北师大版八年级数学上第七单元《平行线的证明》测试题 .docx
第七章 平行线的证明 单元测试 2022-2023学年北师大版数学八年级上册
北师大版八上第7章平行线的证明单元测试一、选择题(共10小题)1. 如图,直线a∥b,∠1=50∘,则∠2的度数为( )A. 40∘B. 50∘C. 55∘D. 60∘2. 下列推理正确的是( )A. 弟弟今年13岁,哥哥比弟弟大6岁,到了明年,哥哥比弟弟只大5岁了,理由是弟弟明年比今年长大了1岁B. 若△ABC≌△DEF,则∠ABC=∠DEFC. ∠A与∠B相等,原因是它们看起来大小差不多D. 因为对顶角必然相等,所以相等的角也必是对顶角3. 如图,工人师傅用角尺画出工件边缘AB的垂线a和b,得到a∥b.理由是( )A. 连接直线外一点与直线上各点的所有线段中,垂线段最短B. 在同一平面内,垂直于同一条直线的两条直线互相平行C. 在同一平面内,过一点有一条而且仅有一条直线垂直于已知直线D. 经过直线外一点,有且只有一条直线与这条直线平行4. 如图,AB和CD相交于点O,则下列结论正确的是( )A. ∠1=∠2B. ∠2=∠3C. ∠1>∠4+∠5D. ∠2<∠55. 如图,将一块三角板的直角顶点放在直尺的一边上,当∠2=37∘时,∠1的度数为( )A. 37∘B. 43∘C. 53∘D. 54∘6. 下列命题中,是真命题的是( )A. √9的算术平方根是3B. 数据−2,1,0,2,2,3的方差是83C. y=kx+b(k,b为常数)是一次函数D. 如果一个角的两边与另一个角的两边分别平行,那么这两个角相等7. 如图,在△ABC中,点D在AC上,延长BC至E,连接DE,则下列结论不成立的是( )A. ∠DCE>∠ADBB. ∠ADB>∠DBCC. ∠ADB>∠ACBD. ∠ADB>∠DEC8. 如图是汽车灯的剖面图,从位于O点的灯发出光照射到凹面镜上反射出的光线BA,CD都是水平线,若∠ABO=α,∠DCO=60∘,则∠BOC的度数为( )A. 180∘−αB. 120∘−αC. 60∘+αD. 60∘−α9. 如图,a∥b,M,N分别在a,b上,P为两平行线间一点,那么∠1+∠2+∠3=( )A. 180∘B. 360∘C. 270∘D. 540∘10. 如图,△ABC中,将∠A沿DE翻折,点A落在Aʹ处,∠CEAʹ,∠BDAʹ,∠A三者之间的关系是( )A. ∠CEAʹ=∠BDAʹ+∠AB. ∠CEAʹ−3∠A=∠BDAʹC. ∠CEAʹ=2(∠BDAʹ+∠A)D. ∠CEAʹ−∠BDAʹ=2∠A二、填空题(共6小题)11. 命题“没有公共点的两条直线是平行的”的条件是,结论是,这个命题是命题.12. 如图,若AB∥CD,∠A=110∘,则∠1=∘.13. 如图,AB∥CD,EF分别与AB,CD交于点B,F.若∠E=30∘,∠EFC=130∘,则∠A=.14. 如图,将分别含有30∘,45∘角的一副三角板重叠,使直角顶点重合,若两直角重叠形成的角为65∘,则图中角α的度数为.15. 如图,点E是AD延长线上一点,如果添加一个条件,使BC∥AD,则可添加的条件为.(任意添加一个符合题意的条件即可)16. 一个大门栏杆的平面示意图如图所示,BA垂直地面AE于点A,CD平行于地面AE,若∠BCD=150∘,则∠ABC=∘.三、解答题(共5小题)17. 补全证明过程:(括号内填写理由)如图,一条直线分别与直线BE,直线CE,直线BF,直线CF相交于A,G,H,D,如果∠1=∠2,∠A=∠D,求证:∠B=∠C.证明:∵∠1=∠2,(已知)∠1=∠3,()∴∠2=∠3()∴CE∥BF,()∴∠C=∠4,()又∵∠A=∠D,()∴AB∥,()∴∠B=∠4,()∴∠B=∠C.(等量代换)18. 如图,把一张长方形纸片ABCD沿EF折叠后,点D,C分别落在Dʹ,Cʹ的位置上,EDʹ与BC的交点为G,若∠EFG=55∘,求∠1,∠2的度数.19. 如图①,在三角形ABC中,∠BAE=1∠BAC,∠C>∠B,且FD⊥BC于点D.2(1)试推出∠EFD,∠B,∠C之间的关系;(2)如图②,当点F在AE的延长线上时,其他条件不变,(1)中推导的结论还成立吗?请直接写出结论.20. 如图,AD是△ABC的角平分线,点E在BC的延长线上,求证:∠B+∠1=2∠2.21. 如图①,在平面直角坐标系中,A(0,1),B(4,1),C为x轴正半轴上一点,且AC平分∠OAB.(1)求证:∠OAC=∠OCA;(2)如图②,若分别作∠AOC的三等分线及∠OCA的邻补角的三等分线交于点P,即∠POC=1 3∠AOC,∠PCE=13∠ACE,求∠P的大小;(3)如图③,若∠POC=1n ∠AOC,∠PCE=1n∠ACE,猜想∠OPC的大小.(用含n的式子表示)答案1. B2. B【解析】由全等三角形的性质可知,B 正确.3. B 【解析】由题意得 a ⊥AB ,b ⊥AB ,∴a ∥b (在同一平面内,垂直于同一条直线的两条直线平行).4. A【解析】∵∠1 和 ∠2 是对顶角,∴∠1=∠2,故A 正确;∵∠2=∠A +∠3,∴∠2>∠3,故B 错误;∵∠1=∠4+∠5,故③错误;∵∠2=∠4+∠5,∴∠2>∠5,故D 错误.故选A .5. C【解析】如图,∵AB ∥CD ,∠2=37∘,∴∠2=∠3=37∘,∵∠1+∠3=90∘,∴∠1=53∘.6. B【解析】A .√9=3,3 的算术平方根是 √3,原命题是假命题,不符合题意;B .数据 −2,1,0,2,2,3 的平均数是 1,方差=16×[(−2−1)2+(1−1)2+(0−1)2+(2−1)2×2+(3−1)2]=83,原命题是真命题,符合题意;C .y =kx +b (k ,b 为常数,且 k ≠0)是一次函数,原命题是假命题,不符合题意;D .如果一个角的两边与另一个角的两边分别平行,那么这两个角相等或互补,原命题是假命题,不符合题意.故选B .7. A【解析】A 选项无法判断;∵∠ADB 是 △BCD 的一个外角,∴∠ADB >∠DBC ,∠ADB >∠ACB ,故选项B ,C 均成立;∵∠ACB 是 △CDE 的一个外角,∴∠ACB >∠DEC ,∴∠ADB >∠DEC ,故选项D 成立.8. C【解析】连接 BC ,∵AB∥CD,∴∠ABO+∠CBO+∠BCO+∠OCD=180∘,又∠CBO+∠BCO+∠BOC=180∘,∴∠BOC=∠ABO+∠DCO=α+60∘.9. B 【解析】过点P作PA∥a,∵a∥b,PA∥a,∴a∥b∥PA,∴∠1+∠MPA=180∘,∠3+∠APN=180∘,∴∠1+∠MPA+∠3+∠APN=180∘+180∘=360∘,∴∠1+∠2+∠3=360∘.10. D【解析】如图,由折叠得∠A=∠Aʹ,∵∠CEAʹ=∠A+∠1,∠1=∠Aʹ+∠BDAʹ,∴∠CEAʹ=∠A+∠Aʹ+∠BDAʹ=2∠A+∠BDAʹ,∴∠CEAʹ−∠BDAʹ=2∠A.故选D.11. 两条直线没有公共点,这两条直线互相平行,假12. 70【解析】如图,∵AB∥CD,∴∠2=∠A=110∘.又∵∠1+∠2=180∘,∴∠1=180∘−∠2=180∘−110∘=70∘.13. 20∘【解析】∵AB∥CD,∴∠ABF+∠EFC=180∘,∵∠EFC=130∘,∴∠ABF=50∘,∵∠A+∠E=∠ABF=50∘,∠E=30∘,∴∠A=20∘.14. 140∘【解析】如图,∵∠ACB=90∘,∠DCB=65∘,∴∠ACD=∠ACB−∠BCD=90∘−65∘=25∘,∵∠A=60∘,∴∠DFB=∠AFC=180∘−∠ACD−∠A=180∘−25∘−60∘=95∘,∵∠D=45∘,∴∠α=∠D+∠DFB=45∘+95∘=140∘.15. ∠A+∠ABC=180∘或∠C+∠ADC=180∘或∠CBD=∠ADB或∠C=∠CDE(答案不唯一)【解析】若∠A+∠ABC=180∘,则BC∥AD;若∠C+∠ADC=180∘,则BC∥AD;若∠CBD=∠ADB,则BC∥AD;若∠C=∠CDE,则BC∥AD,故答案为∠A+∠ABC=180∘或∠C+∠ADC=180∘或∠CBD=∠ADB或∠C=∠CDE(答案不唯一).16. 120【解析】如图,过点B作BG∥CD.∵CD∥AE,CD∥BG,∴∠C+∠CBG=180∘,BG∥AE,∴∠BAE+∠ABG=180∘,又易知∠BAE=90∘,∴∠ABG=90∘,∵∠C=150∘,∴∠CBG=30∘,∴∠ABC=∠ABG+∠CBG=90∘+30∘=120∘.17. 对顶角相等;等量代换;同位角相等,两直线平行;两直线平行,同位角相等;已知;CD;内错角相等,两直线平行;两直线平行,内错角相等18. ∵AD∥BC,∠EFG=55∘,∴∠2=∠GED,∠DEF=∠EFG=55∘,由折叠知∠GEF=∠DEF=55∘,∴∠GED=110∘,∴∠1=180∘−∠GED=70∘,∠2=110∘.19. (1)∠EFD=90∘−∠FED=90∘−(∠B+∠BAE)=90∘−∠B−12∠BAC=90∘−∠B−12(180∘−∠B−∠C)=90∘−∠B−90∘+12∠B+12∠C=12(∠C−∠B).(2)(1)中推导的结论仍成立,∠EFD=12(∠C−∠B).20. ∵AD是△ABC的角平分线,∴∠BAC=2∠BAD,∵∠1=∠B+∠BAC,∠2=∠B+∠BAD,∴∠B+∠1=∠B+∠B+∠BAC=2∠B+2∠BAD=2∠2.21. (1)∵A,B的纵坐标相等,所以AB∥OC,∴∠BAC=∠OCA,又AC平分∠OAB,∴∠OAC=∠BAC,∴∠OAC=∠OCA.(2)由(1)得∠OAC=∠OCA,∴OA=OC,∴∠OAC=∠OCA=45∘,∴∠ACE=135∘,∵∠POC=13∠AOC,∠PCE=13∠ACE,∴∠P=∠PCE−∠POC=13∠ACE−13∠AOC=13×(∠ACE−∠AOC)=13×(135∘−90∘)=15∘.(3)∠OPC=45∘n .证明:∠OPC=∠PCE−∠POC(∠ACE−∠AOC)=1n(135∘−90∘)=1n=45∘.n第11页(共12 页)第12页(共12 页)。
北师大版八年级上册数学第七章平行线的证明单元测试(含答案)
八年级上册数学第七章单元测试一、选择题(每题3分,共30分)1.命题“负数没有平方根”的条件是()A.如果一个数是正数B.如果一个数没有平方根C.如果一个数是负数D.如果一个数是非负数2.如图,下列能判定AB∥CD的条件有()(1)∠B+∠BCD=180°;(2)∠1=∠2;(3)∠3=∠4;(4)∠B=∠5.A.1个B.2个C.3个D.4个3.如图,直线AB∥CD,OG是∠EOB的平分线,∠EFD=70°,则∠BOG的度数是()A.70°B.20°C.35°D.40°4.如图所示,直线AB,CD相交于点O,OE⊥AB于点O,OF平分∠AOE,∠1=15°30′,则下列结论中不正确的是()A.∠2=45°B.∠1=∠3C.∠AOD与∠1互为补角D.∠1的余角等于75°30′5.如图,下列选项中,不可以得到l1∥l2的是()A.∠1=∠2 B.∠2=∠3 C.∠3=∠5 D.∠3+∠4=180°6.如图,把△ABC纸片沿DE折叠,则()A.∠A=∠1+∠2 B.2∠A=∠1+∠2C.3∠A=2∠1+∠2 D.3∠A=2(∠1+∠2)7.如图,五边形ABCDE中,AB∥CD,∠1、∠2、∠3分别是∠BAE、∠AED、∠EDC的外角,则∠1+∠2+∠3等于()A.90°B.180°C.210°D.270°8.如图,在△ABC中,AB=AC,∠BAC=100°,AB的垂直平分线DE分别交AB、BC于点D、E,则∠BAE为()A.80°B.60°C.50°D.40°9.如图,在△ABC中,∠B=38°,∠C=54°,AD是BC边上的高,AE是∠BAC 的平分线,则∠DAE的度数为()A.8°B.10°C.12°D.14°10.在三角板拼角活动中,小明将一副三角板按如图方式叠放,则拼出的∠α度数为()A.65°B.75°C.105°D.115°二、填空题(每题3分,共15分)11.在△ABC中,∠A∶∠B∶∠C=1∶2∶3,则∠A为________度.12.如图,AB∥CD,∠1=58°,FG平分∠EFD交AB于G,则∠FGB的度数为________.13.已知AD是△ABC的高,∠BAD=72°,∠CAD=21°,则∠BAC的度数是________.14.如图,在△ABC中,∠C=50°,按图中虚线将∠C剪去后,∠1+∠2等于________.15.如图,在△ABC中,BE平分∠ABC,CE平分∠ACB,∠A=65°,则∠BEC =________度.