5 电介质的极化、电导和损耗

合集下载

《高电压技术系列》--电介质的极化、电导和损耗

《高电压技术系列》--电介质的极化、电导和损耗

I
I IR IC
IR
IC
~U
I
U
IR
R CP
IC
δ
φ U
在交流电压的作用下,流过电介质的电流 I 包含有功分量IR 和无功分量 IC ,即
I IR IC
此时的介质功率损耗:
P UI cos UIR UIC tan U 2CP tan 式中:ω——电源角频率
φ——功率因数角
δ——介质损耗角 tanδ又称为介质损耗因数
二、气体、液体和固体介质的损耗
1、气体介质损耗 当外加电场还不足以引起电离过程,气体中只存在很小的 电导损耗( tanδ〈10-8);但当气体中的电场强度达到放电起 始场强E0时,气体中将发生局部放电,这时的损耗将急剧增大。
2、液体介质损耗
中性和弱极性液体介质(如变压器油)的极化损耗很小,其
主要损耗由电导引起,因而其单位体积损耗率P0可用下式求得
在电场作用下没有能量损耗的理想电介质是不存在的,实 际电介质中总有一定的能量损耗,包括由电导引起的损耗和某 些有损极化(偶极子极化、夹层极化等)引起的损耗,总称介 质损耗。
在直流电压的作用下,电介质中没有周期性的极化过程, 只要外加电压还没有达到引起局部放电的数值,介质中的损耗 将仅由电导所引起,所以用体积电导率和表面电导率两个物理 量就已能充分说明问题,不必再引入介质损耗这个概念。
强, 具有正r 的温度系数。
三、偶极子极化
有些电介质的分子,如蓖麻油、松香、橡胶、胶木等,在 无外电场作用时,其正负电荷作用中心是不重合的,这些电介 质称为极性电介质。
电介质
组成极性电介质的每一个分
电极
子成为一个偶极子(两个电荷
极),在外电场作用时,由于偶

电介质的极化电导与损耗

电介质的极化电导与损耗

纯净液体介质中电流I与外施电压U的关系:
1、区域a 电压和电流关系较符合欧姆定律,即这时液体介质具 有一定的较高的体积电阻率。通常所说的液体介质电阻率 都是按这个范围来定义的。
2、区域b 电流有饱和趋向但不十分明显。这 是因为液体的密度远大于气体,离子 相遇的机会多,复合的概率较大,不 可能所有的离子都运动到电极,而电 压增高时复合概率减小,因而电流就 有所增加。
2电极逸出电子由于高电场的作用或由于肖特基效应指在电场作用下热电子发射增加从电极逸出电34可编辑ppt3碰撞电离与气体中产生电子碰撞电离的情况相似在液体中的电子亦因高电场作用被加速到能在碰撞液体分子时使液体分子电离
电介质的极化
一、电介质的极性及分类
偶极子:由大小相等、符号相反、彼此相距为 d 的 两电荷(+q,-q)所组成的系统称为偶极子。
(1)弗仑开尔缺陷:格结点上的离子离开晶格结点位置, 则在该晶格结点上形成空穴。这种离子和空穴组成的缺陷 称为弗仑开尔缺陷。
(2)肖特基缺陷:正、负离子逸出介质表面,而在晶 格结点上出现两个空穴,这样组成的缺陷称为肖特基缺陷。
离子电流:晶格结点上的离子以结点为中心振 动,在电场的作用下,与晶格缺陷相邻接的位置 上的离子有可能落入晶格缺陷,这样,晶格缺陷 就能顺序地在晶格中移动,形成离子电流。
1、区域a 电压与电流的关系服从欧姆定律; 2、区域b 电流与电压几乎成指数关系; 3、区域c 电流将随电压更急剧增加直至击穿。
区域a为低电场电导区,区域b、c为 高电场电导区。与气体、液体介质相比, 它明显地无饱和区。
固体介质中的带电粒子:
(1)电子,从电极中逸出 (2)离子,离子电导; (3)传导电子和空穴,电子电导。
低电场电导区以离子电导为主,而高电场电导区以电子 电导为主。低电场电导区如果离子 的浓度和迁移率一定 时,则电流与电压成比例。

