计算方法插值法(一)

合集下载

计算方法 插值法Lagrange插值

计算方法 插值法Lagrange插值
xi , i 0,1,..., n
的n次插值基函数
以n+1个n次基本插值多项式lk(x)(k 0,1, … , n) 为基础,可直接写出满足插值条件
P(xi ) f(x i ) (i 0,1,2, … , n)
的n次代数插值多项式:
P(x) l0(x)y 0 l1(x)y1 … ln(x)yn
B(x1, f(x1))
x0
x1
由解析几何知道,这条直线用点斜式表示为
改写为
p(x)
y0
y1 x1
y0 x0
(x
x0)
p(x)
x x1 x0 x1
y0
x x0 x1 x0
y1
为了便于推广,记
推导
l0(x)
x x1 , x0 x1
l1(x )
x x0 x1 x0
线性插值 基函数
或者写成:
(i 0,1,2)
其几何意义是用经过3个点
(x0, y0 ), (x1, y1), (x2, y2 )
的抛物线 y P(x) 用以近似计算 y f(x)
y=f(x)
y
y = L 2 (x)
y0
y1
x0
x1
y2 x
x2
P(x)的系数 a0 , a1, a2 直接由插值条件决定,即
a0 , a1, a2 满足代数方程组:
(x 0 x1)(x 0 x2 )
从而导出 l0(x)
(x (x 0
x1)(x x2 ) x1)(x 0 x2 )
类似地可以构造出插值多项式 l1(x )和l2 (x )
于是确定了3个抛物插值的基函数:
l0(x)
(x (x 0
x1)(x x1)(x

[转载]插值算法(一):各种插值方法比较

[转载]插值算法(一):各种插值方法比较

[转载]插值算法(⼀):各种插值⽅法⽐较原⽂地址:插值算法(⼀):各种插值⽅法⽐较作者:稻草⼈确定性随机性确定性随机性趋势⾯(⾮精确)回归(⾮精确)泰森(精确)克⾥⾦(精确)密度估算(⾮精确)反距离权重(精确)薄板样条(精确)整体拟合利⽤现有的所有已知点来估算未知点的值。

局部插值使⽤已知点的样本来估算位置点的值。

确定性插值⽅法不提供预测值的误差检验。

随机性插值⽅法则⽤估计变异提供预测误差的评价。

对于某个数据已知的点,精确插值法在该点位置的估算值与该点已知值相同。

也就是,精确插值所⽣成的⾯通过所有控制点,⽽⾮精确插值或叫做近似插值,估算的点值与该点已知值不同。

1、反距离加权法(Inverse Distance Weighted)反距离加权法是⼀种常⽤⽽简单的空间插值⽅法,IDW是基于“地理第⼀定律”的基本假设:即两个物体相似性随他们见的距离增⼤⽽减少。

它以插值点与样本点间的距离为权重进⾏加权平均,离插值点越近的样本赋予的权重越⼤,此种⽅法简单易⾏,直观并且效率⾼,在已知点分布均匀的情况下插值效果好,插值结果在⽤于插值数据的最⼤值和最⼩值之间,但缺点是易受极值的影响。

2、样条插值法(Spline)样条插值是使⽤⼀种数学函数,对⼀些限定的点值,通过控制估计⽅差,利⽤⼀些特征节点,⽤多项式拟合的⽅法来产⽣平滑的插值曲线。

这种⽅法适⽤于逐渐变化的曲⾯,如温度、⾼程、地下⽔位⾼度或污染浓度等。

该⽅法优点是易操作,计算量不⼤,缺点是难以对误差进⾏估计,采样点稀少时效果不好。

样条插值法⼜分为张⼒样条插值法(Spline with Tension)规则样条插值法(Regularized Spline)薄板样条插值法 (Thin-Plate Splin)3、克⾥⾦法(Kriging)克⾥⾦⽅法最早是由法国地理学家Matheron和南⾮矿⼭⼯程师Krige提出的,⽤于矿⼭勘探。

