智能天线及其应用论文

合集下载
相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(6)增强网络管理能力
利用智能天线可以实时检测电磁环境和用户情况,从而为实施更有效的网络管理提供条件。
(7)解决远近效应问题和越区切换问题
智能天线可自适应地调节天线增益,较好地解决了远近效应问题,为移动台的进一步简化提供了条件。在蜂窝系统中,越区切换是根据基站接收的移动台的功率电平来判断的。由于阴影效应和多径衰落的影响常常导致越区转接,增加了网络管理的负荷和用户呼损率。在相邻小区应用的智能天线技术,可以实时地测量和记录移动台的位置和速度,为越区切换提供更可靠的依据
(3)用于CDMA系统
在CDMA系统中,智能天线可进行话务均衡,将高话务扇区的部分话务量转移到容量资源未充分利用的扇区;通过智能天线灵活的辐射模式和定向性,可进行软/更软切换控制;智能天线的空间域滤波可改善远近效应,简化功率控制,降低系统成本,也可减少多址干扰,提高系统性能。
(4)用于无线本地环路系统
、结语...............................................................6
参考文献...............................................................6
摘要
最初的智能天线技术主要用于军事抗干扰通信和定位等。近年来,随着移动通信的发展及对移动通信电波传播、组网技术、天线理论等方面的研究逐渐深入,智能天线开始用于具有复杂电波传播环境的移动通信。此外,随着移动用户数迅速增长和人们对通话质量要求的不断提高,要求移动通信网在大容量下仍具有较高的话音质量。经研究发现,在不增加系统复杂度的情况下,使用智能天线可满足服务质量和网络扩容的需要智能天线已被公认为是一种发展趋势。本文在人们对天线传统认识的基础上阐述了智能天线的基本概念、特点、实现方法、应用前景、系统性能的改善及国外研究状况等进行了阐述,指出了研究过程中存在的问题及发展方向。
、智能天线的组成和关键技术 ..........................................2
、智能天线的实现 ....................................................3
、智能天线的特点和优势 ..............................................3
、智能天线的特点和优势
(1)提高系统容量
在蜂窝系统中,用户的干扰主要来自其他用户,而智能天线将波束零点对准其他用户,从而减少了干扰的影响。由于系统提高了接收信噪比,因此减少了频谱资源的复用距离,从而获得了更大的系统容量。(2)扩大小区覆盖距离和范围
使用智能天线可以提高用户和基站的功率接收效率,进一步扩大基站的通信距离,减少功率损失,从而延长电池的寿命,减小用户的终端。
接收通道及数据采集部分主要完成信号的高频放大、变频和A/D转换,以形成数字信号。目前,受A/D器件抽样速率的限制,不能直接对高射频信号和微波信号进行采样,必须对信号进行下变频处理,降低采样速率。
信息处理部分是智能天线的核心部分,主要完成超分辨率阵列处理和数字波束形成两方面的功能。进行超分辨率阵列处理的目的是获得空间信号的参数,这些参数主要包括信号的数目、信号的来向、信号的调制方式及射频频率等,其中信号的来向对于实现空分多址和自适应抑制干扰有着重要作用。在众多的超分辨率测向算法中,MUSIC算法及其改进算法一直占据主导地位,它不受天线阵排阵方式的影响,只需经过一维搜索就能实现对信号来向的无偏估计,并且估计的方差接近CRLB。此外,使用ESPRIT算法来解决移动通信中的测向问题也得到了广泛的研究。数字波束形成主要通过调整加权系数来达到增强有用信号和抑制干扰的作用,它需要收敛速度快、精度高的算法支持。根据所需先验知识的不同,目前的波束形成算法主要有3类:以信号来向为先验知识,如LCMV算法;以参考信号为先验知识,包括LMS算法及其改进算法NLMS、RLS等;不需要任何先验知识,如CMA算法。由于移动通信环境复杂,各种算法也有各自的优缺点,因此系统中必须对多种算法取长补短,才能达到最佳效果。
Abstract:The first smart antenna technology is mainly used for military anti-jammingcommunications and positioning. In recent years, with the gradual deepening of thedevelopment of mobile communications and the mobile communication radio wave propagation, network technology, antenna theory, smart antennas for complex radio propagation environment of mobile communications. In addition, with the increasing requirements of the rapid growth of the number of mobile users and people on the call quality, the requirements of the mobile communication network still has a large capacity,high voice quality. The study found that the use of smart antennas can meet the needs ofthe service quality and network expansion smart antenna has been recognized as a trendin the case does not increase system complexity. Described in the traditional understanding of the antenna on the basis of the basic concepts of smart antenna, characteristics, implementation, and application prospects, improve system performance and foreign status described, and pointed out the problems in the course of the study and development direction . Keywords:
、智能天线的实现
智能天线阵系统主要包括天线阵列、自适应处理器和波束形成网络。天线阵列是收发射频信号的辐射单元。自适应处理器把有一定规律的激励信号转换成与各波束相对应的幅度和相位,提供给各辐射单元,用来确定波束形成网络各部分方向图的增益。波束形成网络利用天线阵元产生的方向图,实现智能天线的各种应用。
自适应处理器产生的各支路幅度和相位调整系数,是波束形成网络工作的重要依据。自适应处理器包括信号处理器和自适应算法器。信号处理器根据所需进行的信号处理,自适应算法器根据均方误差、信噪比、输出噪声功率等性能量度,用适当的算法调整方向图,形成网络的加权系数,使智能天线阵系统性能达到最优化。
关键词:智能天线 应用 关键技术 系统容量 蜂窝移动通信
Keywords:technology of smart antenna;applications, system capacity of cellular;mobile communications
一Βιβλιοθήκη Baidu智能天线的原理
在移动通信中,智能天线是天线阵在感知和判断自身所处电磁环境的基础上,依据一定的准则,自动地形成多个高增益的动态窄波束,以跟踪移动用户,同时抑制波束以外的各种干扰和噪声,从而处于最佳工作状态。智能天线吸取了自适应天线的抗干扰原理,依靠阵列信号处理和数字波束形成技术发展起来。由于天线有发射和接收两种状态,所以智能天线包含智能化发射和智能化接收两个部分,它们的工作原理基本相同。图1所示的是处于接收状态的智能天线结构图。现以发射状态的智能天线为例,说明波束的形成。将M维信号矢量S(t)=(s1(t),s2(t),... )T与一个N×M阶加权矩阵W相乘,得到一个N维的阵信号矢量X(t)=W×S(t)。其中,X(t)=(x1(t),x2(t),x3(t),… )T,在远区产生的场强为:
、智能天线的应用
(1)用于FDMA系统
据研究,与通常的三扇区基站相比,C /I值平均提高约8dB,大大改善了基站覆盖效果;频率复用系数由7改善为4,增加了系统容量。在网络优化时,采用智能天线技术可降低无线掉话率和切换失败率。
(2)用于TDMA系统
无线能量在时间和空间上都受到限制,智能波束切换规则可提高C /I指标。据研究,用4个30°天线代替传统的120°天线,C /I可提高6dB,提高了服务质量。在满足GSM系统C /I比最小的前提下,提高频率复用系数,增加了系统容量。
E(θ,t)=
=
=
显然, 表示单路信号 的辐射方向图。一旦天线阵确定下来后,它的方向性函数 也随之确定,于是只要通过改变 就可形成所需要的辐射方向图。
、智能天线的组成和关键技术
智能天线主要分为天线阵列、接收通道及数据采集、信息处理3部分。在移动通信系统中,天线阵列通常采用直线阵列和平面阵列两种方式。在确定天线阵列的形式后,天线单元的选择就十分关键。天线单元不仅要达到本身的性能指标,还必须具有单元之间的互耦小、一致性好以及加工方便的特点。目前微带天线使用较多。
最初的智能天线采用复杂的模拟电路,如今采用数字波束形成(DBF)方式,用软件完成算法更新,也可采用数模相结合的处理方法,既保证处理精度,又保证处理速度及灵活性。此外,为了使智能天线具有良好性能,应根据具体的电波传播环境,选择相应的智能算法。采用软件无线电技术使系统具有良好的改善能力,提高系统性能。为了尽量减少对现有系统的改动,也可使用多波束智能天线。多波束天线利用多个指向固定的波束覆盖全方向,虽然不能实现信号最佳接收,但结构简单,便于实现,且无需判定所接收信号的方向。
论智能天线及其应用
肖书华 09电信2班 1665090229
摘要...................................................................1
一、智能天线的原理.....................................................2
、智能天线的应用 ....................................................4
、国外智能天线的研究.................................................5
、智能天线面临的挑战和发展方向.......................................5
在无线本地环路系统中,基站对收到的上行信号进行处理,获得该信号的空间特征矢量,进行上行波束赋形,达到最佳接收效果。由于本系统采用TDD方式,可将上行波束赋形数据直接用于下行发射信号,实现对下行波束的赋形。天线波束赋形等效于提高天线增益,改善了接收灵敏度和基站发射功率,扩大了通信距离,并在一定程度上减少了多径传播的影响。
(3)减少多径干扰影响
智能天线使用阵列天线,通过利用多个天线单元的接收信息和分集技术,可以将多径衰落和其他多径效应最小化。
(4)降低蜂窝系统的成本
智能天线利用多种技术优化了信号的接收,从而能够显著降低放大器成本和功率损耗,提高系统的可靠性,实现系统的低成本。
(5)更好的安全性
使用智能天线后,窃听用户的通话将会更加困难,因为此时盗听者必须和用户处于相同的通信方向上。
相关文档
最新文档