三、解答题(16题10分,17题7分,第18~21题每题8分,第22~23题每题13分,共75分)16.如图,点A、B、C、D在同一条直线上,EC∥FD,∠F=∠E,求证:AE ∥BF.将证明过程补充完整,并在括号内填写推理依据.证明:∵EC∥FD,()∴∠________=∠1.()∵∠F=∠E,(已知)∴∠________=∠________,()∴AE∥BF.()17.如图,D、E、F分别在△ABC的三条边上,DE∥AB,∠1+∠2=180°.(1)试说明:DF∥AC;(2)若∠1=100°,DF平分∠BDE,求∠C的度数.18.如图,∠AGF=∠ABC,∠1+∠2=180°.(1)试判断BF与DE的位置关系,并说明理由;(2)若BF⊥AC,∠2=145°,求∠AFG的度数.19.如图,已知BE∥CF,BE、CF分别平分∠ABC和∠BCD,求证:AB∥CD.20.如图,已知:DE⊥AO于点E,BO⊥AO于点O,∠CFB=∠EDO,证明:CF∥DO.21.如图,AD为△ABC的角平分线,DE∥AB,DE交AC于点E.若∠B=57°,∠C=65°,求∠ADE的度数.22.已知如图,点E在△ABC的边BC上,AD∥BC,∠DAE=∠BAC,∠1=∠2.(1)求证AB∥DE;(2)若已知AE平分∠BAC,∠C=35°,求∠2的度数.23.如图,点A、B分别在射线OM、ON上运动(不与点O重合).(1)如图1,若∠MON=90°,∠OBA、∠OAB的平分线交于点C,则∠ACB=________;(2)如图2,若∠MON=n°,∠OBA、∠OAB的平分线交于点C,则∠ACB=________;(3)如图2,若∠MON=n°,△AOB的外角∠ABN、∠BAM的平分线交于点D,求∠ACB与∠ADB之间的数量关系,并求出∠ADB的度数;(4)如图3,若∠MON=80°,BC是∠ABN的平分线,BC的反向延长线与∠OAB的平分线交于点E.试问:随着点A、B的运动,∠E的大小会变吗?如果不会,求出∠E的度数;如果会,请说明理由.答案一、1.C 2.C 3.C 4.D 5.C 6.B7.B8.D9.A10.C二、11.3012.151°13.51°或93°14.230°15.122.5三、16.已知;F;两直线平行,内错角相等;E;1;等量代换;内错角相等,两直线平行17.解:(1)∵DE∥AB,∴∠A=∠2.∵∠1+∠2=180°,∴∠A+∠1=180°,∴DF∥AC.(2)∵∠1=100°,∠1+∠2=180°,∴∠2=80°.∵AC∥DF,∴∠FDE=∠2=80°,∠C=∠BDF.∵DF平分∠BDE,∴∠BDF=80°,∴∠C=∠BDF=80°.18.解:(1)BF∥DE.理由如下:∵∠AGF=∠ABC,∴GF∥BC,∴∠1=∠3.∵∠1+∠2=180°,∴∠3+∠2=180°,∴BF∥DE.(2)∵BF⊥AC,∴∠BF A=90°.∵∠1+∠2=180°,∠2=145°,∴∠1=35°,∴∠AFG=90°-35°=55°.19.证明:∵BE∥CF,∴∠1=∠2.∵BE、CF分别平分∠ABC和∠BCD,∴∠ABC=2∠1,∠BCD=2∠2,∴∠ABC=∠BCD,∴AB∥CD.20.证明:∵DE⊥AO,BO⊥AO,∴∠AED=∠AOB=90°,∴DE∥BO,∴∠EDO=∠BOD.又∵∠EDO=∠CFB,∴∠BOD=∠CFB,∴CF∥DO.21.解:∵∠B=57°,∠C=65°,∴∠BAC=180°-57°-65°=58°.∵AD为△ABC的角平分线,∴∠BAD=∠DAC=29°.∵DE∥AB,∴∠ADE=∠BAD=29°.22. (1)证明:∵AD∥BC,∴∠DAE=∠2,∵∠1=∠2,∴∠DAE=∠1.∵∠DAE=∠BAC,∴∠BAC=∠1,∴AB∥DE.(2)解:∵∠DAE=∠BAC,∴∠BAE=∠DAC.∵AE平分∠BAC,∴∠EAC=∠BAE=∠DAC.∵AD∥BC,∴∠C=∠DAC=35°,∴∠EAC=∠DAC=35°,∴∠AEC=180°-∠EAC-∠C=110°,∴∠2=180°-∠AEC=70°.23.解:(1)135°(2)90°+12n°(3)∵BC、BD分别是∠OBA和∠NBA的平分线,∴∠ABC=12∠OBA,∠ABD=12∠NBA,∴∠ABC+∠ABD=12∠OBA+12∠NBA=12(∠OBA+∠NBA)=90°,即∠CBD=90°,同理:∠CAD=90°.∵四边形内角和等于360°,∴∠ACB+∠ADB=360°-90°-90°=180°,由(2)知:∠ACB=90°+12n°,∴∠ADB=180°-(90°+12n°)=90°-12n°,∴∠ACB+∠ADB=180°,∠ADB=90°-12n°.(4)∠E的度数不会变,∠E=40°.求解如下:∵∠NBA=∠AOB+∠OAB,∴∠OAB=∠NBA-∠AOB.∵AE、BC分别是∠OAB和∠NBA的平分线,∴∠BAE=12∠OAB,∠CBA=12∠NBA,∵∠CBA=∠E+∠BAE,∴12∠NBA=∠E+12∠OAB,∵12∠NBA=∠E+12(∠NBA-80°),即12∠NBA=∠E+12∠NBA-40°,∴∠E=40°.。
(word完整版)北师大版八年级上册数学第七章平行线的证明综合测试卷(含答案),推荐文档
北师大版八年级上册数学第七章平行线的证明综合测试卷(含答案)一、单选题(共10题;共30分)1、如图,△ABC中,∠ACB=90°, ∠A=30°,AC的中垂线交AC于E.交AB于D,则图中60°的角共有( )A、6个B、5个C、4个D、3个2、下列说法中正确的是( )A、原命题是真命题,则它的逆命题不一定是真命题B、原命题是真命题,则它的逆命题不是命题C、每个定理都有逆定理D、只有真命题才有逆命题3、下列命题是假命题的是( )A、如果a∥b,b∥c,那么a∥cB、锐角三角形中最大的角一定大于或等于60°C、两条直线被第三条直线所截,内错角相等D、矩形的对角线相等且互相平分4、如图,在梯形ABCD中,AB∥CD,AD=DC=CB,若,则A、130°B、125°C、115°D、50°5、如图,AB∥CD,∠D=∠E=35°,则∠B的度数为()A、60°B、65°C、70°D、75°6、下列条件中,能判定△ABC为直角三角形的是()A、∠A=2∠B=3∠CB、∠A+∠B=2∠CC、∠A=∠B=30°D、∠A=∠B=∠C7、下列四个命题,其中真命题有()(1)有理数乘以无理数一定是无理数;(2)顺次联结等腰梯形各边中点所得的四边形是菱形;(3)在同圆中,相等的弦所对的弧也相等;(4)如果正九边形的半径为a,那么边心距为a•sin20°.A、1个B、2个C、3个D、4个8、下列命题:①等腰三角形的角平分线、中线和高重合,②等腰三角形两腰上的高相等;③等腰三角形的最小边是底边;④等边三角形的高、中线、角平分线都相等;⑤等腰三角形都是锐角三角形.其中正确的有()A、1个B、2个C、3个D、4个9、下列命题中,真命题是()A、周长相等的锐角三角形都全等B、周长相等的直角三角形都全等C、周长相等的钝角三角形都全等D、周长相等的等腰直角三角形都全等10、如图,将三角板的直角顶点放在直角尺的一边上,∠1=30°,∠2=50°,则∠3的度数为()A、80B、50C、30D、20二、填空题(共8题;共26分)11、命题“三角形的一个外角等于和它不相邻的两个内角的和”的条件是________,结论________.12、如图,一张矩形纸片沿AB对折,以AB中点O为顶点将平角五等分,并沿五等分的折线折叠,再沿CD剪开,使展开后为正五角星(正五边形对角线所构成的图形),则∠OCD等于________.13、已知命题“如果一个四边形是平行四边形,那么这个四边形是旋转对称图形.”,写出它的逆命题是 ________,该逆命题是 ________命题(填“真”或“假”).14、如图,AB∥CD,∠A=56°,∠C=27°,则∠E的度数为________.15、写出定理“直角三角形斜边上的中线等于斜边的一半”的逆命题:________.16、已知,如图,在△ABC中,OB和OC分别平分∠ABC和∠ACB,过O作DE∥BC,分别交AB、AC于点D、E,若BD+CE=5,则线段DE的长为________.17、一个三角形的三个外角之比为5:4:3,则这个三角形内角中最大的角是________度.18、如图,在ABCD中,CH⊥AD于点H,CH与BD的交点为E.如果,,那么________三、解答题(共5题;共29分)19、如图,已知∠ABC=52°,∠ACB=60°,BO,CO分别是∠ABC和∠ACB的平分线,EF过点O,且平行于BC,求∠BOC的度数.20、如图,△ABC中,∠A=30°,∠B=62°,CE平分∠ACB,CD⊥AB于D,DF⊥CE于F,求∠CDF的度数.21、已知△ABC中,∠A=105°,∠B比∠C大15°,求:∠B,∠C的度数.22、如图,过∠AOB平分线上一点C作CD∥OB交OA于点D,E是线段OC的中点,请过点E画直线分别交射线CD、OB于点M、N,探究线段OD、ON、DM之间的数量关系,并证明你的结论.23、已知:如图,E、F是平行四边行ABCD的对角线AC上的两点,AE=CF。
北师大版八年级数学上册第7章《平行线的证明》单元测试(含答案)
第7章《平行线的证明》单元测试一、选择题(本题共10小题,每小题3分,共30分)1.下列语句中,是命题的为().A.延长线段AB到C B.垂线段最短C.过点O作直线a∥b D.锐角都相等吗2.下列命题中是真命题的为().A.两锐角之和为钝角B.两锐角之和为锐角C.钝角大于它的补角D.锐角大于它的余角3.“两条直线相交,有且只有一个交点”的题设是().A.两条直线B.交点C.两条直线相交D.只有一个交点4.如果∠A和∠B的两边分别平行,那么∠A和∠B的关系是().A.相等B.互余或互补C.互补D.相等或互补5.若三角形的一个外角等于与它不相邻的一个内角的4倍,等于与它相邻的内角的2倍,则三角形各角的度数为().A.45°,45°,90°B.30°,60°,90°C.25°,25°,130°D.36°,72°,72°6.如图所示,AB⊥EF,CD⊥EF,∠1=∠F=30°,则与∠FCD相等的角有().A.1个B.2个C.3个D.4个7.下列四个命题中,真命题有().(1)两条直线被第三条直线所截,内错角相等.(2)如果∠1和∠2是对顶角,那么∠1=∠2.(3)一个角的余角一定小于这个角的补角.(4)如果∠1和∠3互余,∠2与∠3的余角互补,那么∠1和∠2互补.A.1个B.2个C.3个D.4个8.如图所示,∠B=∠C,则∠ADC与∠AEB的大小关系是().A.∠ADC>∠AEB B.∠ADC=∠AEBC.∠ADC<∠AEB D.大小关系不能确定9.如图所示,AD平分∠CAE,∠B=30°,∠CAD=65°,则∠ACD=().A.50°B.65°C.80°D.95°10.如图所示,已知AB∥CD,AD和BC相交于点O,若∠A=42°,∠C=58°,则∠AOB 的度数为().A.45°B.60°C.80°D.90°二、填空题(本大题共10小题,每小题4分,共40分)11.如图所示,∠1=∠2,∠3=80°,那么∠4=__________.12.如图所示,∠ABC=36°40′,DE∥BC,DF⊥AB于点F,则∠D=__________.13.如图所示,AB∥CD,∠1=115°,∠3=140°,则∠2=__________.14.如果一个三角形三个内角的比是1∶2∶3,那么这个三角形是__________三角形.15.一个三角形的三个外角的度数比为2∶3∶4,则与此对应的三个内角的比为__________.16.如图所示,在△ABC中,BF平分∠ABC,CF平分∠ACB,∠A=65°,则∠BFC=__________.17.“同角的余角相等”的题设是__________,结论是__________.18.如图所示,AB∥EF∥CD,且∠B=∠1,∠D=∠2,则∠BED的度数为__________.19.如果一个等腰三角形底边上的高等于底边的一半,那么这个等腰三角形的顶角等于__________.20.过△ABC的顶点C作AB的垂线,如果该垂线将∠ACB分为40°和20°的两个角,那么∠A,∠B中较大的角的度数是__________.三、解答题(本大题共5小题,共30分)21.(5分)如图所示,已知∠1=∠2,AE∥BC,求证:△ABC是等腰三角形.22.(5分)如图所示,已知直线BF∥DE,∠1=∠2,求证:GF∥BC.23.