最新人教版初中八年级上册数学《分式》同步测试含答案
最新人教版八年级初二数学上册《分式》同步测试含答案
15.1 分式一、选择题1.如果分式有意义,则x的取值范围是()A.全体实数 B.x=1 C.x≠1 D.x=02.如果代数式有意义,那么x的取值范围是()A.x≥0 B.x≠1 C.x>0 D.x≥0且x≠13.要使分式有意义,则x的取值范围是()A.x≠1 B.x>1 C.x<1 D.x≠﹣14.使分式有意义,则x的取值范围是()A.x≠1 B.x=1 C.x≤1 D.x≥15.要使分式有意义,则x的取值应满足()A.x≠2 B.x≠﹣1 C.x=2 D.x=﹣16.若分式有意义,则x的取值范围是()A.x≠3 B.x≠﹣3 C.x>3 D.x>﹣37.要使分式有意义,则x的取值范围是()A.x≠1 B.x>1 C.x<1 D.x≠﹣18.下列说法正确的是()A.﹣3的倒数是B.﹣2的绝对值是﹣2C.﹣(﹣5)的相反数是﹣5 D.x取任意实数时,都有意义9.分式有意义,则x的取值范围是()A.x>1 B.x≠1 C.x<1 D.一切实数10.要使分式有意义,则x的取值范围是()A.x>2 B.x<2 C.x≠﹣2 D.x≠211.要使分式有意义,则x的取值应满足()A.x=﹣2 B.x≠2 C.x>﹣2 D.x≠﹣212.分式有意义的条件是()A.x=﹣4 B.x≠﹣4 C.x=4 D.x≠413.若分式的值为0,则x的值为()A.2或﹣1 B.0 C.2 D.﹣1二、填空题14.若分式有意义,则x的取值范围是______.15.要使分式有意义,则字母x的取值范围是______.16.如果分式有意义,那么x的取值范围是______.17.代数式在实数范围内有意义,则x的取值范围是______.18.若分式有意义,则x应满足______.19.使式子1+有意义的x的取值范围是______.20.当x=______时,分式无意义.21.若分式有意义,则x≠______.22.当x=______时,分式的值为0.23.若代数式的值等于0,则x=______.24.使代数式有意义的x的取值范围是______.25.当分式有意义时,x的取值范围是______.26.若分式有意义,则实数x的取值范围是______.27.分式在实数范围内有意义,则x的取值范围是______.28.代数式有意义时,x应满足的条件为______.29.要使分式有意义,则x的取值范围是______.30.要使分式有意义,则x的取值范围是______.15.1 分式参考答案一、选择题1.C;2.D;3.A;4.A;5.A;6.A;7.A;8.C;9.B;10.D;11.D;12.D;13.C;二、填空题14.x≠1;15.x≠1;16.x≠-3;17.x≠3;18.x≠5;19.x≠1;20.2;21.2;22.-1;23.2;24.x≠;25.x≠2;26.x≠5;27.x≠1;28.x≠±1;29.x≠2;30.x≠10;学习名言警句:1.在科学上面没有平坦的大道,只有不畏劳苦沿着陡峭山路攀登的人,才有希望到达光辉的顶点。
人教版八年级数学上册 分式解答题同步单元检测(Word版 含答案)
一、八年级数学分式解答题压轴题(难)1.符号a b c d 称为二阶行列式,规定它的运算法则为:a b ad bc c d =-,请根据这一法则解答下列问题:(1)计算:211111xx x +-;(2)若2121122x xx -=--,求x 的值.【答案】(1)()()111x x +- (2)5 【解析】【分析】 (1)根据新定义列出代数式,再进行减法计算;(2)根据定义列式后得到关于x 的分式方程,正确求解即可.【详解】(1)原式2111x x x =--+ ()()()()11111x x x x x x -=-+-+-()()111x x =+-; (2)根据题意得:21222x x x--=-- 解之得:5x =经检验:5x =是原分式方程的解所以x 的值为5.【点睛】此题考察分式的计算,分式方程的求解,依据题意正确列式是解此题的关键.2.小明家准备装修一套新住房,若甲、乙两个装饰公司,合做需6周完成,需工钱5.2万元;若甲公司单独做4周后,剩下的由乙公司来做,还需9周才能完成,需工钱4.8万元,若只选一个公司单独完成,从节约开支角度考虑,小明家是选甲公司、还是乙公司请你说明理由.【答案】从节约开支角度考虑,应选乙公司单独完成【解析】试题分析:需先算出甲乙两公司独做完成的周数.等量关系为:甲6周的工作量+乙6周的工作量=1;甲4周的工作量+乙9周的工作量=1;还需算出甲乙两公司独做需付的费用.等量关系为:甲做6周所需钱数+乙做6周所需钱数=5.2;甲做4周所需钱数+乙做9周所需钱数=4.8.试题解析:解:设甲公司单独完成需x 周,需要工钱a 万元,乙公司单独完成需y 周,需要工钱b 万元.依题意得:661491x y x y⎧+=⎪⎪⎨⎪+=⎪⎩,解得:1015x y =⎧⎨=⎩. 经检验:1015x y =⎧⎨=⎩是方程组的根,且符合题意. 又6() 5.2101549 4.81015a b a b ⎧+=⎪⎪⎨⎪⨯+⨯=⎪⎩,解得:64a b =⎧⎨=⎩. 即甲公司单独完成需工钱6万元,乙公司单独完成需工钱4万元.答:从节约开支角度考虑,应选乙公司单独完成.点睛:本题主要考查分式的方程的应用,根据题干所给的等量关系求出两公司单独完成所需时间和工钱,然后比较应选择哪个公司.3.我们知道:分式和分数有着很多的相似点.如类比分数的基本性质,我们得到了分式的基本性质;类比分数的运算法则,我们得到了分式的运算法则等等.小学里,把分子比分母小的分数叫做真分数.类似地,我们把分子整式的次数小于分母整式的次数的分式称为真分式;反之,称为假分式.对于任何一个假分式都可以化成整式与真分式的和的形式, 如:112122111111x x x x x x x x +-+-==+=+-----; 2322522552()11111x x x x x x x x -+-+-==+=+-+++++. (1)下列分式中,属于真分式的是:____________________(填序号) ①21a a -+; ②21x x +; ③223b b +; ④2231a a +-. (2)将假分式4321a a +-化成整式与真分式的和的形式为: 4321a a +-=______________+________________.(3)将假分式231a a +-化成整式与真分式的和的形式: 231a a +-=_____________+______________. 【答案】(1)③;(2)2,521a -;(3)a +1+41a - . 【解析】试题分析:(1)认真阅读题意,体会真分式的特点,然后判断即可;(2)根据题意的化简方法进行化简即可;(3)根据题意的化简方法进行化简即可.试题解析:(1)①中的分子分母均为1次,②中分子次数大于分母次数,③分子次数小于分母次数,④分子分母次数一样,故选③.(2)4321a a +-=42552212121a a a a -+=+---,故答案为2,5221a +-; (3)231a a +-=214(1)(1)4111a a a a a a -++-=+---=411a a ++-,故答案为a+1+41a -.4.八年级某同学在“五一”小长假中,随父母驾车去蜀南竹海观光旅游.去时走高等级公路,全程90千米;返回时,走高速公路,全程120千米.返回时的平均速度是去时平均速度的1.6倍,所用时间比去时少用了18分钟.求返回时的平均速度是多少千米每小时?【答案】 返回时的平均速度是80千米/小时.【解析】分析:根据题意,设去时的平均速度是x 千米/小时,找到等量关系:返回时所用时间比去时少用了18分钟,列分式方程求解即可.详解:设去时的平均速度是x 千米/小时.由题:90120181.660x x =+ 解得:50x = 检验:50x =是原方程的解.并且,当50x =时,1.680x =,符合题意.答:返回时的平均速度是80千米/小时.点睛:此题主要考查了分式方程的应用,关键是确定问题的等量关系,根据等量关系列方程解答.5.某商场在一楼与二楼之间装有一部自动扶梯,以均匀的速度向上行驶,一男孩与一女孩同时从自动扶梯上走到二楼(扶梯本身也在行驶).如果二人都做匀速运动,且男孩每分钟走动的级数是女孩的两倍.又已知男孩走了27级到达顶部,女孩走了18级到达顶部(二人每步都只跨1级).(1)扶梯在外面的部分有多少级.(2)如果扶梯附近有一从二楼下到一楼的楼梯,台阶级数与扶梯级数相等,这两人各自到扶梯顶部后按原速度走下楼梯,到一楼后再乘坐扶梯(不考虑扶梯与楼梯间的距离).则男孩第一次追上女孩时,他走了多少台阶?【答案】(1)楼梯有54级(2) 198级【解析】【试题分析】(1)设女孩速度为x 级/分,电梯速度为y 级/分,楼梯(扶梯)为s 级,则男孩速度为2x 级/分, 根据时间相等列方程,有:2727,21818.s x y s x y -⎧=⎪⎪⎨-⎪=⎪⎩①两式相除,得327418s s -=-,解方程得54s =即可. 因此楼梯有54级.(2)设男孩第一次追上女孩时,走过扶梯m 次,走过楼梯n 次,则这时女孩走过扶梯()1m -次,走过楼梯()1n -次.将54s = 代入方程组①,得2y x =,即男孩乘扶梯上楼的速度为4x 级/分,女孩乘扶梯上楼的速度为3x 级/分.于是有()()5415415454.423m n m n x x x x--+=+ 从而114231m n m n --+=+,即616n m +=. 无论男孩第一次追上女孩是在扶梯上还是在下楼时,,m n 中必有一个为正整数,且01m n ≤-≤,经试验知只有13,26m n ==符合要求. 这时,男孩第一次追上女孩所走过的级数是:132********⨯+⨯=(级).【试题解析】(1)设女孩速度为x 级/分,电梯速度为y 级/分,楼梯(扶梯)为s 级,则男孩速度为2x 级/分,依题意有 2727,21818.s x y s x y -⎧=⎪⎪⎨-⎪=⎪⎩① 把方程组①中的两式相除,得327418s s -=-,解得54s =. 因此楼梯有54级.(2)设男孩第一次追上女孩时,走过扶梯m 次,走过楼梯n 次,则这时女孩走过扶梯()1m -次,走过楼梯()1n -次.将54s = 代入方程组①,得2y x =,即男孩乘扶梯上楼的速度为4x 级/分,女孩乘扶梯上楼的速度为3x 级/分.于是有()()5415415454.423m n m n x x x x--+=+ 从而114231m n m n --+=+,即616n m +=. 无论男孩第一次追上女孩是在扶梯上还是在下楼时,,m n 中必有一个为正整数,且01m n ≤-≤,经试验知只有13,26m n ==符合要求. 这时,男孩第一次追上女孩所走过的级数是:13272541986⨯+⨯=(级).6.(1)请你写出五个正的真分数,____,____,____,____,____,给每个分数的分子和分母加上同一个正数得到五个新分数:____,____,____,_____,____.(2)比较原来每个分数与对应新分数的大小,可以得出下面的结论:一个真分数是a b (a 、b 均为正数),给其分子分母同加一个正数m ,得a m b m++,则两个分数的大小关系是a mb m ++_____a b . (3)请你用文字叙述(2)中结论的含义:(4)你能用图形的面积说明这个结论吗?(5)解决问题:如图1,有一个长宽不等的长方形绿地,现给绿地四周铺一条宽相等的路,问原来的长方形与现在铺过小路后的长方形是否相似?为什么?(6)这个结论可以解释生活中的许多现象,解决许多生活与数学中的问题.请你再提出一个类似的数学问题,或举出一个生活中与此结论相关例子.【答案】(1) 12;14;16;18;19;23;25;27;29;15;(2)>;(3)给一个正的真分数的分子、分母同加一个正数,得到的新分数大于原来的分数;(4)答案见解析;(5)不相似,理由见解析;(6)答案见解析.【解析】【分析】(1)小于1的数叫做真分数;(2)根据实例易得规律;(3)抓住新分数大于原分数即可;(4)根据图形进行分析解答;(5)利用相关规律解决问题即可;(6)结合生活中的现象进行解答.【详解】 解:(1)12、14、16、18、19,23、25、27、29、15;(2)a m a b m b+>+; (3)给一个正的真分数的分子、分母同加一个正数,得到的新分数大于原来的分数; (4)思路1:如图2所示,由a b <,得12s s s s +>+,即ab bm ab am +>+,()().a b m b a m +=+,可推出a m a b m b+>+; 思路2:构造两个面积为1的长方形(如图3),将它们分成两部分,比较右侧的两个长方形面积可以发现:1a b a b b --=,1a m b a b m b m+--=++,因为a 、b 、0m >,且a b <,故1a b - 1a m b m +>-+,即a m a b m b+>+ (5)不相似.因为两个长方形长与宽的比值不相等;(6)数学问题举例:①若a b是假分数,会有怎样的结论? ②a 、b 不是正数,或不全是正数,情况如何?【点睛】本题实际考查了分式的基本性质,熟练掌握分式的基本性质是解题的关键.7.水蜜桃是无锡市阳山的特色水果,水蜜桃一上市,水果店的老板用2000元购进一批水密桃,很快售完;老板又用3300元购进第二批水蜜桃,所购件数是第一批的32倍,但进价比第一批每件多了5元.(1)第一批水蜜桃每件进价是多少元?(2)老板以每件65元的价格销售第二批水蜜桃,售出80%后,为了尽快售完,剩下的决定打折促销.要使得第二批水密桃的销售利润不少于288元,剩余的仙桃每件售价最多打几折?(利润=售价-进价)【答案】(1)50;(2)6折.【解析】【分析】(1)根据题意设第一批水蜜桃每件进价是x 元,利用第二批水密桃进价建立方程求解即可;(2)根据题意设剩余的仙桃每件售价最多打m 折,并建立不等式,求出其解集即可得出剩余的仙桃每件售价最多打几折.【详解】解:(1)设第一批水蜜桃每件进价是x 元,则有:20003(5)33002x x ⨯⨯+=,解得50x =, 所以第一批水蜜桃每件进价是50元.(2)由(1)得出第二批水密桃的进价为:55元,数量为:33006055=件, 设剩余的仙桃每件售价最多打m 折,则有: 6580606065(180)3300288m ⨯⨯+⨯⨯--≥%%,解得0.6m ≥,即最多打6折.【点睛】本题考查分式方程的实际应用以及不等式的实际应用,理解题意并根据题意建立方程和不等式是解题的关键.8.某建设工程准备招标,指挥部现接到甲、乙两个工程队的投标书,从投标书中得知:乙队单独完成这项工程所需天数是甲队单独完成这项工程所需天数的2倍;该工程若由甲队先做6天,剩下的工程再由甲、乙两队合作16天可以完成.(1)求甲、乙两队单独完成这项工程各需要多少天?(2)已知甲队每天的施工费用为0.67万元,乙队每天的施工费用为0.33万元,该工程预算的施工费用为19万元.为缩短工期,拟安排甲、乙两队同时开工合作完成这项工程,问:该工程预算的施工费用是否够用?若不够用,需要追加预算多少万元?请说明理由.【答案】(1)甲、乙两队单独完成这项工程各需要30天和60天(2)工程预算的施工费用不够用,需追加预算1万元【解析】【分析】(1)求的是工效,时间较明显,一定是根据工作总量来列等量关系,等量关系为:甲6天的工作总量+甲乙合作16天的工作总量=1;(2)应先算出甲乙合作所需天数,再算所需费用,和19万进行比较.【详解】解:(1)设甲队单独完成这项目需要x天,则乙队单独完成这项工程需要2x天,根据题意,得611161 x x2x⎛⎫++=⎪⎝⎭,解得x=30经检验,x=30是原方程的根,则2x=2×30=60答:甲、乙两队单独完成这项工程各需要30天和60天.(2)设甲、乙两队合作完成这项工程需要y天,则有11y13060⎛⎫+=⎪⎝⎭,解得y=20需要施工费用:20×(0.67+0.33)=20(万元)∵20>19,∴工程预算的施工费用不够用,需追加预算1万元.【点睛】本题考查分式方程的应用,分析题意,找到关键描述语,找到合适的等量关系是解决问题的关键.此题涉及的公式:工作总量=工作效率×工作时间.9.某县为落实“精准扶贫惠民政策”,计划将某村的居民自来水管道进行改造.该工程若由甲队单独施工恰好在规定时间内完成;若乙队单独施工,则完成工程所需天数是规定天数的1.5倍.如果由甲、乙队先合作施工15天,那么余下的工程由甲队单独完成还需5天.(1)这项工程的规定时间是多少天?(2)为了缩短工期以减少对居民用水的影响,工程指挥部最终决定该工程由甲、乙两队合作完成.则甲、乙两队合作完成该工程需要多少天?【答案】(1)这项工程的规定时间是30天;(2)甲乙两队合作完成该工程需要18天.【解析】【分析】(1)设这项工程的规定时间是x天,则甲队单独施工需要x天完工,乙队单独施工需要1.5x 天完工,依题意列方程即可解答;(2)求出甲、乙两队单独施工需要的时间,再根据题意列方程即可.【详解】(1)设这项工程的规定时间是x天,则甲队单独施工需要x天完工,乙队单独施工需要1.5x天完工,依题意,得: 1551511.5x x++=.解得: 30x=,经检验,30x=是原方程的解,且符合题意.答:这项工程的规定时间是30天.(2)由(1)可知:甲队单独施工需要30天完工,乙队单独施工需要45天完工,111()183045÷+=(天),答:甲乙两队合作完成该工程需要18天.【点睛】本题考查分式方程的应用,理解题意,根据等量关系列出方程是解题的关键.10.某商家用1200元购进了一批T恤,上市后很快售完,商家又用2800元购进了第二批这种T恤,所购数量是第一批购进量的2倍,但单价贵了5元.(1)该商家购进的第一批T恤是多少件?(2)若两批T恤按相同的标价销售,最后剩下20件按八折优惠卖出,如果希望两批T恤全部售完的利润率不低于16%(不考虑其它因素),那么每件T恤的标价至少是多少元?【答案】(1)商家购进的第一批恤是40件;(2)每件恤的标价至少40元.【解析】【分析】(1)可设该商家购进的第一批衬衫是x件,则购进第二批这种衬衫是2x件,根据第二批这种衬衫单价贵了5元,列出方程求解即可;(2)设每件衬衫的标价y元,求出利润表达式,然后列不等式解答.【详解】(1)解:设购进的第一批恤是x件.由题意,得1200280052x x=-解得x=40.经检验,x=40是所列方程的解.所以商家购进的第一批恤是40件.(2)设每件的标价是y元由题意,(40+40×2-20)y+0.8×20y≥(1200+2800)(1+16%)解得y≥40.即每件恤的标价至少40元.【点睛】本题考查的知识点是分式方程的应用和一元一次不等式的应用,解题关键是弄清题意并找出题中的数量关系并列出方程.。
人教版八年级数学上册《15.3 分式的方程》同步练习题-带答案
人教版八年级数学上册《15.3 分式的方程》同步练习题-带答案一、单选题1.下列关于x 的方程中,不是分式方程的是( )A .655=-x x B .205111x x =++- C .2353=+x x D .24=-x x x 2.分式方程153x x =+的解是( ) A .3 B .2 C .32 D .343.若关于x 的分式方程12111m x x --=--的解是正数,则m 的取值范围是( ) A .4m <或3m ≠B .4m <C .4m ≤且3m ≠D .5m >且6m ≠ 4.若分式方程1111k x x =+++无解,则k 的值是( ) A .0 B .1 C .2 D .35.下列说法正确的是( )A .分式方程一定有解B .分式方程就是含有分母的方程C .分式方程中,分母中一定含有未知数D .分母中含有字母的方程叫做分式方程6.《九章算术》是我国古代重要的数学专著之一,其中记录的一道题译为把一份文件用慢马送到900里外的城市需要的时间比规定时间多1天;如果用快马送,所需的时间比规定时间少5天.已知快马的速度是慢马的2倍.根据题意列方程为()900900123x x =+-,其中x 表示( ) A .快马的速度 B .慢马的速度 C .规定的时间 D .以上都不对7.有甲、乙两种铺路沥青车,乙型沥青车比甲型沥青车每小时多铺沥青50%,铺120平方米的面积所用的时间甲型沥青车比乙型沥青车多用40分钟,两种型号沥青车每小时分别可以铺路多少平方米?若设甲型沥青车每小时铺路x 平方米,根据题意可列方程为( )A .12012020.53x x =+ B .12021200.53x x += C .12021203 1.5x x += D .12012021.53x x =+8.如果关于x 的不等式组()13432x m x x -⎧≤⎪⎨⎪->-⎩的解集为1x <,且关于x 的分式方程2311mx x x +=--有非负数解,那么所有符合条件的整数m 的值之和为( )A .−2B .0C .3D .5二、填空题9.分母中含有 ,叫做 .10.关于x 的方程2233x a x x -=--有增根,则增根为 . 11.青少年是全民国防教育的重中之重,要从培养担当民族复兴大任时代新人的高度,教育引导青少年树立国防观念.某校为了提升青少年国防素养,组织共青团员乘大巴车前往距离学校180km 的中国人民革命军事博物馆进行参观学习,出发后前一小时按原计划的速度匀速行驶,一小时后以原来速度的1.5倍匀速行驶,并比原计划提前了40min 到达博物馆,则前一小时大巴车的行驶速度为 km/h .12.2311x a x x ++=--的解为非负数,333234y y y a -⎧≤-⎪⎪⎨-⎪≤⎪⎩的解集为3y ≤,则所有符合条件的整数a 的和是 .三、解答题13.解下列方程: (1)544101236x x x x -+=---. (2)2228224x x x x x -+-=+--. 14.已知关于x 的方程:223242mx x x x +=--+ (1)当m 为何值时,原方程无解;(2)当m 为何值时,原方程的解为负数.15.下面是小卫学习了“分式方程的应用”后所作的课堂学习笔记,请认真阅读并完成相应的任务. 题目:某商店准备购进甲、乙两种商品,其中甲种商品每件的进价比乙种商品每件的进价多10元,当商店用了2000元购进甲种商品,用了1600元购进乙种商品后发现购进的甲、乙两种商品的数量相同. 求甲、乙两种商品每件的进价分别是多少元.方法分析问题 列出方程 解法一 等量关系: 甲商品数量=乙商品数量 2000160010x x =- 解法二等量关系: 甲商品进价-乙商品进价= 102000160010x x -= 任务: (1)解法一:所列方程中的x 表示_______,解法二:所列方程中的x 可表示_______.A .甲种商品每件进价B .乙种商品每件进价C .甲种商品购进的件数(2)根据以上任一解法求出甲种商品的进价和乙种商品的进价.(3)商店计划用不超过2000元的资金购进甲、乙两种商品共45件,最多购进甲种商品多少件? 参考答案1.D2.D3.A4.B5.C6.C7.D8.A9. 未知数的方程 分式方程10.3x =11.6012.213.(1)无解(2)=1x -14.(1)当1m =或4m =-或6m =时,原方程无解(2)当1m >且6m ≠时,原方程的解为负数 15.(1)A ,C(2)甲种商品的进价为50元/件,乙种商品的进价为40元/件(3)至多购进甲种商品20件。
人教版八年级数学上册《15.1分式》同步测试题带答案
人教版八年级数学上册《15.1分式》同步测试题带答案学校:___________班级:___________姓名:___________考号:___________一、单选题1.在代数式y2−2x,1−2a,xπ+2,y2y,112,b+3b2−9中,分式的个数为()A.2个;B.3个C.4个D.5个2.下列分式中,是最简分式的是()A.1m B.3xyx2C.y−2(y−2)2D.a+ba2−b23.已知x=1时,分式x+2bx−a无意义;x=4时,分式的值为0,则a+b的值为()A.2B.–2C.1D.–14.如果把分式xyx−2y中的x,y都扩大到原来的2倍,那么分式的值()A.缩小2倍B.不变C.扩大2倍D.扩大4倍5.要使分式x+1(x+1)(x−2)有意义,x的取值应满足()A.x=−1B.x≠2C.x=−1或x≠2D.x=−1且x≠26.下列各式中,错误的是()A.−(a+b)c =−a+bcB.−a−b−c=a+bcC.−a−bc =−a−bcD.b−ac=−a−bc7.已知x2+5x+1=0,则x+1x的值为()A.5B.1C.−5D.−18.有一个计算程序,每次运算都是把一个数除以它与1的和,即y1=xx+1,y2=y1y1+1,y3=y2y2+1……多次重复进行这种运算,若输入的值是2,则y2023为()A.12023B.24043C.24045D.24047二、填空题9.分式3x2y26xy3化为最简分式的结果是.10.分式5y2x ,4x3y2,14xy的最简公分母是.11.已知−3m−2值为正整数,则整数m值为.12.不改变分式的值,把分式1x+12y的分子与分母中各项的系数都化为整数,结果为 .13.如果分式|m |−4|m−4|的值等于0,那么m = .14.利用分式基本性质变形可得1x−1=A(x−1)(x+1),则整式A = .15.已知a +b =2ab ,且ab +a +b ≠0,则2a−5ab+2b a+ab+b的值为 .16.已知:|a −1|+|b −2|=0,1ab+1(a+1)(b+1)+⋅⋅⋅1(a+2021)(b+2021)= .三、解答题17.不改变分式的值,把下列各分式的分子和分母中各项系数化为整数. (1)0.02−0.2x 0.3x−0.03; (2)12x−13y 23x−12y .18.约分: (1)10a 3bc −5a 2b 3c 2(2)x 2−9x 2−6x+919.已知a 、b 互为相反数,m 、n 互为倒数,求2a−25+2b 8mn−3的值.20.一船在河流上游A 港顺流而下直达B 港,用一个小时将货物装船后返航,已知船在静水中的速度是50千米/时,水流速度是x 千米/时,A 、B 两地距离为S 千米,则该船从A 港出发到返回A 港共用多少时间?(只需列式表示,不必化简)21.从三个代数式:①a 2−2ab +b 2,②3a −3b ,③a −2b 2中任选两个分别作为分式的分子和分母:(1)一共能得到多少个不同的分式?写出它们.(2)上述分式化简后,结果为整式的有哪些?写出其化简过程及结果. 22.自学下面材料后,解答问题:分母中含有未知数的不等式叫做分式不等式.如:x−2x+1>0,2x−3x−1<0等;那么如何求出它们的解集呢?根据我们学过的有理数除法法则可知:两数相除,同号得正,异号得负 其字母表达式为:(1)若a >0,b >0,则ab >0,若a <0,b <0,则ab >0 (2)若a >0,b <0,则ab <0,若a <0,b >0,则ab <0反之:①若a b >0,则{a >0b >0 或{a <0b <0;②若ab <0,则_____或 . 根据上述规律,求不等式x+2x+1<0的解集.23.阅读下列解题过程:已知xx 2+1=12,求x 2x 4+1的值解:由xx 2+1=12,知x ≠0,所以x 2+1x=2,即x +1x =2∴x 4+1x 2=x 2+1x 2=(x +1x )2−2=22−2=2∴x 2x 4+1的值为2的倒数,即12以上解法中先将已知等式的两边“取倒数”,然后求出待求式子倒数的值,我们把这种解法叫做“倒数法”,请你利用“倒数法”解决下面问题: (1)已知xx 2+1=13,求x 2x 4+1的值; (2)已知x x 2−x+1=14,求x 2x 4−2x 2+1的值;(3)已知xy x+y =2,yzy+z =43,zxz+x =43,求xyzxy+yz+zx 的值.题号 1 2 3 4 5 6 7 8 答案BADCD CCD1.解:在代数式y2−2x,1−2a ,xπ+2,y 2y,112,b+3b 2−9中,分式有1−2a ,y 2y,b+3b 2−9三个.