这种⽅法认为在空间连续变化的属性是⾮常不规则的,⽤简单的平滑函数进⾏模拟将出现误差,⽤随机表⾯函数给予描述会⽐较恰当。

插值计算法公式

插值计算法公式

插值计算法公式
插值计算法是一种数值分析方法,用于在给定数据点的情况下,通过插值计算来估计未知数据点的值。

插值计算法的公式如下:
f(x) = Σ[i=0,n] yi * Li(x)
其中,f(x)表示要估计的未知数据点的值,yi表示已知数据点的值,Li(x)表示拉格朗日插值多项式,n表示已知数据点的数量。

拉格朗日插值多项式的公式如下:
Li(x) = Π[j=0,n,j≠i] (x - xj) / (xi - xj)
其中,i表示当前正在计算的已知数据点的下标,j表示其他已知数据点的下标,xj表示其他已知数据点的横坐标,xi表示当前正在计算的已知数据点的横坐标。

插值计算法的应用非常广泛,例如在地图制作、气象预报、股票分析等领域都有着重要的应用。

在地图制作中,插值计算法可以用来估计未知地点的高度、温度等信息,从而制作出更加精确的地图。

在气象预报中,插值计算法可以用来估计未来某个时间点的气温、降雨量等信息,从而提高气象预报的准确性。

在股票分析中,插值计算法可以用来估计未来某个时间点的股票价格,从而帮助投资者做出更加明智的投资决策。

插值计算法是一种非常重要的数值分析方法,可以用来估计未知数据点的值,从而在各个领域中发挥着重要的作用。

插值法的最简单计算公式

插值法的最简单计算公式

插值法的最简单计算公式全文共四篇示例,供读者参考第一篇示例:插值法是一种常用的数值计算方法,用于通过已知数据点推断出未知数据点的值。

在实际问题中,往往会遇到数据点不连续或者缺失的情况,这时就需要通过插值法来填补这些数据点,以便更准确地进行计算和分析。

插值法的最简单计算公式是线性插值法。

线性插值法假设数据点之间的变化是线性的,通过已知的两个数据点来推断出中间的未知数据点的值。

其计算公式为:设已知数据点为(x0, y0)和(x1, y1),需要插值的点为x,其在(x0, x1)之间,且x0 < x < x1,插值公式为:y = y0 + (y1 - y0) * (x - x0) / (x1 - x0)y为插值点x对应的值,y0和y1分别为已知数据点x0和x1对应的值。

通过这个线性插值公式,可以方便地计算出中间未知点的值。

举一个简单的例子来说明线性插值法的应用。

假设有一组数据点为(1, 2)和(3, 6),现在需要插值得到x=2时的值。

根据线性插值公式,我们可以计算出:y = 2 + (6 - 2) * (2 - 1) / (3 - 1) = 2 + 4 * 1 / 2 = 2 + 2 = 4当x=2时,线性插值法得到的值为4。

通过这个简单的例子,可以看出线性插值法的计算公式的简单易懂,适用于很多实际问题中的插值计算。

除了线性插值法,还有其他更复杂的插值方法,如多项式插值、样条插值等,它们能够更精确地拟合数据并减小误差。

在一些简单的情况下,线性插值法已经足够满足需求,并且计算起来更加直观和方便。

在实际应用中,插值法经常用于图像处理、信号处理、数据分析等领域。

通过插值法,可以将不连续的数据点连接起来,填补缺失的数据,使得数据更加完整和连续,方便后续的处理和分析。

插值法是一种简单而有效的数值计算方法,其中线性插值法是最简单的计算公式之一。

通过这个简单的公式,可以方便地推断出未知数据点的值,并在实际应用中发挥重要作用。

计算方法Chapter01 - 插值方法

计算方法Chapter01 - 插值方法

若函数族
中的函数 ( x) 满足条件
( xi ) = f ( xi ),
i = 0,1,, n
( 1)
n ( x ) x f ( x ) 则称 为 在 中关于节点 i i =0 的一个插值函数。
f ( x) ——被插值函数; [a, b] ——插值区间;
xi in=0 ——插值节点; 式(1)——插值条件.
x12 x1n
2 n x2 x2
范德蒙行列式
x
2 n