(6分)如图所示,已知直线AB∥CD,FH平分∠EFD,FG⊥FH,∠AEF=62°,求∠GFC的度数.24.(6分)如图所示,已知直线AB∥CD,∠AEP=∠CFQ,求证:∠EPM=∠FQM.25.(8分)在△ABC中,BE平分∠ABC,AD为BC边上的高,且∠ABC=60°,∠BEC =75°,求∠DAC的度数.参考答案1答案:B2答案:C3答案:C4答案:D5答案:B6答案:B7答案:C8答案:B9答案:C10答案:C11答案:80°∴∠4=∠3=80°.12答案:53°20′13答案:75°14答案:直角15答案:5∶3∶116答案:122.5°17答案:两个角是同一个角的余角这两个角相等18答案:90°19答案:90°20答案:70°21证明:∵AE∥BC,(已知)∴∠2=∠C,(两直线平行,内错角相等)∠1=∠B.(两直线平行,同位角相等)∵∠1=∠2,(已知)∴∠B=∠C.(等量代换)∴AB=AC,△ABC是等腰三角形.(等角对等边)22证明:∵BF∥DE,(已知)∴∠2=∠FBC.(两直线平行,同位角相等)∵∠2=∠1,(已知)∴∠FBC=∠1.(等量代换)∴GF∥BC.(内错角相等,两直线平行)23解:∵AB∥CD,∴∠AEF=∠EFD=62°,∠CFE=180°-∠AEF=118°.又FH平分∠EFD,∴∠EFH=31°.又GF⊥FH,∴∠EFG=90°-31°=59°.∴∠GFC=∠CFE-∠EFG=59°24证明:∵AB∥CD,(已知)∴∠AEF=∠CFM.(两直线平行,同位角相等)又∵∠PEA=∠QFC,(已知)∴∠AEF+∠PEA=∠CFM+∠QFC,(等式性质)即∠PEF=∠QFM.∴PE∥QF.(同位角相等,两直线平行)∴∠EPM=∠FQM.(两直线平行,同位角相等)25解:∵BE平分∠ABC,且∠ABC=60°,∴∠ABE=∠EBC=30°.∴∠C=180°-∠EBC-∠BEC=180°-30°-75°=75°. 又∵∠C+∠DAC=90°,∴∠DAC=90°-∠C=90°-75°=15°.。
北师大八年级数学上《第七章平行线的证明》综合测评(含答案)
第七章 平行线的证明综合测评时间90分钟 满分120分班级:_________姓名:__________得分:________一、精心选一选(每小题3分,共24分) 1.下列命题是真命题的是( ) A.若a 2=b 2,则a=bB.若∠1+∠2=90º,则∠1与∠2互余C.若∠α与∠β是同位角,则∠α=∠βD.若a ⊥b ,b ⊥c ,则a ⊥c2.下列命题中,是公理的是( )A.等角的补角相等B.内错角相等,两直线平行C.两点之间线段最短D.三角形的内角和等于180º 3.如图1,下列条件能判定AB ∥CD 的是( )A.∠1+∠2=180ºB.∠3=∠2C.∠2=∠1D.∠1+∠3=180º4.如图2,已知AB ∥CD ,能得到∠1=∠2的依据是( )A.两直线平行,同位角相等B.同位角相等,两直线平行C.两直线平行,内错角相等D.内错角相等,两直线平行5.已知在△ABC 中,∠A ,∠B 的外角分别是120º,150º,则∠C 等于( ) A.60º B.90º C.120º D.150º6.下列选项中,可以用来证明命题“若a 2>1,则a >1”是假命题的反例是( ) A.a=-3 B.a=-1 C.a=1 D.a=37.如图3,已知∠2是△ABC 的一个外角,那么∠2与∠B+∠1的大小关系是( ) A.∠2>∠B+∠1 B.∠2=∠B+∠1 C.∠2<∠B+∠1 D.无法确定8.现有甲、乙、丙、丁、戊五个同学,他们分别来自一中、二中、三中.已知:①每所学校至少有他们中的一名学生;②在二中联欢会上,甲、乙、戊作为被邀请的客人演奏了小提琴;③乙过去曾在三中学习,后来转学了,现在同丁在同一个班学习;④丁、戊是同一所学校的三好学生.根据以上叙述可以断定甲所在的学校为( )A.三中B.二中C.一中D.不能确定 二、细心填一填(每小题4分,共32分)9.把命题“直角三角形的两锐角互余”改写成“如果……那么……”的形式是________. 10.如图4所示,添加一个条件______,可使AC ∥DE.图1 3 2DC BA 1 BA1 2 图2 CD E A BCD 21 图311.如图5,已知直线a ∥b ,小杜把直角三角尺的直角顶点放在直线b 上,若∠1=18°,则∠3的度数为____________.12.如图6,点D 为BC 延长线上的一点,∠A=∠ACB ,∠A=2∠B ,则∠ACD 的度数为________.13.下列几个命题:①若两个实数相等,则它们的平方相等;②若三角形的三边长a ,b ,c 满足(a -b)(a+b)+c 2=0;则这个三角形是直角三角形;③有两边和一角分别相等的两个三角形全等.其中是假命题的有_________(填序号). 14.如图7,把一个长方形ABCD 纸片沿EF 折叠后,点D ,C 分别落在D ',C '的位置,若∠AED '=30º, 则∠CFE=_____________°.15. 如图8,把一块含有30°角(∠A=30°)的直角三角尺ABC 的直角顶点放在长方形桌面CDEF (CD ∥EF )的一个顶点C 处,桌面的另一个顶点F 与三角尺斜边相交于点F ,如果∠1=40°,那么∠AFE=________°.16.小明同学连续观察了太原市2014年8月份某几天的天气情况,他的观察结果是:①共有5个下午是晴天;②共有7个上午是晴天;③共有8个半天是雨天;④下午下雨的那天上午是晴天,则该学生观察的天数为_________.三、耐心做一做(共64分) 17.(8分)读句画图:如图9,直线CD 与直线AB 相交于点C ,根据下列语句画图:(1)过点P 作PQ ∥CD ,交AB 于点Q ; (2)过点P 作PR ⊥CD ,垂足为R ;(3)若∠DCB =120°,猜想∠PQC 是多少度?并说明理由.18.(10分)如图10,已知点B ,D ,G 在同一条直线上,AB ∥CD ,∠1=∠2,请问BE 与DF 平行吗?为什么?A B C D E F 图4 2 b 1 a 3图5A B C 图6 D 图7A B CD E F D 'C '图9 1 2 A BCD E F 图10G19.(10分)已知:如图11,在△ABC 中,D 为BC 上一点,∠1=∠2,∠3=∠4,∠BAC =120°,求∠DAC 的度数.20.(10分)阅读理解:如果三角形满足一个角α是另一个角β的3倍时,那么我们称这个三角形为“智慧三角形”.其中α称为“智慧角”.解答问题:⑵ 一个角为60º的直角三角形______(填“是”或“不是”)“智慧三角形”,若是,“智慧角”是_____.⑵已知一个“智慧三角形”的“智慧角”为108°,求这个“智慧三角形”各个角的度数.21.(12分) 如图12已知四边形ABCD 中,BC ⊥AB ,CF 平分∠DCB ,∠DCF +∠BAE =90°,试判断AE 与CF 的位置关系,并说明理由.22.(14分)数学活动课上,老师提出了一个问题:我们知道,三角形的一个外角等于和它不相邻的两个内角的和,那么三角形的一个内角与它不相邻的两个外角的和之间存在何种数量关系?(1)独立思考,请你完成老师提出的问题:如图13所示,已知∠DBC 和∠BCE 分别为△ABC 的两个外角,试探究∠A 和∠DBC ,∠BCE 之间的数量关系. 解:⑵合作交流,“创新小组”受此问题的启发:分别作外角∠CBD 和∠BCE 的平分线BF 和CF ,交于点F (如图14所示),那么∠A 与∠F 之间有何数量关系?请写出解答过程.AB D EC 图13 A B DEC 图11 图12(拟题张华)第七章平行线的证明综合测评(一)一、1.B 2.C 3.C 4.C 5.B 6.A 7.A 8.A二、9.如果一个三角形是直角三角形,那么这个三角形的两锐角互余10.答案不唯一,如∠A=∠BDE11.72º12.108º13. ③14.105 15.1016.10天提示:由题意知,小明同学每天测两次,共测的次数为7+5+8=20.因此他共测了20÷2=10(天).三、17.解:(1)(2)如图所示.(3)∠PQC=60°.理由:因为PQ∥CD,所以∠DCB+∠PQC=180°.因为∠DCB=120°,所以∠PQC=180°-120°=60°.18.解:BE∥DF.理由:因为AB∥CD,所以∠ABG=∠CDG .因为∠1=∠2,所以∠ABG-∠2=∠CDG-∠1,即∠EBG=∠FDG.所以BE∥DF.19.解:因为∠BAC=120°,所以∠2+∠3=60°.①因为∠1=∠2,所以∠4=∠3=∠1+∠2=2∠2.②把②代入①,得3∠2=60°,所以∠2=20°. 所以∠1=∠2=20°.所以∠DAC=∠BAC-∠1=120°-20°=100°.20.解:⑴是90º⑵因为这个“智慧三角形”的“智慧角”为108°,所以另一个角为108º÷3=36º,第三个内角为180º-108º-36º=36º.即这个“智慧三角形”各个角的度数分别为108°,36°,36°.21.调北八13~14学年第一学期20期3版22题答案.22.解:⑴∠DBC+∠BCE-∠A=180º.证明:∠DBC+∠BCE =180º-∠ABC+180°-∠ACB=360º-(∠ABC+∠ACB)=360°-(180°-∠A)=180°+∠A.即∠DBC+∠BCE-∠A=180º.⑵∠A+∠F=90º.证明:因为BF和CF分别平分∠CBD和∠BCE,所以∠CBF=∠CBD,∠BCF=∠BCE.所以∠CBF+∠BCF=(∠CBD+∠BCE).因为∠CBF+∠BCF=180º-∠F,由(1)知,∠DBC+∠BCE=180º+∠A.所以180º-∠F=∠CBF+∠BCF=(∠DBC+∠BCE)=(180º+∠A).所以∠A+∠F=90º.。
北师大版八年级数学上《第七章 平行线的证明》单元测试卷.docx
初中数学试卷 桑水出品八年级(上)《第七章 平行线的证明》单元测试卷班级________ 姓名______ _ 座号________得分一.选择题(每小题3分,共30分)1.下列语句是命题的是 【 】(A)延长线段AB (B)你吃过午饭了吗? (C)直角都相等 (D)连接A ,B 两点2.如图,已知∠1+∠2=180º,∠3=75º,那么∠4的度数是 【 】(A)75º (B)45º (C)105º (D)135º3以下四个例子中,不能作为反例说明“一个角的余角大于这个角”是假命题是 【 】(A)设这个角是30º,它的余角是60°,但30°<60°(B)设这个角是45°,它的余角是45°,但45°=45°(C)设这个角是60°,它的余角是30°,但30°<60°(D)设这个角是50°,它的余角是40°,但40°<50°4.若三角形的一个内角等于另外两个内角之差,则这个三角形是 【 】(A)锐角三角形 (B)直角三角形 (C)钝角三角形 (D)不能确定5.如图,△ABC 中,∠B =55°,∠C =63°,DE ∥AB ,则∠DEC 等于【 】(A )63°(B) 118° (C) 55° (D )62° 6.若三角形的一个内角等于另外两个内角之差,则这个三角形是 【 】(A)锐角三角形 (B)直角三角形 (C)钝角三角形 (D)不能确定7.如图,△ABC 中,∠B =55°,∠C =63°,DE ∥AB ,则∠DEC 等于【 】(A )63°(B) 118° (C) 55° (D )62° 8.三角形的一个外角是锐角,则此三角形的形状是 【 】第2题 D A E D A E(A ) 锐角三角形 (B)钝角三角形 (C)直角三角形 (D )无法确定二、填空题(每题4分,共32分)9.在△ABC 中,∠C =2(∠A +∠B ),则∠C =________.10.如图,AB ∥CD ,直线EF 分别交AB 、CD 于E 、F ,EG 平分∠BEF ,若∠1=72º ,则∠2= ; 11.在△ABC 中,∠BAC =90º,AD ⊥BC 于D ,则∠B 与∠DAC 的大小关系是________12.写出“同位角相等,两直线平行”的题设为_______,结论为_______.13.如图,已知AB ∥CD ,BC ∥DE ,那么∠B +∠D =__________.14.如图,∠1=27º,∠2=95º,∠3=38º,则∠4=_______15.如图,写出两个能推出直线AB ∥CD 的条件________________________. 16.满足一个外角等于和它相邻的一个内角的△ABC 是_____________ 四、(每小题12分,共24分)17.如图,AD=CD ,AC 平分∠DAB ,求证DC ∥AB .18.如图,已知∠1=20°,∠2=25°,∠A =55°,求∠BDC 的度数.19.如图,BE ,CD 相交于点A ,∠DEA 、∠BCA 的平分线相交于F .(1)探求:∠F 与∠B 、∠D 有何等量关系?(2)当∠B ︰∠D ︰∠F =2︰4︰x 时,x 为多少?20.如图,已知点A 在直线l 外,点B 、C 在直线l 上.(1)点P 是△ABC 内一点,求证:∠P >∠A ;(2)试判断:在△ABC 外又和点A 在直线l 同侧,是否存在一点Q ,使∠BQC >∠A ?试证明你的结论.C A BDE E C D B A 1 3 2 4 第13题 第14题 第15题A B C DE F G 12。