故选:B2.解:A 、1m 是最简分式,符合题意; B 、3xy x 2中分子与分母含有公因式x ,不是最简分式,不符合题意; C 、y−2(y−2)2中分子与分母含有公因式y −2,不是最简分式,不符合题意;D 、a+ba 2−b 2中分子与分母含有公因式a +b ,不是最简分式,不符合题意; 故选:A3.解:∴当x =1时,分式x+2bx−a 无意义 ∴1−a =0 解得:a =1当x =4时,分式的值为0即4+2b=0解得:b=−2∴a+b=1+(−2)=−1故选:D.4.解:把分式xyx−2y中的x,y都扩大到原来的2倍则xyx−2y 变成2x⋅2y2x−4y∵2x⋅2y 2x−4y =4xy2(x−2y)=2xyx−2y∴把分式xyx−2y中的x,y都扩大到原来的2倍,那么分式的值扩大2倍.故选:C.5.解:由题意得:(x+1)(x−2)≠0解得:x≠−1且x≠2故选:D.6.解:A、−(a+b)c =−a+bc该式正确,不符合题意;B、−a−b−c =a+bc该式正确,不符合题意;C、−a−bc =−a+bc故原式错误,符合题意;D、b−ac =−a−bc该式正确,不符合题意.故选:C.7.解:∴x2+5x+1=0∴x≠0∴x2+5x+1x=0∴x+1x=−5故选C.8.解:根据题意得:y1=22+1=23=22×1+1y2=2323+1=25=22×2+1y3=2525+1=27=22×3+1……由此发现y n=22n+1∴y2023=22×2023+1=24047.故选:D.9.解:依题意故答案为:x2y10.解:5y2x ,4x3y2,14xy的最分母分别是2x、3y2、4xy,故最简公分母为12xy2.故答案是:12xy2.11.解:∵−3m−2值为正整数∴m−2=−1或m−2=−3解得:m=1或m=−1故答案为:1或−112.解:1x+12y=1×2(x+12y)×2=22x+y故答案为:22x+y.13.解:由题意得:|m|−4=0且|m−4|≠0∴m=±4且m≠4∴m的值为−4故答案为:−4.14.解:1x−1=x+1(x−1)(x+1)∴A=x+1故答案为:x+1.15.解:∴a+b=2ab,且ab+a+b≠0∴2a−5ab+2b a+ab+b =2(a+b)−5aba+b+ab=2⋅2ab−5ab2ab+ab=−ab3ab=−13;故答案为:−13.16.解:∴|a −1|+|b −2|=0,|a −1|≥0,|b −2|≥0 ∴b −2=0,a −1=0 ∴a =1,b =2 ∴原式=11×2+12×3+.....+12022×2023=1−12+12−13+....+12022−12023=1−12023=20222023故答案为:20222023.17.(1)解:0.02−0.2x0.3x−0.03=(0.02−0.2x)×100(0.3x −0.03)×100=2−20x30x−3;(2)解:12x−13y 23x−12y=(12x −13y)×6(23x −12y)×6=3x−2y 4x−3y.18.(1)解:原式=10a 3bc−5a 2b 3c 2=−5a 2⋅b⋅c⋅2a5a 2⋅b⋅c⋅b 2c =−2ab 2c ; (2)解:原式=(x+3)(x−3)(x−3)2=x+3x−3.19.解:∴a 、b 互为相反数,m 、n 互为倒数 ∴a +b =0,mn =1 ∴2a−25+2b 8mn−3=2(a+b )−258mn−3=0−258×1−3=−255=−5.20.解:船从A 到B 顺流而下,所需时间为S50+x 从B 返回A 逆流而上,所需时间为S50−x∴船从A 港出发到返回A 港共用时间为S50+x +S50−x +1. 21.(1)解:一共能得到6个不同的分式:①3a−3ba 2−2ab+b 2,②a 2−b 2a 2−2ab+b 2,③a 2−2ab+b 23a−3b ,④a 2−b 23a−3b ,⑤a 2−2ab+b 2a 2−b 2,⑥3a−3ba 2−b 2.(2)解:①3a−3b a 2−2ab+b 2=3(a−b )(a−b )2=3a−b;②a 2−b 2a 2−2ab+b 2=(a−b )(a+b )(a−b )2=a+b a−b;③a 2−2ab+b 23a−3b =(a−b )23(a−b )=a−b 3;④a 2−b 23a−3b=(a−b )(a+b )3(a−b )=a+b 3;⑤a 2−2ab+b 2a 2−b 2=(a−b )2(a+b )(a−b )=a−b a+b;⑥3a−3b a 2−b 2=3(a−b )(a+b )(a−b )=3a+b;综上可知,③④能化为整式,得:a 2−2ab+b 3a−3b=a−b 3a 2−b 23a−3b =a+b 322.解:②若a b <0,则{a >0b <0 或{a <0b >0;故答案为:{a >0b <0 {a <0b >0;对于x+2x+1<0依题意得{x +2>0x +1<0 (∴)或{x +2<0x +1>0(∴)解不等式组(∴),得−2<x <−1 解不等式组(∴),得不等式组无解 所以不等式x+2x+1<0的解集为−2<x <−1.23.(1)解:由xx 2+1=13,知x ≠0,∴x 2+1x=3,即x +1x =3∴x 4+1x 2=x 2+1x 2=(x +1x )2−2=32−2=7∴x 2x 4+1的值为7的倒数,即17; (2)由x x 2−x+1=14,知x ≠0,∴x 2−x+1x=4,∴x −1+1x=4,即x +1x=5∴x 4−2x 2+1x 2=x 2−2+1x 2=(x +1x )2−4=52−4=21∴x 2x 4−2x 2+1的值为21的倒数,即121;(3)由xyx+y =2,知x ≠0,y ≠0,∴x+yxy =12,即1y +1x =12①由yzy+z =43,知y≠0,z≠0,∴y+zyz=34,即1z+1y=34②由zxz+x =43,知z≠0,x≠0,∴z+xzx=34,即1x+1z=34③①+②+③得:2(1x +1y+1z)=12+34+34=2∴1x+1y+1z=1∴xy+yz+zxxyz =1z+1x+1y=1∴xyzxy+yz+zx的值为1的倒数,即1.。
人教版八年级数学上册《15.1.2分式的基本性质》同步训练题-附答案
人教版八年级数学上册《15.1.2分式的基本性质》同步训练题-附答案学校:___________班级:___________姓名:___________考号:___________一、单选题 1.根据分式的性质,分式a ab --可变形为( ) A .a a b --- B .a a b + C .a a b -+ D .a a b- 2.下列分式变形从左到右一定成立的是( )A .22a a b b= B .a ac b bc = C .a a b b -=-- D .ac a bc b = 3.使得等式4477m m⨯=⨯成立的m 的取值范围为( ) A .0m =B .1m =C .0m =或1m =D .0m ≠ 4.把分式 2a b ab-的 a ,b 都扩大到原来的 3 倍,则分式的值( ) A .扩大到原来的9倍B .扩大到原来的3倍C .不变D .缩小到原来的 13 5.下列分式中,最简分式是( )A .22x x B .21x x +- C .122x x -- D .211x x +- 6.下列分式中与x y x y -+--的值相等的分式是( ) A .+-x y x y B .x y x y -+ C .-+-x y x y D .-x y x y-+ 7.将分式11134312a b a b -+的分子与分母中的各项系数化为整数,正确的是 ( ) A .3234a b a b -+ B .4334a b a b -+ C .6334a b a b ++ D .6434a b a b-+ 8.下列分式的变形正确的是( )A .11a b a b=---- B .22x y x y x y +=++ C .11a a b b +=+ D .2111a a a -=-+ 9.分式2x21x x - 31x +的最简公分母是( )A.A=3,B=﹣2B.A=2,B=3C.A=3,B=2D.A=﹣2,B=3二、填空题三、解答题(1)比较1S 与2S 的大小,并说明理由:(2)该小区参与“最美小区”评选活动,其中一项评比指标是小区规划绿化区域的绿化覆盖率不低于50%,若6a b =,该区域能否通过该项指标的评比?(绿化覆盖率100%⨯绿地面积=规划绿化区域面积) 参考答案:1.C2.D3.D4.D5.B6.B7.D8.D9.B10.B11.分式的分子与分母同乘(或除以)一个不等于0的整式,分式的值不变.12.25103x y x y-+ 13.2x y x y-+ 14.310x y15.116.(1)3xy -;(2)2221455,3121212y x x x y xy x y==.。
人教版八年级数学上册 分式运算 分式方程同步练习题(附答案)
人教版八年级数学上册分式运算分式方程练习题一、单选题1.当分式31x -有意义时,字母x 应满足( ) A.1x ≠-B.0x =C.1x ≠D.0x ≠ 2.若分式2a a b+中的a b ,的值同时扩大到原来的10倍,则分式的值( ) A.是原来的20倍 B.是原来的10倍 C.是原来的110 D.不变3.如果1m n +=,那么代数式()22221m n m n m mn m +⎛⎫+⋅- ⎪-⎝⎭的值为( ) A.3-B.1-C.1D.3 4.如果2220m m +-=,那么代数式2442m m m m m +⎛⎫+⋅ ⎪+⎝⎭的值是( ) A.-2 B.-1 C.2 D.35.计算2222ab ab a b a b-÷-+的结果是( ) A.22ab b -+ B.2b a b -+ C.22ab b -- D.2b a b-- 6.在分式2222424312,,,412y x x x xy y a ab a x x y ab b +--++-+-中,是最简分式的有( ) A.1个 B.2个 C.3个 D.4个7.若分式22969x x x -++的值为0,则x 的值为( ) A.3 B.3± C.9 D.9±8.计算2422a a a a a a -⎛⎫-⋅ ⎪-+⎝⎭的结果是( ) A.4- B.4 C.2a D.2a -9.老师设计了接力游戏,用合作的方式完成分式化简,规则:每人只能看到前一人给的式子,并进行一步计算,再将结果传递给下一人,最后完成化简.过程如图所示:接力中,自己负责的一步出现错误的是( )A.只有乙B.甲和丁C.乙和丙D.乙和丁 10.计算2235325953x x x x x ÷⋅--+的结果为( ) A.223x B.2(53)3x + C.253x x - D.2159x x - 11.计算2n n m m m ⎛⎫-÷ ⎪-⎝⎭的结果是( ) A.1m -- B. 1m -+ C. mn m -- D.mn n -- 12.计算2221121a a a a a a --⋅+-+结果是( ) A.1a B.a C.11a a +- D.11a a -+ 13.计算222105a b a b ab a b +⋅-的结果为( ) A.2a b - B.a a b - C.b a b - D.2a a b- 14.计算3362b a b a-⋅的结果为( ) A.223a bB.223a b -C.229a b -D.229a b 15.把分式2112,,2(2)(3)(3)x x x x --++通分,下列结论不正确的是( ) A.最简公分母是2(2)(3)x x -+ B.221(3)2(2)(3)x x x x +=--+C.213(2)(3)(2)(3)x x x x x +=-+-+D.22222(3)(2)(3)x x x x -=+-+ 16.化简分式222()x y y x --的结果是( ) A.1- B.1 C.x y y x +- D.x y x y+- 二、计算题17.计算:1.2222255343x y m n xym mn xy n÷ 2.222132(1)441x x x x x x x-++÷+++- 18.先化简,再求值:2221211x x x x x x--+÷+-,其中2x =-. 三、填空题19.计算293242a a a a-+÷--的结果为_________. 20.如果23a b =,那么22242a b a ab --的值是____________. 21.如果2220m m +-=,那么244()2m m m m m ++⋅+的值是 . 参考答案1.答案:C解析:当10x -≠时,分式有意义。
8年级数学人教版上册同步练习15.1分式(含答案解析)
答卷时应注意事项1、拿到试卷,要认真仔细的先填好自己的考生信息。
2、拿到试卷不要提笔就写,先大致的浏览一遍,有多少大题,每个大题里有几个小题,有什么题型,哪些容易,哪些难,做到心里有底;3、审题,每个题目都要多读几遍,不仅要读大题,还要读小题,不放过每一个字,遇到暂时弄不懂题意的题目,手指点读,多读几遍题目,就能理解题意了;容易混乱的地方也应该多读几遍,比如从小到大,从左到右这样的题;4、每个题目做完了以后,把自己的手从试卷上完全移开,好好的看看有没有被自己的手臂挡住而遗漏的题;试卷第1页和第2页上下衔接的地方一定要注意,仔细看看有没有遗漏的小题;5、中途遇到真的解决不了的难题,注意安排好时间,先把后面会做的做完,再来重新读题,结合平时课堂上所学的知识,解答难题;一定要镇定,不能因此慌了手脚,影响下面的答题;6、卷面要清洁,字迹要清工整,非常重要;7、做完的试卷要检查,这样可以发现刚才可能留下的错误或是可以检查是否有漏题,检查的时候,用手指点读题目,不要管自己的答案,重新分析题意,所有计算题重新计算,判断题重新判断,填空题重新填空,之后把检查的结果与先前做的结果进行对比分析。
亲爱的小朋友,你们好!经过两个月的学习,你们一定有不小的收获吧,用你的自信和智慧,认真答题,相信你一定会闯关成功。
相信你是最棒的!第十五章 分式15.1分式专题一 分式有意义的条件、分式的值为0的条件1.使代数式有意义,那么x 的取值范围是( ) A .x ≥0 B .x ≠1 C .x >0 D .x ≥0且x ≠12.如果分式的值为0,则x 的值应为 .3.若分式的值为零,求x 的值.专题二 约分4.化简的结果是( ) A .2n 2 B . C . D .5.约分:=____________.6.从下列三个代数式中任选两个构成一个分式,并将它化简:4x 2-4xy +y 2,4x 2-y 2,2x -y .状元笔记【知识要点】1.分式的概念一般地,如果A ,B 表示两个整式,并且B 中含有字母,那么式子叫做分式.2.分式的基本性质分式的分子与分母乘(或除以)同一个不等于0的整式,分式的值不变.用式子表示为:x x -123273x x --2299x x x --6+222m mn n m mn-2+-m n m -m n m n -+m n m+29()2727a y x x y--A B=,=(其中A ,B ,C 是整式,C ≠0).3.约分与通分约分:根据分式的基本性质,把一个分式的分子与分母的公因式约去,叫做分式的约分.通分:根据分式的基本性质,把几个异分母的分式分别化成与原来的分式相等的同分母的分式,叫做分式的通分.【温馨提示】1.分式的值为0受到分母不等于0的限制,“分式的值为0”包含两层意思:一是分式有意义,二是分子的值为0,不要误解为“只要分子的值为0,分式的值就是0”.2.分式的基本性质中的A 、B 、C 表示的都是整式,且C ≠0.3.分子、分母必须“同时”乘C (C ≠0),不要只乘分子(或分母).4.性质中“分式的值不变”这句话的实质,是当字母取同一值(零除外)时,变形前后分式的值是相等的.但是变形前后分式中字母的取值范围是变化的.【方法技巧】1.分式的符号法则可总结为:一个负号随意跑,两个负号都去掉.就是说,分式中若出现一个负号,则此负号可“随”我们的“意”(即根据题目要求)跑到分子、分母以及分式本身三者中的任何一个位置上;若分式中出现两个负号,则可以将这两个负号同时去掉.2.分式的分子、分母系数化整问题的基本做法是分式的分子、分母都乘同一个“适当”的不为零的数,这里的“适当”的数又分两种情况:若分式分子、分母中的系数都是分数时,“适当”的数就是分子、分母中各项系数的所有分母的最小公倍数;若分式的分子、分母中各项系数是小数时,则“适当的数”就是10n ,其中n 是分子、分母中各项系数的小数点后最多的位数.最后根据情况需要约分时,则要约分.A B C B C A ⋅⋅A B A C B C÷÷参考答案:1.D 解析:根据题意得:x≥0且x -1≠0.解得x≥0且x≠1.故选D .2.-3 解析:根据分式值为0,可得,解得x =-3.3.解:∵的值为0,∴x 2-9=0且x 2-6x +9≠0.解x 2-9=0,得x =±3.当x =3时,x 2-6x +9=32-6×3+9=0,故x =3舍去.当x =-3时,x 2-6x +9=(-3)2-6×(-3)+9=36.∴当分式的值为0时,x =-3.4.B 解析:==.故选B .5. 解析:===.6.解:答案不唯一,如:==.⎩⎨⎧≠-=-0302732x x 2299x x x --6+2299x x x --6+222m mn n m mn -2+-2()()m n m m n --m n m -3ax ay -29()2727a y x x y --29()27()a x y x y --()3a x y -3ax ay -2222444x xy y x y -+-2(2)(2)(2)x y x y x y -+-22x y x y -+。
八年级数学人教版上册同步练习分式的基本性质(解析版)
15.1.2分式的基本性质一、单选题1.下列约分计算结果正确的是 ( )A .22a b a b a b+=++ B .a m m a n n +=+ C .1a b a b -+=-- D .632a a a= 【答案】C 【分析】利用因式分解,确定分子,分母的公因式,后约分化简,计算即可.【详解】∵22a b +与a +b 没有公因式, ∴22a b a b++无法计算, ∴22a b a b a b+=++的计算是错误的, ∴选项A 不符合题意;∵a +m 与a +n 没有公因式, ∴++a m a n 无法计算, ∴a m m a n n+=+的计算是错误的; ∴选项B 不符合题意;∵-a +b = -(a +b )与a +b 的公因式是a +b , ∴()1a b a b a b a b-+--==---, ∴选项C 符合题意; ∵642a a a=, ∴632a a a=的计算是错误的; ∴选项D 不符合题意;故选C .【点评】本题考查了分式的化简,同底数幂的除法,熟练掌握化简计算的要领是解题的关键.2.下列分式中,属于最简分式的个数是( )①42x ,②221x x +,③211x x --,④11x x --,⑤22y x x y -+,⑥2222x y x y xy++. A .1个B .2个C .3个D .4个【答案】B【分析】根据最简分式的定义判断即可. 【详解】①422x x =,③21111x x x -=-+,④111x x -=--,⑤22y x y x x y-=-+,可约分,不是最简分式; ②221x x +,⑥2222x y x y xy++分子分母没有公因式,是最简分式,一共有二个; 故选:B .【点评】本题考查了最简分式,解题关键是明确最简分式的定义,准确判断分子分母是否含有公因式. 3.下列命题中的真命题是( )A .多项式x 2-6x +9是完全平方式B .若∠A ∶∠B ∶∠C =3∶4∶5,则△ABC 是直角三角形C .分式211x x +-是最简分式 D .命题“对顶角相等”的逆命题是真命题【答案】A【分析】根据完全平方公式、直角三角形性质、分式化简、和对顶角相等的逆命题进行判断即可.【详解】∵x 2-6x +9=(x -3)2,故A 选项是真命题;∵∠A ∶∠B ∶∠C =3∶4∶5,∴∠A =45°,∠B =60°,∠C =75°,故B 选项是假命题; ∵21111x x x +=--,故C 选项是假命题; “对顶角相等”的逆命题是相等的角是对顶角,是假命题,故D 选项是假命题;故选:A【点评】本题考查了分式的性质、完全平方公式、直角三角形性质、逆命题,解题关键是熟练掌握相关知识,准确进行判断.4.化简211x x --的结果是( ) A .11x -+ B .11x - C .11x + D .11x-【答案】A【分析】分母因式分解,再约分即可. 【详解】2111(1)(1)11x x x x x x --==-+-+-, 故选:A .【点评】本题考查了分式的约分,解题关键是把多项式因式分解,然后熟练运用分式基本性质进行约分. 5.若把x ,y 的值同时扩大为原来的2倍,则下列分式的值保持不变的是( )A .()22x y x + B .xy x y + C .22x y ++ D .22x y -- 【答案】A 【分析】根据分式的基本性质即可求出答案.【详解】A 、()22224x y x +=()22x y x +,故A 的值保持不变. B 、42=22xy xy x y x y++,故B 的值不能保持不变. C 、221=221x x y y ++++,故C 的值不能保持不变. D 、221=221x x y y ----,故D 的值不能保持不变. 故选:A .【点评】本题考查了分式,解题的关键是正确理解分式的基本性质,本题属于基础题型.6.下列关于分式2x x+的各种说法中,错误的是( ). A .当0x =时,分式无意义 B .当2x >-时,分式的值为负数C .当2x <-时,分式的值为正数D .当2x =-时,分式的值为0 【答案】B【分析】根据分式的定义和性质,对各个选项逐个分析,即可得到答案.【详解】当0x =时,分式无意义,选项A 正确;当2x >-时,分式的值可能为负数,可能为正数,故选项B 错误;当2x <-时,20x +<,分式的值为正数,选项C 正确;当2x =-时,20x +=,分式的值为0,选项D 正确;故选:B .【点评】本题考查了分式的知识;解题的关键是熟练掌握分式的性质,从而完成求解.7.下列命题中,属于真命题的是( )A .如果0ab =,那么0a =B .253x x x -是最简分式C .直角三角形的两个锐角互余D .不是对顶角的两个角不相等【答案】C【分析】根据有理数的乘法、最简分式的化简、直角三角形的性质、对顶角的概念判断即可.【详解】A. 如果 ab=0,那么a=0或b=0或a 、b 同时为0,本选项说法是假命题,不符合题意; B. ()2555==333x x x x x x x ---,故253x x x-不是最简分式,本选项说法是假命题,不符合题意; C. 直角三角形的两个锐角互余,本选项说法是真命题,符合题意;D. 不是对顶角的两个角可能相等,本选项说法是假命题,不符合题意;故选:C .【点评】本题考查的是命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉教材中的性质定理.8.若a b ,则下列分式化简中,正确的是( ) A .22a a b b+=+ B .22a a b b -=- C .33a a b b = D .22a a b b = 【答案】C【分析】根据ab ,可以判断各个选项中的式子是否正确,从而可以解答本题; 【详解】∵ab A 、22a a b b+≠+ ,故该选项错误; B 、22a a b b-≠- ,故该选项错误; C 、33a a b b= ,故该选项正确; D 、22a a b b≠ ,故该选项错误; 故选:C .【点评】本题考查了分式的混合运算,解题时需要熟练掌握分式的性质,分式的分子与分母同乘(或除以)一个不等于0的整式,分式的值不变,熟练掌握分式的基本性质是解题的关键;二、填空题目9.已知a 、b 、c 、d 、e 、f 都为正数,12 bcdef a =,14 acdef b =,18 abdef c =,2 abcef d=,4 abcdf e=,8 abcde f =,则222222a b c d e f +++++=________. 【答案】1198【分析】根据等式性质及分式性质进行计算即可求得结果. 【详解】由12 bcdef a =,14 acdef b =,18 abdef c =,2 abcef d =,4 abcdf e=,8 abcde f =,可将每个等式的左右两边相乘得: ()51abcdef abcdef =,∴1abcdef =,2112bcdef a a a a ⋅==⋅, ∴22a =,同理可得:24b =,28c =,212d =,214e =,218f =, ∴2222221198a b c d e f +++++=; 故答案为1198. 【点评】本题主要考查等式性质及分式性质,熟练掌握等式性质及分式性质是解题的关键. 10.已知114y x -=,则分式2322x xy y x xy y+---的值为______. 【答案】112 【分析】先根据题意得出x-y=4xy ,然后代入所求的式子,进行约分就可求出结果. 【详解】∵114y x-=,∴x-y=4xy ,∴原式=2()383112422x y xy xy xy x y xy xy xy -++==---, 故答案为:112 . 【点评】此题考查分式的基本性质,正确对已知式子进行化简,约分,正确进行变形是关键.11.已知2310x x --=,求4231x x x x ++=-__________. 【答案】4 【分析】将分式整理成()()2222131x x x x -+-,根据2310x x --=可得213x x -=,代入分式并约分即可求解.【详解】∵2310x x --=,∴213x x -=∴4231x x x x++- ()()2222131x x x x -+=- ()223343x x x x+==⋅, 故答案为:4. 【点评】本题考查分式的性质,将分式整理成()()2222131x x x x -+-的形式是解题的关键. 12.将分式132132a b a b +-的分子、分母各项系数化为整数,其结果为_______________. 【答案】6243a b a b+- 【分析】根据分式的基本性质,分子分母都乘以最小公倍数6,分式的值不变,并且其分子、分母各项系数化为整数.【详解】1623214332a b a b a ba b ++=--. 故答案为:6243a b a b+-. 【点评】本题考查了分式的基本性质:分式的分子与分母同乘(或除以)一个不等于0的整式,分式的值不变.三、解答题13.我们知道:分式和分数有着很多的相似点,如类比分数的基本性质,我们得到了分式的基本性质,等等.小学里,把分子比分母小的数叫做真分数.类似的,我们把分子的次数小于分母的次数的分式称为真分式,反之,称为假分式.对于任何一个假分式都可以化成整式与真分式的和的形式.如:11211x x x x +-+=--=1211x x x -+-- =1+21x -. (1)请写出分式的基本性质 ;(2)下列分式中,属于真分式的是 ;A .21x x -B .11x x -+C .﹣321x -D .2211x x +- (3)将假分式231m m ++,化成整式和真分式的形式. 【答案】(1)分式的分子和分母乘(或除以)同一个不等于0的整式,分式的分式值不变;(2)C ;(3)231m m ++=m ﹣1+41m + 【分析】(1)根据分式的基本性质回答即可;(2)根据分子的次数小于分母的次数的分式称为真分式进行判断即可;(3)先把23m +转化为214m -+得到22314111m m m m m +-=++++,其中前面一个分式约分后化为整式,后面一个是真分式.【详解】(1)分式的分子和分母乘(或除以)同一个不等于0的整式,分式的分式值不变.(2)根据题意得:选项C 的分子次数是0,分母次数是1,分子的次数小于分母的次数是真分式.