《高电压技术系列》--电介质的极化、电导和损耗

《高电压技术系列》--电介质的极化、电导和损耗
为什么呢?
电介质放入极板间,就要受到电场的作用,介质原
子或分子结构中的正、负电荷在电场力的作用下产生 位移,向两极分化,但仍束缚于原子或分子结构中而 不能成为自由电荷。结果,在介质靠近极板的两表面 呈现出与极板上电荷相反的电的极性来,即靠近正极 板的表面呈现负的电极性,靠近负极板的表面呈现正 的电极性,这些仍保持在电介质内部的电荷称为束缚 电荷。正由于靠近极板两表面出现束缚电荷,根据异 极性电荷相吸的规律,要从电源再吸收等量的异极性 电荷Q′到极板上,这就导致Q=Q0+ Q′>Q0。
用于电容器的绝缘材料,显然希望选用r 大的电介质,因 为这样可使电容的体积减小和重量减轻。但其他电气设备中往
往希望选用 r 较小的电介质,这是因为较大的 r往往和较大的 电导率相联系,因而介质损耗也较大。采用 r 较小的绝缘材料
还可减小电缆的充电电流、提高套管的沿面放电电压等。
在高压电气设备中常常将几种绝缘材料组合在一起使用, 这时应注意各种材料的r 值之间的配合,因为在工频交流电压 和冲击电压下,串联的多层电介质中的电场强度分布与各层电 介质的r 成反比。
四、空间电荷极化
上述三种极化都是由带电质点的弹性位移或转向形成的, 而空间电荷极化的机理与上述不同,它是带电质点(电子或正、 负离子)的移动形成的。最典型的空间电荷极化是夹层极化。
当开关S和上,两电介质 都发生极化。由于电介 质不同,极化程度也不 同,故交界面处积聚的 异号电荷不相等。如: 介质Ⅰ下部边缘处积聚 的正电荷比介质Ⅱ上部 边缘处积聚的负电荷多 的话,则在两介质交界 面处显示出正的电极性 来。这种使夹层电介质 分界面上出现电荷积聚 的过程称为夹层极化。
最基本的极化形式有电子式极化、离子式极化、偶极子极 化和空间电荷极化等。

高电压技术(第1章)

高电压技术(第1章)

极化、电导和损耗:在外加电压相对较低(不超 过最大运行电压)时,电介质内部所发生的物理 过程。
这些过程发展比较缓慢、稳定,所以一直被 用来检测绝缘的状态。此外,这些过程对电介质 的绝缘性能也会产生重要的影响。
击穿:在外加电压相对较高(超过最大运行电压) 时,电介质可能会丧失其绝缘性能转变为导体, 即发生击穿现象。
离子式结构的固体电介质的体积电导则主要 由离子在热运动影响下脱离晶格移动所形成。
影响固体电介质体积电导的主要因素 电场强度
场强较低时,加在固体介质上的电压与流过 的电流服从欧姆定律。场强较高时,电流将随电 压的增高而迅速增大。
因固体介质发生碰撞游离的场强高,在发生 游离前阴极就能发射电子,形成电子电导,故流 过固体介质的电流不存在饱和区。 温度
荷。
二、电介质极化的概念和极化的种类
极化:无论何种结构的电介质,在没有外电场 作用时,其内部各个分子偶极矩的矢量和平均 来说为零,电介质整体上对外没有极性。
当外电场作用于电介质时,会在电介质沿 电场方向的两端形成等量异号电荷,就像偶极 子一样,对外呈现极性,这种现象称为电介质 的极化。
电介质极化的四种基本形式:
温度升高时,体积电导按指数规律增大。 杂质
杂质含量增大时,体积电导也会明显增大。
固体电介质的表面电导主要是由附着于介质表 面的水分和其他污物引起的。
固体电介质的表面电导与介质的特性有关:
亲水性介质,容易吸收水分,水分可以在其表 面形成连续水膜,如玻璃、陶瓷就属此类。
憎水性介质,不容易吸收水分,水分只能在其 表面形成不连续的水珠,不能形成连续水膜,如石 蜡、硅有机物就属此类。
电负性相等或相差不大的两个或多个原子相 互作用时,原子间则通过共用电子对结合成分子, 这种化学键就称为共价键。

5 电介质的极化、电导和损耗

5 电介质的极化、电导和损耗
第三章 液体和固体介质的电气特性
电介质分类: 按状态分气体、液体和固体三类 气体介质广泛用作电气设备的外绝缘; 液体和固体介质广泛用作电气设备的内绝缘。
常用的液体介质:变压器油、电容器油、电缆油; 常用的固体介质:绝缘纸、纸板、云母、塑料、电瓷、玻璃、 硅橡胶。 电介质的电气特性表 现在电场作用下的:
2、介质损耗
交流时流过电介质的电流:
I=I R+I C
介质损耗(有功损耗):
P UI cos=UIR UIC tan=CU 2 tan
由上式可见,介质功率损耗P与试验电压、被试品尺寸等因 素有关,不同试品间难以互相比较;而对于结构一定的被试 品,在外施电压一定时,介质损耗只取决于tan δ。 tan δ被称为介质损耗角正切,它只与介质本身特性有关, 与材料尺寸无关,因而不同试品的tan δ可相互比较。
①偶极子极化;②夹层极化
偶极子极化(转向极化) 非弹性极化; 特点: 极化时间较长; 频率对极化有影响; 有能耗;
(a)无外电场 (b)有外电场
温度较低时,T↑→分子间作用力↓→转向容易→极化↑; 温度较高时→热运动加剧阻碍转向→极化↓
夹层极化 合闸瞬间:
U1 U2
t 0
C2 C1
稳定后: U1
对同类试品绝缘的优劣可用tan δ来代替P对绝缘进行判断。
tanδ的物理含义:表征单位体积均匀介质内能量损失的大小
介质损耗的等值电路分析可用并联等效电路或串联等效电路
Ir U /R 1 tg p I c U C p C p R
U2 Pp U 2 C p tg R
2、影响电介质电导的因素
场强、杂质和温度。
(1)电压(电场强度):
(2)杂质:

高电压技术总复习

高电压技术总复习

⾼电压技术总复习第⼀章电介质的极化、电导和损耗⼀、掌握电介质极化的基本形式及特点(1)极化:电介质中的带电质点在电场作⽤下沿电场⽅向作有限位移现象。

(2)电⼦位移极化:负电荷的作⽤中⼼与正电荷的作⽤中⼼不再重合主要特点:1、极化所需时间极短;2、极化具有弹性,不产⽣能量损耗;3、温度对极化的影响较⼩。

(3)离⼦位移极化:在外电场E作⽤下,正、负离⼦将发⽣⽅向相反的偏移,使平均偶极矩不再为零,介质呈现极化。

离⼦式极化的特点:1、极化过程极短;2、极化具有弹性,⽆能量损耗;3、温度对极化有影响:(4)偶极⼦极化:在外电场的作⽤下,偶极⼦受到电场⼒的作⽤⽽发⽣转向,顺电场⽅向作有规律的排列,靠电极两表⾯呈现出电的极性。

偶极⼦式极化的特点:1、极化所需时间极长,故极化与频率有较⼤的关系;2、极化属⾮弹性,有能量损耗;3、温度对极化影响很⼤:极性⽓体介质具有负的温度系数;(5)空间电荷极化:是带电质点(电⼦或正、负离⼦)的移动形成的。

最典型的空间电荷极化是夹层极化。

夹层极化的特点:1、极化所需时间长,故夹层极化只有在低频时才有意义。

具有夹层绝缘的设备断开电源后,应短接进⾏彻底放电以免危及⼈⾝安全,⼤容量电容器不加电压时也应短接;2、极化涉及电荷的移动和积聚,所以必然伴随能量损耗。

⼆、介质的相对介电常数ε0 ——真空的介电常数=8.86×10-14F/cm三、掌握电介质损耗的基本概念、介质损耗因数tanδ概念采⽤介质损耗⾓正切tanδ作为综合反映电介质损耗特性优劣的⼀个指标,测量和监控各种电⼒设备绝缘的tanδ值已成为电⼒系统中绝缘预防性试验的最重要项⽬之⼀。

第⼆章⽓体放电的物理过程⼀、掌握⽓体中带电粒⼦的产⽣和消失1 ⽓体中带电质点的产⽣途径:电⼦获得⾜够的能量跳出最外层轨道,成为⾃由电⼦。

产⽣带电离⼦的过程称为电离(游离),它是⽓体放电的⾸要前提。

⼀是⽓体本⾝发⽣电离(游离);⼆是⽓体中的固体或液体⾦属发⽣表⾯电离(游离)。

极化、电导和损耗

极化、电导和损耗


绝缘内部是否存在局部放电,也可以通过 tg与U的关
系曲线加以判断.
小结
• 电介质的损耗包括电导损耗和极化损耗; • 气体中的损耗主要是电导损耗,损耗极小; • 中性和弱极性液体和固体介质的损耗主要为电 导损耗, tg 较小. • 极性液体和固体介质的损耗为电导损耗和极化 损耗, tg 较大.
tg
较大;
离子结构的固体介质,结构紧密时主要是电导损耗,tg 较 小;结构不紧密时,有离子松弛极化, tg 较大.
• 固体电介质的损耗和温度\频率\外加电压的关系与液体介
质类似.
电介质的损耗在工程上的意义
• (1)选择绝缘.设计绝缘结构时,必须注意绝缘材料的 tg ,过 大会引起严重发热,使材料容易恶化,甚至导致热击穿; • (2)在绝缘预防性试验中判断绝缘状况.当绝缘良好时,电 导很小, tg 很小;当绝缘受潮或劣化时,电导增大, tg 急 剧增大.通过判断 tg 来判断绝缘的状况.
缘性能的好坏.
• 在外加电压的大小,频率,试品尺寸一定时, • tg 与 P 成正比,故 tg 可反映介质在交流电压下介质损耗的 大小.在实际中,通过实验测得介质损耗角正切,来判断介质 损耗的程度. • 可以用串联或并联等值电路来表示介质损耗.
• 中性和弱极性固体介质的损耗主要为电导损耗, tg 极小; • 极性固体介质的损耗为电导损耗和极化损耗, •
• 一固体电介质加上直流电压,闭合开关后流过电介质的电 流从大到小随着时间衰减,最终稳定于某一数值,此现象为 吸收现象.
• 加上直流电压后,经过一定时间(一般小于1min),极化过程 就结束,此时只存在电导过程,流过电介质的电流等于泄漏 电流,对应的电阻为绝缘电阻.
• 工程中应用测量泄漏电流和绝缘电阻来判断电介质内部绝