北师大版初中数学八年级上册《第7章 平行线的证明》单元测试卷(含答案解析
北师大新版八年级上学期《第7章平行线的证明》单元测试卷一.选择题(共15小题)1.下列说法正确的有()①两点之间的所有连线中,线段最短;②相等的角叫对顶角;③过一点有且只有一条直线与已知直线平行;④过一点有且只有一条直线与已知直线垂直;⑤两点之间的距离是两点间的线段;⑥在同一平面内的两直线位置关系只有两种:平行或相交.A.1个B.2个C.3个D.4个2.同一平面内的两条线段,下列说法正确的是()A.一定平行B.一定相交C.可以既不平行又不相交D.不平行就相交3.下列说法中可能错误的是()A.过直线外一点有且只有一条直线与已知直线平行B.过一点有且只有一条直线与已知直线垂直C.两条直线相交,有且只有一个交点D.若两条直线相交成直角,则这两条直线互相垂直4.下列说法正确的是()A.不相交的两条射线一定平行B.在同一平面内,过一点有且只有一条直线与这条直线平行C.在同一平面内,过一点有且只有一条直线与这条直线垂直D.直线外一点与直线上任一点的连线段叫做点到直线的距离5.如图,直线l3⊥l4,且∠1=∠4,则下列判断正确的是()A.l1∥l2B.∠1+∠4=∠2+∠3C.∠1+∠4=90°D.∠2=∠46.如图,△ABC中,∠ABC、∠ACB的三等分线交于点E、D,若∠BFC=120°,∠BGC=102°,则∠A的度数为()A.34°B.40°C.42°D.46°7.如图,△ABC中,BD、BE分别是高和角平分线,点F在CA的延长线上,FH ⊥BE,交BD于点G,交BC于点H.下列结论:①∠DBE=∠F;②2∠BEF=∠BAF+∠C;③∠F=∠BAC﹣∠C;④∠BGH=∠ABE+∠C.其中正确个数是()A.4个B.3个C.2个D.1个8.如图,在Rt△ABC中,∠ACB=90°,点D在AB边上,将△CBD沿CD折叠,使点B恰好落在AC边上的点E处,若∠A=26°,则∠ADE度数为()A.71°B.64°C.38°D.45°9.如图,BD,CD分别是内角∠ABC和外角∠ACE的平分线,若∠A=70°,则∠D=()A.30°B.35°C.40°D.45°10.如图,∠ABD、∠ACD的角平分线交于点P,若∠A=55°,∠D=15°,则∠P 的度数为()A.15°B.20°C.25°D.30°11.下列命题中,是真命题的是()A.任何数都有平方根B.只有正数才有平方根C.负数没有立方根D.存在算术平方根等于本身的数12.对于命题“若a2>b2,则a>b.”下列关于a,b的值中,能说明这个命题是假命题的是()A.a=2,b=3B.a=﹣3,b=2C.a=3,b=﹣2D.a=﹣2,b=3 13.命题:①一个三角形中至少有两个锐角;②垂直于同一条直线的两条直线垂直;③如果两个有理数的积小于0,那么这两个数的和也小于0.其中为真命题的有()A.0个B.1个C.2个D.3个14.小柔要榨果汁,她有苹果、芭乐、柳丁三种水果,且其颗数比为9:7:6,小柔榨完果汁后,苹果、芭乐、柳丁的颗数比变为6:3:4,已知小柔榨果汁时没有使用柳丁,关于她榨果汁时另外两种水果的使用情形,下列叙述何者正确?()A.只使用苹果B.只使用芭乐C.使用苹果及芭乐,且使用的苹果颗数比使用的芭乐颗数多D.使用苹果及芭乐,且使用的芭乐颗数比使用的苹果颗数多15.小明、小林和小颖共解出100道数学题,每人都解出了其中的60道,如果将其中只有1人解出的题叫做难题,2人解出的题叫做中档题,3人都解出的题叫做容易题,那么难题比容易题多多少道()A.15B.20C.25D.30二.填空题(共15小题)16.平面上不重合的四条直线,可能产生交点的个数为个.17.下列说法中:①棱柱的上、下底面的形状相同;②若AB=BC,则点B为线段AC的中点;③相等的两个角一定是对顶角;④在同一平面内,不相交的两条直线叫做平行线;⑤直线外一点与直线上各点连接的所有线段中,垂线段最短.正确的有.(只填序号)18.已知:a∥b,b∥c,则a∥c.理由是.19.已知直线a∥b,b∥c,则直线a、c的位置关系是.20.如图,添加一个条件(不再添加字母),使得AB∥CD,你添加的条件是.21.如图,△ABC中,∠ACB=90°,沿CD边折叠△CBD,使点B恰好落在AC边上点E处,若∠A=32°;则∠BDC=°.22.在△ABC中,∠B=58°,三角形的外角∠DAC和∠ACF的平分线交于点E,则∠AEC=.23.如图,在△ABC中,AD是高,AE平分∠BAC,∠B=50°,∠C=80°,则∠DAE=.24.如图,△ABC沿直线AB向下翻折得到△ABD,若∠ABC=25°,∠ADB=110°,则∠DAC的度数是.25.如图,△ABE和△ACD是△ABC分别以AB、AC为对称轴翻折180°形成的,若∠1:∠2:∠3=29:4:3,则∠α的度数为.26.“若实数a,b,c满足a<b<c,则a+b<c”,能够说明该命题是假命题的一组a,b,c的值依次为.27.举反例说明命题对于“对于任意实数x,代数式x2﹣1的值总是正数”是假命题,你举的反例是x=(写出一个x的值即可).28.下列命题:①若a2=b2,则a=b;②点(﹣2,1)关于y轴的对称点为(2,1);③两组对边分别相等的四边形是平心四边形,其中真命题有(填写序号).29.重庆一中乘持“尊重自由、激发自觉”的教育理念,开展了丰富多彩的第二课堂及各种有趣有益的竟赛活动.其中“小棋王”争霸赛得到同学们的涵跃参与,经过初选、复试最后十位同学进入决赛这十位同学进行单循环比赛(每两人均赛一局),胜一局得2分、平局得1分、负一局得0分,最后按照每人的累计得分的多少进行排名,得分最高者就是第一名,以此类推.赛完后发现每人最后得分均不相同,第一名和第二名的同学均没负一局,他们两人的得分之和比第三名同学多20分,第四名同学的得分刚好是最后四名同学得分的总和,则第五名的同学得分为分.30.小敏中午放学回家自己煮面条吃.有下面几道工序:①洗锅盛水2min;②洗菜3min;③准备面条及佐料2min;④用锅把水烧开7min;⑤用烧开的水煮面条和菜要3min.以上各道工序,除④外,一次只能进行一道工序.小敏要将面条煮好,最少需要min.三.解答题(共20小题)31.填空并完成以下证明:已知,如图,∠1=∠ACB,∠2=∠3,FH⊥AB于H,求证:CD⊥AB.证明:FH⊥AB(已知)∴∠BHF=.∵∠1=∠ACB(已知)∴DE∥BC()∴∠2=.()∵∠2=∠3(已知)∴∠3=.()∴CD∥FH()∴∠BDC=∠BHF=.°()∴CD⊥AB.32.如图,已知直线AB、CD被直线EF所截,FG平分∠EFD,∠1=∠2=80°,求∠BGF的度数.解:因为∠1=∠2=80°(已知),所以AB∥CD()所以∠BGF+∠3=180°()因为∠2+∠EFD=180°(邻补角的性质).所以∠EFD=.(等式性质).因为FG平分∠EFD(已知).所以∠3=∠EFD(角平分线的性质).所以∠3=.(等式性质).所以∠BGF=.(等式性质).33.如图,在四边形ABCD中,∠A=∠B,CB=CE.求证:CE∥AD.34.如图,已知∠1=∠2求证:a∥b.35.已知:如图,∠1=∠2,∠C=∠D.求证:∠A=∠F.证明:∵∠1=∠2(已知),又∠1=∠DMN(),∴∠2=∠(等量代换),∴DB∥EC(),∴∠DBC+∠C=180°(两直线平行,),∵∠C=∠D(),∴∠DBC+ =180°(等量代换),∴DF∥AC(,两直线平行),∴∠A=∠F()36.(1)如图(a),如果∠B+∠E+∠D=360°,那么AB、CD有怎样的关系?为什么?解:过点E作EF∥AB ①,如图(b),则∠ABE+∠BEF=180°,()因为∠ABE+∠BED+∠EDC=360°()所以∠FED+∠EDC=°(等式的性质)所以FE∥CD ②()由①、②得AB∥CD ().(2)如图(c),当∠1、∠2、∠3满足条件时,有AB∥CD.(3)如图(d),当∠B、∠E、∠F、∠D满足条件时,有AB∥CD.37.填空,如图,已知∠1=∠2,∠C=∠D,求证:∠A=∠F.证明:∵∠1=∠2(已知)又∠1=∠DMN ()∴∠2=∠DMN(等量代换)∴DB∥EC ()∴∠DBC+∠C=180°()∵∠C=∠D(已知)∴∠DBC+ =180°(等量代换)∴DF∥AC ()∴∠A=∠F ()38.如图,在△ABC中,CD⊥AB,垂足为D,点E在BC上,EF⊥AB,垂足为F.(1)CD与EF平行吗?为什么?(2)如果∠1=∠2,且∠3=115°,求∠ACB的度数.39.如图,在△ABC中,AD⊥BC于D,AE平分EBAC.(1)若∠B=70°,∠C=40°,求∠DAE的度数.(2)若∠B﹣∠C=30°,则∠DAE=.(3)若∠B﹣∠C=α(∠B>∠C),求∠DAE的度数(用含α的代数式表示)40.如图,在△ABC中,∠1=∠2,∠3=∠4,∠BAC=54°,求∠DAC的度数.41.在△ABC中,∠C>∠B,AE平分∠BAC,F为射线AE上一点(不与点E重合),且FD⊥BC于D.(1)如图①,当点F与点A重合,且∠C=50°,∠B=30°时,求∠EFD的度数,并直接写出∠EFD与(∠C﹣∠B)之间的数量关系.(2)如图②,当点F在线段AE上(不与点A重合),∠EFD与∠C﹣∠B有怎样的数量关系?并说明理由.(3)当点F在△ABC外部时,在图③中画出符合题意的图形,并直接写出∠EFD 与∠C﹣∠B的数量关系.42.如图,AB和CD相交于点O,EF∥AB,∠C=∠COA,∠D=∠BOD.求证:∠A=∠F.43.如图所示,在△ABC中,BO、CO是角平分线.(1)∠ABC=50°,∠ACB=60°,求∠BOC的度数,并说明理由.(2)题(1)中,如将“∠ABC=50°,∠ACB=60°”改为“∠A=70°”,求∠BOC的度数.(3)若∠A=n°,求∠BOC的度数.44.如图,在小学我们通过观察、实验的方法得到了“三角形内角和是180°”的结论.小明通过这学期的学习知道:由观察、实验、归纳、类比、猜想得到的结论还需要通过证明来确认它的正确性.受到实验方法1的启发,小明形成了证明该结论的想法:实验1的拼接方法直观上看,是把∠1和∠2移动到∠3的右侧,且使这三个角的顶点重合,如果把这种拼接方法抽象为几何图形,那么利用平行线的性质就可以解决问题了.小明的证明过程如下:已知:如图,△ABC.求证:∠A+∠B+∠C=180°.证明:延长BC,过点C作CM∥BA.∴∠A=∠1(两直线平行,内错角相等),∠B=∠2(两直线平行,同位角相等).∵∠1+∠2+∠ACB=180°(平角定义),∴∠A+∠B+∠ACB=180°.请你参考小明解决问题的思路与方法,写出通过实验方法2证明该结论的过程.45.在数学实践课上,老师在黑板上画出如下的图形(其中点B、F、C、E在同一条直线上),并写出四个条件:①AB=DE,②∠1=∠2.③BF=EC,④∠B=∠E,交流中老师让同学们从这四个条件中选出三个作为题设,另一个作为结论,组成一个真命题.(1)写出所有的真命题.(用序号表示题设、结论)(2)请选择一个给予证明.46.如图,∠ABC的两边分别平行于∠DEF的两条边,且∠ABC=45°.(1)图1中:∠DEF=,图2中:∠DEF=;(2)请观察图1、图2中∠DEF分别与∠ABC有怎样的关系,请你归纳出一个命题.47.如图,在△ABC和△DCB中,AC与BD交于点E,现有三个条件:①AB=DC;②∠A=∠D,③∠1=∠2,请你从三个条件中选出两个作为条件,另一个作为结论,组成一个真命题,并给予证明.(1)条件是;结论是(填序号);(2)证明.48.某学校运动会的立定跳远和30秒跳绳两个单项比赛分成预赛和决赛两个阶段.下表为10名学生的预赛成绩,其中有三个数据模糊.