而其他选项是分子的次数均不小于分母的次数的分式,故AB D 选项是假分式,故选:C .(3)∵22231441411111m m m m m m m m +-+-=+=++++++=m ﹣1+41m +, ∴故答案为:m ﹣1+41m +. 【点评】本题考察了分式的基本性质以及未知数的次数问题,解答本题的关键是熟悉掌握未知数次数的判断以及分式的分子和分母乘(或除以)同一个不等于0的整式,分式的分式值不变.14.约分(1)1232632418a x y a x; (2)ma mb mc a b c+-+-; (3)2222444a ab b a b-+-. 【答案】(1)6243a y ;(2)m ;(3)22a b a b-+ 【分析】(1)约去分子分母的公因式636a x 即可得到结果;(2)将分子进行因式分解,约去公因式(a b c +-)即可得到结果;(3)首先把分子分母分解因式,然后再约掉分子分母的公因式即可.【详解】(1)1232632418a x y a x=6362636463a x a y a x ⨯ =6243a y ; (2)ma mb mc a b c+-+- =()m a b c a b c +-+- =m ;(3)2222444a ab b a b-+-=2(2)(2)(2)a b a b a b -+- =22a b a b-+. 【点评】此题主要考查了分式的约分,关键是正确确定分子分母的公因式.15.先约分,再求值:32322444a ab a a b ab--+ 其中12,2a b ==-. 【答案】2123a b a b +-, 【分析】先把分式的分子分母分解因式,约分后把a 、b 的值代入即可求出答案.【详解】原式=2222444a a b a a ab b ()()--+ =2(2)(2)(2)a a b a b a a b +-- =22a b a b +- 当122a b ==-,时 原式=2121-+=13. 【点评】本题考查了分式的约分,解题的关键是熟练进行分式的约分,本题属于基础题型.16.已知32(1)(1)11x A B x x x x -=++--+,求A 、B 的值. 【答案】A=12, B=52 【分析】先对等式右边通分,再利用分式相等的条件列出关于A 、B 的方程组,解之即可求出A 、B 的值. 【详解】∵()()()()(1)(1)()111111A B A x B x A B x A B x x x x x x ++-++-+==-++-+- , 又∵()()321111A B x x x x x -+=-++-, ∴()()()()()321111A B x A B x x x x x ++--=+-+-,∴32A B A B +=⎧⎨-=-⎩ , 解得1252A B ⎧=⎪⎪⎨⎪=⎪⎩. ∴A =12, B =52. 【点评】本题考查了分式的基本性质.利用分式的基本性质进行通分,再利用系数对应法列出方程组是解题的关键.17.若分式,A B 的和化简后是整式,则称,A B 是一对整合分式.(1)判断22244x x x ---与22x x -是否是一对整合分式,并说明理由; (2)已知分式M ,N 是一对整合分式,2a b M a b-=+,直接写出两个符合题意的分式N . 【答案】(1)是一对整合分式,理由见解析;(2)答案不唯一,如1224,b a a b N N a b a b -+==++. 【分析】(1)根据整合分式的定义即可求出答案.(2)根据整合分式的定义以及分式的运算法则即可求出答案.【详解】(1)是一对整合分式,理由如下: ∵2222222424(2)424x x x x x x x x x x x ----+++==---, 满足一对整合分式的定义,22244x x x --∴-与22x x -是一对整合分式. (2)答案不唯一,如1224,b a a b N N a b a b-+==++. 【点评】本题考查了分式的加减法,解题的关键是熟练运用分式的运算法则,本题属于基础题型.18.已知430,4520,x y z x y z +-=⎧⎨-+=⎩0xyz ≠. (1)用含z 的代数式表示x ,y ;(2)求222232x xy z x y+++的值. 【答案】(1)13x z =,23y z =;(2)165. 【分析】(1)根据加减消元法解关于x 、y 的方程组即可(2)将(1)中的结果代入分式中进行运算即可【详解】(1)430,4520,x y z x y z +-=⎧⎨-+=⎩①② ①4⨯-②得21140y z -=,解得23y z =. 把23y z =代入①,得24303x z z +⨯-=, 解得13x z =. (2)2222222211232321633351233z z z z x xy z x y z z ⎛⎫⨯+⨯⨯+ ⎪++⎝⎭==+⎛⎫⎛⎫+ ⎪ ⎪⎝⎭⎝⎭. 【点评】本题考查了用加减法解方程组的特殊解法,把x 、y 看作未知数解方程组是解题的关键19.一个矩形的面积为223()x y -,如果它的一边为()x y +,求这个矩形的周长.【答案】这个矩形的周长为:84x y -【分析】根据整式的除法运算法则与合并同类项法则,即可求解.【详解】∵矩形的一边长为()x y +,面积为223()x y -, ∴矩形的另一边长为:223()3()()x y x y x y -=-+ ∴该矩形的周长为:2[()3()]x y x y ++-2(42)x y =-84x y =-.答:这个矩形的周长为:84x y -.【点评】本题主要考查整式的除法法则与加法法则,掌握因式分解与合并同类项法则,是解题的关键. 20.阅读理解:对于二次三项式a 2+2ab+b 2,能直接用完全平方公式进行因式分解,得到结果为(a+b )2.而对于二次三项式a 2+4ab ﹣5b 2,就不能直接用完全平方公式了,但我们可采用下述方法:a2+4ab﹣5b2=a2+4ab+4b2﹣4b2﹣5b2=(a+2b)2﹣9b2,=(a+2b﹣3b)(a+2b+3b)=(a﹣b)(a+5b).像这样把二次三项式分解因式的方法叫做添(拆)项法.解决问趣:(1)请利用上述方法将二次三项式a2+6ab+8b2分解因式;(2)如图,边长为a的正方形纸片1张,边长为b的正方形纸片8张,长为a,宽为b的长方形纸片6张,这些纸片可以拼成一个不重叠,无空隙的长方形图案,请画出示意图;(3)已知x>0,且x≠2,试比较分式2244812x xx x++++与22428xx x-+-的大小.【答案】(1)(a+2b)(a+4b);(2)见解析;(3)222244428812 x x xx x x x-++>+-++【分析】(1)根据题目的引导,先分组,后运用公式法对原式进行因式分解;(2)根据第一问的因式分解结果,对图形进行排列即可;(3)对两个分式的分子和分母分别进行因式分解,然后对分式进行化简并比较大小.【详解】(1)原式=a2+6ab+9a2﹣b2=(a+3b)2﹣b2=(a+3b﹣b)(a+3b+b)=(a+2b)(a+4b);(2)如图:(3)224(2)(2)(2)28(4)(2)(4)x x x xx x x x x-+-+==+-+-+;22244(2)(2)812(2)(6)(6)x x x xx x x x x++++==+++++;∵x>0,∴x+4<x+6,∴222244428812 x x xx x x x-++>+-++.【点评】本题考查了因式分解的应用,通过因式分解化简分式,根据分母大,分数值反而小来比较大小是解题的关键.祝福语祝你考试成功!。
新人教版初中数学八年级数学上册第五单元《分式》测试卷(包含答案解析)(1)
一、选择题1.已知分式24x x+的值是正数,那么x 的取值范围是( )A .x >0B .x >-4C .x ≠0D .x >-4且x ≠02.关于分式2634m nm n--,下列说法正确的是( )A .分子、分母中的m 、n 均扩大2倍,分式的值也扩大2倍B .分子、分母的中m 扩大2倍,n 不变,分式的值扩大2倍C .分子、分母的中n 扩大2倍,m 不变,分式的值不变D .分子、分母中的m 、n 均扩大2倍,分式的值不变 3.若关于x 的分式方程3211m x x =---有非负实数解,且关于x 的不等式组102x x m +≥⎧⎨+≤⎩有解,则满足条件的所有整数m 的和为( ) A .9-B .8-C .7-D .6-4.若关于x 的方程1044m x x x--=--无解,则m 的值是( ) A .2- B .2C .3-D .35.如果分式11m m -+的值为零,则m 的值是( ) A .1m =- B .1m = C .1m =±D .0m =6.下列说法:①解分式方程一定会产生增根;②方程4102x -=+的根为2;③方程11224=-x x 的最简公分母为2(24)-x x ;④1111x x x+=+-是分式方程.其中正确的个数是( ) A .1B .2C .3D .47.已知2340x x --=,则代数式24xx x --的值是( )A .3B .2C .13D .128.下列变形不正确的是( ) A .1122x xx x+-=--- B .b a a bc c--+=- C .a b a bm m -+-=- D .22112323x x x x--=--- 9.大爱无疆,在爆发新冠病毒疫情后,甲,乙两家单位分别组织了员工捐款.已知甲单位捐款7500元,乙单位捐款9800元,甲单位捐款人数比乙单位少10人,且甲单位人均捐款额比乙单位多20元,若设甲单位的捐款人数为x ,则可列方程为( ) A .7500980020x x 10-=- B .9800750020x 10x-=- C .7500980020x x 10-=+D .9800750020x 10x-=+ 10.下列说法正确的是( )A .分式242x x --的值为零,则x 的值为2±B .根据分式的基本性质,m n 可以变形为22mx nxC .分式32xyx y-中的,x y 都扩大3倍,分式的值不变D .分式211x x ++是最简分式 11.若分式()22222x y x y a x a y ax ay+-÷-+的值等于5,则a 的值是( ) A .5B .-5C .15D .15-12.下列各式计算正确的是( )A .33x x y y=B .632m m m=C .22a b a b a b+=++D .32()()a b a b b a -=-- 二、填空题13.当m=______时,解分式方程1m 233(2x 1)2x 1+=--会出现增根. 14.已知5,3a b ab -==,则b aa b+的值是__________. 15.对于两个不相等的实数a ,b ,我们规定符号{}min ,a b 表示a ,b 中的较小的值,如{}min 2,42=.(1){}min 2,3--=__________________. (2)方程{}3min 2,322x x x--=---的解为_________________. (3)方程131min ,2222x x x x -⎧⎫=-⎨⎬---⎩⎭的解为_________________. 16.我们可以将一些只含有一个字母且分子、分母的次数都为一次的分式变形,转化为整数与新的分式的和的形式,其中新的分式的分子中不含字母,如:3(1)441111a a a a a +-+==+---,212(1)332111a a a a a -+-==-+++.参考上面的方法,解决下列问题:(1)将1a a +变形为满足以上结果要求的形式:1aa =+_________; (2)①将321a a +-变形为满足以上结果要求的形式:321a a +=-_________;②若321a a +-为正整数,且a 也为正整数,则a 的值为__________.17.已知关于x 的分式方程239133x mx x x ---=--无解,则m 的值为______. 18.计算:()0322--⋅=________.19.分式2222,39a bb c ac 的最简公分母是______. 20.已知1112a b -=,则aba b-的值是________.三、解答题21.某高速公路有300km 的路段需要维修,拟安排甲、乙两个工程队合作完成.已知甲队每天维修公路的长度是乙队每天维修公路长度的2倍,并且在各自独立完成长度为48km 公路的维修时,甲队比乙队少用6天.(1)求甲乙两工程队每天能完成维修公路的长度分别是多少km ?(2)两个工程队合作15天后乙队另有任务,余下工程由甲队完成,请你用所学过的知识判断能否在规定的30天工期完成并写出求解过程.22.己知A 、B 两地相距240千米,甲从A 地去B 地,乙从B 地去A 地,甲比乙早出发3小时,两人同时到达目的地.已知乙的速度是甲的速度的2倍. (1)甲每小时走多少千米? (2)求甲乙相遇时乙走的路程. 23.解分式方程: (1)1171.572x x += (2)21533x x x -+=-- 24.先化简,再求值:22121124x x x x -+⎛⎫+÷ ⎪--⎝⎭,其中3x =. 25.计算:(1)化简:()()22n m n m n -++;(2)解分式方程:2132163x x x -=---. 26.某工程队用甲、乙两台隧道挖掘机从两个方向挖掘同一条隧道,因为地质条件不同,甲、乙的挖掘速度不同,已知甲、乙同时挖掘3天,可以挖216米,若甲挖2天,乙挖5天可以挖掘270米.(1)请问甲、乙挖掘机每天可以挖掘多少米?(2)若隧道的总长为2400米,甲、乙挖掘机工作20天后,因为甲挖掘机进行设备更新,乙挖掘机设备老化,甲比原来每天多挖m 米,同时乙比原来少挖m 米,最终,甲、乙两台挖掘机完成的时间相同,且各完成隧道总长的一半,请求出m .【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】若24x x+的值是正数,只有在分子分母同号下才能成立,即x +4>0,且x≠0,因而能求出x 的取值范围. 【详解】解:∵24x x +>0, ∴x +4>0,x≠0, ∴x >−4且x≠0. 故选:D . 【点睛】本题考查分式值的正负性问题,若对于分式ab(b≠0)>0时,说明分子分母同号;分式ab(b≠0)<0时,分子分母异号,也考查了解一元一次不等式. 2.D解析:D 【分析】根据分式的基本性质即可求出答案. 【详解】 解:A 、22262(26)26=23242(34)34m n m n m nm n m n m n⨯-⨯⨯--=⨯-⨯⨯--,故分子、分母中的m 、n 均扩大2倍,分式的值不变,故该说法不符合题意;B 、22623=23432m n m nm n m n ⨯--⨯--,故分子、分母的中m 扩大2倍,n 不变,分式的值没有扩大2倍,故该说法不符合题意;C 、226212=32438m n m nm n m n -⨯--⨯-,故分子、分母的中n 扩大2倍,m 不变,分式的值发生变化,故该说法不符合题意;D 、22262(26)26=23242(34)34m n m n m nm n m n m n⨯-⨯⨯--=⨯-⨯⨯--,故分子、分母中的m 、n 均扩大2倍,分式的值不变,此说法正确,符合题意; 故选:D . 【点睛】本题考查分式的基本性质,解题的关键是熟练运用分式的基本性质,本题属于基础题型.3.D解析:D 【分析】先根据方程3211m x x =---有非负实数解,求得5m ≥-,由不等式组102x x m +≥⎧⎨+≤⎩有解求得3m ≤,得到m 的取值范围53m -≤≤,再根据10x -≠得3m ≠-,写出所有整数解计算其和即可. 【详解】 解:3211m x x =--- 解得:52m x +=, ∵方程有非负实数解, ∴0x ≥即502m +≥, 得5m ≥-;∵不等式组102x x m +≥⎧⎨+≤⎩有解,∴12x m -≤≤-,∴21m -≥-, 得3m ≤, ∴53m -≤≤, ∵10x -≠,即502m +≠, ∴3m ≠-,∴满足条件的所有整数m 为:-5,-4,-2,-1,0,1,2,3, 其和为:-6, 故选:D . 【点睛】此题考查利用分式方程解的情况求参数,根据不等式组的解的情况求参数,正确掌握方程及不等式组的解的情况确定m 的取值范围是解题的关键.4.D解析:D 【分析】根据方程1044m xx x--=--无解,得出方程有增根,利用增根的定义可求得x =4,并把x =4代入转化后的整式方程m +1−x =0,即可求出m 的值. 【详解】解:去分母得:m +1−x =0,∵方程1044m xx x --=--无解, ∴x =4是方程的增根, ∴m =3. 故选:D . 【点睛】本题考查了分式方程无解问题,解题的关键是理解增根的定义,并能准确求出增根.5.B解析:B 【分析】先根据分式为零的条件列出关于m 的不等式组并求解即可. 【详解】 解:∵11m m -+=0 ∴m-1=0,m+1≠0,解得m=1. 故选B . 【点睛】本题主要考查了分式为零的条件,掌握分式为零的条件是解答本题的关键,同时分母不等于零是解答本题的易错点.6.B解析:B 【分析】根据分式方程的定义、解分式方程、增根的概念及最简公分母的定义解答. 【详解】解:分式方程不一定会产生增根,故①错误;方程4102x -=+的根为x=2,故②正确; 方程11224=-x x 的最简公分母为2x(x-2),故③错误; 1111x x x +=+-是分式方程,故④正确; 故选:B . 【点睛】 此题考查分式方程的定义、解分式方程、增根的概念及最简公分母的定义,熟记各定义及正确解方程是解题的关键.7.D解析:D 【分析】利用等式的性质对2340x x --=变形可得43x x-=,利用分式的性质对24x x x --变形可得141x x--,从而代入求值即可. 【详解】由条件2340x x --=可知,0x ≠, ∴430x x --=,即:43x x-=, 根据分式的性质得:21144411x x x x x x x==------, 将43x x-=代入上式得:原式11312==-, 故选:D . 【点睛】本题主要考查分式的化简求值,熟练掌握分式的运算是解题的关键.8.A解析:A 【分析】答题首先清楚分式的基本性质,然后对各选项进行判断. 【详解】 解:A 、1122x xx x+--=---,故A 不正确; B 、b a a bc c--+=-,故B 正确;C 、a b a bm m-+-=-,故C 正确; D 、22112323x x x x --=---,故D 正确. 故答案为:A . 【点睛】本题主要考查了分式的基本性质,掌握分式的基本性质是解题的关键.9.C解析:C 【分析】由设甲单位的捐款人数为x ,甲单位捐款人数比乙单位少10人,得到乙单位人数为(x+10),根据甲单位人均捐款额比乙单位多20元列得方程. 【详解】 解:由题意得:7500980020x x 10-=+, 故选:C . 【点睛】此题考查分式方程的实际应用,正确理解题意找到题中的等量关系,由此列得方程解决实际问题是解题的关键.10.D解析:D 【分析】直接利用分式的值为零的条件以及分式的基本性质、最简分式的定义分别分析得出答案. 【详解】A 、分式242x x --的值为零,则x 的值为−2,故此选项错误;B 、根据分式的基本性质,等式m n =22mx nx(x≠0),故此选项错误;C 、分式32xyx y-中的x ,y 都扩大3倍,分式的值扩大为3倍,故此选项错误;D 、分式211x x ++是最简分式,正确; 故选:D . 【点睛】此题主要考查了分式的值为零的条件以及分式的基本性质、最简分式的定义,正确掌握相关定义和性质是解题关键.11.C解析:C 【分析】先进行分式除法,化简后得到关于a 的式子,列方程即可求解. 【详解】解:()22222x y x y a x a y ax ay+-÷-+ ()22()(()=))(a x y a x x y y y x x y ++-⨯-+, 1=a, 根据题意,15a=, 解得,15a =, 经检验,15a =是原方程的解, 故选C 【点睛】本题考查了分式的除法和分式方程的解法,正确化简分式,列出分式方程,是解决问题的关键.12.D解析:D 【分析】根据分式的基本性质进行判断即可得到结论. 【详解】解:A 、33x y 是最简分式,所以33x xy y ≠,故选项A 不符合题意;B 、624m m m=,故选项B 不符合题意;C 、22a b a b++是最简分式,所以22a b a b a b +≠++,故选项C 不符合题意; D 、3322()()()()a b a b a b b a a b --==---,正确, 故选:D . 【点睛】此题考查了分式的约分,以及最简分式的判断,分式的约分关键是找公因式,约分时,分式分子分母出现多项式,应先将多项式分解因式后再约分,最简分式即为分式的分子分母没有公因式.二、填空题13.6【分析】分式方程的增根使分式中分母为0所以分式方程会出现增根只能是x=增根不符合原分式方程但是适合分式方程去分母后的整式方程于是将x=代入该分式方程去分母后的整式方程中即可求出m 的值【详解】解:由解析:6 【分析】分式方程的增根使分式中分母为0,所以分式方程1m 233(2x 1)2x 1+=--会出现增根只能是x=12,增根不符合原分式方程,但是适合分式方程去分母后的整式方程,于是将x=12代入该分式方程去分母后的整式方程中即可求出m 的值. 【详解】解:由题意知分式方程()1m 2332x 12x 1+=--会出现增根是x=12,去分母得7-2x=m 将x=12代入得m=6 即当m=6时,原分式方程会出现增根. 故答案为6. 【点睛】本题考查了分式方程增根的性质,增根使最简公分母等于0,不适合原分式方程,但是适合去分母后的整式方程.14.【分析】先利用乘法公式算出的值再根据分式的加法运算算出结果【详解】解:∵∴∴故答案为:【点睛】本题考查分式的求值解题的关键是掌握分式的加法运算法则 解析:313【分析】先利用乘法公式算出22a b +的值,再根据分式的加法运算算出结果. 【详解】解:∵5a b -=,3ab =,∴()222225631a b a b ab +=-+=+=,∴22313b a b a a b ab ++==. 故答案为:313.【点睛】本题考查分式的求值,解题的关键是掌握分式的加法运算法则.15.-3【分析】(1)模仿题干可直接给出答案;(2)先将原式转化为分式方程求解即可;(3)根据题中的新定义化简求出分式方程的解检验即可【详解】解:(1)根据题意;(2)原方程为:去分母得解得:经检验是该解析:-3 34x =0x = 【分析】(1)模仿题干可直接给出答案;(2)先将原式转化为分式方程,求解即可;(3)根据题中的新定义化简,求出分式方程的解,检验即可.【详解】解:(1)根据题意,{}min 2,33--=-; (2)原方程为:3322x x x-=---, 去分母得33(2)x x +=--, 解得:34x =,经检验34x =是该方程的根, 故{}3min 2,322x x x --=---的解为:34x =; (3)当1322x x <--时,x >2,方程变形得:11222x x x -=---, 去分母得:1=x-1-2x+4,解得:x=2,不符合题意; 当1322x x >--时,即x <2,方程变形得:31222x x x -=---, 解得:x=0,经检验x=0是分式方程的解,综上,所求方程的解为x=0. 故答案为:-3,34x =,0x =. 【点睛】本题考查新定义的实数运算,解分式方程.能将题目新定义的运算化为一般运算是解题关键. 16.2或6【分析】(1)根据材料中分式转化变形的方法即可把变形为满足要求的形式;(2)①根据材料中分式转化变形的方法即可把变形为满足要求的形式;②令可先求出a 与x 是整数时的对应值再从所得结果中找出符合条解析:111a -+ 531a +- 2或6 【分析】 (1)根据材料中分式转化变形的方法,即可把1a a +变形为满足要求的形式; (2)①根据材料中分式转化变形的方法,即可把321a a +-变形为满足要求的形式;②令325311a x a a +==+--,可先求出a 与x 是整数时的对应值,再从所得结果中找出符合条件的a ,x 的值,即可得出结论.【详解】 解:(1)1111111a a a a a +-==-+++; 故答案为:111a -+; (2)①323(1)553111a a a a a +-+==+---; 故答案为:531a +-; ②∵323(1)553111a a a a a +-+==+--- 令531x a =+-, 当x , a 都为整数时,11a -=±或15a -=±,解得a =2或a =0或a =6或a =-4,当a =2时,x =8;当a =0时,x =-2;当a =6时,x =4;当a =-4时,x =2;∵x , a 都为正整数,∴符合条件的a 的值为2或6.故答案为:2或6.【点睛】此题考查了分式的加减及求分式的值等知识,理解题意并熟练掌握分式的基本性质及运算法则是解本题的关键.17.1或4【分析】先去分母将原方程化为整式方程根据一元一次方程无解的条件得出一个m 值再根据分式方程无解的条件得出一个m 值即可【详解】解:去分母得:2x-3-mx+9=x-3整理得:(m-1)x=9∴当m解析:1或4【分析】先去分母,将原方程化为整式方程,根据一元一次方程无解的条件得出一个m 值,再根据分式方程无解的条件得出一个m 值即可.【详解】解:去分母得:2x-3- mx+9 =x-3,整理得:(m-1)x=9,∴当m-1=0,即m=1时,方程无解;当m-1≠0时,由分式方程无解,可得x-3=0,即x=3,把x=3代入(m-1)x=9,解得:m=4,综上,m 的值为1或4.故答案为:1或4.【点睛】本题考查了分式方程的解,熟练掌握分式方程及整式方程无解的条件是解题的关键. 18.【分析】根据零指数幂定义及负整数指数幂定义解答【详解】故答案为:【点睛】此题考查实数的计算掌握零指数幂定义及负整数指数幂定义是解题的关键 解析:18【分析】根据零指数幂定义及负整数指数幂定义解答.【详解】()0322--⋅=118⨯=18, 故答案为:18. 【点睛】 此题考查实数的计算,掌握零指数幂定义及负整数指数幂定义是解题的关键.19.【分析】常取各分母系数的最小公倍数与字母因式的最高次幂的积作公分母这样的公分母叫做最简公分母【详解】分式的分母分别是3b2c9ac2故最简公分母是9ab2c2故答案为:9ab2c2【点睛】本题考查了解析:229ab c【分析】常取各分母系数的最小公倍数与字母因式的最高次幂的积作公分母,这样的公分母叫做最简公分母.【详解】 分式222239a b b c ac、的分母分别是3b 2c 、9ac 2,故最简公分母是9ab 2c 2.故答案为:9ab 2c 2.【点睛】本题考查了最简公分母的定义及求法.通常取各分母系数的最小公倍数与字母因式的最高次幂的积作公分母,这样的公分母叫做最简公分母. 一般方法:①如果各分母都是单项式,那么最简公分母就是各系数的最小公倍数,相同字母的最高次幂,所有不同字母都写在积里. ②如果各分母都是多项式,就可以将各个分母因式分解,取各分母数字系数的最小公倍数,凡出现的字母(或含字母的整式)为底数的幂的因式都要取最高次幂. 20.-2【分析】先把所给等式的左边通分再相减可得再利用比例性质可得再利用等式性质易求的值【详解】解:∵∴∴即∴故答案为:-2【点睛】本题考查了分式的加减法代数式求值解题的关键是通分得出是解题关键解析:-2【分析】 先把所给等式的左边通分,再相减,可得12b a ab -=,再利用比例性质可得()2ab a b =--,再利用等式性质易求ab a b -的值. 【详解】解:∵1112a b -=, ∴12b a ab -=, ∴()2ab b a =-,即()2ab a b =--, ∴2ab a b=--. 故答案为:-2.【点睛】 本题考查了分式的加减法,代数式求值,解题的关键是通分,得出12b a ab -=是解题关键. 三、解答题21.