n n
V=
x
0 i j n

( x j xi )
10
插值多项式的存在唯一性(续)
V= ( x j xi ) 0 i j n
由于 x0 , x1 , x2 , ..., xn 是 n 1 个互异的节点,即:
求插值函数(x)的问题称为插值问题。
5
插值问题
于是人们希望建立一个简单的而便于计算的函数 (x) 使其近似的代替 f (x)。
y 被插值函数 f (x) 插值函数 (x)
插值节点 0 x0 x1 x2 x3
… …… xn x
6
插值区间
多项式插值问题
对于不同的函数族Φ 的选择,得到不同的插值问题
( x0 , y0 ) 0
p2(x)
x0
x1
x2
x
19
抛物线插值(续)
p2 ( x ) = y0l0 ( x ) y1l1 ( x ) y2l2 ( x )
( x x1 )( x x2 ) ( x0 x1 )( x0 x2 )
( x x0 )( x x2 ) ( x1 x0 )( x1 x2 ) ( x x0 )( x x1 ) ( x2 x0 )( x2 x1 )

数值计算方法第四章插值1

数值计算方法第四章插值1

代数插值
代数插值
当f(x)是次数不超过n的多项式时,给定n+1个节点,其n次插值多项式就是f(x)本身.
代数插值几何意义
拉格朗日插值 逐次线性插值 牛顿插值 等距节点插值 反插值 埃尔米特插值 分段插值法 三次样条插值
拉格朗日插值 线性插值
格朗日插值 抛物线插值
基函数之和为1.
拉格朗日插值 n次插值
当插值点x∈(a,b)时称为内插,否则称为外插。
内插的精度高于外插的精度。
拉格朗日插值余项
余项 设函数f(x)在包含节点x0 , x1 ,…, xn的区间[a,b]上有n+1阶导数,则
拉格朗日插值
活动14
写出3次拉格朗日插值多项式及余项
拉格朗日插值
拉格朗日插值
作业5
已知函数表
应用拉格朗日插值公式计算f(1.300)的近似值.
数值计算方法
苏 强
江苏师范大学连云港校区
数学与信息工程学院 E-mail: 412707233@
数值计算方法 第四章 插值与曲线拟合
没有明显的解析表达式
使用不便的解析表达式
简单函数代替
插值问题
插值问题
代数插值 插值函数
被插值函数 插值节点
插值区间
三角多项式插值 有理函数插值
代数插值
抛物线插值
三点插值
拉格朗日插值 抛物线插值
抛物线插值
三点插值
拉格朗日插值 抛物线插值
拉格朗日插值 n次插值
称为关于节点
的n次插值基函数.
拉格朗日插值n次插值
基函数的个数等于节点数.
n+1个节点的基函数是n次代数多项式 基函数和每一个节点都有关。节点确定,基函数就唯一的确定。 基函数和被插值函数无关

插值法例题计算过程

插值法例题计算过程

插值法例题计算过程摘要:1.插值法的基本概念和应用场景2.插值法的计算步骤和注意事项3.插值法在财务管理中的实际运用案例4.插值法在实际问题中的优缺点分析正文:插值法是一种数学方法,通过在已知数据点之间构建插值函数来逼近或预测未知数据。