在这10名学生中,进入立定跳远决赛的有8人,同时进入立定跳远决赛和30秒跳绳决赛的有6人,请你根据表中数据猜一下2号,5号,8号,9号学生哪一个进入30秒跳绳决赛.说明你的理由.49.四个足球队进行单循环比赛,规定胜一场得3分,平一场得1分,负一场得0分,有一个队一场都没输过,排名却倒数第一,你觉得可能吗?如果可能,请举出这情况何时出现;如果不可能,请说明理由.50.我们的数学教材中有一个“抢30的游戏”,现在改为“甲、乙二人抢20”的游戏.游戏规则是:甲先说“1”或“1、2”乙接着甲的数往下说一个或两个数,然后又轮到甲再接着乙的数往下说一个或两个数,甲、乙反复轮流说,每次每人说一个或两个数都可以,但不能连续说三个数,也不能一个数也不说.谁先抢到20,谁就获胜.因为甲先说,你认为谁会获胜?请你分析获胜策略、推理说明获胜的道理.北师大新版八年级上学期《第7章平行线的证明》单元测试卷参考答案与试题解析一.选择题(共15小题)1.下列说法正确的有()①两点之间的所有连线中,线段最短;②相等的角叫对顶角;③过一点有且只有一条直线与已知直线平行;④过一点有且只有一条直线与已知直线垂直;⑤两点之间的距离是两点间的线段;⑥在同一平面内的两直线位置关系只有两种:平行或相交.A.1个B.2个C.3个D.4个【分析】①根据两点之间线段最短判断.②对顶角:有一个公共顶点,并且一个角的两边分别是另一个角的两边的反向延长线,具有这种位置关系的两个角,互为对顶角.③根据平行公理进行判断.④根据垂线的性质进行判断.⑤距离是指的长度.⑥根据在同一平面内,两条不重合的直线的位置关系.【解答】解:①两点之间的所有连线中,线段最短,故①正确.②相等的角不一定是对顶角,故②错误.③经过直线外一点有且只有一条直线与已知直线平行,故③错误.④平面内过一点有且只有一条直线与已知直线垂直,故④错误.⑤两点之间的距离是两点间的线段的长度,故⑤错误.⑥在同一平面内,两直线的位置关系只有两种:相交和平行,故⑥正确.综上所述,正确的结论有2个.故选:B.【点评】本题主要考查对平行线的定义,两点间的距离,相交线等知识点的理解和掌握,能熟练地运用性质进行说理是解此题的关键.2.同一平面内的两条线段,下列说法正确的是()A.一定平行B.一定相交C.可以既不平行又不相交D.不平行就相交【分析】根据线段是任意两点之间的距离,它有长度,故同一平面内的两条线段可以既不平行又不相交.【解答】解:根据线段的定义得出:同一平面内的两条线段,可以既不平行又不相交,故选:C.【点评】此题主要考查了线段的定义以及线段之间的位置关系,利用线段定义得出是解题关键.3.下列说法中可能错误的是()A.过直线外一点有且只有一条直线与已知直线平行B.过一点有且只有一条直线与已知直线垂直C.两条直线相交,有且只有一个交点D.若两条直线相交成直角,则这两条直线互相垂直【分析】根据平行公理和相交线、垂线的定义利用排除法求解.【解答】解:A、过直线外一点有且只有一条直线与已知直线平行,故本选项正确;B、应该是同一平面内,过一点有且只有一条直线与已知直线垂直,故本选项错误;C、两条直线相交,有且只有一个交点,故本选项正确;D、若两条直线相交成直角,则这两条直线互相垂直,直线垂直的定义,故本选项正确.故选:B.【点评】本题主要考查公理定义,熟练记忆公理和定义是学好数学的关键.4.下列说法正确的是()A.不相交的两条射线一定平行B.在同一平面内,过一点有且只有一条直线与这条直线平行C.在同一平面内,过一点有且只有一条直线与这条直线垂直D.直线外一点与直线上任一点的连线段叫做点到直线的距离【分析】根据射线在一直线上课判断A;根据平行公理的推论课判断B;根据点到直线的距离定义可判断D;根据垂线的性质可判断C.【解答】解:A、当两射线在一直线上时就不平行,故本选项错误;B、过直线外一点有且只有一条直线平行于已知直线,故本选项错误;C、在同一平面内,过一点有且只有一条直线垂直于已知直线,故本选项正确;D、过直线外一点作直线的垂线,这点和垂足之间的线段的长是点到直线的距离,故本选项错误;故选:C.【点评】本题考查了对平行公理及推论,垂线,点到直线的距离等知识点的应用,关键是能根据定理和性质进行判断.5.如图,直线l3⊥l4,且∠1=∠4,则下列判断正确的是()A.l1∥l2B.∠1+∠4=∠2+∠3C.∠1+∠4=90°D.∠2=∠4【分析】利用两直线平行,同位角相等与垂直的定义,对选项一一分析,排除错误答案.【解答】解:A、正确,∵∠1=∠4,∴l1∥l2(同位角相等,两直线平行).B、错误,应为∠1+∠2=∠3+∠4.C、错误,应为∠1+∠2=90°或∠3+∠4=90°.D、错误,应为∠2=∠3.故选:A.【点评】本题此题综合考查了两直线平行,同位角相等的性质和垂直的定义.6.如图,△ABC中,∠ABC、∠ACB的三等分线交于点E、D,若∠BFC=120°,∠BGC=102°,则∠A的度数为()A.34°B.40°C.42°D.46°【分析】设∠GBC=x,∠DCB=y,在△BFC和△BGC中,根据三角形内角和定理列方程,相加可得:3x+3y的值,即可求得∠A的度数.【解答】解:设∠GBC=x,∠DCB=y,在△BFC中,2x+y=180°﹣120°=60°①,在△BGC中,x+2y=180°﹣102°=78°②,解得:①+②:3x+3y=138°,∴∠A=180°﹣(3x+3y)=180°﹣138°=42°,故选:C.【点评】本题考查了三角形的内角和定理、三等分线的定义,利用整体的思想解决问题比较简便.7.如图,△ABC中,BD、BE分别是高和角平分线,点F在CA的延长线上,FH ⊥BE,交BD于点G,交BC于点H.下列结论:①∠DBE=∠F;②2∠BEF=∠BAF+∠C;③∠F=∠BAC﹣∠C;④∠BGH=∠ABE+∠C.其中正确个数是()A.4个B.3个C.2个D.1个【分析】①根据BD⊥FD,FH⊥BE和∠FGD=∠BGH,证明结论正确;②根据角平分线的定义和三角形外角的性质证明结论正确;③证明∠DBE=∠BAC﹣∠C,根据①的结论,判断出错误;④根据角平分线的定义和三角形外角的性质证明结论正确.【解答】解:①∵BD⊥FD,∴∠FGD+∠F=90°,∵FH⊥BE,∴∠BGH+∠DBE=90°,∵∠FGD=∠BGH,∴∠DBE=∠F,①正确;②∵BE平分∠ABC,∴∠ABE=∠CBE,∠BEF=∠CBE+∠C,∴2∠BEF=∠ABC+2∠C,∠BAF=∠ABC+∠C,∴2∠BEF=∠BAF+∠C,②正确;③∠ABD=90°﹣∠BAC,∠DBE=∠ABE﹣∠ABD=∠ABE﹣90°+∠BAC=∠CBD﹣∠DBE﹣90°+∠BAC,∵∠CBD=90°﹣∠C,∴∠DBE=∠BAC﹣∠C﹣∠DBE,由①得,∠DBE=∠F,∴∠F=∠BAC﹣∠C﹣∠DBE,③错误;④∵∠AEB=∠EBC+∠C,∵∠ABE=∠CBE,∴∠AEB=∠ABE+∠C,∵BD⊥FC,FH⊥BE,∴∠FGD=∠FEB,∴∠BGH=∠ABE+∠C,④正确,∴正确的有①②④,共三个,故选:B.【点评】本题考查的是三角形内角和定理,正确运用三角形的高、中线和角平分线的概念以及三角形外角的性质是解题的关键8.如图,在Rt△ABC中,∠ACB=90°,点D在AB边上,将△CBD沿CD折叠,使点B恰好落在AC边上的点E处,若∠A=26°,则∠ADE度数为()A.71°B.64°C.38°D.45°【分析】由折叠的性质可求得∠ACD=∠BCD,∠BDC=∠CDE,在△ACD中,利用外角可求得∠BDC,即可解决问题.【解答】解:由折叠可得∠ACD=∠BCD,∠BDC=∠CDE,∵∠ACB=90°,∴∠ACD=45°,∵∠A=26°,∴∠BDC=∠A+∠ACD=26°+45°=71°,∴∠ADE=180°﹣71°﹣71°=38°故选:C.【点评】本题主要考查折叠的性质,掌握折叠前后图形的对应线段和对应角相等是解题的关键.9.如图,BD,CD分别是内角∠ABC和外角∠ACE的平分线,若∠A=70°,则∠D=()A.30°B.35°C.40°D.45°【分析】根据角平分线的定义得到∠DCE=∠ACE,∠DBC=∠ABC,根据三角形的外角的性质计算即可.【解答】解:∵BD,CD分别是∠ABC与外角∠ACE的平分线,∴∠DCE=∠ACE,∠DBC=∠ABC,∵∠ACE﹣∠ABC=∠A=70°,∴∠D=∠DCE﹣∠DBC=∠A=35°,故选:B.【点评】本题考查的是三角形的外角的性质,掌握三角形的一个外角等于和它不相邻的两个内角的和是解题的关键.10.如图,∠ABD、∠ACD的角平分线交于点P,若∠A=55°,∠D=15°,则∠P 的度数为()A.15°B.20°C.25°D.30°【分析】延长PC交BD于E,根据角平分线的定义可得∠1=∠2,∠3=∠4,再根据三角形的内角和定理可得∠A+∠1=∠P+∠3,然后根据三角形的一个外角等于与它不相邻的两个内角的和表示出∠5,整理可得∠P=(∠A﹣∠D),然后代入数据计算即可得解.【解答】解:如图,延长PC交BD于E,∵∠ABD,∠ACD的角平分线交于点P,∴∠1=∠2,∠3=∠4,由三角形的内角和定理得,∠A+∠1=∠P+∠3①,在△PBE中,∠5=∠2+∠P,在△DCE中,∠5=∠4﹣∠D,∴∠2+∠P=∠4﹣∠D②,①﹣②得,∠A﹣∠P=∠P+∠D,∴∠P=(∠A﹣∠D),∵∠A=55°,∠D=15°,∴∠P=(55°﹣15°)=20°.故选:B.【点评】本题考查了三角形的内角和定理,三角形的一个外角等于与它不相邻的两个内角的和的性质,熟记性质并作辅助线然后整理出∠A、∠D、∠P三者之间的关系式是解题的关键.11.下列命题中,是真命题的是()A.任何数都有平方根B.只有正数才有平方根C.负数没有立方根D.存在算术平方根等于本身的数【分析】根据平方根的定义,结合正数有两个平方根;0的平方根是0;负数没有平方根逐一进行判定即可.【解答】解:A、因负数没有平方根,故任何数都有平方根错误;B、因0的平方根是0,故只有正数才有平方根错误;C、负数有立方根,错误;D、存在算术平方根等于本身的数,即是1和0,正确.故选:D.【点评】本题考查了平方根的定义.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.注意:1或0平方等于它的本身.12.对于命题“若a2>b2,则a>b.”下列关于a,b的值中,能说明这个命题是假命题的是()A.a=2,b=3B.a=﹣3,b=2C.a=3,b=﹣2D.a=﹣2,b=3【分析】说明命题为假命题,即a、b的值满足a2>b2,但a>b不成立,把四个选项中的a、b的值分别代入验证即可.【解答】解:在A中,a2=4,b2=9,且3>2,此时不但不满足a2>b2,也不满足a>b不成立故A选项中a、b的值不能说明命题为假命题;在B中,a2=9,b2=2,且﹣2<3,此时满足满足a2>b2,但不能满足a>b,即意味着命题“若a2>b2,则a>b”不能成立,故B选项中a、b的值能说明命题为假命题;在C中,a2=9,b2=4,且3>﹣2,满足“若a2>b2,则a>b”,故C选项中a、b 的值不能说明命题为假命题;在D中,a2=4,b2=9,且﹣2<3,此时不但不满足a2>b2,也不满足a>b不成立,故D选项中a、b的值不能说明命题为假命题;故选:B.【点评】本题主要考查假命题的判断,举反例是说明假命题不成立的常用方法,但需要注意所举反例需要满足命题的题设,但结论不成立.13.命题:①一个三角形中至少有两个锐角;②垂直于同一条直线的两条直线垂直;③如果两个有理数的积小于0,那么这两个数的和也小于0.其中为真命题的有()A.0个B.1个C.2个D.3个【分析】根据三角形的内角、直线的垂直、有理数进行判断即可.【解答】解:①一个三角形中至少有两个锐角,是真命题;②垂直于同一条直线的两条直线平行,是假命题;③如果两个有理数的积小于0,但这两个数的和不一定小于0,是假命题;故选:B.【点评】此题主要考查了命题与定理,熟练掌握相关的定理是解题关键.14.小柔要榨果汁,她有苹果、芭乐、柳丁三种水果,且其颗数比为9:7:6,小柔榨完果汁后,苹果、芭乐、柳丁的颗数比变为6:3:4,已知小柔榨果汁时没有使用柳丁,关于她榨果汁时另外两种水果的使用情形,下列叙述何者正确?()A.只使用苹果B.只使用芭乐C.使用苹果及芭乐,且使用的苹果颗数比使用的芭乐颗数多D.使用苹果及芭乐,且使用的芭乐颗数比使用的苹果颗数多【分析】根据三种水果的颗数的关系,设出三种水果的颗数,再根据榨果汁后的颗数的关系,求出榨果汁后,苹果和芭乐的颗数,进而求出苹果,芭乐的用量,即可得出结论.