(1)甲、乙工程队每天能完成维修公路的长度分别是8km 和4km ;(2)能,理由见解析【分析】(1)设乙工程队每天能完成维修公路的长度是xkm .由甲队每天维修公路的长度是乙队每天维修公路长度的2倍,可得甲队每天维修公路的长度为2xkm ,根据等量关系各自独立完成长度为48km 公路的维修时,甲队比乙队少用6天.列方程484862x x-=,解方程及检验即可;(2)求出甲乙两队合作15天的工作量,求出余下的工作量,最后利用公式余下的工作量除以甲的工作效率求出余下的时间,比较合作时间15天+甲作余下工作时间与30天的大小即可.【详解】解:()1设乙工程队每天能完成维修公路的长度是xkm , 依题意得484862x x-=, 解得:4x =, 经检验:4x =是原方程的解.则甲工程队每天能完成维修公路的长度是()24=8km ⨯.答:甲、乙工程队每天能完成维修公路的长度分别是8km 和4km .()()2154+8=180km ⨯,300-180=120km ,1208=15÷天,15+15=30(天),所以能在规定工期内完成.【点睛】本题考查工程问题列分式方程解应用题,掌握列分式方程解应用题的方法,以及工作量,工作时间,和工作效率之间关系,抓住由甲队每天维修公路的长度是乙队每天维修公路长度的2倍设未知数,各自独立完成长度为48km 公路的维修时,甲队比乙队少用6天.构造方程,注意分式方程要验根.22.(1)40千米;(2)80千米【分析】(1)设甲每小时走x 千米,则乙每小时走2x 千米,根据题意列出分式方程,即可求解; (2)设相遇时甲出发t 小时,根据相遇时甲乙路程和为240千米列出方程,求解即可.【详解】解:(1)设甲每小时走x 千米,则乙每小时走2x 千米, 根据题意可得:24024032x x-=, 解得40x =,经检验得40x =是原分式方程的解,∴甲每小时走40千米;(2)设相遇时甲出发t 小时,由(1)可得乙每小时走80千米,根据题意可得:()40803240t t +-=,解得4t =,此时乙走的路程为()804380⨯-=千米.【点睛】本题考查分式方程的应用,根据题意找出等量关系,并列出方程是解题的关键.23.(1)1207x=;(2)无解【分析】(1)先去分母,解整式方程,求解后检验是否为原分式方程的解即可;(2)先去分母,解整式方程,求解后检验是否为原分式方程的解即可.【详解】(1)解:1171.572x x+=方程两边都乘72x,得:72+48=7x,解得:1207x=,经检验:1207x=是原方程的解;(2)21533xx x-+=--方程两边都乘(3x-),得:x-2-1=5(x-3),解得:3x=,检验:当3x=时,x-3=3-3=0,是增根,故原方程无解.【点睛】此题考查解分式方程,掌握解分式方程的步骤:去分母化为整式方程,解整式方程,检验解的情况.24.21xx+-;52【分析】先计算括号内的运算,然后计算除法,把分式进行化简得到最简分式,再把3x=代入计算,即可得到答案.【详解】解:原式=()()()22212211x xx xx xx+--+⨯=---;当3x=时,原式=522331=-+.【点睛】本题考查了分式的混合运算,分式的化简求值,解题的关键是掌握运算法则进行计算.25.(1)24m mn+;(2)x=1【分析】(1)根据单项式乘多项式法则和完全平方公式,即可得到结果;(2)通过去分母,把分式方程化为整式方程,即可求解.【详解】(1)原式=22222mn n m mn n -+++=24m mn +;(2)2132163x x x -=--- 213213(21)x x x -=--- 2(21)3x x --=-423x x --=-55=xx=1,经检验,x=1是方程的解,∴x=1.【点睛】本题主要考查整式的混合运算以及解分式方程,熟练掌握完全平方公式以及解分式方程的步骤,是解题的关键.26.(1)甲每天挖30米,乙每天挖42米;(2)m=15【分析】(1)设甲、乙每天分别挖x 、y 米.等量关系:3(甲+乙)216=米、2⨯甲5+⨯乙270=;(2)由题意可知20天后甲完成(30×20)米,剩余1(24003020)2⨯-⨯米,乙完成(4220⨯)米,剩余1(24004220)2⨯-⨯米,根据关键描述语:甲、乙两台挖掘机在相同时间里各完成隧道总长的一半列出方程,解之即可.【详解】解:(1)设甲、乙每天分别挖x 、y 米.依题意得:3()21625270x y x y +=⎧⎨+=⎩. 解得3042x y =⎧⎨=⎩. 答:甲每天挖30米,乙每天挖42米;(2)由题意可知:20天后甲完成(30×20)米,剩余1(24003020)2⨯-⨯米,乙完成(4220⨯)米,剩余1(24004220)2⨯-⨯米,依题意得:112400302024004220 223042m m⨯-⨯⨯-⨯=+-,解得:m=15,经检验:m=15是原方程的解.【点睛】本题考查了二元一次方程组的应用,分式方程的应用,找到等量关系是解题的关键,切记,分式方程一定要验根.。
人教版八年级数学上册《分式》专项测试卷带答案
人教版八年级数学上册《分式》专项测试卷带答案学校:___________班级:___________姓名:___________考号:___________考点一 分式的概念及其运算1.若分式2aa +有意义,则a 的取值范围是( ) A .2a = B .0a ≠ C .2a ≠- D .2a =-2.若a ,b ,c 为三角形的三边,且满足分式b ca c--的值为0,则此三角形的形状为( ) A .等腰三角形 B .直角三角形 C .无法确定D .等边三角形3.下列分式中,属于最简分式的是( ) A .24xB .11x x-- C .22x yx y +- D .224x x -+ 4.要将2520xyx y化成最简分式,应将分式的分子分母同时约去它们的公因式,这个公因式为( ) A .xB .5xC .xyD .5xy5.计算1(3)--的正确结果是( ) A .3B .3-C .13D .13-6.我们生活在物质的世界里,所有的物质都是由一些看不见的微小粒子构成的,例如水就是由水分子构成的.科学家们通过测量发现一个水分子的直径仅约0.0000000004m ,其中0.0000000004m 用科学记数法表示为( )A .90.410m -⨯B .10410m -⨯C .114010m -⨯D .9410m -⨯7.化简22222a ab b ba b a b-++-+的结果是( )A .a a b- B .b a b- C .a a b+ D .b a b+ 8.已知分式2+24-+x x x a,当x =1时,分式无意义,则a = .9.计算:222x x x y x y +=+- . 10.如图,这是白老师在纸条上书写的一道例题,在向同学们展示时,不小心将纸条的左侧撕掉了一部分,则撕掉部分中▲的内容为 .11.先化简,再求值:22191369x x x x x +-⎛⎫-÷ ⎪--+⎝⎭,其中=1x -12.先化简,再求值:2221111a b a b ⎛⎫⎛⎫+÷- ⎪ ⎪⎝⎭⎝⎭,其中,2a =和3b =.13.先化简:(7211a a a +--+)÷2231a aa +-,再从﹣3、﹣2、﹣1、0、1中选一个合适的数作为a 的值代入求值.14.观察下面的等式:111213141,1,1,1,22334455-=-=-=-=⋯(1)按上面的规律归纳出一般的结论(用含n 的等式表示,n 为正整数); (2)运用分式的有关知识,推理说明这个结论是正确的.15.下面是小明同学的一篇回顾与反思,请认真阅读并完成相应的任务.异分母的分式加减法回顾与反思 【回顾】今天我们学习了异分母的分式加减法,在课堂小结环节我的总结如下:下面是我在课堂上化简分式2242444x x x x ----+的过程: 解:原式242(2)(2)(2)x x x x -=-+-- 第一步1(2)(2)42x x x --+-= 第二步42(2)(2)(2)(2)x x x x x +=-+-+- 第三步42(2)(2)x x x -+=+- 第四步 6(2)(2)xx x -+-=第五步 【反思】总之,在学习中我们要善于思考与反思,总结与归纳,在总结中收获经验,为今后的学习奠定坚实的基础. 任务:(1)在探究异分母的分式加减法法则时主要体现的数学思想是______;A .方程思想B .数形结合思想C .转化思想D .统计思想(2)以上化简过程中,第______步是分式的通分,通分的依据是______; (3)我们在做题时一定要养成认真检查的好习惯,由于小明的马虎,解题过程出现了错误,从第_____步开始出现错误,化简的正确结果应该是______.考点二 分式方程1.实验室的一个容器内盛有150克食盐水,其中含盐10克.如何处理能将该容器内食盐水含盐的百分比提高到原来的3倍.晓华根据这一情景中的数量关系列出方程10103150150x⨯=-,则未知数x 表示的意义是( )A .增加的水量B .蒸发掉的水量C .加入的食盐量D .减少的食盐量 2.已知关于x 的一元一次方程25mx m -=+的解为2x =,则m 的值为( ) A .3B .3-C .7D .7-3.在创建文明城市的进程中,某市为美化城市环境,计划种植树木50万棵,由于志愿者的加入,实际每天植树比原计划多30%,结果提前2天完成任务,设原计划每天植树x 万棵,由题意得到的方程是( ) A .50502(130%)x x -=+ B .5050230%x x-= C .5050230%x x-= D .50502(130%)x x -=+4.(2024山西阳泉·期末)数学家斐波那契编写的《算经》中有如下问题:一组人平分100元钱,每人分得若干;若再加上6人,平分400元钱,则第二次每人所得与第一次相同,求第一次分钱的人数,设第一次分钱的人数为x 人,则可列方程 . 5.(2024山西长治·期中)若关于x 的分式方程1144mx x-=--(m 为常数)有增根,则增根是 .6.(2024山西太原·其他模拟)《步辇图》是唐朝画家阎立本的作品,如图是它的局部画面,装裱前是一个长为54cm ,宽为27cm 的矩形,装裱后,整幅图画宽与长的比是11:20,且四周边框的宽度相等,则边框的宽度应是多少cm ?设边框的宽度为cm x ,根据题意,可列方程为 .7.下面是小亮同学解方程11322x x x -=---的过程,请阅读并完成相应任务.解:去分母得()131x =+-,………………第一步 去括号得131x =+-,………………第二步 解得=1x -,………………第三步检验:当=1x -时20x -≠,………………第四步1x ∴=-是原方程的根.………………第五步任务:(1)小亮同学的求解过程从第______步开始出现错误,错误的原因是______;(2)请你改正并写出完整的解方程过程; (3)解分式方程产生增根的原因是______.8.小丽解分式方程331221x x x x --=++时,出现了错误,她的解题过程如下: 解:去分母得:22(3)3x x x +--=⋯⋯第一步; 解得:52x =……第二步;∴原分式方程的解是52x =……第三步;(1)小丽解答过程从第 步开始出错,正确结果是 ,这一步的依据是 .(2)小丽解答过程缺少的步骤是 .(3)请写出正确的解题过程.9.(2024山西阳泉·期末)下面是小颖同学解分式方程的过程,请认真阅读并完成相应任务. 解方程:262293x xx x--=--. 方程两边同乘__________,得()()262923x x x x ---=-+.第一步去括号,得22621826x x x x --+=--. 第二步 移项、合并同类项,得712x =-. 第三步 系数化为1,得127x =- 第四步 所以127x =-是原方程的解 第五步 (1)任务一:第一步横线处所填的内容为__________,这一步的依据为__________;(2)任务二:在小组组长的引导下,小颖反思上述解答过程缺少了一步,请你补全这一步;(3)任务三:在解分式方程的过程中,需要注意哪些事项,请你写出一条,并于同学们分享.10.某景区为应对即将到来的暑期旅游旺季,方便更多的游客在游览之余得到休息,计划采购一批A 型和B 型户外休闲椅,经过市场调查了解到A 型休闲椅的单价是B 型休闲椅单价的1.5倍,用2700元购买A 型休闲椅的数量比用2400元购买B 型休闲椅的数量少5张.求每张B 型休闲椅多少元?11.市政府计划对城区道路进行改造,现安排甲、乙两个工程队共同完成.已知甲队的工作效率是乙队工作效率的1.5倍,甲队改造240米的道路比乙队改造同样长的道路少用2天.(1)甲、乙两个工程队每天能改造道路的长度分别是多少米?(2)若甲队工作一天的改造费用为7万元,乙队工作一天的改造费用为5万元,如需改造的道路全长为1800米,求安排甲、乙两个工程队同时开工,并一起完成这项城区道路改造的总费用?12.习总书记指出,中华优秀传统文化是中华民族的“根”和“魂”、为了大力弘扬中华优秀传统文化,某校计划组织600名师生前往山西老陈醋的发源地——清徐研学.现准备租用A,B两种型号的客车若干辆,为安全起见,每名师生都需有座且每一辆客车都不得超载.已知每辆A型客车比每辆B型客车的乘客座位数多25%,若每辆客车均坐满,则单独租用A型客车的数量比单独租用B型客车的数量少3辆.(1)求每辆A型客车和每辆B型客车的乘客座位数;(2)由于实际参加研学活动的人数比原计划增加了35人、学校决定同时租用A、B两种型号的客车共14辆,为确保所有参加活动的师生都有座位(可以坐不满),求最多租用B型客车多少辆?13.山西某中学为提升学生的劳动能力,开辟一块菜地供学生实践使用,为保护菜地,需要利用护栏将菜地圈起来,李老师以招募工人和发放劳动报酬的方式来完成该项工作.小组的同学把“劳动基地菜地护栏建设”作为一项课题活动,利用课余时间完成了实践调查,并形成了如下活动报告.请根据活动报告计算支付给工人的总费用.14.(2024山西阳泉·期末)某市建设工程指挥部对某工程进行招标,接到了甲、乙两个工程队的招标书、从招标书中得知:甲队单独完成这项工程所需的时间是乙队单独完成这项工程所需时间的3倍,若由甲队先做2个月,剩下的工程由甲、乙两队合作4个月可以完成. (1)求甲、乙两队单独完成这项工程各需几个月?(2)已知甲队每月的施工费用是75万元,乙队每月的施工费用是165万元,工程预算的施工费用为1000万元,为缩短工期以减少对交通的影响,拟安排甲、乙两队合作完成这项工程,则工程预算的施工费用是否够用?若不够用,需追加预算多少万元?请给出你的判断,并说明理由.参考答案考点一 分式的概念及其运算1.【答案】C【分析】掌握分式有意义的条件是分母不为0,据此即可解答. 【详解】解:根据题意可得:20a +≠解得:2a ≠- 故此题答案为C . 2.【答案】A【分析】此题主要考查了分式的值为零的条件及三角形的分类,熟知分式值为零的条件是分子等于零且分母不等于零是解题的关键.根据分式的值为零的条件可得b c =且a c ≠,再进行判断即可.【详解】解:由题意得:0b c -=且0a c -≠ 解得:b c =且a c ≠所以此三角形的形状为等腰三角形 故此题答案为A . 3.【答案】D【分析】分子分母没有公因式的分式叫做最简分式,据此求解即可. 【详解】解:A .2142x x=不是最简分式,不符合题意; B .111x x-=--不是最简分式,不符合题意;C .()()221x y x y x y x y x y x y++==-+--不是最简分式,不符合题意;D .224x x -+是最简分式,符合题意; 故此题答案为D . 4.【答案】D【分析】最简分式的概念(分子和分母除1以外没有其它的公因式的分式叫最简分式)及公因式的概念(各项都含有一个公共的因式,叫做这个多项式各项的公因式).据此解答即可. 【详解】解:∵2515120454xy xy x y x xy x⨯==⨯ ∴将2520xyx y化成最简分式,应将分式的分子分母同时约去的公因式为5xy . 故此题答案为D . 5.【答案】D【详解】解:111(3)33--==-- 故此题答案为D . 6.【答案】B【分析】将一个数表示成10n a ⨯的形式,其中110a ≤<,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值大于或等于10时,n 是正整数;当原数的绝对值小于1时,n 是负整数.【详解】解:其中0.0000000004m 用科学记数法表示为10410m -⨯. 故此题答案为B . 7.【答案】C【分析】利用完全平方公式,平方差公式进行化简,然后计算分式的加法即可. 【详解】解:22222a ab b ba b a b-++-+()()()2a b ba b a b a b-=++-+ a b ba b a b -=+++ a a b=+ 故此题答案为C . 8.【答案】3【分析】把x =1代入分式,根据分式无意义得出关于a 的方程,求出即可 【详解】解:把x =1代入得:123143a a +=-+-此时分式无意义 ∴a -3=0 解得a =3.故此题答案为:3.【关键点拨】此题考查了分式无意义的条件,能得出关于a 的方程是解此题的关键.9.【答案】2222x x y x y--【分析】根据异分母分式加法运算法则进行计算即可. 【详解】解:222x x x y x y ++- ()()()()()2x x y x x y x y x y x y -=++--+()()()()22x xy x x y x y x y x y -=++--+ 2222x xy x y -=-.10.【答案】14m - 【分析】此题主要考查分式的混合运算,原等式两边除以15m-再加上1即可得出撕掉部分中▲的内容. 【详解】解:11145m m÷+--▲=514mm -=+- 544m m m -+-=-14m =-. 故此题答案为:14m -. 11.【答案】43x -+;2- 【分析】先计算括号内分式的减法运算,再计算除法运算,最后把=1x -代入计算即可.【详解】解:22191369x x x x x +-⎛⎫-÷ ⎪--+⎝⎭()()()23313333x x x x x x x --+⎛⎫=-⋅ ⎪--+-⎝⎭4333x x x --=⋅-+ 43x =-+. 当=1x -时,原式4213=-=--+. 12.【答案】a bb a+-,5 【分析】此题考查的是分式的化简求值.根据分式的加法法则、除法法则以及平方差公式把原式化简,把a 、b 的值代入计算,得到答案.【详解】解:2221111a b a b ⎛⎫⎛⎫+÷- ⎪ ⎪⎝⎭⎝⎭22222a b b a ab a b +-⎛⎫=÷ ⎪⎝⎭22222()()()a b a b a b a b b a +=⋅+- a bb a+=- 当2a =,3b =时,原式23532+==-. 13.【答案】3a a+;12-.【分析】先把括号内的两项通分后利用同分母分式的加减法法则进行计算,同时把除法转化为乘法,最后约分化成最简分式,根据分式有意义的条件选择一个a 值代入求值即可.【详解】解:22723111a a a a a a ++⎛⎫-÷ ⎪-+-⎝⎭ =()()()()()()()()712111113a a a a a a a a a ++--+-⋅-++=()2693a a a a +++ =()()233a a a ++ =3a a+ 当a=-3、-1、1、0时,原式没有意义,舍去 当a=-2时,原式=23122-+=--. 【关键点拨】此题考查分式的化简求值,熟练掌握分式的基本性质及分式有意义的条件是解题关键.14.【答案】(1)1111nn n -=++(2)见解析【分析】此题考查了数式规律探究,分式的混合运算,熟练掌握运算法则是解此题的关键.(1)观察已知等式,归纳总结得到一般性规律即可;(2)等式左边两项通分并利用同分母分式的减法法则计算即可得出结论 【详解】(1)解:第1个等式:11112211-==+ 第2个等式:12213312-==+第3个等式:13314413-==+ 第4个等式:14415514-==+…第n 个等式:1111n n n -=++. (2)解:∵左边11111111111n n n n n n n n ++-=-=-===+++++右边 ∴1111n n n -=++. 15.【答案】(1)C (2)三,分式的基本性质 (3)四,12x -+ 【分析】(1)根据分式加减运算进行解答即可; (2)根据通分的定义进行解答即可;(3)根据分式加减运算法则,进行计算得出正确答案即可.【详解】(1)解:在探究异分母的分式加减法法则时主要体现的数学思想是转化思想,故C 正确(2)解:以上化简过程中,第三步是分式的通分,通分的依据是分式的基本性质. (3)解:从第四步开始出现错误 2242444x x x x ----+ ()()()242222x x x x -=-+--()()41222x x x =-+-- ()()()()422222x x x x x +=-+-+-()()4222x x x --=+-()()222xx x -+-=12=-+x . 因此正确结果为:12x -+. 考点二 分式方程1.【答案】B【分析】根据容器内盛有150克食盐水,其中含盐10克及食盐水含盐的百分比提高到原来的3倍.可求出含盐的百分比,然后通过分式方程可知含盐仍为10克,而盐水变为150x -克,故可得出减少了水分,即可得出答案. 【详解】根据分式方程10103150150x⨯=-可知: 食盐水含盐的百分比提高到原来的3倍后,含盐10克不变,而盐水总量变为150x -克,所以应蒸发掉了水分 ∴x 表示的意义是蒸发掉的水量.故此题答案为B . 2.【答案】C【分析】根据方程的解是使方程成立的未知数的值,将2x =代入方程,求解即可. 【详解】解:把2x =代入25mx m -=+,得:225m m -=+ 解得:7m =; 故此题答案为C . 3.【答案】A【分析】根据题意给出的等量关系即可列出方程. 【详解】解:设原计划每天植树x 万棵,需要50x天完成 ∴实际每天植树(1+30%)x 万棵,需要()50130%x +天完成∵提前2天完成任务 ∴50x -()50130%x +=2故此题答案为A . 4.【答案】1004006x x =+ 【分析】此题主要考查分式方程的实际应用,找出等量关系、列出分式方程是解题的关键.根据等量关系“第二次每人所得与第一次相同”列分式方程即可. 【详解】解:设第一次分钱的人数为x 人 根据题意得1004006x x =+. 故此题答案为1004006x x =+.5.【答案】4x =【分析】根据“使分式的分母为零的未知数的值是方程的增根”计算即可. 【详解】∵关于x 的分式方程1144m x x-=--(m 为常数)有增根 ∴40x -=解得4x =,故答案为4x =. 6.【答案】2721154220x x +=+【详解】解:装裱后的长为(542)x +cm ,宽为(272)x +cm 根据题意得2721154220x x +=+.7.【答案】(1)一;方程两边同乘以最简公分母时,漏乘了不含分母的项“3” (2)见解析 (3)见解析【分析】(1)根据去分母的方法即可判定; (2)运用解分式方程的方法即可求解;(3)根据解分式方程的方法,增根的概念即可求解.【详解】(1)解:小亮同学的求解过程从第一步开始出现错误错误的原因是:方程两边同乘以最简公分母时,漏乘了不含分母的项“3”. (2)解:原方程可化为11322x x x-=+--. 方程两边都乘以()2x -去分母,得()1321x x =-+-. 整理,得152x =-. 解得2x =.检验:当2x =时20x -=,所以2x =是原分式方程的增根 所以原方程无解.(3)解:去分母时,在分式方程两边同乘最简公分母,将其转化为整式方程,若该整式方程的解恰好使最简公分母为零,就产生增根. 8.【答案】(1)一 2236()x x x +--=,等式的基本性质 (2)检验 (3)见解析【分析】(1)根据等式的两边同乘2(1)x +,即可判断; (2)根据分式方程一定要验根,即可确定答案; (3)根据解分式方程正确的步骤求解即可.【详解】(1)解:小丽解答过程从第一步开始出错,正确结果是2236()x x x +--= 这一步的依据是等式的性质故此题答案为:一,2236()x x x +--=等式的基本性质; (2)小丽解答过程缺少的步骤是检验故此题答案为:检验; (3)331221x xx x --=++ 去分母得:2236()x x x +--= 解得:1x =经检验,1x =是原方程的解 ∴原分式方程的解是1x =.【关键点拨】此题考查了解分式方程,熟练掌握解分式方程的步骤是解题的关键. 9.【答案】(1)()()33x x +-,等式的基本性质2(或等式两边同时乘同一个数或除以同一个不为0的数,所得结果仍是等式) (2)检验:当127x =-时()()330x x +-≠ (3)去分母时,每一项都要乘最简公分母,不能漏乘;分式方程必须检验(答案不唯一)【分析】此题考查了解分式方程,熟练掌握等式的性质,去括号,合并同类项的法则是解题的关键.(1)根据解分式方程的依据解答; 根据等式的性质解得即可. (2)检验方程的解即可. (3)给出合理建议即可.【详解】(1)解:∵分式方程的公分母为()()33x x +-∴第一步横线处所填的内容为()()33x x +-,这一步的目的是去分母,其依据是等式的基本性质. (2)缺少的步骤为: 检验:当127x =-时()()330x x +-≠; (3)建议:去分母时,每一项都要乘最简公分母,不能漏乘;分式方程必须检验(答案不唯一).10.【答案】A 型休闲椅单价为180元/张,B 型休闲椅单价为120元/张. 【分析】设B 型休闲椅单价为x 元/张,则A 型休闲椅单价为1.5x 元/张,根据“用2700元购买A 型休闲椅的数量比用2400元购买B 型休闲椅的数量少5张”这个等量关系列式子,求解,即可.【详解】解:设B 型休闲椅单价为x 元/张,则A 型休闲椅单价为1.5x 元/张 根据题意,得: 2700240051.5x x=- 解方程,得120x =经检验:120x =是原方程的根,且符合题意 ∴1.5180x =(元)答:A 型休闲椅单价为180元/张,B 型休闲椅单价为120元/张.11.【答案】(1)甲工程队每天能改造道路的长度为60米,乙工程队每天能改造道路的长度为40米(2)甲、乙两个工程队一起完成这项城区道路改造的总费用为216万元【分析】(1)设乙工程队每天能改造道路的长度为x 米,则甲工程队每天能改造道路的长度为1.5x 米,根据题意列出分式方程,解方程求解即可;(2)设安排甲、乙两个工程队同时开工需要m 天完成,根据题意列一元一次方程求解即可【详解】(1)设乙工程队每天能改造道路的长度为x 米,则甲工程队每天能改造道路的长度为1.5x 米 根据题意得:24024021.5x x-= 解得:40x =经检验,40x =是所列分式方程的解,且符合题意1.560x ∴=.答:甲工程队每天能改造道路的长度为60米,乙工程队每天能改造道路的长度为40米.(2)设安排甲、乙两个工程队同时开工需要m 天完成 由题意得:60401800m m += 解得:18m =则187185216⨯+⨯=(万元)答:甲、乙两个工程队一起完成这项城区道路改造的总费用为216万元; 【关键点拨】此题考查了分式方程的应用,一元一次方程的应用,根据题意列出方程是解题的关键.12.【答案】(1)50个;40个 (2)6辆【分析】(1)设每辆B 型客车乘客座位数为x 个,则每辆A 型客车乘客座位数为()125%x +个,根据“若每辆客车均坐满,则单独租用A 型客车的数量比单独租用B型客车的数量少3辆”,列方程求解即可;(2)设租用B 型客车a 辆,则租用A 型客车()14a -辆,根据题意列不等式求解即可;【详解】(1)解:设每辆B 型客车乘客座位数为x 个,则每辆A 型客车乘客座位数为()125%x +个. 根据题意,得()6006003125%x x -=+解得40x =.经检验,40x =是原方程的根,且符合题意.()125% 1.254050x ∴+=⨯=.