在财务管理等领域具有广泛的应用。

接下来,我们将详细介绍插值法的计算步骤,并通过一个实际案例来说明其应用。

一、插值法的基本概念和应用场景插值法是基于已有的数据点(如(x1, y1),(x2, y2),(xn, yn))来构造一个插值函数,以便在未知点处预测函数值。

插值法可以应用于诸如财务管理等领域,解决诸如净现值计算等问题。

二、插值法的计算步骤和注意事项1.确定插值函数:根据已知数据点选择合适的插值函数,如线性插值、二次插值等。

2.构建插值表:将已知数据点代入插值函数,计算出对应的函数值,并构建插值表。

3.插入未知点:将要求的点的横坐标x代入插值函数,得到所求的函数值。

4.注意事项:在选择插值函数时,应注意数据的分布情况,避免出现龙格现象;同时,插值表的密度和精度也直接影响插值结果的准确性。

三、插值法在财务管理中的实际运用案例假设我们有一个投资项目,其净现值随折现率变化而变化。

已知当折现率为12%时,净现值为116530;当折现率为10%时,净现值为121765。

我们可以使用插值法来计算其他折现率下的净现值。

四、插值法在实际问题中的优缺点分析优点:插值法简单易行,计算速度快,适用于大量数据处理。

缺点:插值法的精度受限于已知数据点的质量和分布,以及所选插值函数的类型。

在某些情况下,插值法可能无法很好地逼近真实函数。

总之,插值法作为一种有效的数学方法,在财务管理等领域具有广泛的应用。

通过掌握插值法的计算步骤和注意事项,我们可以更好地解决实际问题。

数值分析与计算方法 第一章 插值法

数值分析与计算方法 第一章 插值法

同 理 : (t) 至 少 有n 个 互 异 零 点;
(t) 至 少 有n 1 个 零 点 ;
(n1) (t ) 至 少 有 一 个 零 点 ; 即 (a ,b),
(n1) (
)
R(n1) n
(
)
K ( x)n1(n1) (
)
R(n1) n
(
)
K ( x) (n
1)!
f (n1) ( ) K ( x) (n 1)! 0
x x0 x1 x2 xn , y f ( x)? y y0 y1 y2 yn
(1)有的函数没有表达式,只是一种表格函数,而我们需要的 函数值可能不在该表格中。
(2)如果函数表达式本身比较复杂,计算量会很大;
对于这两种情况,我们都需要寻找一个计算方便且表达简单
的函数 P x来近似代替 f ( x),求 P x 的方法称为插值法。
Ln1( x)
为此我们考虑对Lagrange插值多项式进行改写; ——由唯一性,仅是形式上的变化
期望:Ln ( x) 的计算只需要对Ln1( x)作一个简单的修正.
考虑 h( x) Ln ( x) Ln1( x) h( x) 是次数 n 的多项式,且有
h( x j ) Ln ( x j ) Ln1( x j ) 0 ,j 0 ,1,2 ,L ,n 1 ;
)
3
)
1 2
(x
(
4
6
6
)( x
)(
4
3
)
3
)
1
(
x
6
)(
x
4
)
2
(
3
6
)(
3
4
)
3 2

计算方法 插值法

计算方法 插值法

例见 P.74 例 1。 (2) 差商与牛顿基本插值多项式 考虑到拉格朗日插值的缺点:增加新的结点,需重新计算,工作量较大! 改进的方向:选取形式: a 0 + a1 ( x − x0 ) + a 2 ( x − x0 )( x − x1 ) + L + a n ( x − x0 )( x − x1 ) L ( x − xn −1 ) ; (称之为 n 次牛顿插值多项式) 记 N n ( x) = a 0 + a1 ( x − x0 ) + a 2 ( x − x0 )( x − x1 ) + L + a n ( x − x0 )( x − x1 ) L ( x − x n −1 ) 为了给出 a i 简明计算表达式,引入差商(或均差)概念。 定义 1.
第二章 插值与拟合
§1.插值概念与基础理论
(1) 提法: 给定函数表 x y = f ( x) x0 y0 x1 y1
K K
xn yn
其中假定 f ( x) 在区间 [a, b] 上连续,设 x0 , x1 , L, x n 为区间 [a, b] 上 n + 1 个互不相同的 点,要求在一个性质优良、便于计算的函数类 {P ( x)} 中,选一个使 P ( xi ) = y i (i = 0,1,L, n) L (*) 的函数 P( x) 作为 f ( x) 的近似,这就是最基本的插值问题。 [a, b] 称为插值区间; x0 , x1 , L, x n 为插值节点; {P ( x)} 称为插值函数类;(*)称为插 值条件; P( x) 称为插值函数;求插值函数 P( x) 的方法称为插值法。 本章取 Pn ( x) = a 0 + a1 x + L + a n x n ,其中 a 0 , a1 , L, a n 为实数, Pn ( x) 为次数不超 过 n 的插值代数多项式,相应的插值问题称为 n 次代数多项式插值。