第一章 电介质的极化、电导和损耗

第一章 电介质的极化、电导和损耗

U1 U2

t 0
C2 C1
t=
,电压分配将与电导成反比:
C1< C2,而G1>G2,则由上面两式:
一般C2 G2 即C1、C2上的电荷需要重新分配,设
1 1
C
G
U1 U2
可得:

t 0
C2 C1
U1 U2

t
G2 G1
U1 U2

t
G2 G1
t=0时,
U1>U2
t 时, U1<U2
2)极性电介质:杂质离解和自身分子离解共同作用。
3)离子式电介质:离子在热运动影响下脱离晶格移动 所形成。
5
2016-3-21
4)影响因素 (1)电场强度: E较小,U和I服从欧姆定律,E较大时,U升高,I 增加速度很快,无饱和区。 (2)温度:T↑,G↑↑ (3)杂质:杂质含量↑,G↑↑ eg:当纸板的含水量增为百分之几时,固体电介 质的体积电导将增大3~4个数量级.
3
2016-3-21
对于平行平板电容器,极间为真空时:
C0 Q0 0 A U d
电介质的极化是电介质在电场作用下,其束缚 电荷相应于电场方向产生弹性位移现象和偶极子的取向 现象。介电常数来表示极化强弱。
放置固体介质时,电容量将增大为: 相对介电常数: r
C
Q0 Q' A U d
f 增大,曲线向右移动
因为频率高时,偶极子的转向来不及充分进行
8
2016-3-21
五、电介质损耗在工程上的意义 1、是选择绝缘材料的依据。
2、判断绝缘材料是否受潮、劣化。
3、使用电气设备时注意使用环境的频率、温度和电压 的要求。

2. 第一章 电介质极化、电导、损耗

2. 第一章  电介质极化、电导、损耗

8
§1.2 电介质的电导
二、影响电介质电导的因素
9
1.电场的影响
2.温度的影响
电场↑
温度↑
杂质↑
电导↑
3.杂质的影响
§1.2 电介质的电导
三、电介质在直流电压作用下的吸收现象
10
一固体电介质加上直流电压 U,可以观察到流过
电介质电流i 从大到小随时间衰减,最终稳定于
某一数值,此现象就称为吸收现象。
也表征了介质损耗的特性。
2.在交流电压下
tgδ表征介质损耗的大小。
17
§1.3 电介质的损耗
三、影晌tgδ的因素 1.频率
18
2.温度
3.电压
ห้องสมุดไป่ตู้
§1.3 电介质的损耗
四、介质损耗在工程应用上的意义 1.选材;
19
2. tgδ值的测量是电气设备绝缘试验中的一个基本 项目; 3.合理使用设备。
1
第一章 电介质的极化、电导和损耗
2
电介质在电压 (电场 )作用下,会发生极化、电导、 损耗和击穿等现象, 这是电介质的基本电气特性。 认识影响这些电气性能的各种因素以及各现象在 工程中的意义。能帮助我们合理地选择和使用绝缘 材料,同时为后面的绝缘试验提供了理论基础。
§1.1 电介质的极化
一、电介质的极化(基本概念) 电介质在电场作用下,由于束缚电荷的位 移或偶极分子的转向,在介质两端面上出 现等量异号电荷,对外显示电性的现象,
2.采用组合绝缘时选择介电系数合理搭配的绝 缘材料; 3.通过测ε值来判断绝缘材料的受潮情况及含 气泡的多少
§1.2 电介质的电导
一、电介质电导的基本概念 电介质在电场作用下,有一定电流流过的现象, 称为电介质的电导。 这是因为在电介质内部还是存在数量很少的带 电粒子。 表征不同电介质电导过程强弱程度的物理量是 电导率γ(或电阻率ρ)。 电介质的电阻率一般达109~1022Ω•cm,而导体 的电阻率在10-2Ω•cm 以下,可见两者差别之大。

高电压技术(第1章)解析

高电压技术(第1章)解析

《高电压技术》第3版常美生主编第一章电介质的极化、电导和损耗概述⏹电介质:指具有很高电阻率(通常为106~1019Ω·m)的材料。

⏹电介质的作用:在电气设备中主要起绝缘作用,即把不同电位的导体分隔开,使之在电气上不相连接。

⏹电介质的分类:按状态可分为气体、液体和固体三类。

其中气体电介质是电气设备外绝缘(电气设备壳体外的绝缘)的主要绝缘材料;液体、固体电介质则主要用于电气设备的内绝缘(封装在电气设备外壳内的绝缘)。

⏹极化、电导和损耗:在外加电压相对较低(不超过最大运行电压)时,电介质内部所发生的物理过程。

这些过程发展比较缓慢、稳定,所以一直被用来检测绝缘的状态。

此外,这些过程对电介质的绝缘性能也会产生重要的影响。

⏹击穿:在外加电压相对较高(超过最大运行电压)时,电介质可能会丧失其绝缘性能转变为导体,即发生击穿现象。

第一节电介质的极化一、电介质的极性及分类⏹分子键:电介质内分子间的结合力。

⏹化学键:分子内相邻原子间的结合力。

根据原子结合成分子的方式的不同,电介质分子的化学键分为离子键和共价键两类。

原子的电负性是指原子获得电子的能力。

电负性相差很大的原子相遇,电负性小的原子的价电子被电负性大的原子夺去,得到电子的原子形成负离子,失去电子的原子形成正离子,正、负离子通过静电引力结合成分子,这种化学键就称为离子键。