【解答】解:∵苹果、芭乐、柳丁三种水果,且其颗数比为9:7:6,∴设苹果为9x颗,芭乐7x颗,柳丁6x颗(x是正整数),∵小柔榨果汁时没有使用柳丁,∴设小柔榨完果汁后,苹果a颗,芭乐b颗,∵小柔榨完果汁后,苹果、芭乐、柳丁的颗数比变为6:3:4,∴,,∴a=9x,b=x,∴苹果的用量为9x﹣a=9x﹣9x=0,芭乐的用量为7x﹣b=7x﹣x=x>0,∴她榨果汁时,只用了芭乐,故选:B.【点评】此题是推理与论证题目,主要考查了根据比例的关系,比例的性质,求出榨汁后苹果和芭乐的数量是解本题的关键.15.小明、小林和小颖共解出100道数学题,每人都解出了其中的60道,如果将其中只有1人解出的题叫做难题,2人解出的题叫做中档题,3人都解出的题叫做容易题,那么难题比容易题多多少道()A.15B.20C.25D.30【分析】设容易题有x道,中档题有y道,难题有z道,然后根据题目数量和三人解答的题目数量列出方程组,然后根据系数的特点整理即可得解.【解答】解:设容易题有x道,中档题有y道,难题有z道,由题意得,,①×2﹣②得,z﹣x=20,所以,难题比容易题多20道.故选:B.【点评】此类题注意运用方程的知识进行求解,观察系数的特点巧妙求解更简便.二.填空题(共15小题)16.平面上不重合的四条直线,可能产生交点的个数为0,1,3,4,5,6个.【分析】从平行线的角度考虑,先考虑四条直线都平行,再考虑三条、两条直至都不平行,作出草图即可看出.【解答】解:(1)当四条直线平行时,无交点;(2)当三条平行,另一条与这三条不平行时,有三个交点;(3)当两两直线平行时,有4个交点;(4)当有两条直线平行,而另两条不平行时,有5个交点;(5)当四条直线同交于一点时,只有一个交点;(6)当四条直线两两相交,且不过同一点时,有6个交点;(7)当有两条直线平行,而另两条不平行并且交点在平行线上时,有3个交点.故答案为:0,1,3,4,5,6.【点评】本题没有明确平面上四条不重合直线的位置关系,需要运用分类讨论思想,从四条直线都平行线,然后数量上依次递减,直至都不平行,这样可以做到不重不漏,准确找出所有答案;本题对学生要求较高.17.下列说法中:①棱柱的上、下底面的形状相同;②若AB=BC,则点B为线段AC的中点;③相等的两个角一定是对顶角;④在同一平面内,不相交的两条直线叫做平行线;⑤直线外一点与直线上各点连接的所有线段中,垂线段最短.正确的有①④⑤.(只填序号)【分析】分别根据棱柱的特征以及对顶角和垂线段的性质得出答案即可.【解答】解:①棱柱的上、下底面的形状相同,正确;②若AB=BC,则点B为线段AC的中点,A,B,C不一定在一条直线上,故错误;③相等的两个角一定是对顶角,角的顶点不一定在一个位置,故此选项错误;④在同一平面内,不相交的两条直线叫做平行线,正确;⑤直线外一点与直线上各点连接的所有线段中,垂线段最短,正确.故答案为:①④⑤.【点评】此题主要考查了命题与定理等知识,熟练掌握相关定理是解题关键.18.已知:a∥b,b∥c,则a∥c.理由是平行于同一直线的两条直线平行.【分析】根据平行公理的推论:如果两条直线都与第三条直线平行,那么这两条直线也互相平行即可求解.【解答】解:∵a∥b,a∥c(已知),∴b∥c(如果两条直线都与第三条直线平行,那么这两条直线也互相平行).故答案为平行于同一直线的两条直线平行【点评】本题考查了平行公理的推论:如果两条直线都与第三条直线平行,那么这两条直线也互相平行.注意:平行公理的推论可以看做是平行线的一种判定方法,在解题中要注意该结论在证明直线平行时应用.19.已知直线a∥b,b∥c,则直线a、c的位置关系是平行.【分析】根据平行于同一条直线的两条直线互相平行,可得答案.【解答】解:若直线直线a∥b,b∥c,则直线a、c的位置关系是平行,故答案为:平行.【点评】本题考查了平行公理及推论,利用了平行推论:平行于同一条直线的两条直线互相平行.20.如图,添加一个条件(不再添加字母),使得AB∥CD,你添加的条件是∠DAB=∠D.【分析】根据平行线的判定定理进行解答即可.【解答】解:添加的条件为:∠DAB=∠D,。
(2023年最新)北师大版八年级上册数学第七章 平行线的证明含答案
北师大版八年级上册数学第七章平行线的证明含答案一、单选题(共15题,共计45分)1、如图,在△ABC中,点D、E分别在边AB、AC上,如果∠A=50°,那么∠1+∠2的大小为()A.130°B.180°C.230°D.260°2、如图,点C在AD上,CA=CB,∠A=20°,则∠BCD=( )A.20°B.40°C.50°D.140°3、如图,在Rt△ABC中,∠ACB=90°,∠ABC=30°,将△ABC绕点C顺时针旋转角(0°< <180°)至△A′B′C,使得点A′恰好落在AB边上,则等于().A.150°B.90°C.60°D.30°4、已知一个等腰三角形两内角的度数之比为,则这个等腰三角形顶角的度数为()A.20ºB.120ºC.20º或120ºD.36º5、在等腰三角形ABC中,与的度数之比为,则的度数是()A. B. C. D. 或6、中,已知:,,则中按角分类是().A.锐角三角形B.直角三角形C.钝角三角形D.斜三角形7、如图,△CEF中,∠E=70°,∠F=50°,且AB∥CF ,AD∥CE,连接BC,CD,则∠A的度数是()A.40°B.45°C.50°D.60°8、如图,一把直尺的边缘经过一块三角板的直角顶点B,交斜边于点A,直尺的边缘分别交,于点E,F,若,,则的度数为()A.35°B.45°C.50°D.55°9、如图,△ABC沿AB向下翻折得到△ABD,若∠ABC=30°,∠ADB=100°,则∠BAC的度数是().A.30°B.100°C.50°D.80°10、下列命题中,假命题的是()A.在△ABC中,若∠B+∠C=∠A,则△ABC是直角三角形B.在△ABC中,若a 2=(b+c)(b﹣c),则△ABC是直角三角形C.在△ABC中,若∠A:∠B:∠C=1:2:3,则△ABC是直角三角形 D.在△ABC中,若a=3 2, b=4 2, c=5 2,则△ABC是直角三角形11、已知一个三角形三个内角度数的比是l:5:6,则其最大内角的度数为()A.60°B.75°C.90°D.120°12、在△ABC中,∠C=60°.两条角平分线AD,BE所在直线所成的角的度数是( )A.60°B.120°C.150°D.60°或120°13、如图,在△ABC中,∠C=90°,∠B=30°,以A为圆心,任意长为半径画弧分别交AB、AC于点M和N,再分别以M、N为圆心,大于MN的长为半径画弧,两弧交于点P,连结AP并延长交BC于点D,则下列说法中正确的个数是()①AD是∠BAC的平分线②∠ADC=60°③点D在AB的垂直平分线上④AB=2AC.A.1B.2C.3D.414、如图,△ABC中,AB=AC,分别在AB,BC的延长线上截取点G,H,使BG=BH,延长AC交GH于点K,且AK=KG,则∠BAC的大小等于()A. B. C. D.15、如图,已知D为BC上一点,∠B=∠1,∠BAC=78°,则∠2=()A.78°B.80°C.50°D.60°二、填空题(共10题,共计30分)16、如图,在△ABC中,AB=AC,∠A=36°,BD平分∠ABC交AC于点D.求证:AD=BC证明:∵AB=AC∴∠ABC=∠C(________)∵∠A=36°又∵∠A+∠ABC+∠C=180°(________)∴∠ABC=________°∵BD平分∠ABC∴∠1=∠2=________°∴∠C=∠________=72°∴AD=________,BC=________(________)∴AD=BC17、如图,C岛在A岛的北偏东60°方向,在B岛的北偏西45°方向,则∠ACB=________ °.18、如图,已知AB∥ED,∠ECF=72°,则∠BAF的大小是________度.19、在△ABC中,∠A+∠B=150°,∠C=2∠A,则∠A=________.20、已知□ABCD中,AB=4,与的角平分线交AD边于点E,F,且EF=3,则边AD的长为________.21、下列说法:① 三角形的三条内角平分线都在三角形内,且相交于一点,正确;②在中,若,则一定是直角三角形;③三角形的一个外角大于任何一个内角;④若等腰三角形的两边长分别是3和5,则周长是13或11;⑤如果一个正多边形的每一个内角都比其外角多,那么该正多边形的边数是10,其中正确的说法有________个.22、如图,在△ABC中,∠C=∠ABC=2∠A,BD是边AC上的高,则∠DBC的大小等于________度.23、已知,一个含角的直角三角板按如图所示放置,,则________.24、如图,已知,,点C在BO上,点E在OD的延长线上,若,,则的度数是________25、将一条长方形纸带如图折叠,若∠1=58°,则∠2=________.三、解答题(共5题,共计25分)26、观察图形,解答问题:(1)按下表已填写的形式填写表中的空格:图①图②图③三个角上三个数的积1×(-1)×2=-2(-3)×(-4)×(-5)=-60三个角上三个数的和1+(-1)+2=2(-3)+(-4)+(-5)=-12积与和的商-2÷2=-1(2)请用你发现的规律求出图④中的数y和图⑤中的数x.27、如图,AB∥CD,BE平分∠ABC,∠DCB=140°,求∠ABD和∠EDC的度数.28、如图,四边形ABCD中,∠A=∠C=90°,BE平分∠ABC,DF平分∠ADC,则BE与DF有何位置关系?试说明理由.29、如图,在△ABC中,BE是AC边上的高,DE//BC,∠ADE=48°,∠C=62°,求∠ABE的度数.30、已知:如图,在▱ABCD中,E、F是对角线AC上的两点,且AE=CF.猜测DE 和BF的位置关系和数量关系,并加以证明.参考答案一、单选题(共15题,共计45分)1、C2、B3、C4、C5、D6、C7、D8、B9、C10、D11、C12、D13、D14、B15、A二、填空题(共10题,共计30分)17、18、19、20、21、22、23、24、25、三、解答题(共5题,共计25分)26、28、29、30、。
2022-2023学年北师大版数学八年级上册第七章 平行线的证明单元测试题含答案
单元测试(7)——平行线的证明(满分120分)一、选择题(共30分,每小题3分)1.下列语句中,是命题的是()A.直线AB和CD垂直吗.B.过线段AB的中点C画AB的垂线C.同旁内角互补,两直线平行D.连接A,B两点2.下列命题是假命题的是()A.直角三角形两锐角互余B.两直线平行,同位角相等C.相等的角是对顶角D.同角的补角相等3.已知∠A=70°,则∠A的补角为()A.110°B.70°C.30°D.20°4.如图,直线a,b被直线c所截,下列条件中,不能判定a//b的是()A.∠2=∠4B.∠1+∠4=180°C.∠5=∠4D.∠l=∠35.直线a、b、c、d的位置如图所示,如果∠1=58°,∠2=58°,∠3=70°,那么∠4等于()A.58°B.70°C.110°D.116°6.如图,AB//CD,CB⊥DB,CD=65°,则∠ABC的大小是()A.25°B.35°C.50°D.65°7.如图,已知直线AB//CD,BE平分∠ABC,且BE交CD于点D,∠CDE=150°,则∠C的度数为()A.100°B.120°C.130°D.150°8.如图,将三角板的直角顶点放在直角尺的一边上,∠1=30°,∠2=50°,则∠3的度数为()A.80B.50C.30D.209.如图,在折纸活动中,小明制作了一张△ABC纸片,点D、E分别在边AB、AC上,将△ABC沿着DE折叠压平,A与A'重合,若∠A=75°,则∠1+∠2=()A.210°B.150°C.105°D.75°10.如图,把长方形ABCD沿EF对折后,使四边形ABFE与四边形HGFE重合,若∠1=50°,则∠AEF的度数为()A.110°B.115°C.120°D.130°二、填空题(共28分,每小题4分)11.如图,在△ABC中,∠1=110°,∠2=45°,则∠3= °.∠4=°.12.在△ABC中,∠B=∠C,∠A≈∠B-30°,则∠A= °.13.如图,∠D=∠E=35°,当∠B= °时,AB//C D.14.如图,AB/CD,∠1=115°,∠3=140°,则∠2= °.15.如图,点B,C,E,F在同一直线上,AB//DC,DE//GF,∠B=∠F=72°,则∠D= °.16.