答:每辆A 型客车的乘客座位数为50个,每辆B 型客车的乘客座位数为40个. (2)解:设租用B 型客车a 辆,则租用A 型客车()14a -辆. 根据题意,得()40501460035a a +-≥+. 解这个不等式,得 6.5a ≤.因为a 为整数,且a 取最大值,所以6a =. 答:最多租用B 型客车数量6辆.13.【答案】支付给工人的总费用为1360元.【分析】此题主要考查了分式方程的实际应用,设安排x 名工人安装横杠,在安排()6x -名工人安装竖杠,根据每名工人在相同的时间内安装横杠2根或竖杠3根且两项安装任务同时开始,并在当天同时完成列出方程求解即可. 【详解】解:设安排x 名工人安装横杠,安排()6x -名工人安装竖杠 由题意得()4001200236x x =- 解得2x =经检验,2x =是原方程的解 ∴64x -=220042404009601360⨯+⨯=+=元答:支付给工人的总费用为1360元.14.【答案】(1)乙队单独完成这项工程需6个月,甲队单独完成这项工程需18个月(2)施工费用为1000万元不够用,需追加预算80万元,理由见解析【分析】此题考查了分式方程与一元一次方程的应用,列分式方程解应用题的一般步骤:设、列、解、验、答.(1)若乙队单独完成这项工程需x 个月,则乙队单独完成这项工程需3x 个月,由题意可得等量关系:甲的工作效率×2+(甲的工作效率+乙的工作效率)×4=1,根据等量关系可得方程:2114133x x x ⎛⎫++= ⎪⎝⎭,解方程即可. (2)设甲乙两个工程队合作需要a 个月完成任务,由题意可得等量关系:(甲的工作效率+乙的工作效率)×工作时间=总工资量1,根据等量关系列方程,算出两队合作需要的时间,再根据时间计算出费用即可得出1000万元是否够用. 【详解】(1)设乙队单独完成这项工程需x 个月. 由题意,得2114133x x x ⎛⎫++= ⎪⎝⎭. 解得6x =.经检验:6x =是原方程的解.则甲队单独完成这项工程需要的月数:1863=⨯(个)答:乙队单独完成这项工程需6个月,甲队单独完成这项工程需18个月. (2)设甲乙两个工程队合作需要a 个月完成任务.由题意,得111186a ⎛⎫+= ⎪⎝⎭.解得 4.5a =.施工费用为:()4.5751651080⨯+=(万元).10001080,<∴不够用.需追加:1080100080-=(万元).答:施工费用为1000万元不够用,需追加预算80万元.参考答案考点一 分式的概念及其运算1.若分式2aa +有意义,则a 的取值范围是( ) A .2a = B .0a ≠ C .2a ≠- D .2a =-【答案】C【分析】掌握分式有意义的条件是分母不为0,据此即可解答. 【详解】解:根据题意可得:20a +≠解得:2a ≠- 故此题答案为C .2.若a ,b ,c 为三角形的三边,且满足分式b ca c--的值为0,则此三角形的形状为( )A .等腰三角形B .直角三角形C .无法确定D .等边三角形【答案】A【分析】此题主要考查了分式的值为零的条件及三角形的分类,熟知分式值为零的条件是分子等于零且分母不等于零是解题的关键.根据分式的值为零的条件可得b c =且a c ≠,再进行判断即可.【详解】解:由题意得:0b c -=且0a c -≠ 解得:b c =且a c ≠所以此三角形的形状为等腰三角形 故此题答案为A .3.下列分式中,属于最简分式的是( ) A .24xB .11x x-- C .22x yx y +- D .224x x -+ 【答案】D【分析】分子分母没有公因式的分式叫做最简分式,据此求解即可. 【详解】解:A .2142x x=不是最简分式,不符合题意; B .111x x-=--不是最简分式,不符合题意; C .()()221x y x y x y x y x y x y++==-+--不是最简分式,不符合题意;D .224x x -+是最简分式,符合题意; 故此题答案为D . 4.要将2520xyx y化成最简分式,应将分式的分子分母同时约去它们的公因式,这个公因式为( ) A .x B .5xC .xyD .5xy【答案】D【分析】最简分式的概念(分子和分母除1以外没有其它的公因式的分式叫最简分式)及公因式的概念(各项都含有一个公共的因式,叫做这个多项式各项的公因式).据此解答即可. 【详解】解:∵2515120454xy xy x y x xy x⨯==⨯ ∴将2520xyx y化成最简分式,应将分式的分子分母同时约去的公因式为5xy . 故此题答案为D .5.计算1(3)--的正确结果是( ) A .3 B .3- C .13 D .13-【答案】D【详解】解:111(3)33--==-- 故此题答案为D .6.我们生活在物质的世界里,所有的物质都是由一些看不见的微小粒子构成的,例如水就是由水分子构成的.科学家们通过测量发现一个水分子的直径仅约0.0000000004m ,其中0.0000000004m 用科学记数法表示为( )A .90.410m -⨯B .10410m -⨯C .114010m -⨯D .9410m -⨯【答案】B【分析】将一个数表示成10n a ⨯的形式,其中110a ≤<,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值大于或等于10时,n 是正整数;当原数的绝对值小于1时,n 是负整数.【详解】解:其中0.0000000004m 用科学记数法表示为10410m -⨯. 故此题答案为B .7.化简22222a ab b ba b a b-++-+的结果是( ) A .a a b- B .b a b- C .a a b+ D .b a b+ 【答案】C【分析】利用完全平方公式,平方差公式进行化简,然后计算分式的加法即可. 【详解】解:22222a ab b ba b a b-++-+()()()2a b ba b a b a b -=++-+ a b ba b a b -=+++ a a b=+ 故此题答案为C .8.已知分式2+24-+x x x a,当x =1时,分式无意义,则a = .【答案】3【分析】把x =1代入分式,根据分式无意义得出关于a 的方程,求出即可 【详解】解:把x =1代入得:123143a a +=-+-此时分式无意义 ∴a -3=0 解得a =3.故此题答案为:3.【关键点拨】此题考查了分式无意义的条件,能得出关于a 的方程是解此题的关键. 9.计算:222x x x y x y +=+- . 【答案】2222x x y x y--【分析】根据异分母分式加法运算法则进行计算即可.【详解】解:222x x x y x y ++- ()()()()()2x x y x x y x y x y x y -=++--+()()()()22x xy x x y x y x y x y -=++--+ 2222x xy x y -=-.10.如图,这是白老师在纸条上书写的一道例题,在向同学们展示时,不小心将纸条的左侧撕掉了一部分,则撕掉部分中▲的内容为 .【答案】14m - 【分析】此题主要考查分式的混合运算,原等式两边除以15m-再加上1即可得出撕掉部分中▲的内容. 【详解】解:11145m m÷+--▲=514mm -=+- 544m m m -+-=-14m =-. 故此题答案为:14m -.11.先化简,再求值:22191369x x x x x +-⎛⎫-÷ ⎪--+⎝⎭,其中=1x - 【答案】43x -+;2- 【分析】先计算括号内分式的减法运算,再计算除法运算,最后把=1x -代入计算即可.【详解】解:22191369x x x x x +-⎛⎫-÷ ⎪--+⎝⎭ ()()()23313333x x x x x x x --+⎛⎫=-⋅ ⎪--+-⎝⎭4333x x x --=⋅-+ 43x =-+. 当=1x -时,原式4213=-=--+.12.先化简,再求值:2221111a b a b ⎛⎫⎛⎫+÷- ⎪ ⎪⎝⎭⎝⎭,其中,2a =和3b =.【答案】a bb a+-,5 【分析】此题考查的是分式的化简求值.根据分式的加法法则、除法法则以及平方差公式把原式化简,把a 、b 的值代入计算,得到答案.【详解】解:2221111a b a b ⎛⎫⎛⎫+÷- ⎪ ⎪⎝⎭⎝⎭22222a b b a ab a b +-⎛⎫=÷ ⎪⎝⎭22222()()()a b a b a b a b b a +=⋅+- a bb a+=- 当2a =,3b =时,原式23532+==-.13.先化简:(7211a a a +--+)÷2231a aa +-,再从﹣3、﹣2、﹣1、0、1中选一个合适的数作为a 的值代入求值. 【答案】3a a+;12-.【分析】先把括号内的两项通分后利用同分母分式的加减法法则进行计算,同时把除法转化为乘法,最后约分化成最简分式,根据分式有意义的条件选择一个a 值代入求值即可.【详解】解:22723111a a a a a a ++⎛⎫-÷ ⎪-+-⎝⎭ =()()()()()()()()712111113a a a a a a a a a ++--+-⋅-++ =()2693a a a a +++ =()()233a a a ++ =3a a+当a=-3、-1、1、0时,原式没有意义,舍去当a=-2时,原式=23122-+=--.【关键点拨】此题考查分式的化简求值,熟练掌握分式的基本性质及分式有意义的条件是解题关键.14.观察下面的等式:11121314 1,1,1,1, 22334455-=-=-=-=⋯(1)按上面的规律归纳出一般的结论(用含n的等式表示,n为正整数);(2)运用分式的有关知识,推理说明这个结论是正确的.【答案】(1)1111nn n-=++(2)见解析【分析】此题考查了数式规律探究,分式的混合运算,熟练掌握运算法则是解此题的关键.(1)观察已知等式,归纳总结得到一般性规律即可;(2)等式左边两项通分并利用同分母分式的减法法则计算即可得出结论【详解】(1)解:第1个等式:111 12211 -==+第2个等式:122 13312 -==+第3个等式:133 14413 -==+第4个等式:144 15514 -==+…第n个等式:1111nn n-=++.(2)解:∵左边11111111111n n nn n n n n++-=-=-===+++++右边∴1111nn n-=++.15.下面是小明同学的一篇回顾与反思,请认真阅读并完成相应的任务.异分母的分式加减法回顾与反思【回顾】今天我们学习了异分母的分式加减法,在课堂小结环节我的总结如下:。
人教版八年级上册数学《分式》同步练习(含答案)
人教版八年级上册数学《分式》同步练习姓名:__________班级:__________考号:__________一 、选择题(本大题共10小题)1.计算()a b a b b a a+-÷的结果为( ) A .a b b -B .a b b +C .a b a -D .a b a+ 2.化简293()33a a a a a ++÷--的结果为 ( ) A . B . C . D .13.代数式22221131321223x x x a b a b ab m n xy x x y +--++++,,,,,,,中分式有( ) A .6个 B .4个 C .3个 D .2个 4.下列运算中正确的是( )A .m n m m ÷⋅=B .1m n m n ÷⋅=C .11m m m÷⋅= D .n m m n ÷⋅= 5.下面的说法中正确的是( )A .有除法运算的式子就是分式B .有分母的式子就是分式C .若A 、B 为整式,式子A B叫分式 D .若A 、B 为整式且B 中含有字母,式子A B 叫分式 6.计算22()ab ab的结果为( ) A .b B .a C .1 D .1b7.化简222m n m mn -+的结果是( ) A .2m n m - B .m n m - C .m n m + D .m n m n-+9.使分式1)(1)x x +-(有意义的x 值是( ) .0A x ≠ .1B x ≠ .1C x ≠- .1D x ≠±a a -()23a +10.以下分式化简:(1)42226131x x x x ++=--;(2)x a a x b b+=+;(3)22x y x y x y +=++;(4)22x y x y x y-=-+。
其中错误的有( ) A 1个 B .2个 C .3个 D .4个二 、填空题(本大题共5小题)11.计算:111a a a +=++. 12.约分:(1)32324______30x y x y -=;(2)262______31x x x +=+ 13.约分:(1)3______3mn m=(2)227______28x z xy z -=(3)233______26a a a -=- (4)22222______m mn n m n -+=- 14.若分式2225(5)x x --的值为0,则x 的值为 . 15.已知,则___________. 三 、解答题(本大题共8小题)16.解方程:223444x x x x =--+ 17.不改变分式的值,把分式的分子、分母中各项的系数化为整数.⑴1-51124x x y - ⑵0.010.50.30.04a b a -+18.当x 为何值时,下列分式的值为0?(1)1x x + (2)213x x -+ (3)288x x +19.当x 为何值时,下列分式的值为0?(1)211x x -+ (2)2231x x x +-- (3)2242x x x -+234x y z ==222x y z xy yz zx ++=++20.下列方程是分式方程吗?(1)2315x x -+= (2)113x +=21.计算:解方程:22093x x x +=-+22.小明乘坐火车从某地到上海去参观世博园,已知此次行程为2160千米,城际直达动车组的平均时速是特快列车的1.6倍.小明购买火车票时发现,乘坐动车组比乘坐特快列车少用6小时.求小明乘坐动车组到上海需要的时间.23.内江市对城区沿江两岸的部分路段进行亮化工程建设,整个工程拟由甲、乙两个安装公司共同完成.从两个公司的业务资料看到:若两个公司合做,则恰好用12天完成;若甲、乙合做9天后,由甲再单独做5天也恰好完成.如果每天需要支付甲、乙两公司的工程费用分别为1.2万元和0.7万元.试问:(1)甲、乙两公司单独完成这项工程各需多少天?(2)要使整个工程费用不超过22.5万元,则乙公司最少应施工多少天?人教版八年级上册数学《分式》同步练习答案解析一 、选择题1.A2.A3.C4.D5.D6.B7.B ;222()()=()m n m n m n m n m mn m m n m-+--=++ 8.B9.D10.C ;约分是约去分子和分母中的公因式,而不是分子与分母中的部分因式或多项式式中的某些项,故(1)、(2)、(3)错误。
新人教版初中数学八年级数学上册第五单元《分式》测试卷(含答案解析)
一、选择题1.关于分式2634m nm n--,下列说法正确的是( )A .分子、分母中的m 、n 均扩大2倍,分式的值也扩大2倍B .分子、分母的中m 扩大2倍,n 不变,分式的值扩大2倍C .分子、分母的中n 扩大2倍,m 不变,分式的值不变D .分子、分母中的m 、n 均扩大2倍,分式的值不变 2.如果关于x 的分式方程6312233ax x x x--++=--有正整数解,且关于y 的不等式组521510yy a -⎧≥-⎪⎨⎪+->⎩至少有两个整数解,则满足条件的整数a 的和为( ) A .2B .3C .6D .113.若关于x 的分式方程122x a x -=-的解为非负数,且关于x 的不等式组5x x a≥⎧⎨>⎩的解集是5x ≥,则符合条件的整数a 有( )A .1个B .2个C .3个D .4个4.计算:2x y x yx y xy-⋅-=( ) A .xB .y xC .yD .1x5.2020年新冠肺炎疫情影响全球,某企业临时增加甲、乙两个厂房生产口罩,甲厂房每天生产的数量是乙厂房每天生产数量的2倍,两厂房各加工6000箱口罩,甲厂房比乙厂房少用5天.则甲、乙两厂房每天各生产的口罩箱数为( ) A .1200,600 B .600,1200C .1600,800D .800,16006.计算()3222()m m m -÷⋅的结果是( )A .2m -B .22mC .28m -D .8m -7.下列说法:①解分式方程一定会产生增根;②方程4102x -=+的根为2;③方程11224=-x x 的最简公分母为2(24)-x x ;④1111x x x+=+-是分式方程.其中正确的个数是( ) A .1B .2C .3D .48.若整数a 使得关于x 的不等式组3(1)32(1)x a x x >⎧⎨-+>+⎩的解集为2x >,且关于x 的分式方程21111ax x x+=---的解为整数,则符合条件的所有整数a 的和是( ) A .2- B .1- C .1 D .29.分式242x x -+的值为0,则x 的值为( )A .2-B .2-或2C .2D .1或210.2020年5月1日,北京市正式实施《北京市生活垃圾管理条例》,生活垃圾按照厨余垃圾,可回收物,有害垃圾,其他垃圾进行分类.小红所住小区5月和12月的厨余垃圾分出量和其他三种垃圾的总量的相关信息如下表所示:厨余垃圾分出量如果厨余垃圾分出率=100%⨯生活垃圾总量(生活垃圾总量=厨余垃圾分出量+其他三种垃圾的总量),且该小区12月的厨余垃圾分出率约是5月的厨余垃圾分出率的14倍,那么下面列式正确的是( )A .660840014710x x ⨯=B .6608400147660840010x x⨯=++C .660840014147660840010x x⨯=⨯++ D .7840066010146608400x x++⨯=11.2222x y x y x y x y -+÷+-的结果是( ) A .222()x y x y ++B .222()x y x y +-C .222()x y x y -+D .222()x y x y ++12.下列各式中,无论x 取何值,分式都有意义的是( ). A .132x - B .213x + C .231x x+ D .21xx + 二、填空题13.规定一种新的运算“ JXx AB→+∞”,其中A 和B 是关于x 的多项式,当A 的次数小于B 的次数时. 0JXx A B →+∞=;当A 的次数等于B 的次数时, JXx A B→+∞的值为A 、B 的最高次项的系数的商,当A 的次数大于B 的次数时, JXx A B →+∞不存在,例如: 201JXx x →+∞=-,2 2212312JX x x x x →+∞+=+-,若223410211A x x B x x -⎛⎫=-÷ ⎪--⎝⎭,则 JXx A B →+∞的值为__________. 14.我们可以将一些只含有一个字母且分子、分母的次数都为一次的分式变形,转化为整数与新的分式的和的形式,其中新的分式的分子中不含字母,如:3(1)441111a a a a a +-+==+---,212(1)332111a a a a a -+-==-+++.参考上面的方法,解决下列问题:(1)将1a a +变形为满足以上结果要求的形式:1aa =+_________; (2)①将321a a +-变形为满足以上结果要求的形式:321a a +=-_________;②若321a a +-为正整数,且a 也为正整数,则a 的值为__________.15.计算:22x x xy x y x -⋅=-____________________. 16.223(3)a b -=______,22()a b ---=______. 17.计算211()(1)11m m m -⨯--+的结果是______. 18.计算:()222333a b a b --⋅=_______________.19.某公司生产了A 型、B 型两种计算机,它们的台数相同,但总价值和单价不同.已知A 型计算机总价值为102万元;B 型计算机总价值为81.6万元,且单价比A 型机便宜了2400元.问A 型、B 型两种计算机的单价各是多少万元.若设A 型计算机的单价是x 万元,请你根据题意列出方程________.20.某工人现在平均每天比原计划多做20个零件,现在做4000个零件和原来做3000个零件的时间相同,问现在平均每天做______个零件.三、解答题21.先化简,再求值:214111x x x -⎛⎫+÷ ⎪++⎝⎭,其中5x = 22.计算:(1)|﹣3|12(﹣2)2; (2)xy 2•(﹣2x 3x 2)3÷4x 5.23.己知A 、B 两地相距240千米,甲从A 地去B 地,乙从B 地去A 地,甲比乙早出发3小时,两人同时到达目的地.已知乙的速度是甲的速度的2倍. (1)甲每小时走多少千米? (2)求甲乙相遇时乙走的路程. 24.计算:(1)(2)(2)4(21)x x x -+--;(2)2221111a a a a ++⎛⎫+÷⎪--⎝⎭. 25.观察下列等式: 第1个等式:111122=-⨯; 第2个等式:1112323=-⨯; 第3个等式:1113434=-⨯;…… (1)写出第5个等式:________________; (2)探究规律:猜想第n 个等式,并证明;(3)问题解决:一个容器装有1升水,按照如下要求把水倒出:第1次倒出12升水,第2次倒出的水量是12升的13,第3次倒出的水量是13升的14,第4次倒出的水量是14升的15,……,第n 次倒出的水量是1n 升的11n +,如果不考虑实际操作因素,按照这种倒水的方法,这1升水能倒完吗?为什么? 26.计算(1)2152224-⨯+÷; (2)()()30201821 3.14413π-⎛⎫-⨯---+- ⎪⎝⎭;(3)()2222322xy x y x y xy ⎡⎤---⎣⎦; (4)()()()3323231333xx x x ⎛⎫-+--⋅ ⎪⎝⎭.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】根据分式的基本性质即可求出答案. 【详解】解:A、22262(26)26=23242(34)34m n m n m nm n m n m n⨯-⨯⨯--=⨯-⨯⨯--,故分子、分母中的m、n均扩大2倍,分式的值不变,故该说法不符合题意;B、22623=23432m n m nm n m n⨯--⨯--,故分子、分母的中m扩大2倍,n不变,分式的值没有扩大2倍,故该说法不符合题意;C、226212=32438m n m nm n m n-⨯--⨯-,故分子、分母的中n扩大2倍,m不变,分式的值发生变化,故该说法不符合题意;D、22262(26)26=23242(34)34m n m n m nm n m n m n⨯-⨯⨯--=⨯-⨯⨯--,故分子、分母中的m、n均扩大2倍,分式的值不变,此说法正确,符合题意;故选:D.【点睛】本题考查分式的基本性质,解题的关键是熟练运用分式的基本性质,本题属于基础题型.2.B解析:B【分析】根据分式方程的解为正整数解,即可得出a=0,1,2,5,11,根据不等式组的解集为a−1<4,即可得出a<5,找出a的所有的整数,将其相加即可得出结论.【详解】解:∵分式方程有解,∴解分式方程得x=121a+,∵x≠3,∴121a+≠3,即a≠3,又∵分式方程有正整数解,∴a=0,1,2,5,11,又∵不等式组至少有2个整数解,∴解不等式组得51 yy a≤⎧⎨-⎩>,∴a−1<4,解得,a<5,∴a=0,1,2,∴0+1+2=3,故选:B.【点睛】本题考查了一元一次不等式组的整数解、分式方程的解,有一定难度,注意分式方程中的解要满足分母不为0的情况.3.C解析:C【分析】解分式方程的得出x=2a-2,根据解为非负数得出2a-2≥0,且2a-2≠2,据此求出解得a≥1且a≠2;解不等式组两个不等式,根据解集得出a<5;综合以上两点得出整数a的值,从而得出答案.【详解】解:分式方程122x ax-=-,去分母,得:2(x-a)=x-2,解得:x=2a-2,∵分式方程的解为非负数,∴2a-2≥0,且2a-2≠2,解得a≥1且a≠2,∵不等式组5xx a≥⎧⎨>⎩的解集是x≥5,∴1≤a<5,且a≠2,则整数a的值为1、3、4共3个,故选:C.【点睛】本题主要考查分式方程的解和解一元一次不等式组,解题的关键是根据分式方程的解的情况及不等式组解集的情况得出a的取值范围.4.A解析:A【分析】根据分式乘法计算法则解答.【详解】解:2x y x yx y xy-⋅-=x,故选:A.【点睛】此题考查分式的乘法计算法则,熟记计算法则是解题的关键.5.A解析:A【分析】先设乙厂房每天生产x箱口罩,则甲厂房每天生产2x箱口罩,根据工作时间=工作总量÷工作效率且两厂房各加工6000箱口罩时甲厂房比乙厂房少用5天,可得出关于x的分式方程,解方程即可得出结论. 【详解】解:设乙厂房每天生产x 箱口罩,则甲厂房每天生产2x 箱口罩,依题意得:6000600052x x-=, 解得:x =600,经检验,x =600是原分式方程的解,且符合题意, ∴2x =1200. 故答案选:A . 【点睛】该题考查了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键.6.C解析:C 【分析】先分别计算积的乘方运算,再利用单项式除以单项式法则计算即可. 【详解】 解:()3222()m m m -÷⋅=()468mm -÷ =()468m m -÷=28m -, 故选:C . 【点睛】本题考查单项式除以单项式,积的乘方运算.在做本题时需注意运算顺序,先计算积的乘方,再算除法.7.B解析:B 【分析】根据分式方程的定义、解分式方程、增根的概念及最简公分母的定义解答. 【详解】解:分式方程不一定会产生增根,故①错误; 方程4102x -=+的根为x=2,故②正确; 方程11224=-x x 的最简公分母为2x(x-2),故③错误; 1111x x x +=+-是分式方程,故④正确; 故选:B .【点睛】此题考查分式方程的定义、解分式方程、增根的概念及最简公分母的定义,熟记各定义及正确解方程是解题的关键.8.D解析:D 【分析】先分别解不等式组里的两个不等式,根据解集为2x >,得出a 的范围,根据分式方程的解为整数即得到a 的值,结合a 的范围即可求得符合条件的所有整数a 的和. 【详解】解:关于x 的不等式组3(1)32(1)x a x x >⎧⎨-+>+⎩①②解不等式①得,x a >; 解不等式②得,2x >; ∵不等式组的解集为2x >, ∴a≤2,解方程21111ax x x+=---得:21x a =-∵分式方程的解为整数, ∴11a -=±或2± ∴a=0、2、-1、3 又x≠1,∴211a≠-,∴a≠-1, ∴a≤2且a≠-1, 则a=0、2,∴符合条件的所有整数a 的和=0+2=2, 故选:D . 【点睛】本题考查了分式方程的解以及解一元一次不等式组,根据分式方程的解为整数结合不等式组有解,找出a 的值是解题的关键.9.C解析:C 【分析】分式的值为零时,分子等于零,分母不等于零. 【详解】 解:依题意,得 x 2-4=0,且x+2≠0, 所以x 2=4,且x≠-2,解得,x=2. 故选:C . 【点睛】本题考查了求一个数的平方根,分式的值为零的条件.若分式的值为零,需同时具备两个条件:(1)分子为0;(2)分母不为0.这两个条件缺一不可.10.B解析:B 【分析】根据公式列出12月与5月厨余垃圾分出率,根据12月的厨余垃圾分出率约是5月的厨余垃圾分出率的14倍列方程即可. 【详解】5月份厨余垃圾分出率=660660x+,12月份厨余垃圾分出率=84007840010x + ,∴由题意得6608400147660840010x x⨯=++,故选:B . 【点睛】此题考查分式方程的实际应用,正确理解题意是解题的关键.11.C解析:C 【分析】根据分式的除法法则计算即可. 【详解】2222x y x y x y x y -+÷+-()()22x y x y x y x y x y +--=⨯++222()x y x y -=+ 【点睛】此题考查分式的除法法则:先把除式的分子分母颠倒位置,再化为最简分式即可.12.B解析:B 【分析】根据分式有意义的条件:分母不等于0确定答案. 