电负性相等或相差不大的两个或多个原子相互作用时,原子间则通过共用电子对结合成分子,这种化学键就称为共价键。

离子键中,正、负离子形成一个很大的键矩,因此它是一种强极性键。

共价键中,电负性相同的原子组成的共价键为非极性共价键,电负性不同的原子组成的共价键为极性共价键。

由非极性共价键构成的分子是非极性分子。

由极性共价键构成的分子,如果分子由一个极性共价键组成,则为极性分子;如果分子由两个或多个极性共价键组成,结构对称者为非极性分子,结构不对称者为极性分子。

分子由离子键构成的电介质称为离子结构的电介质。

第一章电介质极化、电导和损耗

第一章电介质极化、电导和损耗
第一章电介质极化、电导和损耗
由于这种极化涉及电荷的移动和积聚,必然伴随能量损耗, 而且过程较慢,一般需要几分之一秒、几秒、几分钟、甚至 几小时,所以这种极化只有在直流和低频交流电压下才能表 现出来。
第一章电介质极化、电导和损耗
第二节、电介质的电导
电导率是表征电介质导电性能的主要物理量,其倒数 为电阻率。按载流子的不同,电介质的电导又可分为离子 电导和电子电导两种。
第一章电介质极化、电导和损耗
•• •
交流:流过电介质的电流 I IRIC
第一章电介质极化、电生方向相反的偏移,使平均 偶极矩不再为零,介质呈现极化。
离子式极化的特点: 1、离子相对位移有限,外电场 消失后即恢复原状;
2、所需时间很短,其 r 几乎与
外电场频率无关。
第一章电介质极化、电导和损耗
温度对离子式极化的影响: 1、离子间的结合力会随温度的升高而减小,从而使极化 程度增强; 2、离子的密度随温度的升高而减小,使极化程度减弱。
第一章电介质极化、电导和损耗
1、电子电导:一般很微弱,因为介质中自由电子数极少; 如果电子电流较大,则介质已被击穿。
2、离子电导: 本征离子电导:极性电介质有较大的本征离子电导,电 阻率1010~1014cm 杂质离子电导:在中性和弱极性电介质中,主要是杂质 离子电导,电阻率1017~1019cm
第一章电介质极化、电导和损耗
固体、液体介质的电导率 与温度T 的关系:
B
Ae T
式中:A、B 为与介质有关的常数,其中固体介质的常数B 通常比液体介质的B 值大的多。T 为绝对温度,单位为K 。
该式表明, 随温度T 按指数规律上升。
第一章电介质极化、电导和损耗
第三节、电介质的损耗

第二章_液体、固体电介质的电气性能

第二章_液体、固体电介质的电气性能

对串、并联电路,有:P1=P2
CP
CS
1tg2
一般tgδ<<1,即tg2δ 0,
所以CP≈CS=C,则 P=P1=P2=U2ωCtgδ
4.电介质的损耗及其影响因素 影响电介质损耗的因素主要有温度、频率和电
压。不同的电介质所具有的损耗形式不同,从而温 度、频率和电压对电介质损耗的影响也不同。 5.介质损耗在工程实际中的应用
固体电介质的表面电导主要由表面吸附的水分
和污物引起,介质表面干燥、清洁时电导很小。介
质吸附水分的能力与自身结构有关。 有亲水性介质
和憎水性介质。
所以,介质的绝缘电阻实际上是体积电阻和表
面电阻两者的并联值
R RV RS RV RS
RS---表面泄漏电阻
RV---体积泄漏电阻
5.影响电介质电导的主要因素
IEC规定的电工绝缘材料的耐热等级(最高持续温度):
Y(O) A
E
B
F
H
C
90 105 120 130 155 180 220℃
如果材料使用温度超过上述规定,绝缘材料 就将迅速老化,寿命大大缩短。实验表明,对A级 绝缘,温度每增加8℃,则寿命缩短一半左右,这 通常称为热老化的8℃原则。对B级和H级绝缘材料 而言,当温度每升高10℃和12℃时,寿命也将缩 短一半。
1.介电常数
组合绝缘的相对介电 常数ε为

S
(1 x) x S
x
s --固体电介质的相对介电常数
x --浸渍介质的相对介电常数
2.介质损耗
组合绝缘的组合绝缘的总介质损失角正切为
tg1(t1g xS xS )x 1(t1g xxxS )x
tg S --固体电介质的介质损失角正切