已知∠ABC=70°,若∠ABC的两边与∠DEF的两边分别满足AB//DE,BC//EF,则∠DEF的度数是.17.当三角形中一个内角a是另一个内角β的两倍时,我们称此三角形为“特征三角形”,其中a称为“特征角”.如果一个“特征三角形”的“特征角”为100°,那么这个“特征三角形”的最小内角的度数为.三、解答题(一)(共18分,每小题6分)18.如图,直线CD,EF被直线OA,OB所截,∠1+∠2=180°,∠3=100°.求∠4的度数.19.如图,∠C=∠1,∠2和∠D互余,BE⊥FD于点G.求证:AB//C D.20.如图,∠1=∠2,且BD平分∠AB C.求证:AB//C D.四、解答题(二)(共24分,每小题8分)21.如图,∠1=∠2,AE//BC,求证:OABC是等腰三角形.22.如图,已知∠1+∠2=180°,∠3=∠B,试判断∠AED与∠C的大小关系,并对结论进行证明.23.如图,一条直线分别与直线BE、直线CE、直线BF、直线CF相交于点A,G,H,D,且∠AGE=∠AHB,∠C=∠B.(1)求证:∠A=∠D.(2)若AE=DF,则AH与DG有什么关系?说明理由?五、解答题(三)(共20分,每小题10分)24.(1)如图1,把△ABC沿DE折叠,使点A落在点A'处,试直接写出∠1+∠2与∠A的关系.(不必证明).(2)如图2,BI平分∠ABC,CI平分∠ACB,把△ABC折叠,使点A与点I重合,若∠1+∠2=130°求∠BIC的度数;(3)如图3,在锐角△ABC中,BF⊥AC于点F,CG⊥AB于点G,BF、CG 交于点H,把△ABC折叠使点A和点H重合,试探索∠BHC与∠1+∠2的关系,并证明你的结论25.问题:如图①,在OABC中,BE平分∠ABC,CE平分∠ACB,若∠A=80°,则∠BEC= ;若∠A=n°,则∠BEC=探究:(1)如图②,在△ABC中,BD,BE三等分∠ABC,CD,CE三等分∠AC B.若∠A=n°,则∠BEC=(2)如图③,O是∠ABC与外角∠ACD的平分线BO和CO的交点,试分析∠BOC和∠A有怎样的关系?请说明理由;(3)如图④,O是外角∠DBC与外角∠BCE的平分线BO和CO的交点,则∠BOC与∠A有怎样的关系?(只写结论,不需证明)单元测试(7)——平行线的证明1.C2.C3.A4.D5.C6.A7.B8.D9.B 10.B 11.6570 12.40 13.70 14.75 15.36 16. 70°或110° 17.30°18.解:∵∠2与∠5是对顶角,∴∠2 = ∠5,∵∠1+∠2 = 180°,∴∠1 +∠5 =180°,∴CD//EF,∴∠3=∠4∵∠3 =100°∴∠4=100°19.证明B E⊥FD,∠EGD =90,∴∠1+∠D = 90°又∠2和∠D互余,即∠2+∠D =90∴∠1 = ∠2,又已知∠C=∠1∴∠C=∠2,∴AB//CD.20.证明:∵B D平分∠AB C,∴∠2 =∠D BA∴∠1=∠2∴∠1=∠D BA∴AB//CD.21.证明:∵A E//B C(已知),∴∠2 = ∠C(两直线平行,内错角相等).∠1 =∠B(两直线平行,同位角相等) ∴∠1=∠2(已知)∴∠B=∠C(等量代换) ∴AB=A C.∴△AB C是等腰三角形(等角对等边).22.解:∠A ED =∠C.证明如下:∵∠1 +∠2 =180°∠1+∠EFD =180,∴∠2=∠EFD,∴AB//EF,∴∠3=∠A DE,又∵∠3=∠B,∴∠A DE=∠B,∴DE//B C,∴∠A ED =∠C23.(1)证明:∵∠1=∠2,∴CE//F B,∴∠C=∠B FD,∴∠B=∠C,∴∠B=∠B FD,∴AB//CD.∴∠A=∠D.(2)解:AH=DC.理由如下:∠1 =∠2,∠2 = ∠D H F.∴∠1=∠D H F∴∠A=∠D,A E=DF∴△A GE≌△D H F∴A G=D H∴AH=DG24.解:(1)∠1+∠2 =∠A;(2)由(1)∠1 +∠2=2∠A,得2∠A = 130°,∴∠A =65°∵I B平分∠AB C,IC平分∠A C B,∴∠I B C+∠IC B=12(∠AB C+∠A C B)=(180-90°-12∠A) =90°-∠A,∴∠B IC=180°-(∠I B C +∠IC B)= 180°-(90°-∠A)=90°+12×65°=122.5°(3) ∠BA C=180°-(∠1+∠2).证明如下:∵B F⊥A C,CG⊥AB,∴∠A F H+∠A G H=90°+ 90°= 180°∠F H G+∠A =180°∴∠BH C =∠F H G =180°-∠A,由(1)知∠1 +∠2=2∠A,∴∠A=(∠1+∠2),∴∠BH C= 180°-(∠1+∠2)25.解:∠A = 80°,∴∠AB C+ ∠A C B = 180°-∠A = 180°-80 °= 100°,∵B E平分∠AB C,CE平分∠A C B,:.∠E B C =12∠AB C,∠EC B=12∠A C B,∠E B C + ∠EC B = 12( ∠AB C +∠A C B)=12×100°=50°∴∠B EC = 180°-(∠E B C +∠EC B) =180°-50° = 130°由三角形的内角和定理得,∠AB C+ ∠A C B = 180°-∠A = 180°-n°∵B E平分∠AB C,CE平分∠A C B,.∴∠E B C=12∠AB C,∠EC B=12∠A C B∴∠E B C + ∠EC B = 12(∠AB C + ∠A C B)=180°-(90°-12n°)=90°-12n°,∴∠B EC = 180°-(∠E B C +∠EC B) =180°-(90°-12n°) =90°+12n°;故答案为130°、90°+12 n°.探究:(1)由三角形的内角和定理得,∠AB C + ∠A C B =180°-∠A =180°-n°,∵B D ,B E三等分∠AB C,CD,CE三等分∠A C B,∴∠E B C=23∠AB C,∠EC B =23∠A C B,∴∠E B C + ∠EC B= 23(∠AB C + ∠A C B) =23(180°-n°)=120 -23n°∴∠B EC = 180°-(∠E B C +∠EC B) =180°-(120°-23n°) =60°+23n°故答案为60°+23 n°( 2)∠B OC=12∠A.理由如下:由三角形的外角性质得,∠A CD = ∠A+∠AB C,∠OCD = ∠B OC +∠O B C,∵O是∠AB C与外角∠A CD的平分线B O和CO的交点,∴∠AB C=2∠O B C ,∠A CD =2∠OCD,∠A + ∠AB C=2(∠B OC +∠O B C)∴∠A =2∠B OC∴∠B OC=12∠A;(3)∵O是外角∠D B C与外角∠B CE的平分线B O和CO的交点,∴∠O B C=12( 180°-∠AB C) =90°-12∠AB C,∠OC B =12( 180°-∠A C B)=90°-12∠A C B在△O B C中,∠B OC = 180°-∠O B C -∠OC B = 180°-( 90°-12∠AB C) -( 90°-12∠A C B) =12(∠AB C +∠A C B),由三角形的内角和定理得,∠AB C + ∠A C B = 180°-∠A,1 2(180°-∠A)=90°-12∠A.∴∠B OC=。
北师大版八年级数学上册第七章 平行线的证明综合测评(Word版 含答案)
第七章平行线的证明综合测评(本试卷满分100分)一、选择题(每小题3分,共30分)1.下列语句中,是命题的是()A.直线AB和CD垂直吗B.过线段AB的中点C画AB的垂线C.同旁内角不互补,两直线不平行D.连接A,B两点2.下列命题:①等腰三角形同一边上的角平分线、中线和高重合;②周长相等的两个钝角三角形都等;③等腰三角形的底边一定比腰长;④直角都相等.其中是真命题的有()A.1个B.2个C.3个D.4个3.如图1,AB∥CD,CB⊥DB,∠D=65°,则∠ABC的度数是()A.25°B.35°C.50°D.65°图1 图2 图3 图4 4.如图2,在△ABC中,点D在AC上,延长BC至点E,连接DE,则下列结论不成立的是()A.∠DCE>∠ADB B.∠ADB>∠DBC C.∠ADB>∠ACB D.∠ADB>∠DEC5.如图3,已知直线AB∥CD,BE平分∠ABC,交CD于点D,∠CDE=150°,则∠C的度数为()A.150°B.130°C.120°D.100°6.如图4,直线a∥b,∠A=38°,∠1=46°,则∠ACB的度数是()A.84°B.106°C.96°D.104°7.已知直线l1∥l2,一块含30°角的直角三角尺如图5所示放置,∠1=25°,则∠2的度数为()A.30°B.35°C.40°D.45°图5 图6 图7 图8 8.如图6,在折纸活动中,小明制作了一张△ABC纸片,点D,E分别在边AB,AC上,将△ABC 沿着DE折叠压平,A与A′重合,若∠A=75°,则∠1+∠2的度数为()A.150°B.210°C.105°D.75°9.(2019年青岛)如图7,BD是△ABC的角平分线,AE⊥BD,垂足为F.若∠ABC=35°,∠C=50°,则∠CDE的度数为()A.35°B.40°C.45°D.50°10.如图8,在△ABC中,∠BAC=90°,AD是高,BE是中线,CF是角平分线,CF交AD于点G,交BE于点H,下列说法:①△ABE的面积=△BCE的面积;②∠AFG=∠AGF;③∠FAG=2∠ACF;④∠HBC=∠HCB.其中正确的是()A.①②③④B.仅①②③C.仅②④D.仅①③二、填空题(本大题共8个小题,每小题3分,共24分)11.命题“如果两条平行线被第三条直线所截,那么同位角相等”的条件是,结论是.12.如图9,点D,A,E在一条直线上,要使DE∥BC,则x=.图9 图10 图11 图1213.如图10,已知AB∥CD,∠DEF=50°,∠D=80°,∠B的度数是.14.如图11,在△ABC中,D为BC上一点,∠1=∠2,∠3=∠4,∠DAC=100°,则∠BAC=.15.如图12,下列说法:①若AB∥CD,则∠3=∠4;②若∠1=∠BEG,则EF∥GH;③若∠FGH+∠3=180°,则EF∥GH;④若AB∥CD,∠4=62°,EG平分∠BEF,则∠1=59°.其中正确的有.(填序号)16.如图13,AB=BC=CD=DE=EF=FG,∠1=130°,则∠A的度数为.三、解答题(共52分)17.(6分)先把下列两个命题分别改写成“如果……那么……”的形式,再判断该命题是真命题还是假命题,如果是假命题,举出一个反例.(1)绝对值相等的两个数互为相反数;(2)一个角的补角一定是钝角.18.(6分)请把下列证明过程补充完整(括号内填写相应的理由)已知:如图14,点E在BC的延长线上,AE交CD于点F,AD∥BC,∠1=∠2,且∠3=∠4.求证:AB∥CD.证明:∵AD∥BC(已知),∴∠CAD=∠1().∵∠1=∠2(已知),∴∠2= (等量代换).∵∠3=∠4(已知),∴∠3+∠CAF=∠4+∠CAF(等式的性质),即=∠CAD.∴∠2= (等量代换)∴AB∥CD().19.(8分)如图15,在△ABC中,∠1=100°,∠C=80°,∠2=12∠3,BE平分∠ABC.求∠4的度数.图13图14图1520.(10分)如图16,在△ABC中,∠BAC=90°,∠ABC=∠ACB,∠D=∠BCD,∠1=∠2,求∠D 的度数.图1621.(10分)如图17,已知∠1+∠2=180°,∠3=∠B,试判断∠AED与∠C的大小关系,并对结论进行说理.图1722.(12分)(1)如图18-①,已知AB∥CD,求证:∠EGF=∠AEG+∠CFG;(2)如图18-②,已知AB∥CD,∠AEF与∠CFE的平分线交于点G.猜想∠G的度数,并证明你的猜想;(3)如图18-③,已知AB∥CD,EG平分∠AEH,EH平分∠GEF,FH平分∠CFG,FG平分∠HFE,∠G=95°,求∠H的度数.图18附加题(20分,不计入总分)23.(1)探究与发现:如图19-①所示的图形,像我们常见的学习用品——圆规.我们不妨把这种图形叫做“规形图”,那么在这个简单的图形中,到底隐藏了哪些数学知识呢?请解决以下问题:观察“规形图”,试探究∠BPC与∠A,∠B,∠C之间的关系,并说明理由;(2)迁移运用:请你直接利用以上结论,解决以下问题:①如图19-②,已知△ABC,BP平分∠ABC,CP平分∠ACB,直接写出∠BPC与∠A之间存在的等量关系为.