个数都叫做项,第一项称为首项,最后一项称为末项。

数列中共有的项的个数叫做项数。

2、等差数列与公差:一个数列,从第二项起,每一项与与它前一项的差都相等,这样的数列的叫做等差数列,其中相邻两项的差叫做公差。

3、常用公式
等差数列的总和=(首项+末项)项数2
项数=(末项-首项)公差+1
末项=首项+公差(项数-1)
首项=末项-公差(项数-1)
公差=(末项-首项)(项数-1)
等差数列(奇数个数)的总和=中间项项数
【篇二】
典例剖析:
例(1)在数列3、6、9……,201中,共有多少数?如果继续写下去,第201个数是多少?
分析:(1)因为在这个等差数列中,首项=3,末项=201,公差=3,所以根据公式:
项数=(末项-首项)公差+1,便可求出。

(2)根据公式:末项=首项+公差(项数-1)
解:项数=(201-3)3+1=67
末项=3+3(201-1)=603
答:共有67个数,第201个数是603
练一练:
在等差数列中4、10、16、22、……中,第48项是多少?508是
这个数列的第几项?
答案:第48项是286,508是第85项
例(2)全部三位数的和是多少?
分析::所有的三位数就是从100~999共900个数,观察100、101、102、……、998、999这个数列,发现这是一个公差为1的等差
数列。

要求和能够利用等差数列求和公式来解答。

解:(100+999)9002
=10999002
=494550
答:全部三位数的和是494550。

练一练:
求从1到2000的自然数中,所有偶数之和与所有奇数之和的差。

答案:1000
例(3)求自然数中被10除余1的所有两位数的和。

分析一:在两位数中,被10除余1最小的是11,的是91。

从题意可知,本题是求等差数列11、21、31、……、91的和。

它的项数是9,我们能够根据求和公式来计算。

解一:11+21+31+……+91
=(11+91)92
=459
【篇三】
1、有10只金子,54个乒乓球,能不能把54个乒乓球放进盒子中去,使各盒子的乒乓球数不相等?
2、小明家住在一条胡同里,胡同里的门牌号从1号开始摸着排下去。

小明将全胡同的门牌号数实行口算求和,结果误把1看成10,得到错误的结果为114,那么实际上全胡同有多少家?
3、有一堆粗细均匀的圆木,堆成如下图的形状,最上面一层有7根园木,每面下层增加1根,最下面一层有95根,问:这堆圆木一共有多少根?
4、有一个六边形点阵,如下图,它的中心是一个点,算做第一层,第二层每边有两个点,第三层每边有三个点……这个六边形点阵共100层,问,这个点阵共有多少个点?。

相关文档
最新文档