【详解】A 、若3x-2≠0,即23x ≠时分式有意义,故该选项不符合题意; B 、∵230x +>,∴无论x 取何值,分式都有意义,故该项符合题意;C 、∵20x ≥,∴x ≠0时分式有意义,故该选项不符合题意;D 、若210x +≠即12x ≠-时分式有意义,故该选项不符合题意; 故选:B . 【点睛】此题考查分式有意义的的条件:分母不等于0.二、填空题13.【分析】根据已知条件化简分式即可求出答案【详解】解:∵的次数等于的次数故答案为:【点睛】本题考查了分式的混合运算熟练分解因式是解题的关键 解析:12【分析】根据已知条件,化简分式即可求出答案. 【详解】 解:223410(2)11A x xB x x -=-÷-- ()()()225223111x x x x x x ---⎛⎫=÷⎪-+-⎝⎭ ()()()1125112252x x x x x x x x +--+⎛⎫=⨯= ⎪--⎝⎭12x x+=, ∵A 的次数等于B 的次数,∴12x A JXB →+∞=, 故答案为:12. 【点睛】本题考查了分式的混合运算,熟练分解因式是解题的关键.14.2或6【分析】(1)根据材料中分式转化变形的方法即可把变形为满足要求的形式;(2)①根据材料中分式转化变形的方法即可把变形为满足要求的形式;②令可先求出a 与x 是整数时的对应值再从所得结果中找出符合条解析:111a -+ 531a +- 2或6 【分析】(1)根据材料中分式转化变形的方法,即可把1aa +变形为满足要求的形式;(2)①根据材料中分式转化变形的方法,即可把321a a +-变形为满足要求的形式;②令325311a x a a +==+--,可先求出a 与x 是整数时的对应值,再从所得结果中找出符合条件的a ,x 的值,即可得出结论.【详解】 解:(1)1111111a a a a a +-==-+++; 故答案为:111a -+; (2)①323(1)553111a a a a a +-+==+---; 故答案为:531a +-; ②∵323(1)553111a a a a a +-+==+--- 令531x a =+-, 当x , a 都为整数时,11a -=±或15a -=±,解得a =2或a =0或a =6或a =-4,当a =2时,x =8;当a =0时,x =-2;当a =6时,x =4;当a =-4时,x =2;∵x , a 都为正整数,∴符合条件的a 的值为2或6.故答案为:2或6.【点睛】此题考查了分式的加减及求分式的值等知识,理解题意并熟练掌握分式的基本性质及运算法则是解本题的关键.15.1【分析】先将第二项的分子分解因式再约分化简即可【详解】故答案为:1【点睛】此题考查分式的乘法掌握乘法的计算法则是解题的关键解析:1【分析】先将第二项的分子分解因式,再约分化简即可.【详解】22x x xy x y x-⋅=-2()1x x x y x y x -⋅=-, 故答案为:1.此题考查分式的乘法,掌握乘法的计算法则是解题的关键.16.【分析】(1)首先利用积的乘方以及幂的乘方法则计算然后根据负指数次幂的意义化成正指数次幂即可;(2)首先利用积的乘方以及幂的乘方法则计算然后根据负指数次幂的意义化成正指数次幂即可【详解】;【点睛】本 解析:6627a b 42a b【分析】(1)首先利用积的乘方以及幂的乘方法则计算,然后根据负指数次幂的意义化成正指数次幂即可;(2)首先利用积的乘方以及幂的乘方法则计算,然后根据负指数次幂的意义化成正指数次幂即可.【详解】()632266627327a a b a b b --==; 422422()a a b a b b----==. 【点睛】 本题考查了负整数指数幂,利用了积的乘方等于乘方的积,单项式的乘法,负整数指数幂与正整数指数幂互为倒数.17.2【分析】利用乘法分配律展开括号再计算加减法【详解】故答案为:2【点睛】此题考查分式的混合运算掌握乘法分配律计算法则是解题的关键 解析:2【分析】利用乘法分配律展开括号,再计算加减法.【详解】()211()(1)11211m m m m m -⨯-=+--=-+. 故答案为:2.【点睛】 此题考查分式的混合运算,掌握乘法分配律计算法则是解题的关键.18.【分析】根据单项式乘单项式计算法则以及幂的乘方与积的乘方负整数指数幂计算即可【详解】原式=故答案为:【点睛】本题主要考查了单项式乘单项式幂的乘方与积的乘方负整数指数幂属于基础计算题 解析:3a b【分析】根据单项式乘单项式计算法则以及幂的乘方与积的乘方,负整数指数幂,计算即可.原式=44334343113333a a b a b a b a b b ----+-===故答案为:3a b . 【点睛】本题主要考查了单项式乘单项式,幂的乘方与积的乘方,负整数指数幂,属于基础计算题.19.【分析】设A 型计算机的单价是x 万元/台则B 型计算机的单价是(x-024)万元/台根据单价=总价÷数量即可得出关于x 的分式方程此题得解【详解】解:设型计算机的单价是万元/台则型计算机的单价是万元/台根 解析:10281.6x x 0.24=- 【分析】设A 型计算机的单价是x 万元/台,则B 型计算机的单价是(x-0.24)万元/台,根据单价=总价÷数量即可得出关于x 的分式方程,此题得解.【详解】解:设A 型计算机的单价是x 万元/台,则B 型计算机的单价是()x 0.24-万元/台, 根据题意得:10281.6x x 0.24=-. 故答案为:10281.6x x 0.24=-. 【点睛】 本题考查了由实际问题抽象出分式方程,根据数量关系单价=总价÷数量列出关于x 的分式方程是解题的关键.20.80【分析】设现在每天做x 个零件则原计划每天做个零件根据工作时间=工作总量÷工作效率结合现在做4000个零件和原来做3000个零件的时间相同即可得出关于x 的方程求解即可【详解】设现在每天做x 个零件则解析:80【分析】设现在每天做x 个零件,则原计划每天做()20x -个零件,根据工作时间=工作总量÷工作效率,结合现在做4000个零件和原来做3000个零件的时间相同,即可得出关于x 的方程,求解即可.【详解】设现在每天做x 个零件,则原计划每天做()20x -个零件,依题意得:4000300020x x =-, 解得:80x =;经检验x=80是原方程的解∴现在平均每天做80个零件故答案为:80.【点睛】本题考查了分式方程的应用,找准等量关系,正确列出分式方程是解答本题的关键.三、解答题21.12x -;13【分析】 分式的混合运算,注意先算乘除,然后算加减,有小括号先算小括号里面的,然后代入求值即可【详解】 解:214111x x x -⎛⎫+÷ ⎪++⎝⎭ 2111114x x x x x ++⎛⎫=+⋅ ⎪++-⎝⎭ ()()21122x x x x x ++=⋅++- 12x =- 把5x =代入上式,得:1112523x ==-- 【点睛】本题考查分式的混合运算,掌握运算法则和运算顺序正确计算是解题关键.22.(1)2;(2)﹣2x 11y 2【分析】(1)先根据绝对值、算术平方根、立方根、乘方的意义化简,再根据实数运算法则计算即可;(2)先算乘方,再算乘除即可.【详解】解:(1)21|3|(2)2--=134(2)42-+⨯-+ =3﹣4﹣1+4=2; (2)xy 2•(﹣2x 3x 2)3÷4x 5=xy 2•(﹣2x 5)3÷4x 5=xy 2•(﹣8x 15)÷4x 5=(﹣8÷4)x 1+15﹣5y 2=﹣2x 11y 2.【点睛】考查了整式的混合运算,有乘方、乘除的混合运算中,要按照先乘方后乘除的顺序运算,其运算顺序和有理数的混合运算顺序相似.同时考查了实数的运算.23.(1)40千米;(2)80千米【分析】(1)设甲每小时走x 千米,则乙每小时走2x 千米,根据题意列出分式方程,即可求解; (2)设相遇时甲出发t 小时,根据相遇时甲乙路程和为240千米列出方程,求解即可.【详解】解:(1)设甲每小时走x 千米,则乙每小时走2x 千米, 根据题意可得:24024032x x -=, 解得40x =,经检验得40x =是原分式方程的解,∴甲每小时走40千米;(2)设相遇时甲出发t 小时,由(1)可得乙每小时走80千米,根据题意可得:()40803240t t +-=,解得4t =,此时乙走的路程为()804380⨯-=千米.【点睛】本题考查分式方程的应用,根据题意找出等量关系,并列出方程是解题的关键. 24.(1)28x x -;(2)11a +. 【分析】(1)由整式的混合运算,先去括号,然后合并同类项,即可得到答案;(2)先计算括号内的运算,然后计算分式除法运算,即可得到答案.【详解】解:(1)(2)(2)4(21)x x x -+--=2484x x --+=28x x -;(2)2221111a a a a ++⎛⎫+÷ ⎪--⎝⎭=21(1)11a a a a ++÷-- =2111(1)a a a a +-⨯-+ =11a +. 【点睛】 本题考查了整式的混合运算,分式的混合运算,解题的关键是掌握运算法则进行解题.25.(1)1115656=-⨯ (2)()11111n n n n =-++;证明见解析 (3)不能;见解析 【分析】(1)观察各等式,找出分子分母中的数与序号的关系即可写出第五个等式;(2)根据题目中的式子,可以写出生意人猜想,并验证猜想是否正确;(3)根据题意求出前n 次倒水量之和,再与1进行比较即可.【详解】解:(1)第5个等式:1115656=-⨯; 故答案为:1115656=-⨯; (2)猜想:()11111n n n n =-++,证明: 等式右边()()()11111111n n n n n n n n n n +=-=-==++++等式左边, ∴猜想成立;(3)由题意可得:第n 次倒出水量:()11L n n +, ∴前n 次总共倒出水量:()11111223341n n ++++⨯⨯⨯+ 1111112231n n =-+-++-+ 111n =-+ 1n n =+,∵11n n <+, ∴这1L 水不能倒完.【点睛】本题主要考查了数字变化规律的问题,通过观察、分析、归纳并发现其中的规律,并应用发现的规律解决问题,解题的关键是发现分子分母中的数与序号的关系.26.(1)5;(2)-42;(3)222xy x y +;(4)67x .【分析】(1)根据有理数混合运算法则计算即可;(2)根据负指数整数幂、零指数幂、绝对值的意义及乘方,计算即可;(3)去括号,然后合并同类项即可;(4)根据积的乘方、幂的乘方运算法则计算即可.【详解】解:(1)2152224-⨯+÷ =115522-+=; (2)()()30201821 3.14413π-⎛⎫-⨯---+- ⎪⎝⎭=271161-⨯-+=2716142--+=-;(3)()2222322xy x y x y xy ⎡⎤---⎣⎦ =22223242xy x y x y xy +--=222xy x y +;(4)()()()3323231333xx x x ⎛⎫-+--⋅ ⎪⎝⎭ =6633192727x x x x -+-⋅=67x .【点睛】 本题主要考查有理数的混合运算、整式的混合运算,解题的关键是熟练运用运算法则.。
人教版初二数学上册分式同步测试卷(有答案)-数学试题
人教版初二数学上册分式同步测试卷(有答案)-数学试题人教版初二数学上册分式同步测试卷(有答案)(本检测题满分:100分,时间:90分钟)一、选择题(每小题3分,共30分)1.下列各式中,分式的个数为(),,,,,,.A. B. C. D.2.要使分式有意义,则应满足()A.≠-1 B.≠2 C.≠±1 D.≠-1且≠23.若分式的值为0,则()A.=-2 B.=- C.= D.=24.将分式中的、的值同时扩大到原来的倍,则分式的值()A.扩大到原来的倍B.缩小到原来的C.保持不变D.无法确定5.若分式的值为零,那么的值为( )A.或B.C. D.6.下列各式,正确的是()A.B.C.D.=27.对于下列说法,错误的个数是()①是分式;②当时,成立;③当时,分式的值是零;④ ;⑤ ;⑥ .A.6B.5C.4D.38.把,,通分的过程中,不正确的是()A.最简公分母是(-2)(+3)2 B.C.D.9.下列各式变形正确的是()A. B.C. D.10.某工程需要在规定日期内完成,如果甲工程队单独做,恰好如期完成;如果乙工程队单独做,则超过规定日期3天,现在甲、乙两队合做2天,剩下的由乙队独做,恰好在规定日期完成,求规定日期.如果设规定日期为天,下面所列方程中错误的是( )A. B.C. D.二、填空题(每小题3分,共24分)11.若分式的值为零,则.12.将下列分式约分:(1 ) ;(2) .13.计算:= .14. 有一个分式,三位同学分别说出了它的一些特点,甲:分式的值不可能为0;乙:分式有意义时的取值范围是≠±1;丙:当=-2时,分式的值为1,请你写出满足上述全部特点的一个分式.15.已知,则________.16.若,则=_____________.17.若解分式方程产生增根,则_______.18.为改善生态环境,防止水土流失,某村拟在荒坡地上种植960棵树, 由于青年团员的支持,每日比原计划多种20棵,结果提前4天完成任务,原计划每天种植多少棵树?设原计划每天种植棵树,根据题意可列方程____ ______________.三、解答题(共46分)19.(6分)约分:(1);(2).20.(4分)通分:,.21.(10分)计算与化简:(1);(2);(3);(4);(5).22.(5分)先化简,再求值:,其中,.23.(6分)若, 求的值.24.(9分)解下列分式方程:(1);(2);(3).25.(6分)某书店老板去图书批发市场购买某种图书.第一次用1 200元购书若干本,并按定价7元出售,很快售完.由于该书畅销,第二次购书时,每本书的批发价已比第一次提高了20%,他用1 500元所购该书数量比第一次多10本.当按定价7元售出200本时,出现滞销,便以定价的4折售完剩余的书.试问该老板这两次售书总体上是赔钱了,还是赚钱了(不考虑其他因素)?若赔钱,赔多少?若赚钱,赚多少?第十五章分式检测题参考答案1.C 解析:由分式的定义,知,,为分式,其他的不是分式.2. D 解析:要使分式有意义,则(+1)(-2)≠0,∴ +1≠0且-2≠0,∴ ≠-1且≠2.故选D.3. D 解析:由题意可得3-6=0且2+1≠0,所以故=2.故选D.4.A 解析:因为,所以分式的值扩大到原来的2倍.5.C 解析:若分式的值为零,则所以6. A 解析:A. ==1,所以A正确;B.分子、分母不含公因式不能约分,所以B错误;C.,所以C错误;D.,所以D错误.故选A.7.B 解析:不是分式,故① 不正确;当时,成立,故②正确;当时,分式的分母,分式无意义,故③不正确;④,故④不正确;,故⑤不正确;,故⑥不正确.8. D 解析:A.最简公分母为(-2)(+3)2,正确;B.(分子分母同乘,通分正确;C.(分子分母同乘),通分正确;D.通分不正确,分子应为2×(-2)=2-4.故选D.9.D 解析:,故A不正确;,故B不正确;,故C不正确;,故D正确.10.D 解析:设总工程量为1,因为甲工程队单独去做,恰好能如期完成,所以甲的工作效率为;因为乙工程队单独去做,要超过规定日期3天,所以乙的工作效率为.由题意可知,,整理得,所以,即,所以A、B、C选项均正确,选项D不正确.1 1. 解析:若分式的值为零,则所以.12.(1)(2)解析:(1 ) ;(2) .13. 解析:14.(答案不唯一)解析:由题意,可知所求分式可以是,,等,答案不唯一.15. 解析:因为,所以,所以16. 解析:设则所以17. 解析:方程两边都乘,得又由题意知分式方程的增根为,把增根代入方程,得.18. 解析:根据原计划完成任务的天数实际完成任务的天数,列方程即可.依题意列方程为.19.解:(1);(2)20.解:因为与的最简公分母是所以;.21.解:(1)原式= .(2)原式= .(3)原式== .(4)原式= = = = .(5)原式= .22.解:当,时,原式23.解:因为所以所以24.解:(1)方程两边都乘,得.解这个一元一次方程,得.检验:把代入原方程,左边右边.所以,是原方程的根.(2)方程两边都乘,得.整理,得.解这个一元一次方程,得.检验:把代入原方程,左边右边.所以,是原方程的根.(3)方程两边都乘,得.整理,得.解这个一元一次方程,得.检验可知,当时,.所以,不是原方程的根,应当舍去.原方程无解.25. 解:设第一次购书的进价为元,则第二次购书的进价为元.根据题意得:,解得:.经检验是原方程的解,所以第一次购书为(本).第二次购书为(本).第一次赚钱为(元).第二次赚钱为(元).所以两次共赚钱(元).答:该老板这两次售书总体上赚钱了,共赚520元.。
人教版八年级数学上册分式同步练习及答案
第15章《分 式》同步练习(§15.1 分式)班级 学号 姓名 得分一、选择题1.在代数式32,252,43,32,1,32222-++x x x x xy x x 中,分式共有( ). (A)2个 (B)3个 (C)4个 (D)5个2.下列变形从左到右一定正确的是( ). (A)22--=b a b a (B)bc ac b a = (C)b a bx ax = (D)22b a b a =3.把分式y x x+2中的x 、y 都扩大3倍,则分式的值( ).(A)扩大3倍(B)扩大6倍 (C)缩小为原来的31(D)不变 4.下列各式中,正确的是( ). (A)y x y x y x y x +-=--+- (B)y x y x y x y x ---=--+- (C)y x y x y x y x -+=--+- (D)yx y x y x y x ++-=--+- 5.若分式222---x x x 的值为零,则x 的值为( ).(A)-1(B)1(C)2 (D)2或-1 二、填空题 6.当x ______时,分式121-+x x 有意义.7.当x ______时,分式122+-x 的值为正. 8.若分式1||2--x x x 的值为0,则x 的值为______.9.分式22112m m m -+-约分的结果是______. 10.若x 2-12y 2=xy ,且xy >0,则分式y x y x -+23的值为______. 11.填上适当的代数式,使等式成立: (1)b a b a b ab a +=--+)(22222; (2)x x x x 2122)(2--=-;(3)a b b a b a-=-+)(11; (4))(22xy xy =.三、解答题12.把下列各组分式通分: (1);65,31,22abc a b a - (2)222,b a a ab a b --.13.把分子、分母的各项系数化为整数: (1);04.03.05.02.0+-x x (2)b a b a -+32232.14.不改变分式的值,使分式的分子与分式本身不含负号:(1)y x y x ---22; (2)b a ba +-+-2)(.15.有这样一道题,计算))(1()12)((2222x x x x x x x --+-+,其中x =2080.某同学把x =2080错抄成x =2008,但他的计算结果是正确的.你能解释其中的原因吗?16.已知311=-y x ,求分式y xy x yxy x---+2232的值.17.当x 为何整数时,分式2)1(4-x 的值为正整数.18.已知3x -4y -z =0,2x +y -8z =0,求yz xy z y x +-+222的值.参考答案1.B . 2.C . 3.D . 4.A . 5.A .6.21≠. 7.21-<. 8.0. 9.⋅+--11m m 10.1.11.(1)a +2b ; (2)2x 2; (3)b +a ; (4)x 2y 2.12.(1);65,62,632223bc a a bc a bc bc a c a - (2)⋅-+-++))((,))(()(2b a b a a a b a b a a b a b 13.(1);2152510+-x x (2)⋅-+b a b a 64912 14.(1);22x y y x -- (2)⋅-+ba b a 2 15.化简原式后为1,结果与x 的取值无关.16.⋅53 17.x =0或2或3或-1. 18.⋅23 先制定阶段性目标—找到明确的努力方向 每个人的一生,多半都是有目标的,大的目标应该是一个十年、二十年甚至几十年为之奋斗的结果,应该定得比较远大些,这样有利于发挥自己的潜能。
八年级数学上册《第十五章-分式》同步练习题含答案(人教版)
八年级数学上册《第十五章 分式》同步练习题含答案(人教版)学校:___________班级:___________姓名:___________考号:___________知识点:一、分式1、分式的概念一般地,用A 、B 表示两个整式,A ÷B 就可以表示成B A 的形式,如果B 中含有字母,式子BA 就叫做分式。
其中,A 叫做分式的分子,B 叫做分式的分母。
分式和整式通称为有理式。
2、分式的性质(1)分式的基本性质:分式的分子和分母都乘以(或除以)同一个不等于零的整式,分式的值不变。
(2)分式的变号法则:分式的分子、分母与分式本身的符号,改变其中任何两个,分式的值不变。
3、分式的运算法则;;bcad c d b a d c b a bd ac d c b a =⨯=÷=⨯ );()(为整数n ba b a n nn = ;cb ac b c a ±=± bdbc ad d c b a ±=± 二、分式方程1、分式方程分母里含有未知数的方程叫做分式方程。
2、分式方程的一般方法解分式方程的思想是将“分式方程”转化为“整式方程”。
它的一般解法是:(1)去分母,方程两边都乘以最简公分母(2)解所得的整式方程(3)验根:将所得的根代入最简公分母,若等于零,就是增根,应该舍去;若不等于零,就是原方程的根。
3、分式方程的特殊解法换元法:换元法是中学数学中的一个重要的数学思想,其应用非常广泛,当分式方程具有某种特殊形式,一般的去分母不易解决时,可考虑用换元法。
练习题一、单选题1.化简22x y y x x y+--的结果为( ) A .﹣x ﹣y B .y ﹣x C .x ﹣y D .x+y2.把分式x x y+(x ≠0,y ≠0)中的分子、分母的x 、y 同时扩大为原来的2倍,那么分式的值( ) A .扩大为原来的2倍B .扩大为原来的4倍C .缩小为原来的12D .不改变 3.小王乘公共汽车从甲地到相距40千米的乙地办事,然后乘出租车返回,出租车的平均速度比公共汽车多20千米/时,回来时路上所花时间比去时节省了14,设公共汽车的平均速度为x 千米/时,则下面列出的方程中正确的是( ) A .4020x +=34×40x B .40x =34×4020x + C .4020x ++14=40x D .40x =4020x +-144.分式方程21124x x x -=--去分母后的结果正确的是( ) A .x 2﹣4﹣1=1B .x 2+2x ﹣(x 2﹣4)=1C .x+2﹣x 2﹣4=1D .x+2﹣1=1 5.已知1a +12b =3,则代数式254436a ab b ab a b-+--的值为( ) A .3 B .-2 C .13- D .12- 6.关于x 的方程31133x a x x-=---有增根,则a 的值是( ) A .3 B .8 C .8- D .14-7.若关于x 的分式方程2311x m x x-=--的解为正数,则m 的取值范围是( ). A .m<-2且3m ≠- B .m<2且3m ≠-C .m>-3且2m ≠-D .m>-3且2m ≠8.已知1112x y z +=+,1113y z x +=+与1114z x y +=+,则234x y z++的值为( ) A .1B .32C .2D .52二、填空题 9.当x= 时,分式 225x x -+ 的值为0.10.小成每周末要到距离家5千米的体育馆打球,他骑自行车前往体育馆比乘汽车多用10分钟,乘汽车的速度是骑自行车速度的2倍.设骑自行车的速度为x 千米/时,根据题意列方程为11.某药品原来每盒p 元,现在每盒提高3元,用200元买这种药品现在比原来少买 盒.12.若关于x 的分式方程23m x x +- ﹣1= 2x无解,则m 的值 13.若x + 1x =3,则 21x x x ++ 的值是 . 14.若关于x 的分式方程 2-1--1k x x x = 的解为正数,则满足条件的非负整数K 的值为 . 三、计算题15.解方程:12133x x x-+=--16.化简:212111a a a a +⎛⎫+÷ ⎪--⎝⎭.17.先化简2344111a a a a a -+⎛⎫-+÷ ⎪++⎝⎭,然后从22a -≤≤的范围内选择一个合适的整数作为a 的值代入求值.18.某公司开发生产的1200件新产品需要精加工后才能投放市场,现有甲、乙两个工厂都想加工这批产品.公司派出相关人员分别到这两间工厂了解生产情况,获得如下信息:信息一:甲工厂单独加工完成这批产品比乙工厂单独加工完成这批产品多用10天;信息二:乙工厂每天比甲工厂多加工20件.根据以上信息,求甲、乙两个工厂每天分别能加工多少件新产品?19.为了深入贯彻习总书记关于“双减”工作的重要指示,增强学生的体质,济南市某中学决定购买一些篮球和足球来促进学生的体育锻炼,已知每个篮球的售价比每个足球的售价单价多20元,并且花费6000元购买篮球的数量是花费3200元购买足球数量的1.25倍.(1)求篮球和足球的单价分别是多少元?(2)根据学校的实际需求,需要一次性购买篮球和足球共200个,并且要求购买篮球和足球的总费用不超过9600元,那么学校最少购入多少个足球?参考答案:1.【答案】A 2.【答案】D 3.【答案】A 4.【答案】B 5.【答案】D 6.【答案】C 7.【答案】C 8.【答案】C9.【答案】210.【答案】5x ﹣52x =1611.【答案】26003p p+ 12.【答案】﹣32 或﹣ 12 13.【答案】1414.【答案】015.【答案】解:等式两边同时乘以 3x - 原方程可化为: 123x x --=-解得 1x =经检验 1x = 是原方程的解.16.【答案】解:原式211112a a a a a++--=⋅- 2(1)(1)12a a a a a+-=⋅- 1a =+. 17.【答案】解:2344111a a a a a -+⎛⎫-+÷ ⎪++⎝⎭=()()231111(2)a a a a a --++⋅+- =()()22211(2)a a a a a +-+-⋅+- =22a a +-- 当a =0时,原式=1.18.【答案】解:设甲工厂每天能加工x 件新产品,则乙工厂每天能加工x+20件新产品,根据题意得:1200x ﹣120020x +=10解得:x=40或x=﹣60(不合题意舍去)经检验:x=40是所列方程的解.乙工厂每天加工零件为:40+20=60(件).答:甲工厂每天能加工40件新产品,乙工厂每天能加工60件新产品.19.【答案】(1)解:设每个足球的售价为x 元,则每个篮球的售价为()20x +元 由题意得600032001.2520x x =⨯+ 解得40x =经检验40x =是所列方程解且正确∴2060x +=答:每个足球售价为40元,则每个篮球售价为60元;(2)解:设购入m 个足球,则购入()200m -个篮球.由题意得()40602009600m m +-≤解得120m ≥答:学校最少购入120个足球。
八年级数学人教版上册同步练习分式方程(解析版)