介质的极化、电导和损耗

介质的极化、电导和损耗

高电压技术
第2章 液体的绝缘特性与 介质的电气强度
液体电介质又称绝缘油,在常温下为液态,在 电气设备中起绝缘、传热、浸渍及填充作用,主 要用在变压器、油断路器、电容器和电缆等电气 设备中。在断路器和电容器中的绝缘油还分别有 灭弧和储能作用。
高电压技术
液体电介质的电气强度比气体高;用液体介质代替气体介 质制造的高压电气设备体积小,节省材料;液体介质大多可燃, 易氧化变质,导致电气性能变坏。
高电压技术
1.3 电介质的损耗 ★
1.3.1 电介质的能量损耗 1.3.2 介质损失角正切tgδ 1.3.3 有损介质的等效电路分析 1.3.4 影响介质损耗的因素 1.3.5 讨论tgδ的意义
高电压技术
1.3.1 电介质的能量损耗
在电场作用下没有能量损耗的理想介质不存在, 实际电介质中总有一定的能量损耗,包括由电导引起 的损耗和某些有损极化引起的损耗,总称为介质损耗。
视频链接
特点:在没有外电场时,无极分子没有电偶极矩,分子不显电 性。而在外电场作用下,原来正、负电中心重合的分子,电子 轨道相对于原子核发生偏移,正、负电中心彼此分离。
(2)离子式位移极化
视频链接
特点:离子极化又称为原子极化。无外电场时,介质中大量正 负离子组成的离子对的偶极矩相互抵消。而在外电场作用下,
高电压技术
平板电容器的介电常数
平行平板电容器在真空中的电容量为
C0
0A
d
当极板间插入固体介质后,电容量为 C A 0r A
式中 A-极板面积,cm2;
dd
d-极间距离,cm;ε-介质的介电常数
ε0-真空的介电常数,ε0=8.86×10-14F/cm
定义 r
0
C C0

高电压技术(第二章)

高电压技术(第二章)
工程用变压器油中含有水分和纤维等杂质,由于它们的 r 很大
容易沿电场方向极化定向,排列成杂质小桥:
1. 如果杂质小桥尚未接通电极,则纤维等杂质与油串联,由于
度显著增高并引起电离,于是油分解出气体,气泡扩大,电 离增强,这样发展下去必然会出现由气体小桥引起的击穿。
纤维的 r大以及含水分纤维的电导大,使其端部油中电场强
Emax
利用系数: Eav r0 R = ln Emax R r0 r0
Emin
0
r0
三. 影响液体介质击穿电压的因素
1.电压形式的影响 击穿电压跟电压的作用时间和电压上升 率有关 2. 含水量、含气量 3. 温度
4. 杂质的影响
5. 油量的影响
水分和油温
Ub(kV)
悬浮状水滴在油中是十分有 40 害的,如右图,当含水量为 万 分之几时,它对击穿电压就有明 20 显的影响,这意味着油中已出现 悬浮状水滴;含水量达0.02%时 击穿电压已下降至约15kV,比 0 0.02 0.04 含水量(%) 不含水分时低很多 。含水量继 标准油杯实验 续增大击穿电压下降已不多,因为只有一定数量的水分能悬 浮于水中,多余的会沉淀到油底部。 潮湿的油由0℃开始 上升时,一部分水分从悬浮状态转为 害处较小的溶解状态,使击穿电压上升;超过80 ℃后,水开始 汽化,产生气泡,引起击穿电压下降,从而在60 ℃~80℃间出 现最大值
与周围环境温度无关。
2. 热击穿:由于固体介质内部热不稳定性造成。
电压作用下 介质损耗, 使介质发热 发热大于散 热时,介质温 度不断升高 介质分解、 熔化、碳化 或烧焦
热击穿
特点:
(1)在电压作用下,产生的电导电流和介质极化引起介质损耗, 使介质发热. (2)热击穿电压随环境温度的升高而下降,热击穿电压直接与 散热条件有关