②如图19-③,在△ABC中,∠A=80°,点O是∠ABC,∠ACB平分线的交点,点P是∠BOC,∠OCB 平分线的交点,若∠OPC=100°,则∠ACB的度数为.③如图19-④,若点D是△ABC内任意一点,BP平分∠ABD,CP平分∠ACD.写出∠BDC,∠BPC,∠A之间的等量关系,并说明理由.图19第七章平行线的证明综合测评一、1.C 2.A 3.A 4.A 5.C 6.C 7.B 8.A 9.C10.B提示:根据等底等高的三角形的面积相等可判断①正确;由∠ABD+∠BAD=90°,∠BAD+∠CAD=90°,可得∠ABD=∠CAD,由∠AFG=∠ABD+∠BCF,∠AGF=∠CAD+∠ACG,∠BCF=∠ACG,得∠AFG=∠AGF,即②正确;由∠FAG+∠ABD=90°,∠ACD+∠CAD=90°,∠ABD=∠CAD,得∠FAG=∠ACD.又∠ACD=2∠ACF,所以∠FAG=2∠ACF,即③正确;根据条件无法判断出④正确.二、11.两条平行线被第三条直线所截同位角相等12.64°13.50°14.120 15. ①③④16.10三、17.解:(1)条件是如果两个数的绝对值相等,那么这两个数互为相反数.是假命题;反例:如2与2的绝对值相等,但2与2相等,不是互为相反数.(2)如果一个角是另一个角的补角,那么这个角一定是钝角.是假命题;反例:设∠1=60°,∠2=120°,∠1是∠2的补角,但∠1不是钝角.18.两直线平行,内错角相等∠CAD ∠BAE ∠BAE 同位角相等,两直线平行19.解:因为∠1=∠3+∠C,∠1=100°,∠C=80°,所以∠3=20°.因为∠2=12∠3,所以∠2=10°.所以∠ABC=180°-100°-10°=70°.因为BE平分∠ABC,所以∠ABE=35°.因为∠4=∠2+∠ABE,所以∠4=45°.20.解:因为∠BAC=90°,∠ABC=∠ACB,所以∠ACB=45°.因为∠D=∠BCD,∠BCD=∠ACB+∠2,所以∠D=∠BCD=45°+∠2.因为∠1=∠2,所以∠D=45°+∠1.因为∠D+∠BCD+∠1=180°,所以2(45°+∠1)+∠1=180°,解得∠1=30°. 所以∠D=45°+30°=75°.21.证明:因为∠1+∠4=180°(补角的定义),∠1+∠2=180°(已知),所以∠2=∠4(同角的补角相等).所以EF∥AB(内错角相等,两直线平行).所以∠3=∠ADE(两直线平行,内错角相等).又因为∠B=∠3(已知),所以∠ADE=∠B(等量代换).所以DE∥BC(同位角相等,两直线平行)所以∠AED=∠C(两直线平行,同位角相等).22.(1)证明:如图1,过点G作GH∥AB.所以∠EGH=∠AEG.因为AB∥CD,所以GH∥CD.所以∠FGH=∠CFG.所以∠EGH+∠FGH=∠AEG+∠CFG,即∠EGF=∠AEG+∠CFG;(2)解:猜想:∠G=90°.证明:由(1)中的结论得∠G=∠AEG+∠CFG.因为EG,FG分别平分∠AEF和∠CFE,所以∠AEF=2∠AEG,∠CFE=2∠CFG.因为AB∥CD,所以∠AEF+∠CFE=180°.所以2∠AEG+2∠CFG=180°.所以∠AEG+∠CFG=90°.所以∠G=90°.(3)解:因为EG平分∠AEH,EH平分∠GEF,FH平分∠CFG,FG平分∠HFE,所以∠AEG=∠GEH=∠HEF=13∠AEF,∠CFH=∠HFG=∠EFG=13∠CFE.由(1)可知,∠G=∠AEG+∠CFG,∠H=∠AEH+∠CFH.所以∠G=13∠AEF+23∠CFE=95°.因为AB∥CD,所以∠AEF+∠CFE=180°.所以13(∠AEF+∠CFE)+13∠CFE=95°.所以∠CFE=105°.所以∠AEF=75°.所以∠H=23∠AEF+13∠CFE=23×75°+13×105°=85°.24.解:(1)∠BPC=∠BAC+∠B+∠C.理由:如图2,连接AP并延长至点F.根据三角形内角和定理的推论,得∠BPF=∠BAP+∠B,∠CPF=∠C+∠CAP.又因为∠BPC=∠BPF+∠CPF,∠BAC=∠BAP+∠CAP,所以∠BPC=∠BAC+∠B+∠C.(2)①∠BPC=90°+12∠A.提示:因为BP平分∠ABC,CP平分∠ACB,所以∠PBC=12∠ABC,∠PCB=12∠ACB.所以∠BPC=180°-12(∠ABC+∠ACB)=180°-12(180°-∠A)=90°+12∠A.②60°提示:设∠BCP=∠PCO=x,∠BOP=∠COP=y.因为∠P=100°,所以x+y=80°.所以2x+2y=160°.所以∠OBC=180°-160°=20°.因为BO平分∠ABC,所以∠ABC=40°.因为∠A=80°,所以∠ACB=180°-40°-80°=60°.③2∠BPC=∠BDC+∠A.理由:由(1)的结论可知∠BDC=∠A+∠ABD+∠ACD①,∠BPC=∠A+∠ABP+∠ACP.因为BP平分∠ABD,CP平分∠ACD,所以∠ABP=12∠ABD,∠ACP=12∠ACD.所以∠BPC=∠A+12∠ABD+12∠ACD②.②×2,得2∠BPC=2∠A+∠ABD+∠ACD.③③-①,得2∠BPC-∠BDC=∠A,即2∠BPC=∠BDC+∠A.。
八年级上册数学第七单元练习卷含答案(7.平行线的证明,北师大版)
北师大版八年级上册数学第七单元测试卷含答案《平行线的证明》一、选择题(本大题共8小题,共24.0分)1.如图,,,,则的大小是A. B. C. D.2.一个正方形和两个等边三角形的位置如图所示,若,则A.B.C.D.3.如图,已知中,点D在AC上,延长BC至E,连接DE,则下列结论不成立的是A. B.C. D.4.如图,,直线EF交AB于点E,交CD于点F,EG平分,交CD于点G,,则等于A. B. C. D.5.如图,已知直线,BE平分,交CD于D,,则的度数为A.B.C.D.6.如图,直线,,,则的度数是A.B.C.D.7.适合条件的是A. 锐角三角形B. 直角三角形C. 钝角三角形D. 等边三角形8.已知:直线,一块含角的直角三角板如图所示放置,,则等于A. B. C. D.二、填空题(本大题共6小题,共24.0分)9.如图,DAE是一条直线,,则______ .10.如图,已知,,,的度数是______ .11.如图,已知,,则______ ,______ .12.已知如图,在中,D为BC上一点,,,,则______ .13.等腰三角形一腰上的高与另一腰的夹角是,则该等腰三角形顶角为______14.如图所示,,,则______ 度三、解答题(本大题共6小题,共52.0分)15.已知:如图,,和互余,于点求证:.16.一天,爸爸带着小刚到建筑工地去玩,看见有如图所示的人字架,爸爸说“小刚,我考考你,这个人字架的夹角等于,你能求出比大多少吗?”小刚马上得到了正确答案,他的答案是多少?请说明理由.17.如图,点A、B、C、D在同一条直线上,,,求证:.18.如图,中,,,,,求的度数.19.如图,中,D,E,F分别为三边BC,BA,AC上的点,,若,求的度数.20.如图所示,已知,,试判断与的大小关系,并对结论进行说理.答案1. A2. B3. A4. C5. C6. C7. B8. B9. 10. 11. ; 12. 13. 50或130 14. 1015. 证明:,,,又和互余,即,,又已知,,.16. 解:小刚的答案为.理由如下:如图,设的邻补角为,,,是人字架三角形的外角,,,比大.17. 证明:,,在和中,,,≌,.18. 解,,,,,,,,,,.19. 解:,,,,,,,即20. 证明:邻补角定义已知同角的补角相等内错角相等,两直线平行两直线平行,内错角相等又已知,等量代换,同位角相等,两直线平行两直线平行,同位角相等.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初中数学试卷
桑水出品
八年级数学上册第七单元《平行线的证明》测试题
姓名: 班级: 得分:
一、精心选择(30)
1.下列图形中,由A B C D ∥,能得到12∠=∠的是( )
2.如图,直线L 1∥L 2 ,则∠α为(
A.1500
B.1400
C.1300
D.1200 3.下列命题:
①不相交的两条直线平行; ②梯形的两底互相平行;
③同垂直于一条直线的两直线平行; ④同旁内角相等,两直线平行. 其中真命题有( )
A.1个
B.2个
C.3个
D.4个 4.下列命题:
①两个连续整数的乘积是偶数;②带有负号的数是负数;
③乘积是1的两个数互为倒数;④绝对值相等的两个数互为相反数. 其中假命题有( )
A.1个
B.2个
C.3个
D.4个
5.如图,AB ∥CD ,那么∠BAE+∠AEC+∠ECD =( )
A.1800
B.2700
C.3600
D.5400 6.下列说法中,正确的是( )
A .经过证明为正确的真命题叫公理
B .假命题不是命题
C .要证明一个命题是假命题,只要举一个反例,即举一个具备命题的条件,而不具备命题结论的命题即可
D .要证明一个命题是真命题,只要举一个例子,说明它正确即可. 7.下列选项中,真命题是( ).
A
B
C
D
E
1
(第2题图)
A.a>b,a>c,则b=c
B.相等的角为对顶角
C.过直线l外一点,有且只有一条直线与直线l平行
D.三角形中至少有一个钝角
8.下列命题中,是假命题的是()
A.互补的两个角不能都是锐角 B.如果两个角相等,那么这两个角是对顶角C.乘积为1的两个数互为倒数 D.全等三角形的对应角相等,对应边相等. 9.下列命题中,真命题是()
A.任何数的绝对值都是正数 B.任何数的零次幂都等于1
C.互为倒数的两个数的和为零 D.在数轴上表示的两个数,右边的数比左边的数大
10.如图所示,下列条件中,能判断AB∥CD的是( )
A.∠BAD=∠BCD
B.∠1=∠2;
C.∠3=∠4
D.∠BAC=∠ACD
3
4
D C
B A
2
1
二、细心填空(15)
11.观察如图所示的三棱柱.
(1)用符号表示下列线段的位置关系:
AC CC 1 ,BC B 1C 1 ;
12.如图三角形ABC 中,∠C = 900 ,AC=23,BC=32,把AC 、BC 、AB 的大小关系用“>”号连接: .
13.如图,直线AB 、CD 相交于点E ,DF ∥AB ,若∠AEC=1000,则∠D 的度数等于 . 14.如图,把长方形ABCD 沿EF 对折,若∠1=500,则∠AEF 的度数等于 . 15.图中有 对对顶角. 三.用心解答(55)
16.如图,AB ∥CD,AD ∥BC,∠A ﹦∠B.求∠A 、∠B 、∠C 、∠D 的度数.
17.如图,AB ∥CD,直线EF 交AB 、CD 于点G 、H.如果GM
GM 与HN 平行吗?为什么?
18.如图,AB ∥CD ,∠
BAE=300,∠ECD=600,那么∠AEC 度数为多少?
19.如图,B 处在A 处的南偏西450方向,C 处在B 处的北偏东800方向.(1)求∠ABC.(2)要使CD ∥AB ,D 处应在C 处的什么方向?(12分)
20、如图所示,已知直线a,b,c,d,e,且∠1=∠2,∠3+∠4=180么? (13分)
D
C
参 考 答 案
一、1.B 2.D 3.B 4.B 5.C 6.C 7.C 8.B 9.D 10.D 二、11.(1)⊥
12.AB >BC >AC 13. 800 14.1150 15. 9 三、16.1350,450,1350,450
提示:可以用方程.设∠B=x 0 ,根据AD ∥BC ,得x+3x=180(两直线平行,同旁内角互补),
解得x=45.以下略.
17.GM ∥HN.理由:因为GM 平分∠BGF,HN 平分∠CHE ,所以∠MGF=
21∠BGF ,∠NHE= 2
1
∠CHE,又因为AB ∥CD ,所以∠BGF=∠CHE (两直线平行,内错角相等),所以∠MGF=∠NHE.所以GM ∥HN (内错角相等,两直线平行).
18.如图,过E 作EF ∥AB , 则∠1=∠A=300(……); 因为AB ∥CD ,
所以EF ∥CD (如果两条直线 都与第三条直线平行,那么这 两条直线也互相平行), 所以∠2=∠C=600(……), 那么∠AEC=∠1+∠2=300+600=900.
19.(1)∠ABC=800-450=350.(2)要使CD ∥AB ,D 处应在C 处的南偏西450方向. 20. 解:平行.
∵∠1=∠2, ∴a ∥b,
又∵∠3+∠4=180°, ∴b ∥c, ∴a ∥c.
C
D。