15.3分式方程一、单选题1.已知关于x 的不等式组62176324()13(21)x x x a x -+⎧+≤⎪⎨⎪++<+⎩无解,关于y 的分式方程22822a y y y y -=--有整数解,则满足条件的所有整数a 的和为( )A .6B .8C .10D .13【答案】D2.石家庄某活动小组到教育基地游学,租用面包车的车费为180元.出发时又增加了2名同学,结果每名同学比原来少摊了3元车费.若设该活动小组原有x 人,则所列方程为( ) A .18018032x x -=- B .18018032x x -=+ C .18018032x x -=+ D .18018032x x -=- 【答案】B 【分析】根据总费用÷总人数为人均分摊费用,计算两次的分摊费用,后根据题意列出方程即可【详解】设该活动小组原有x 人,则出发后的人数为(x +2)人,根据题意,得18018032x x -=+, 故选B【点评】本题考查了分式方程解应用题,熟练掌握列分式方程的基本要领是解题的关键.3.暑假期间,某科幻小说的销售量急剧上升.某书店分别用600元和800元两次购进该小说,第二次购进的数量比第一次多40套,且两次购书时,每套书的进价相同.若设书店第一次购进该科幻小说x 套,由题意列方程正确的是( )A .60080040=-xx B .60080040=-x x C .60080040=+x x D .60080040=+x x 【答案】C 【分析】根据第一次进书的总钱数÷第一次购进套数=第二次进书的总钱数÷第二次购进套数列方程可得.【详解】若设书店第一次购进该科幻小说x 套, 由题意列方程正确的是60080040x x =+,故选:C .【点评】本题考查由实际问题抽象出分式方程,解题的关键是理解题意找到题目蕴含的相等关系. 4.已知关于x 的方程22x m x +-=3的解是正数,那么m 的取值范围为( ) A .m >﹣6且m ≠2B .m <6且m ≠2C .m >﹣6且m ≠﹣4D .m <6且m ≠﹣2 【答案】C【分析】先求得分式方程的解(含m 的式子),然后根据解是正数可知m +6>0,从而可求得m >-6,然后根据分式的分母不为0,可知x ≠2,即m +6≠2,由此即可求解.【详解】将分式方程转化为整式方程得:2x +m =3x -6解得:x =m +6.∵方程得解为正数,所以m +6>0,解得:m >-6.∵分式的分母不能为0,∴x -2≠0,∴x ≠2,即m +6≠2.∴m ≠-4.故m >-6且m ≠-4.故选C .【点评】本题主要考查的是解分式方程和一元一次不等式的应用,求得方程的解,从而得到关于m 的不等式是解题的关键.5.有一段全长为800米的公路,路面需整改,为了尽量减少施工对城市交通所造成的影响,实际施工时,每天的功效比原计划增加10%, 结果提前3天完成这一任务,设原计划每天整改x 米,则下列方程正确的是( )A .()800800-3x 110%x =+B .()800800-3x1-10%x = C .()800800-3x 110%x=+ D .()800800-3x 1-10%x= 【答案】C 【分析】用x 表示出计划和实际完成的时间,再结合实际比计划提前3天完成任务作为等量关系列方程即可.【详解】实际每天整改()1+10%x 米,则实际完成时间()8001+10%x 天,计划完成时间800x 天, ∵实际比计划提前3天完成任务 ∴得方程()8008003110%x x-=+. 故选C . 【点评】本题考查了分式方程的应用.列分式方程解应用题与所有列方程解应用题一样,重点在于准确地找出相等关系,这是列方程的依据.而难点则在于对题目已知条件的分析,找出等量关系,因此需围绕题中关键词进行分析.6.若关于x 的方程221933m x x x +=-+-有增根,则m 的值为( ) A .不存在B .6C .12D .6或12 【答案】D【分析】根据增根的定义确定x 的值,把分式方程去分母后,代入即可求m 的值. 【详解】221933m x x x +=-+-, 去分母得,2(3)3m x x +-=+ ∵方程221933m x x x +=-+-有增根, 当3x =时,336m =+=;当3x =-时,2(33)0m +--=,12m =;故选:D .【点评】本题考查了分式方程的增根,解题关键是明确增根的意义,确定未知数的值.7.已知关于x 的一元一次不等式组4(3)222x x x a -+<-⎧⎨+≥⎩的解集为x >7,且关于y 的分式方程53ay y +-﹣1=43y-的解为正整效,则满足条件的所有整数a 的和为( ) A .﹣3B .﹣6C .﹣8D .﹣11【答案】C【分析】不等式组整理后,根据已知解集确定出a 的范围,分式方程去分母转化为整式方程,由分式方程有正整数解,确定出a 的值,求出之和即可.【详解】不等式组整理得:72xx a>⎧⎨≥-⎩,由解集为x>7,得到2﹣a≤7,解得a≥﹣5,分式方程去分母得:ay+5﹣y +3=﹣4,解得:y=121a -,∵y为正整数解,且y≠3,∴a=0,﹣1,﹣2,﹣5,﹣11,又∵a≥﹣5,∴a=0,﹣1,﹣2,﹣5,∴满足条件的整数a的和为﹣8.故选:C.【点评】此题考查了分式方程的解,以及解一元一次不等式组,熟练掌握运算法则是解本题的关键.8.已知关于x的不等式组251333xxx a+⎧>+⎪⎨⎪≥-⎩有解,且关于y的分式方程9433y a ay y+-=---有正整数解,则所有满足条件的整数a的值的个数为()A.2 B.3 C.4 D.5 【答案】A【分析】根据分式方程的解为正整数即可得出a>32-,且a≠3,根据不等式组有解,即可得a<9,找出所有符合条件的正整数,a的个数为2.【详解】解方程9433y a ay y+-=---得:233ay+=,∵分式方程的解为正整数,∴2a+3>0,即a>-32,又y≠3,∴233a+≠3,即a≠3,则a>32-,且a≠3,251333x x x a +⎧>+⎪⎨⎪≥-⎩①②, 解不等式①,得x <2,解不等式②,得x ≥33a -, ∵此不等式组有解, ∴33a -<2, 解得a <9, 综上,a 的取值范围是32-<a <9,且a ≠3, 则符合题意的整数a 的值有0,6共2个,故选:A .【点评】本题考查了分式方程的解以及解一元一次不等式组,根据分式方程的解为正整数结合不等式组有解,找出32-<a <9,且a ≠3是解题的关键.二、填空题目9.某班在植树节时需完成一批植树任务,若由全班学生一起完成每人需植树8棵;若由女生单独完成每人需植树12棵,则由男生单独完成每人需植树_____棵.【答案】24.【分析】要求单独由男生完成,每人应植树多少棵,就要先设出未知数,根据题中的等量关系,列方程求解即可.【详解】设单独由男生完成,每人应植树x 棵.那么根据题意可得出方程:111128x +=, 解得:x =24.检验得x =24是方程的解.因此单独由男生完成,每人应植树24棵.故答案为:24.【点评】本题考查了分式方程的应用,为工作效率问题,可根据题意列出方程,判断所求的解是否符合题意即可.10.若关于x 的分式方程221111a x x x -=-+-无解,则a 的值是______. 【答案】2或-4 【分析】按照解分式方程的步骤,把方程两边乘最简公分母,化为关于x 的一元一次方程,把增根代入一元一次方程中,可求得a 的值.【详解】方程两边同乘(x +1)(x -1),得a -2(x -1)=x +1由于分式方程在增根x =1和x =-1把x =1代入a -2(x -1)=x +1中,得a =2把x =-1代入a -2(x -1)=x +1中,得a =-4所以a 的取值为2或-4故答案为:2或-4【点评】本题考查了分式方程有增根时参数的取值问题,关键要根据分式方程的分母确定方程的增根. 11.若关于x 的分式方程2111a x x =+--有增根,则a =__________. 【答案】2【分析】先将分式方程去分母转化为整式方程,根据分式方程有增根求出x 的值,代入整式方程计算即可求出a 的值. 【详解】2111a x x =+--, 去分母,得 a =2+x −1,∵分式方程有增根,∴x −1=0,解得x =1,将x =1代入整式方程,得a =2,故答案为:2.【点评】此题考查了分式方程无解问题,解答此类问题可按如下步骤进行:①化分式方程为整式方程;②确定增根;③把增根代入整式方程,计算后即可求得相关字母的值.12.已知方程232a a a -+=,且关于x 的不等式组x a x b ≥⎧⎨≤⎩只有3个整数解,那么b 的取值范围是_______. 【答案】3≤b <4【分析】首先解分式方程求得a 的值,然后根据不等式组的解集确定x 的范围,再根据只有3个整数解,确定b的范围.【详解】解方程232aa a-+=,两边同时乘以a得:2-a+2a=3,解得:a=1,∴关于x的不等式组x a x b≥⎧⎨≤⎩,则解集是1≤x≤b,∵不等式组只有3个整数解,则整数解是1,2,3,∴3≤b<4.故答案是:3≤b<4.【点评】此题考查的是一元一次不等式组的解法和解分式方程,求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.三、解答题13.某班13位同学参加每周一次的卫生大扫除,按学校的卫生要求需要完成总面积为280m的三个项目的任务,三个项目的面积比例和每人每分钟完成各项目的工作量如下图所示:(1)从上述统计图中可知:①每人每分钟擦课桌椅______2m;②擦玻璃、擦课桌椅、扫地拖地的面积分别是________2m,_______2m,________2m;(2)他们一起完成扫地和拖地的任务后,把这13人分成两组,一组去擦玻璃,一组去擦课桌椅,如果你是卫生委员,该如何分配这两组的人数,才能同时地完成任务.【答案】(1)①12;②16;20;44;(2)8人擦玻璃,5人擦课桌椅【分析】(1)①②观察统计图,直接计算;(2)把这13人分成两组,一组去擦玻璃,一组去擦课桌椅,设有x 人擦玻璃,则有(13-x )人擦课桌椅,擦玻璃的面积是16m 2,擦课桌椅的面积是20m 2,据此列出方程,解之即可.【详解】(1)①由统计图可得, 每人每分钟能擦课桌椅12m 2; ②擦玻璃的面积是80×20%=16m 2,擦课桌椅的面积是80×25%=20m 2,扫地拖地的面积是80×55%=44m 2;(2)设有x 人擦玻璃,则有(13-x )人擦课桌椅,由题意得: ()16200.250.513x x =-, 解得x =8,经检验:x =8是方程的解,∴13-x =13-8=5(人),所以派8人擦玻璃,5人擦课桌椅,能同时完成任务.【点评】本题考查条形统计图、扇形统计图、分式方程的应用,解题的关键是明确题意,找出所求问题需要的条件.14.已知关于x 的方程233x mx x 的解为非负数,求m 的取值范围.【答案】6m ≤且3m ≠【分析】先解分式方程,因为解为负数,解不等式,要注意解不能为增根.【详解】233x m x x 移项:233x m x x =+-- 去分母:2(3)x x m =-+解得:6x m =-方程的解为非负数∴0x ≥∴60m -≥∴6m ≤又3x ≠∴63m -≠∴3m ≠∴m 的取值范围为:63m m ≤≠且【点评】本题考查了,分式方程的解,解分式方程,一元一次不等式的解法;注意分式方程要检验,本题检验是解题的关键.15.2020年春,湖北省武汉市爆发新冠疫情,我校师生积极捐款,已知第一天捐款4800元,第二天捐款6000元,第二天捐款人数比第一天捐款人数多50人,且两天人均捐款数相等,那么两天共参加捐款的人数是多少?【答案】450人【分析】设第一天有x 人参加捐款,根据已知第一天捐款4800元,第二天捐款6000元,第二天捐款人数比第一天捐款人数多50人,且两天人均捐款数相等,可列出方程求解.【详解】设第一天有x 人参加捐款,则第二天有(50)x +人参加捐款 依题意得:4800600050x x =+, 解得:200x =,检验:200x =时,(50)0x x +≠ ,即200x =是原方程的解,故第一天有200人捐款,第二天有250人捐款,两天一共有450人捐款,答:两天参加捐款的人一共有450人.【点评】本题考查了分式方程的应用,找到关键描述语,找到合适的等量关系是解决问题的关键,再列分式方程解应用题时,设间接未知数,有时可使解答变得简捷.16.解下列方程:(1)23111x x x+=--; (2)11322x x x-+=-- 【答案】(1)2x =;(2)原方程无解【分析】(1)分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解;(2)分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解.【详解】(1)23111x x x+=-- 去分母,得:231x x -=-解得,2x =检验:当2x =时,10x -≠2x ∴=是原方程的解;(2)11322x x x-+=-- 去分母得,13(2)(1)x x +-=--解得,2x =检验,当2x =时,20x -=,2x ∴=是原方程的增根∴原方程无解.【点评】此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.17.某公司购买了A 、B 两种不同型号的口罩,已知A 型口罩的单价比B 型口罩的单价多4.5元,且用12000元购买A 型口罩的数量与用3000元购买B 型口罩的数量相同.(1)A 、B 两种型号口罩的单价各是多少元?(2)该公司还需要增加购买一些口罩,增加购买B 型口罩数量是A 型口罩数量的4倍,若总费用不超过6000元,则增加购买A 型口罩的数量最多是多少个?【答案】(1)A 型口罩的单价为6元,则B 型口罩的单价为1.5元;(2)增加购买A 型口罩的数量最多是500个【分析】(1)设A 型口罩的单价为x 元,则B 型口罩的单价为(x ﹣4.5)元,根据数量=总价÷单价,结合用12000元购买A 型口罩的数量与用3000元购买B 型口罩的数量相同,即可得出关于x 的分式方程,解之经检验后即可得出结论;(2)设增加购买A 型口罩的数量是m 个,则增加购买B 型口罩数量是4m 个,根据总价=单价×数量,结合总价不超过6000元,即可得出关于m 的一元一次不等式,解之取其中的最大值即可得出结论.【详解】(1)设A 型口罩的单价为x 元,则B 型口罩的单价为(x ﹣4.5)元, 根据题意,得:1200030004.5x x =-.解方程,得:x=6.经检验:x=6是原方程的根,且符合题意.所以x﹣4.5=1.5.答:A型口罩的单价为6元,则B型口罩的单价为1.5元;(2)设增加购买A型口罩的数量是m个,根据题意,得:1.5×4m+6m≤6000.解不等式,得:m≤500.正整数m的最大值为500.答:增加购买A型口罩的数量最多是500个.【点评】本题考查了分式方程的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出分式方程;(2)根据各数量之间的关系,正确列出一元一次不等式.18.用电脑程序控制小型赛车进行50m比赛,“畅想号”和“和谐号”两辆赛车进入了决赛,比赛前的练习中,两辆车从起点同时出发,“畅想号”到达终点时,“和谐号”离终点还差5m,已知“畅想号”的平均速度为2.5m/s.(1)求“和谐号”的平均速度;(2)如果两车重新开始比赛,“畅想号”从起点后退5m,两车同时出发,两车能否同时到达终点?若能,求出两车到达终点的时间;若不能,在此种情况下,请重新调整一辆车的平均速度,使两车能同时到达终点.【答案】(1)2.25m/s;(2)“畅想号”的平均速度降低140m/s或“和谐号”的平均速度增加144m/s,可使两车能同时到达终点.【分析】(1)设“和谐号”的平均速度为x,根据,“畅想号”运动50m与“和谐号”运动45m所用时间相等,可得方程,解出即可.(2)分别算出两车到达终点的时间可判断不能同时到达,再设“畅想号”的平均速度降低x m/s和“和谐号”的平均速度增加x m/s,根据时间相等,得出方程求解即可.【详解】(1)设“和谐号”的平均速度为x m/s,由题意得,50505 2.5x-=,解得:x=2.25,经检验x=2.25是原方程的解.答:“和谐号”的平均速度2.25m/s .(2)“畅想号”到达终点的时间是5052.5+=22s , “和谐号”到达终点的时间是502222.259=s , ∴两车不能同时到达,“畅想号”先到.方案一:设“畅想号”的平均速度降低x m/s 时能使两车同时到达终点, 则505502.5 2.25x +=-, 解得:x =140,经检验x =140是原方程的解, 方案二:设“和谐号”的平均速度增加x m/s 时能使两车同时到达终点, 则50552.25 2.5x =+, 解得:x =144,经检验x =144是原方程的解, 答:“畅想号”的平均速度降低140m/s 或“和谐号”的平均速度增加144m/s ,可使两车能同时到达终点. 【点评】本题考查了分式方程的应用,解答本题的关键是仔细审题,找到等量关系,建立方程,难度一般. 19.3月12日是植树节,重庆市第一实验中学开展了“我与自然——一实农场”的活动:初一、初二年级以班级为单位,各自开辟了一块菜园种植蔬菜.初二某班学生经商量计划购买番茄苗和茄子苗共100株,经了解茄子苗的单价是番茄苗单价的18018032x x -=+,若花80元购进番茄苗,则购买茄子苗需要90元.(1)求番茄苗和茄子苗的单价;(2)班长在购买菜苗时了解到,在当前种植条件下,番茄的成活率为75%,一株番茄苗大约能结8个番茄,茄子的存活率为90%,一株茄子苗大约能结5个茄子,班长决定再多购买番茄和茄子苗共20株,但是不能超过预算210元,且番茄苗的总数量不低于茄子苗总数量的18018032x x -=+,班长最终应该如何购买,才能使所结的果实数量最多.【答案】(1)番茄苗单价2元,茄子苗单价为1.5元;(2)当番茄苗20珠,茄子苗0珠0时,最多 20.已知关于x 的分式方程311(1)(2)x k x x x -+=++-的解为非负数,求k 的取值范围. 【答案】8k ≥-且0k ≠.【分析】先解分式方程,再建立不等式求解即可.【详解】解分式方程,得84k x +=, 根据题意,得:804k +≥且881,244k k ++≠-≠, 解得:8k ≥-且0k ≠.【点评】本题考查了分式方程与不等式,熟练掌握分式方程及不等式的解法是解题的关键,注意不要遗漏条件:最简公分母不能为0.祝福语祝你考试成功!。
新人教版初中数学八年级数学上册第五单元《分式》检测卷(答案解析)
一、选择题1.化简221x x x ++÷(1-11x +)的结果是( )A .11x + B .11x - C .x+1 D .x-12.关于x 的一元一次不等式组31,224xm x x x ⎧-≤+⎪⎨⎪-≤⎩的解集为4x ≤,且关于y 的分式方程13122my yy y--+=--有整数解,则符合条件的所有整数m 的和为( ) A .9B .10C .13D .143.若关于x 的分式方程3211m x x =---有非负实数解,且关于x 的不等式组102x x m +≥⎧⎨+≤⎩有解,则满足条件的所有整数m 的和为( ) A .9- B .8-C .7-D .6-4.若使分式2xx -有意义,则x 的取值范围是( ) A .2x ≠ B .0x =C .1x ≠-D .2x =5.已知分式34x x -+的值为0,则x 的值是( ) A .3B .0C .-3D .-46.如图,若x 为正整数,则表示3211327121(1)(1)543x x x x x x x x x--++--÷++++的值的点落在( ).A .段①B .段②C .段③D .段④7.计算()3222()m m m -÷⋅的结果是( )A .2m -B .22mC .28m -D .8m -8.下列说法正确的是( )A .分式242x x --的值为零,则x 的值为2±B .根据分式的基本性质,m n 可以变形为22mx nxC .分式32xyx y-中的,x y 都扩大3倍,分式的值不变D .分式211x x ++是最简分式 9.若数a 使关于x 的分式方程2311a x x+=--的解为非负数,且使关于y 的不等式组213202y yy a +⎧->⎪⎪⎨-⎪≤⎪⎩的解集为2y <-,则符合条件的所有整数a 的个数为( ) A .5B .6C .7D .810.若分式()22222x y x y a x a y ax ay+-÷-+的值等于5,则a 的值是( ) A .5B .-5C .15D .15-11.11121n n n x x x x+-+-+等于( ) A .11n x + B .11n x - C .21x D .112.2222x y x y x y x y -+÷+-的结果是( ) A .222()x y x y ++ B .222()x y x y +- C .222()x y x y-+ D .222()x y x y ++二、填空题13.当m=______时,解分式方程1m 233(2x 1)2x 1+=--会出现增根. 14.新冠疫情期间,口罩成为了人们出行必备的防护工具.某药店抓住商机购进甲、乙、丙三种口罩进行销售.已知销售每件甲种口罩的利润率为30%,每件乙种口罩的利润率为20%,每件丙种口罩的利润率为5%.当售出的甲、乙、丙口罩件数之比为1:3:2时,药店得到的总利润率为20%;当售出的甲、乙、丙口罩件数之比为3:2:2时,药店得到的总利润率为24%.因丙种口罩利润较低,现药店准备只购进甲、乙两种口罩进行销售,若该药店想要获得的总利润率为28%,则该药店应购进甲、乙两种口罩的数量之比是______.15.计算22a b a b a b-=-- _________.16.关于x 的分式方程3122m x x-=--无解,则m 的值为_____. 17.某危险品工厂采用甲型、乙型两种机器人代替人力搬运产品.甲型机器人比乙型机器人每小时多搬运10kg ,甲型机器人搬运800kg 所用时间与乙型机器人搬运600kg 所用时间相等.问乙型机器人每小时搬运多少kg 产品? 根据以上信息,解答下列问题.(1)小华同学设乙型机器人每小时搬运xkg 产品,可列方程为______小惠同学设甲型机器人搬运800kg 所用时间为y 小时,可列方程为____________. (2)乙型机器人每小时搬运产品_______________kg .18.A B 两地相距36千米,一艘轮船从A 地顺流行至B 地,又立即从B 地逆流返回A 地,共用9小时,已知水流速度为4千米/时,若设该轮船在静水中的速度为x 千米时,则可列方程为__________. 19.若关于x 的方程2144416m x x x +=-+-无解,则m 的值为__________. 20.对于两个不相等的实数a ,b ,我们规定符号Min{,}a b 表示a ,b 中的较小的值,如Min{3,4}3=,按照这个规定,方程135Min ,2222x x x x -⎧⎫=-⎨⎬---⎩⎭的解为_____________. 三、解答题21.先化简,再求值:213(1)211x x x x x +--÷-+-,其中4x =-. 22.某商店购进 A B 、两种商品,购买1个A 商品比购买1个B 商品多花10元,并且花费300元购买A 商品和花费100元购买B 商品的数量相等 (1)求购买一个A 商品和一个B 商品各需要多少元(2)商店准备购买A B 、两种商品共80个,若A 商品的数量不少于B 商品数量的4倍,并且购买A B 、商品的总费用不低于1000元且不高于1060元,那么商店有哪几种购买方案? 23.某小区购买了A 型和B 型两种垃圾桶,购买A 型垃圾桶花费了2500元,购买B 型垃圾桶花费了2000元,且购买A 型垃圾桶数量是购买B 型垃圾桶数量的2倍,已知购买一个A 型垃圾桶比购买一个B 型垃圾桶少用30元,求购买一个A 型垃圾桶、一个B 型垃圾桶各需多少元?(要求列分式方程求解)24.某书店老板去图书批发市场购买某种图书,第一次用1200元购书若干本,并按该书定价6元出售,很快售完.由于该书畅销,第二次购书时,每本书的批发价已比第一次提高了20%,他用1680元所购该书的数量比第一次多50本,当按定价售出300本时,出现滞销,便以定价的4折售完剩余的书. (1)第一次购书的进价是多少元?(2)试问该老板这两次售书总体上是赔钱了,还是赚钱了(不考虑其他因素)?若赔钱,赔多少;若赚钱,赚多少? 25.观察下列等式:第1个等式:111122=-⨯;第2个等式:111 2323=-⨯;第3个等式:111 3434=-⨯;……(1)写出第5个等式:________________;(2)探究规律:猜想第n个等式,并证明;(3)问题解决:一个容器装有1升水,按照如下要求把水倒出:第1次倒出12升水,第2次倒出的水量是12升的13,第3次倒出的水量是13升的14,第4次倒出的水量是14升的1 5,……,第n次倒出的水量是1n升的11n+,如果不考虑实际操作因素,按照这种倒水的方法,这1升水能倒完吗?为什么?26.新冠肺炎疫情暴发后,某医疗设备公司紧急复工,但受疫情影响,医用防护服生产车间仍有7人不能到厂工作,为了应对疫情,在每个工人每小时完成的工作量不变的前提下,已复工的工人加班生产,每天的工作时间由原来8个小时增加到10个小时.该公司原来每天能生产防护服800套,现在每天能生产防护服650套.(1)求该公司原来生产防护服的工人有多少人?(2)复工10天后,未到的7名工人到岗且同时加入了生产,每天生产时间仍然为10小时.为了支援灾区,公司复工后决定生产15500套防护服,问至少还需要多少天才能完成任务?【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【分析】首先把括号里因式进行通分,然后把除法运算转化成乘法运算,进行约分化简.【详解】解:原式=22211(1)1 (1)1(1)1x x x xx x x x x+-+÷=⋅=++++,故选A.【点睛】本题考查了分式的混合运算,能正确根据分式的运算法则进行化简是解题的关键.2.A解析:A 【分析】不等式组整理后,根据已知解集确定出m 的范围,分式方程去分母转化为整式方程,根据分式方程有整数解确定出整数m 的值,进而求出之和即可. 【详解】解:31224xm x x x ⎧-≤+⎪⎨⎪-≤⎩①②,解①得 x≤2m+2, 解②得 x≤4,∵不等式组31224xm x x x⎧-≤+⎪⎨⎪-≤⎩的解集为4x ≤,∴2m+2≥4, ∴m≥1.13122my y y y--+=--, 两边都乘以y-2,得 my-1+y-2=3y , ∴32y m =-, ∵m≥1,分式方程13122my yy y--+=--有整数解, ∴m=1,3,5, ∵y-2≠0, ∴y≠2, ∴322m ≠-, ∴m≠72, ∴m=1,3,5,符合题意, 1+3+5=9. 故选A . 【点睛】此题考查了解分式方程,解一元一次不等式组,熟练掌握各自的解法是解本题的关键.3.D解析:D 【分析】先根据方程3211m x x =---有非负实数解,求得5m ≥-,由不等式组102x x m +≥⎧⎨+≤⎩有解求得3m ≤,得到m 的取值范围53m -≤≤,再根据10x -≠得3m ≠-,写出所有整数解计算其和即可. 【详解】 解:3211m x x =--- 解得:52m x +=, ∵方程有非负实数解, ∴0x ≥即502m +≥, 得5m ≥-;∵不等式组102x x m +≥⎧⎨+≤⎩有解,∴12x m -≤≤-,∴21m -≥-, 得3m ≤, ∴53m -≤≤, ∵10x -≠,即502m +≠, ∴3m ≠-,∴满足条件的所有整数m 为:-5,-4,-2,-1,0,1,2,3, 其和为:-6, 故选:D . 【点睛】此题考查利用分式方程解的情况求参数,根据不等式组的解的情况求参数,正确掌握方程及不等式组的解的情况确定m 的取值范围是解题的关键.4.A解析:A 【分析】根据分式有意义分母不为零即可得答案. 【详解】∵分式2xx -有意义, ∴x-2≠0,解得:x≠2. 故选:A . 【点睛】本题考查了分式有意义的条件,利用分母不为零得出不等式是解题关键.5.A解析:A 【分析】根据分式的值为0的条件可以求出x 的值;分式为0时,分子为0分母不为0; 【详解】由分式的值为0的条件得x-3=0,x+4≠0, 由x-3=0,得x=3, 由x+4≠0,得x≠-4, 综上,得x=3时,分式34x x -+ 的值为0; 故选:A . 