最全的高电压技术各章节选择判断题汇总及答案附期末测试

最全的高电压技术各章节选择判断题汇总及答案附期末测试

高电压技术各章选择判断题汇总及答案附期末测试第一章电介质的极化、电导和损耗1.单选题用于电容器的绝缘材料中,所选用的电介质的相对介电常数()。

A 应较大B 应较小C 处于中间值D 不考虑这个因素A2.单选题偶极子极化()。

A 所需时间短B 属于弹性极化 C 在频率很高时极化加强D 与温度的关系很大D3.单选题电子式极化()。

A 所需时间长B 属于弹性极化C 在频率很高时极化加强D 与温度的关系很大B4.单选题离子式极化()。

A 所需时间长B 属于弹性极化C 在频率很高时极化加强D 与温度的关系很大B5.单选题极化时间最长的是()。

A 电子式极化 B 离子式极化 C 偶极子极化 D 空间电荷极化D6.单选题极化时伴随有电荷移动的是()。

A 电子式极化 B 离子式极化C 偶极子极化D 夹层极化D7.单选题夹层极化中电荷的积聚是通过电介质的()进行的。

A 电容B 电导C 电感D 极化B8.单选题相对介电常数是表征介质在电场作用下()的物理量。

A 是否极化B 损耗C 击穿D 极化程度D9.单选题对于极性液体介质,温度较低时,随温度的升高,极化()。

A 减弱B 增强C 先减弱再增强D 不变 B10.单选题用作电容器的绝缘介质时,介质的相对介电常数应()。

A 大些B 小些C 都可以D 非常小A11.单选题用作一般电气设备的绝缘时,介质的相对介电常数应()。

A 大些B 小些C 都可以D 非常小B12.单选题表征电介质导电性能的主要物理量为()。

A 电导率B 介电常数C 电阻D 绝缘系数A13.单选题电介质的电导主要是()引起的。

A 自由电子B 自由离子C 正离子D 负离子B14.单选题金属导体的电导主要是()引起的。

A 自由电子B 自由离子C 正离子D 负离子A15.单选题通常所说的电介质的绝缘电阻一般指()。

A 表面电阻B 体绝缘电阻C 表面电导D 介质电阻B16.单选题直流电压(较低)下,介质中流过的电流随时间的变化规律为()。

电介质的损耗

电介质的损耗


UC
U
介质损耗主要由介质极化即及接导线电阻引起时常用
2024/7/17
第一章 电介质的极化、电导和损耗
各种电介质的介质损耗角正切值
❖一、气体介质:损耗很小
例如:空气的 tgδ≈ 0
❖二、液体和固体电介质:损耗与介质的极 性有关
1、非极性与弱极性电介质介质损耗很小。
(例如:变压器油(20℃ )的 tgδ<0.5% ,聚乙烯的 tgδ<0.02 %)
U 2CPtg

0

U
常用于介质损耗主要由电导引起时的情况中
IR
2024/7/17
第一章 电介质的极化、电导和损耗
2)串联等值电路
Cs Cp r R
tg UR
UC
I r I
Csr
Cs

I
+

U
-
+

Cs
UC
-
+
r

- Ur
P
I
2r
U 2Cstg 1 tg2
U 2Cstg

0 UR

I

因素有关
tgδ ω=314
0.04
ω=104
0.02
2024/7/17
0 40 60 80 100
θ(℃)
第一章 电介质的极化、电导和损耗
tgδ,p,ε
p
ε tgδ
0
f0
f
极性液体介质中的损耗与频率的关系
2024/7/17
第一章 电介质的极化、电导和损耗
讨论介质损耗的意义
❖ 在绝缘预防性试验中,tgδ是一基本测试项目,当 绝缘受潮或劣化时 tgδ 急剧上升。绝缘内部是 否普遍发生局部放电,也可以通过测 tgδ 〜U的 关系曲线加以判断。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

四、绝缘电阻的特点
(1) 测量介质或设备的 R 时应加压1或10分钟; (2)
R 具有负的温度系数,而金属电阻具有正的温度系数;
(3) 由于 R 与外加电压有关,在临近击穿时有显著的迅 速增加自由电子的导电现象, 造成 R 剧烈下降; (4)对于固体电介质,还必须注意区分体积电阻RV和表面电 阻RS,由于受外界影响(如受潮、胀污等)很大,不能用RS 来说明绝缘内部问题。
r
3、在绝缘预防性试验中,夹层极化现象可用来判断绝缘受 潮的情况。 气体:一切气体的都接近1; 液体:非极性和弱极性电介质 1.8~2.8 强极性电介质 3~6 固体:非极性和弱极性电介质 2~2.7 强极性电介质 3~6 离子性电介质 5~8
电介质的相对介电常数 r
2.2 电介质的电导
电导率表征电介质导电性能的主要物理量,其倒数为电阻率。
与此稳定电流值相对应的电阻值称为电介质的绝缘电阻,即
三、影响电介质电导的因素
R
U Ig
1、电压(电场强度): 电导电流随电压增大而增大
2、杂质: (1)液体介质:
杂质是液体介质中带电质点的重要来源。 中性液体离子主要来源于杂质分子的离解; 极性液体除杂质外本身分子也易离解,所以同等条件 下,其电导率比中性液体要大。
导电性能 介电性能 电气强度 表征参数: 电导率(绝缘电阻率)γ 介电常数ε 介质损耗角正切tanδ 击穿电场强度
本次课程的目的要求:
1、掌握极化、电导(绝缘电阻) 的概念 2、能说明极化的种类和特点 3、能解释吸收现象 4、能说明介质电导形成的原因及影响因素
2.1 电介质的极化
离子式结构电 介质
极性电介质 多层介质 交界面
空间电荷
电极附近
三、电介质极化在工程上的意义
1、组合绝缘要注意各种材料 r 值的配合。在交流及冲击电 压下,各层电压分布与其 r 成反比,选择 r 使各层介质电 场分布较均匀。
r
2、选择设备绝缘材料时,要根据不同目的选择不同的 r 。
一、介质的极化和介电常数
1、极化定义
电介质在电场作用下,其束缚电荷相应 于电场方向产生弹性位移现象和偶极子的取向现象。
2、介电常数
表示极化强弱的一个物理量。 以真空平板电容器为例分析:
极化前:
Q0 0 A C0 U d
极化后: C Q Q0 Q A
U
U
d
为保持场强不变,极板上电荷必然会增加,以抵消极化电荷 产生的反电场. C Q0 Q A / d r 是反映电介质极化特性 r C0 Q0 0 A / d 0 的一个物理量。与温度有关 气体 r 接近于1,因密度小、极化率低;液体和固体多在 2~6之间。 用于电容器的绝缘材料,希望选用 r 大的介质,可使单位 电容的体积和重量减小。 其他电气设备中总是选 r 较小的介质,因介质损耗较小。 采用 r 较小绝缘材料可减小电缆的充电电流、提高套管的 沿面放电电压等。 采用组合绝缘时应注意各种材料 r 值之间的配合,在交流 电压下,串联多层介质的场强分布与介质的 r 成反比。
(2)固体介质: 杂质也是固体电介质体积电导的重要来源, 杂质含量增大时,体积电导会明显增大。
中性或弱极性固体介质的体积电导主要由杂质离解引起; 极性固体介质除此外本身分子离解为自由离子也是形成 体积电导的主要因素。
3、温度:
固体、液体介质的电导率与温度T 的关系: 式中:A、B 为与介质有关的常数,其中固体介质的常数B 通常比液体介质的B 值大的多。T为绝对温度,单位为K。 该式表明, 介质的电导随温度T按指数规律上升。
第二章 介质的极化、电导和损耗(1)
电介质分类: 按状态分气体、液体和固体三类 气体介质广泛用作电气设备的外绝缘; 液体和固体介质广泛用作电气设备的内绝缘。
常用的液体介质:变压器油、电容器油、电缆油 常用的固体介质:绝缘纸、纸板、云母、塑料、电瓷、玻璃、 硅橡胶 电介质的电气特性表 现在电场作用下的:
(a)无外电场 (b)有外电场
温度影响:T↑→转向容易→极化↑;T↑↑→热运动加剧阻 碍转向→极化↓ (2)夹层极化 合闸瞬间: U1 U2
t 0
C2 C1
稳定后:
U1 U2
t
R1 G2 R2 G1
一般介质不均匀,于是要有 一电压重新分配过程,亦即 C1、C2上电荷重新分配,在 此过程中,分界面上将集聚 起多余的电荷,从而显出极 性来。