数值计算方法插值法

数值计算方法插值法

f[x1,x2,x3] …
f[x0,x1,x2 ,x3]
例阶2.1差1商求值f(xi)= x3在节点 x=0, 2, 3, 5, 6上的各
解xi :
计算得如下表 f[xi] f[xi,xi+1]
f[xi,xi+1,xi+2 ]
f[xi,xi+1,xi+2 ,xi+2]
00
28
80 4 20
27 8 19 19 4 5
an x0 n an1x0 n1 a1x0 a0 f (x0 )
an x1n
an1
x n1 1
a1x1 a0
f (x1 )
an xn n an1xn n1 a1xn a0 f (xn )
这是惟一一个性关说于明待,定不参论数用何种方法来构a造的0,,n+也a11阶不, 线论性用, 方何an种形式来表示插值多项式,
由线性代数知,任何一个不高于n次的多项式, 都可以表示成函数
1, x x0 , (x x0 )(x x1 ),, (x x0 )(x x1 )(x xn1 )
的线性组合, 也就是说, 可以把满足插值条件 p(xi)=yi (i=0,1,…,n)的n次插值多项式, 写成如下形式
a0 a1(x x0) a2(x x0)(x x1) an (x x0)(x x1)(x xn1)
f[x0 , x1]=
f(x1)- f(x0) x1 – x0
f[x1 , x0]
f(x0)- f(x1) =
x0 – x1
f x0 , x1, x2 f x1, x2 , x0 f x0 , x2 , x1
性质3 若f[x, x0, x1 , …, xk ]是 x 的 m 次多项式, 则 f[x, x0, x1 ,…, xk , xk+1]是 x 的 m-1 次多项式

计算方法插值法(均差与牛顿插值公式)

计算方法插值法(均差与牛顿插值公式)

为f ( x)关于节点 x0 , xk 一阶均差 (差商)
2018/11/7
5
2018/11/7
6
二、均差具有如下性质:
f [ x0 , x1 ,, xk 1 , xk ]

j 0
k
f (x j ) ( x j x0 )( x j x j 1 )(x j x j 1 )( x j xk )
2018/11/7
27
fk fk 1 fk 为f ( x)在 xk 处的二阶向前差分
2
依此类推
m f k m1 f k 1 m1 f k
为f ( x)在 xk 处的m阶向前差分
2018/11/7
28
差分表
xk f k 一阶差分 x0 f 0 x1 f 1 二阶差分 三阶差分 四阶差分
2018/11/7
31
等距节点插值公式
一、牛顿前插公式
2018/11/7
32
2018/11/7
33
二、牛顿插值公式与拉格朗日插值相比
牛顿插值法的优点是计算较简单,尤其是增加 节点时,计算只要增加一项,这是拉格朗日插值 无法比的. 但是牛顿插值仍然没有改变拉格朗日插值的 插值曲线在节点处有尖点,不光滑,插值多 项式在节点处不可导等缺点.
2018/11/7
25
2018/11/7
26
§
2.3.4 差分及其性质
一、差分
fk , 定义3. 设f ( x)在等距节点xk x0 kh 处的函数值为 k 0 ,1, , n , 称
f k f k 1 f k
k 0,1,, n 1
为f ( x)在 xk 处的一阶向前差分

计算方法插值法

计算方法插值法
1)
Rn ( x ) K ( x) ( x - xi )
i 0
n
考察 j ( t ) Rn ( t ) - K ( x ) ( t - x i )
i0
n
j(t)有 n+2 个不同的根 x0 …
f (n ( x ) - L(nn