【点睛】本题考查了分式的值为0的情况,若分式的值为0,需要同时具备两个条件:(1)分子为0;(2)分母不为0,这两个条件缺一不可.6.B解析:B 【分析】将原式分子分母因式分解,再利用分式的混合运算法则化简,最后根据题意求出化简后分式的取值范围,即可选择. 【详解】原式221(1)71211543(1)x x x x x x x-++=-++++ 1(3)(4)11(1)(4)3xx x x xx x x x -++=-++++ 1111x x x-=-++ 1x x =+ 又因为x 为正整数,所以1121x x ≤<+, 故选B .【点睛】本题考查分式的化简及分式的混合运算,最后求出化简后的分式的取值范围是解答本题关键.7.C解析:C 【分析】先分别计算积的乘方运算,再利用单项式除以单项式法则计算即可. 【详解】 解:()3222()m m m -÷⋅=()468mm -÷ =()468m m -÷=28m -, 故选:C . 【点睛】本题考查单项式除以单项式,积的乘方运算.在做本题时需注意运算顺序,先计算积的乘方,再算除法.8.D解析:D 【分析】直接利用分式的值为零的条件以及分式的基本性质、最简分式的定义分别分析得出答案. 【详解】A 、分式242x x --的值为零,则x 的值为−2,故此选项错误;B 、根据分式的基本性质,等式m n =22mx nx(x≠0),故此选项错误;C 、分式32xyx y-中的x ,y 都扩大3倍,分式的值扩大为3倍,故此选项错误;D 、分式211x x ++是最简分式,正确; 故选:D . 【点睛】此题主要考查了分式的值为零的条件以及分式的基本性质、最简分式的定义,正确掌握相关定义和性质是解题关键.9.C解析:C 【分析】根据分式方程2311a x x+=--的解为非负数求得a>5,根据不等式组的解集为2y <-,求得2a ≥-,利用分式的分母不等于0得到x ≠1,即可得到a 的取值范围25a -≤≤,且x ≠1,根据整数的意义得到a 的整数值. 【详解】 解分式方程2311a x x+=--,得53a x -=,∵分式方程2311ax x+=--的解为非负数, ∴503a-≥, 解得a ≤5,∵关于y 的不等式组213202y yy a +⎧->⎪⎪⎨-⎪≤⎪⎩,得2y y a <-⎧⎨≤⎩, ∵不等式组的解集为2y <-, ∴2a ≥-, ∵x-1≠0, ∴x ≠1,∴25a -≤≤,且x ≠1,∴整数a 为:-2、-1、0、1、3、4、5,共有7个, 故选:C . 【点睛】此题考查根据分式方程的解的情况求未知数的取值范围,根据不等式组的解集情况求未知数的取值范围,确定不等式的整数解,正确理解题意并计算是解题的关键.10.C解析:C 【分析】先进行分式除法,化简后得到关于a 的式子,列方程即可求解. 【详解】解:()22222x y x y a x a y ax ay+-÷-+ ()22()(()=))(a x y a x x y y y x x y ++-⨯-+, 1=a,根据题意,15a=, 解得,15a =, 经检验,15a =是原方程的解, 故选C 【点睛】本题考查了分式的除法和分式方程的解法,正确化简分式,列出分式方程,是解决问题的关键.11.D解析:D 【分析】根据通分,可化成同分母分式,根据同分母分式的加减,可得答案. 【详解】1131112311n n n n n n n x x x x x x x x +-+++++--++==, 故选:D 【点睛】本题考查了分式加减运算的法则,熟记法则是解题的关键.12.C解析:C 【分析】根据分式的除法法则计算即可. 【详解】2222x y x y x y x y -+÷+-()()22x y x y x y x y x y +--=⨯++222()x y x y -=+ 【点睛】此题考查分式的除法法则:先把除式的分子分母颠倒位置,再化为最简分式即可.二、填空题13.6【分析】分式方程的增根使分式中分母为0所以分式方程会出现增根只能是x=增根不符合原分式方程但是适合分式方程去分母后的整式方程于是将x=代入该分式方程去分母后的整式方程中即可求出m 的值【详解】解:由解析:6 【分析】分式方程的增根使分式中分母为0,所以分式方程1m 233(2x 1)2x 1+=--会出现增根只能是x=12,增根不符合原分式方程,但是适合分式方程去分母后的整式方程,于是将x=12代入该分式方程去分母后的整式方程中即可求出m 的值.【详解】 解:由题意知分式方程()1m 2332x 12x 1+=--会出现增根是x=12, 去分母得7-2x=m将x=12代入得m=6 即当m=6时,原分式方程会出现增根.故答案为6.【点睛】本题考查了分式方程增根的性质,增根使最简公分母等于0,不适合原分式方程,但是适合去分母后的整式方程.14.【分析】设甲乙丙三种口罩的进价分别为xyz 根据题意可分别求出甲乙丙三种口罩的利润再根据当销售出的甲乙丙口罩件数之比为1:3:2时的总利润为20和当销售出的甲乙丙口罩件数之比为3:2:2时的总利润为2 解析:83【分析】设甲、乙、丙三种口罩的进价分别为x 、y 、z ,根据题意可分别求出甲、乙、丙三种口罩的利润.再根据当销售出的甲、乙、丙口罩件数之比为1:3:2时的总利润为20%和当销售出的甲、乙、丙口罩件数之比为3:2:2时的总利润为24%,列出等式,求出x 、y 、z 之间的关系.最后即可求出只购进甲、乙两种口罩,使总利润为28%时的甲、乙两种口罩的数量比.【详解】设甲、乙、丙三种口罩的进价分别为x 、y 、z ,则销售甲口罩的利润为30%x ,乙口罩的利润为20%y ,丙口罩的利润为5%z .当销售出的甲、乙、丙口罩件数之比为1:3:2时,设甲口罩售出a 件,则乙口罩售出3a 件,丙口罩售出2a 件. 根据题意可列等式:30%320%25%20%32a x a y a z a x a y a z++=++, 整理得:x =3z .当销售出的甲、乙、丙口罩件数之比为3:2:2时,设甲口罩售出3b 件,则乙口罩售出2b 件,丙口罩售出2b 件.根据题意可列等式:330%220%25%24%322b x b y b z b x b y b z++=++, 整理得:9x-4y =19z .∴y =2z .现只购进甲、乙两种口罩,使总利润为28%,设甲口罩售出A 件,乙口罩售出B 件. 则30%20%28%A x B y A x B y +=+,即30%320%228%32A z B z A z B z⨯⨯+⨯⨯=⨯+⨯. ∴83A B =. 故答案为:83. 【点睛】本题考查分式方程的实际应用.根据题意列出每一步的分式方程是解答本题的关键. 15.【分析】根据分式运算的性质结合平方差公式计算即可得到答案【详解】故答案为:【点睛】本题考查了分式平方差公式的知识;解题的关键是熟练掌握分式加减运算平方差公式的性质从而完成求解解析:+a b【分析】根据分式运算的性质,结合平方差公式计算,即可得到答案.【详解】22a b a b a b ---()()22a b a b a b a b a b a b+--===+-- 故答案为:+a b .【点睛】本题考查了分式、平方差公式的知识;解题的关键是熟练掌握分式加减运算、平方差公式的性质,从而完成求解.16.-3【分析】先求解分式方程得到用m 表示的根然后再确定该分式方程的增根最后让分式方程的根等于增根并求出m 的值即可【详解】解:m+3=x-2x=m+5由的增根为x=2令m+5=2解得m=-3故填:-3【解析:-3【分析】先求解分式方程得到用m 表示的根,然后再确定该分式方程的增根,最后让分式方程的根等于增根并求出m 的值即可.【详解】 解:3122m x x-=-- 3122m x x +=-- 312m x +=- m+3=x-2x=m+5由3122m x x-=--的增根为x=2 令m+5=2,解得m=-3.故填:-3.【点睛】 本题主要考查了解分式方程以及分式方程的增根,理解增根的定义是解答本题的关键. 17.【分析】(1)设乙型机器人每小时搬运产品根据甲型机器人搬运所用时间与乙型机器人搬运所用时间相等列方程;设甲型机器人搬运所用时间为小时根据甲型机器人比乙型机器人每小时多搬运列方程;(2)设乙型机器人每 解析:80060010x x =+80060010yy =+ 【分析】(1)设乙型机器人每小时搬运xkg 产品,根据甲型机器人搬运800kg 所用时间与乙型机器人搬运600kg 所用时间相等列方程;设甲型机器人搬运800kg 所用时间为y 小时,根据甲型机器人比乙型机器人每小时多搬运10kg 列方程;(2)设乙型机器人每小时搬运xkg 产品,则甲型机器人每小时搬运(x+10)kg ,由题意得80060010x x=+,解方程即可. 【详解】(1)设乙型机器人每小时搬运xkg 产品,则甲型机器人每小时搬运(x+10)kg ,由题意得 80060010x x=+, 设甲型机器人搬运800kg 所用时间为y 小时,由题意得80060010y y=+, 故答案为:80060010x x=+,80060010y y =+; (2)设乙型机器人每小时搬运xkg 产品,则甲型机器人每小时搬运(x+10)kg ,由题意得 80060010x x=+, 解得x=30,经检验,x=30是方程的解,答:乙型机器人每小时搬运产品30kg .故答案为:30.【点睛】此题考查分式方程的实际应用,正确理解题意,利用直接设未知数的方法和间接设未知数的方法列方程解决问题,注意:解分式方程需检验.18.【分析】设该轮船在静水中的速度为x 千米/时则一艘轮船从A 地顺流航行至B 地已知水流速度为4千米/时所花时间为;从B 地逆流返回A 地水流速度为4千米/时所花时间为根据题意列方程即可【详解】解:设该轮船在静 解析:3636944x x +=+- 【分析】设该轮船在静水中的速度为x 千米/时,则一艘轮船从A 地顺流航行至B 地,已知水流速度为4千米/时,所花时间为364x +;从B 地逆流返回A 地,水流速度为4千米/时,所花时间为364x -根据题意列方程3636944x x +=+-即可. 【详解】解:设该轮船在静水中的速度为x 千米时,根据题意列方程得:3636944x x +=+- 【点睛】本题考查列分式方程解应用题,关键是正确列出分式方程,找出题干中等量关系式即可. 19.-1或-【分析】直接解分式方程再利用一元一次方程无解和分式方程无解分别分析得出答案【详解】解:去分母得:(x+4)+m(x-4)=4可得:(m+1)x=4m 当m+1=0时分式方程无解此时m=-1当m解析:-1或-12【分析】直接解分式方程,再利用一元一次方程无解和分式方程无解分别分析得出答案.【详解】 解:2144416m x x x +=-+-, 去分母得:(x+4)+m(x-4)=4,可得:(m+1)x=4m ,当m+1=0时,分式方程无解,此时m=-1, 当m+1≠0时,则x=41m m +=±4, 当41m m +=4时,此时方程无解; 当41m m +=-4时,解得:m=-12, 经检验,m=-12是方程41m m +=-4的解, 综上所述:m=-1或-12.故答案为:-1或-12. 【点睛】 此题主要考查了分式方程的解,正确分类讨论是解题关键.20.【分析】根据题中的新定义化简求出分式方程的解检验即可【详解】当<时>2方程变形得:=−2去分母得:1=解得:(不符合题意舍去);当>即<2方程变形得:=−2去分母得:3=解得:经检验是分式方程的解综解析:4x =-【分析】根据题中的新定义化简,求出分式方程的解,检验即可.【详解】 当12x -<32x -时,x >2,方程变形得:12x -=52x x --−2, 去分母得:1=()522x x ---,解得:=2x -(不符合题意,舍去); 当12x ->32x -,即x <2,方程变形得:32x -=52x x --−2, 去分母得:3=()522x x ---,解得:4x =-,经检验4x =-是分式方程的解,综上,所求方程的解为4x =-.故填:4x =-.【点睛】此题考查了解分式方程,以及实数的运算,弄清题中的新定义是解本题的关键.三、解答题21.1x x -;45【分析】 分式的混合运算,注意先算乘除,然后算加减,有小括号先算小括号里的,然后代入求值即可.【详解】 解:213(1)211x x x x x +--÷-+- =2221(1)1(1)3x x x x x x -+-+-⨯--=222111(1)3x x x x x x -+---⨯-- 2231(1)3x x x x x --=⨯-- 2(3)1(1)3x x x x x --=⨯-- 1x x =- 当4x =-时,原式441415x x -===---. 【点睛】 本题考查分式的混合运算,分式的化简求值,掌握运算顺序和计算法则正确计算是解题关键.22.(1)购买一个A 商品需要15元,购买一个B 商品需要5元;(2)商店有3种购买方案,方案①:购进A 商品66个,B 商品14个;方案②:购进A 商品65个,B 商品15个;方案③:购进A 商品64个,B 商品16个【分析】(1)设购买一个B 商品需要x 元,则购买一个A 商品需要()10x +元,列出分式方程求解;(2)设购买B 商品m 个,则购买A 商品()80m -个,根据题意列出不等式组求出m 的范围,取整数解.【详解】解:()1设购买一个B 商品需要x 元,则购买一个A 商品需要()10x +元,依题意, 得:30010010x x=+, 解得:5x =, 经检验, = 5x 是原方程的解,且符合题意,1015x ∴+=,答:购买一个A 商品需要15元,购买一个B 商品需要5元;()2设购买B 商品m 个,则购买A 商品()80m -个,依题意,得:()()804158051000158051060m m m m m m ⎧-≥⎪-+≥⎨⎪-+≥⎩,解得:1416m ≤≤, m 为整数,14m ∴=或15或16,∴商店有3种购买方案,方案①:购进A 商品66个,B 商品14个,方案②:购进A 商品65个,B 商品15个,方案③:购进A 商品64个,B 商品16个.【点睛】本题考查分式方程的应用和不等式的应用,解题的关键是掌握根据题意列分式方程和不等式的方法.23.购买一个A 型垃圾桶需50元,一个B 型垃圾桶需80元【分析】设购买一个A 型垃圾桶需x 元,购买一个A 型垃圾桶比购买一个B 型垃圾桶少用30元,一个B 型垃圾桶需()30x +元,根据购买A 型垃圾桶数量是购买B 型垃圾桶数量的2倍,构造分式方程25002000230x x =⨯+,解方程并检验即可. 【详解】解:设购买一个A 型垃圾桶需x 元,则一个B 型垃圾桶需()30x +元, 由题意得:25002000230x x =⨯+, 解得50x =,经检验,50x =是原方程的解,且符合题意,30503080x +=+=,答:购买一个A 型垃圾桶需50元,一个B 型垃圾桶需80元.【点睛】本题考查列分式方程解应用题,掌握列分式方程解应用题的方法,抓住购买一个A 型垃圾桶比购买一个B 型垃圾桶少用30元设未知数,购买A 型垃圾桶数量是购买B 型垃圾桶数量的2倍构造方程,注意分式方程要验根.24.(1)第一次购书的进价是4元;(2)该老板两次售书总体上是赚钱了,共赚了840元【分析】(1)设第一次购书的进价为x 元,列分式方程1200168050(120%)x x+=+解答; (2)根据利润=销售数量乘以每本书的利润分别求出两次购书所赚钱数,相加确定赔赚即可.【详解】解:(1)设第一次购书的进价为x 元,根据题意得:1200168050(120%)x x+=+ 解得: 4x =.经检验,4x =原方程的解,答:第一次购书的进价是4元;(2)第一次购书为12004300÷= (本),第二次购书300+50=350(本).第一次嫌钱()30064600⨯-= (元),第二次嫌钱()()30064 1.25060.44 1.2240⨯-⨯+⨯⨯-⨯= (元)所以两次共赚钱600+240=840(元),答:该老板两次售书总体上是赚钱了,共赚了840元.【点睛】此题考查分式方程的实际应用,有理数的混合运算,正确理解题意是解题的关键.25.(1)1115656=-⨯ (2)()11111n n n n =-++;证明见解析 (3)不能;见解析 【分析】(1)观察各等式,找出分子分母中的数与序号的关系即可写出第五个等式;(2)根据题目中的式子,可以写出生意人猜想,并验证猜想是否正确;(3)根据题意求出前n 次倒水量之和,再与1进行比较即可.【详解】解:(1)第5个等式:1115656=-⨯; 故答案为:1115656=-⨯; (2)猜想:()11111n n n n =-++,证明: 等式右边()()()11111111n n n n n n n n n n +=-=-==++++等式左边, ∴猜想成立;(3)由题意可得:第n 次倒出水量:()11L n n +, ∴前n 次总共倒出水量:()11111223341n n ++++⨯⨯⨯+ 1111112231n n =-+-++-+ 111n =-+ 1n n =+, ∵11n n <+, ∴这1L 水不能倒完.【点睛】本题主要考查了数字变化规律的问题,通过观察、分析、归纳并发现其中的规律,并应用发现的规律解决问题,解题的关键是发现分子分母中的数与序号的关系.26.(1)原来生产防护服的工人有20人;(2)至少还需要生产9天才能完成任务.【分析】(1)设原来生产防护服的工人有x人,根据每人每小时完成的工作量不变列出关于x的方程,求解即可;(2)设还需要生产y天才能完成任务.根据前面10天完成的工作量+后面y天完成的工作量≥15500列出关于y的不等式,求解即可.【详解】解:(1)设原来生产防护服的工人有x人,由题意得,800650810(7)x x=-,解得:x=20.经检验,x=20是原方程的解.答:原来生产防护服的工人有20人;(2)设还需要生产y天才能完成任务.每人每小时生产防护服的数量为:8005 820=⨯套,106502051015500y⨯+⨯⨯≥,解得x≥9,答:至少还需要生产9天才能完成任务.【点睛】本题考查分式方程的应用,一元一次不等式的应用,分析题意,找到合适的数量关系是解决问题的关键.。
人教版八年级数学上册《分式》单元检测试卷(含答案)
人教版八年级数学上册《分式》单元检测试卷(含答案)一、选择题(每小题3分,共30分)1.下列各式中,是分式的是()A. xπ−2B. 14x2 C. 2x−1x+3D. x22.若分式13−x有有意义,则x的取值范围是()A.x=3B. x<3C. x≠0D. x≠33.下列算式结果是﹣3的是()A. (−3)−1B. ﹣|﹣3|C. -(-3)D. (-3)04.如果把分式x+2yx+y中的x,y都扩大2倍,则分式的值()A. 扩大2倍B. 缩小2倍C. 是原来的23D. 不变5.下列式中是最简分式的是()A. 12b27a2B. 2(a−b)2b−aC. x2+y2x+yD. x2−y2x−y6.使分式x2+11−3x的值为负的条件是()A. x<0B. x>0C. x>13D. x<137.3xy24z2·(−8z3y)等于()A. 6xyzB. −3xy2−8z34yzC. −6xyzD. 6x²yz8.已知xx2−x+1=12,则x2+1x2的值为()A. 12B. 14C. 7D. 49.解分式方程1−xx−2+2=12−x,可知方程的解为()A. x=﹣2B. x=4C. x=3D. 无解10.A,B两地相距45千米,一艘轮船从A地顺流航行至B地,又立即从B地逆流返回A地,共用去9小时,已知水流速度为4千米/时,若设该轮船在静水中的速度为x千米/时,则可列方程()A. 45x+4+45x−4=9 B.454+x+454−x=9 C. 45x+4=9 D. 90x+4+90x−4=9二、填空题(每小题3分,共18分)11.当x_________时,分式|x|−3x+3的值为0.12.要使分式x−1x+2的值是非负数,则x的取值范围是________________.13.化简(a −b 2a)·aa−b 的结果是________________. 14.若分式3a+2无意义,且b−4b 2+1=0,那么ab =__________. 15.a ,b 为实数,且ab =1,设P =a a+1+bb+1,Q =1a+1+1b+1,则P__________Q (选填“>”“<”或“=”)16.某服装厂准备加工400套运动装,在加工完160套后,采用了新技术,使得工作效率比原计划提高了20%,结果共用了18天完成任务,问计划每天加工服装多少套?在这个问题中, 设计划每天加工x 套,则根据题意可得方程为______________________. 三、解答题(72分) 17. (8分)计算与化简. (1)(4x 2−4+1x+2)÷1x−2 ; (2)a+1a−3−a−3a+2÷a 2−6a+9a 2−4.18. (8分)解下列分式方程.(1)x−2x+2−1=3x 2−4 ; (2)xx−1−2x+1=1 .19.(8分)先化简,再求值:a−32a−4÷(5a−2−a −2) ,其中a =√3−3 .20.(8分)化简aa2−4·a+2a2−3a−12−a,并求值,其中a与2、3构成△ABC的三边,且a为整数.21.(8分)已知,点A(1,3)、B(5,3)、C(2,6),平行于x轴的直线l过点(0,m).(1)画出△ABC关于y轴的轴对称图形△A1B1C1,并直接写出A1的坐标;(2)如图,若m=1,请画出△ABC关于直线l的轴对称图形△A2B2C2;(3)若P(a,b)与P′(c,d)关于直线l对称,则a与c的数量关系为____________,b 与d的数量关系为_____________.22.(10分)为提高市民的环保意识,倡导“节能减排,绿色出行”,某公司在武汉市某区甲、乙两个街道社区投放一批“公租自行车”。
最新人教版八年级初二数学上册《分式》同步测试含答案
15.1 分式一、选择题1.如果分式有意义,则x的取值范围是()A.全体实数 B.x=1 C.x≠1 D.x=02.如果代数式有意义,那么x的取值范围是()A.x≥0 B.x≠1 C.x>0 D.x≥0且x≠13.要使分式有意义,则x的取值范围是()A.x≠1 B.x>1 C.x<1 D.x≠﹣14.使分式有意义,则x的取值范围是()A.x≠1 B.x=1 C.x≤1 D.x≥15.要使分式有意义,则x的取值应满足()A.x≠2 B.x≠﹣1 C.x=2 D.x=﹣16.若分式有意义,则x的取值范围是()A.x≠3 B.x≠﹣3 C.x>3 D.x>﹣37.要使分式有意义,则x的取值范围是()A.x≠1 B.x>1 C.x<1 D.x≠﹣18.下列说法正确的是()A.﹣3的倒数是B.﹣2的绝对值是﹣2C.﹣(﹣5)的相反数是﹣5 D.x取任意实数时,都有意义9.分式有意义,则x的取值范围是()A.x>1 B.x≠1 C.x<1 D.一切实数10.要使分式有意义,则x的取值范围是()A.x>2 B.x<2 C.x≠﹣2 D.x≠211.要使分式有意义,则x的取值应满足()A.x=﹣2 B.x≠2 C.x>﹣2 D.x≠﹣212.分式有意义的条件是()A.x=﹣4 B.x≠﹣4 C.x=4 D.x≠413.若分式的值为0,则x的值为()A.2或﹣1 B.0 C.2 D.﹣1二、填空题14.若分式有意义,则x的取值范围是______.15.要使分式有意义,则字母x的取值范围是______.16.如果分式有意义,那么x的取值范围是______.17.代数式在实数范围内有意义,则x的取值范围是______.18.若分式有意义,则x应满足______.19.使式子1+有意义的x的取值范围是______.20.当x=______时,分式无意义.21.若分式有意义,则x≠______.22.当x=______时,分式的值为0.23.若代数式的值等于0,则x=______.24.使代数式有意义的x的取值范围是______.25.当分式有意义时,x的取值范围是______.26.若分式有意义,则实数x的取值范围是______.27.分式在实数范围内有意义,则x的取值范围是______.28.代数式有意义时,x应满足的条件为______.29.要使分式有意义,则x的取值范围是______.30.要使分式有意义,则x的取值范围是______.15.1 分式参考答案一、选择题1.C;2.D;3.A;4.A;5.A;6.A;7.A;8.C;9.B;10.D;11.D;12.D;13.C;二、填空题14.x≠1;15.x≠1;16.x≠-3;17.x≠3;18.x≠5;19.x≠1;20.2;21.2;22.-1;23.2;24.x≠;25.x≠2;26.x≠5;27.x≠1;28.x≠±1;29.x≠2;30.x≠10;良好的学习态度能够更好的提高学习能力。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
15.1 分式
一、选择题
1.如果分式有意义,则x的取值范围是()
A.全体实数 B.x=1 C.x≠1 D.x=0
2.如果代数式有意义,那么x的取值范围是()A.x≥0 B.x≠1 C.x>0 D.x≥0且x≠1
3.要使分式有意义,则x的取值范围是()
A.x≠1 B.x>1 C.x<1 D.x≠﹣1
4.使分式有意义,则x的取值范围是()
A.x≠1 B.x=1 C.x≤1 D.x≥1
5.要使分式有意义,则x的取值应满足()
A.x≠2 B.x≠﹣1 C.x=2 D.x=﹣1
6.若分式有意义,则x的取值范围是()
A.x≠3 B.x≠﹣3 C.x>3 D.x>﹣3
7.要使分式有意义,则x的取值范围是()
A.x≠1 B.x>1 C.x<1 D.x≠﹣1
8.下列说法正确的是()
A.﹣3的倒数是B.﹣2的绝对值是﹣2
C.﹣(﹣5)的相反数是﹣5 D.x取任意实数时,都有意义9.分式有意义,则x的取值范围是()
A.x>1 B.x≠1 C.x<1 D.一切实数
10.要使分式有意义,则x的取值范围是()
A.x>2 B.x<2 C.x≠﹣2 D.x≠2
11.要使分式有意义,则x的取值应满足()
A.x=﹣2 B.x≠2 C.x>﹣2 D.x≠﹣2
12.分式有意义的条件是()
A.x=﹣4 B.x≠﹣4 C.x=4 D.x≠4
13.若分式的值为0,则x的值为()
A.2或﹣1 B.0 C.2 D.﹣1
二、填空题
14.若分式有意义,则x的取值范围是______.
15.要使分式有意义,则字母x的取值范围是______.16.如果分式有意义,那么x的取值范围是______.
17.代数式在实数范围内有意义,则x的取值范围是______.18.若分式有意义,则x应满足______.
19.使式子1+有意义的x的取值范围是______.
20.当x=______时,分式无意义.
21.若分式有意义,则x≠______.
22.当x=______时,分式的值为0.
23.若代数式的值等于0,则x=______.
24.使代数式有意义的x的取值范围是______.
25.当分式有意义时,x的取值范围是______.
26.若分式有意义,则实数x的取值范围是______.
27.分式在实数范围内有意义,则x的取值范围是______.28.代数式有意义时,x应满足的条件为______.
29.要使分式有意义,则x的取值范围是______.
30.要使分式有意义,则x的取值范围是______.
15.1 分式
参考答案
一、选择题
1.C;2.D;3.A;4.A;5.A;6.A;7.A;8.C;9.B;10.D;11.D;12.D;13.C;
二、填空题
14.x≠1;15.x≠1;16.x≠-3;17.x≠3;18.x≠5;19.x≠1;20.2;21.2;22.-1;23.2;24.x≠;25.x≠2;26.x≠5;27.x≠1;28.x≠±1;29.x≠2;30.x≠10;
作者留言:
非常感谢!您浏览到此文档。
为了提高文档质量,欢迎您点赞或留言告诉我文档的不足之处,以便于对该文档进行完善优化,在此本人深表感谢!祝您天天快乐!。