二、极化种类
1、无损极化:
(1)电子式极化
①电子式 ②离子式 特点:极化时间很短; 各种频率下均可发生, 与外加频率无关; 具有弹性,无损耗; 温度影响不大。 (2) 离子式极化 特点:极化时间稍长; 与频率无关; 弹性极化,无损; 温度对极化有影响:
2、有损极化: ①偶极子 ②夹层极化
(1) 偶极子极化 特点: 极化时间较长; 非弹性极化; 有能耗; 频率对极化有影响;
一、电导的分类
电介质电导分为离子电导、电子电导 1、电子电导:一般很微弱,因为介质中自由电子数极少; 如果电子电流较大,则介质已被击穿。 2、离ቤተ መጻሕፍቲ ባይዱ电导: 本征离子电导:极性电介质本身离解呈现的电导; 杂质离子电导:在中性和弱极性电介质中,主要是杂质离解 呈现的电导。 3、电泳电导: 载流子为带电的分子团,通常是乳化态的胶体粒子(如绝 缘油中悬浮胶粒或细小水珠)吸附电荷变成了带电粒子。
4、表面电导:对固体介质,由于表面吸附水分和污秽存在表 面电导,受外界因素的影响很大。所以,在测量体积电阻 率时,应尽量排除表面电导的影响,清除表面污秽、烘干 水分、在测量电极上采取一定的措施。
二、电介质的泄漏电流和绝缘电阻
i=i1+i2+Ig I1-充电电流:无损极化对应的 纯电容电流,又称快极化电流; I2-吸收电流:为有损极化对应 的电流(主要为夹层极化),又称慢极化电流; Ig-泄漏电流: 介质中少量离子或电子移动形成的电流,即电导电流。
五、电介质电导的工程意义
1、电导是绝缘预防性试验的依据; 2、直流电压作用下分层绝缘时,各层电压分布与电阻成 正比,选 择合适的电阻率可实现各层间合理分压; 3、注意环境、湿度对固体介质表面电阻的影响; 4、工程上有时要设法减小绝缘电阻以改善电压分布。
思考题
1-1、1-5、1-6
补充思考题:
金属材料的电导与电介质电导的区别是什么?
极化结果: 等值电容增大;夹层界面堆积电荷产生极性
极化特点: 与分子结构无关;极化时间长(G很小); 有能耗,负的温度系数。
各种极化类型的比较
极化类型 电子式 离子式 偶极子式 夹层介质 界面 产生场合 任何电介质 极化时间(s) 10-15 10-13 10-10~10-2 10-1~数小时 极化原因 束缚电荷的位移 离子的相对偏移 偶极子的定向排列 自由电荷的移动 能量损耗 无 几乎无 有 有
相关文档
最新文档