1)
xn x, j ( n1) ( x ) 0, x (a, b)
x - x0 y x1 - x 0 1
l ( x) y
i 0 i
1
i
l0(x)
l1(x)
n1
希望找到li(x),i = 0, …, n 使得 li(xj)=ij ;然后令
Pn ( x )
l (x) y
i0 i
n
i
,则显然有Pn(xi) = yi 。
每个 li 有 n 个根 x0 … xi-1, xi+1 … xn li ( x) Ci ( x - x j )
插值法 比较古老, 常用的方法。 当未知函数 y = f(x) 非常复杂时,在一系列节 点 x0 … xn 处测得函数值: y0 = f(x0) … yn = f(xn) 由此构造一个简单易算的近似函数 P(x) f(x), 满足条件P(xi) = f(xi) (i = 0, … n),称P(x) 为f(x) 的插值函数。 最常用的插值函数是多项式
项式是唯一存在的。 证明:
i 0, ... , n 的 n 阶插值多
若除了Ln(x) 外还有另一 n 阶多项式 Pn(x) 满足 Pn(xi) = yi 。 考察 Qn ( x) Pn ( x) - Ln ( x) , 则 Qn 的阶数 n 而 Qn 有 n + 1 个不同的根 x0 … xn

最简单的线性插值法计算公式

最简单的线性插值法计算公式

线性插值法计算公式:Y=Y1+(Y2-Y1)×(X-X1)/(X2-X1)。

其中
Y2>Y1,X2>X>X1。

线性插值是指插值函数为一次多项式的插值方式,其在插值节点上的插值误差为零。

线性插值相比其他插值方式,如抛物线插值,具有简单、方便的特点。

线性插值可以用来近似代替原函数,也可以用来计算得到查表过程中表中没有的数值。

线性插值使用的原因
目前,线性插值算法使用比较广泛。

在很多场合我们都可以使用线性插值。

其中,最具代表性的使用方法是变量之间的对应关系没有明确的对应关系,无法使用公式来描述两个变量之间的对应关系,在这种情况下使用线性插值是比较好的解决办法。

可以在变量的变化区间上取若干个离散的点,以及对应的输出值,然后将对应关系分成若干段,当计算某个输入对应的输出时,可以进行分段线性插值。

插值法计算

插值法计算
250 100 (1 i) n
250 10 i( ) 1 100
1
子情境一 货币时间价值
插值法:
(1 i)
利率
9% i 10%
10
2.5
复利终值 系数
复利终值系数 2.367 2.5 2.594
i 9% 2.5 2.367 10 % 9% 2.594 2.367
子情境一 货币时间价值
四、利率与期间的推算
(1)利率的推算 ① 对于一次性收付款项,可根据其复利终值(现值) 的计算公式推算利率。(插值法) 公式: F P (1 i) n
F i ( ) P
1 n
1
子境一 货币时间价值
例1:某人把100元存入银行,10年后可获本利和为 250元,问银行存款的利率是多少? 已知:F=250,P=100,n=10, 求 i利率?
100 30 ( P / A,6%, n)
( P / A,6%, n) 3.333
年金现值 系数
子情境一 货币时间价值
插值法:
日期
3 n 4
年金现值系数
2.673 3.333 3.465
n 3 3.333 2.673 4 3 3.465 2.673
n 3.83(年)
8% i 9%
年金现值系数
6.710 6.67 6.418
i 8% 6.67 6.710 9% 8% 6.418 6.710
i 8.15 %
子情境一 货币时间价值
(2)期间的推算 例:某项目建成投产每年可为IT公司创造30万元的 收益,该项目投资额为100万,要求的最低报酬率 为6%,该项目的最短寿命是多少? P=100, A=30,i=6%,求n计息期?

计算方法-插值法(一)

计算方法-插值法(一)

x1)( x x2) x1)( x0 x2)
l1(x)
(x (x1
x0)(x x2) x0)( x1 x2)
l2 ( x)
(x (x2
x0)( x x1) x0)( x2 x1)
(x x2 ) x1)(x0 x2 )
y0
(x ( x1
15
则有 且
(x) f (x) Ln (x) K(x)n1(x) 0 (xi ) f (xi ) Ln (xi ) K(x)n1(xi )
Rn (xi ) K(x)n1(xi ) 0
1个零点 i 0,1,, n n+1个零点
因此,若令x xi ,(t)在区间(a,b)上至少有n 2个零点 由于Ln (x)和n1(x)为多项式,因此若 f (x)可微,则(t)也可微 根据Rolle定理,(t)在区间(a,b)上有至少n 1个零点,(t)至少n个零点
y1
其中
lk (x)
(x x0 )(x x1)(x xk1)(x xk1)(x xn ) (xk x0 )(xk x1)(xk xk1)(xk xk1)(xk xn )
n
i0 ik
(x xi ) (xk xi )
(k 0,1,2,, n)
12
例1: 求过点(2,0) (4,3) (6,5) (8,4) (10,1)构造拉格朗日插值多项式 解:
l0 (x)
(x (2
4)(x 6)(x 8)(x 4)(2 6)(2 8)(2
10) 10)
1 (x 384
4)(x
6)(x
8)(x
10)
l1(x)
(x 2)(x 6)(x 8)(x 10) (4 2)(4 6)(4 8)(4 10)

第2章 插值法(1)

第2章  插值法(1)

现要构造一个二次函数
φ(x)=P2(x)=ax2+bx+c 近似地代替f(x),并满足插值原则(4―2)
《 数 值 分 析 》
(2―6) (2―7)
P2(xi)=yi, i=0,1,2,… 由(2―7)式得
2 ax0 bx0 c y0 2 ax1 bx1 c y1 ax 2 bx c y 2 2 2
(2―5)
第2章 插值法
2.2 二次插值
二次插值又称为抛物线插值,也是常用的代数多项 式 插 值 之 一 。 设 已 知 函 数 f(x) 的 三 个 互 异 插 值 基 点
《 数 值 分 析 》
x0,x1,x2的函数值分别为y0,y1,y2,见下表所示:
x y
xo y0
x1 y1
x2 y2
第2章 插值法
(2―15)
第2章 插值法
显然
0, j i li ( x j ) , i, j 0,1,2, 1, j i
,n
《 数 值 分 析 》
(2―14)式的Pn(x)是n+1个n次多项式li(x)(i=0,1,2,…,n)的 线性组合,因而Pn(x)的次数不高于n。我们称形如多项式 (2―14)的Pn(x)为拉格朗日插值多项式。Pn(x)还可以写成下 列较简单的形式:
f ( n ) ( x0 ) ( x x0 ) n n!
第2章 插值法
取前n+1项的部分和Pn(x)作为f(x)的近似式,也即
Pn ( x ) f ( x0 ) f ( x0 )( x x0 )
《 数 值 分 析 》
f ( n ) ( x0 ) ( x x0 ) n n!

计算方法-第2章-1、插值法(拉格朗日插值)

计算方法-第2章-1、插值法(拉格朗日插值)

2019/1/15
26
证明:假设在区间[a,b]上f(x)的插值多项式为 Ln ( x) 令
Rn ( x) f ( x) Ln ( x)
显然在插值节点为 xi (i 0,1,, n)上 Rn ( xi ) f ( xi ) Ln ( xi ) 0 , i 0,1,, n 因此Rn ( x)在[a, b]上至少有n 1个零点
(k 0,1,2,, n)

n1 ( x) Ln ( x) yk ' ( x x ) k 0 k n 1 ( xk )
n
2019/1/15
18
总 结
于是, y f ( x)在节点xi (i 0 ,1, , n)上, 以l j ( x) (i 0 ,1, , n) 为插值基函数的插值多 项式(记为Ln ( x))为
本章只讨论多项式插值与分段插值
2019/1/15 7
§ 2.2
拉格朗日插值
• 此插值问题可表述为如下: • 问题 求作次数 n 多项式 Ln ( x) ,使满足条件
Ln x yi , (i 0,1,, n)
• 这就是所谓的拉格朗日(Lagrange)插值。
2019/1/15
8
§ 2.2.1
线性插值的局限性
2019/1/15
12
三、抛物插值
问题 求作二次式 L2 ( x) ,使满足条件
L2 ( x j ) y j
( j k 1, k , k 1)
二次插值的几何解释是用通过三个点
的抛物线来近似考察曲线,故称为拋物插值。类似于线性 插值,构造基函数,要求满足下式:
L2(x) yk 1lk 1 ( x) yklk ( x) yk 1lk 1 ( x)
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档