人教版初中数学概率全集汇编附答案

合集下载
相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

人教版初中数学概率全集汇编附答案

一、选择题

1.国家医保局相关负责人3月25日表示,2019年底前我国将实现生育保险基金并入职工基本医疗保险基金,统一征缴,就是通常所说的“五险变四险”.传统的五险包括:养老保险、失业保险、医疗保险、工伤保险、生育保险.某单位从这五险中随机抽取两种,为员工提高保险比例,则正好抽中养老保险和医疗保险的概率是( )

A.1

5

B.

1

10

C.

2

5

D.

2

25

【答案】B

【解析】

【分析】

根据题意先画出树状图得出所有等可能情况数和正好抽中养老保险和医疗保险的情况数,然后根据概率公式即可得出答案.

【详解】

用字母A、B、C、D、E分别表示五险:养老保险、失业保险、医疗保险、工伤保险、生育保险,画树状图如下:

共有20种等可能的情形,其中正好抽中养老保险和医疗保险的有2种情形,

所以,正好抽中养老保险和医疗保险的概率P=21 2010

.

故选B.

【点睛】

此题考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.

2.袋中有8个红球和若干个黑球,小强从袋中任意摸出一球,记下颜色后又放回袋中,摇匀后又摸出一球,再记下颜色,做了50次,共有16次摸出红球,据此估计袋中有黑球()个.

A.15 B.17 C.16 D.18

【答案】B

【解析】

【分析】

根据共摸球50次,其中16次摸到红球,则摸到红球与摸到黑球的次数之比为8: 17,由此可估计口袋中红球和黑球个数之比为8: 17;即可计算出黑球数.

【详解】

∵共摸了50次,其中16次摸到红球,∴有34次摸到黑球,∴摸到红球与摸到黑球的次

数之比为8: 17,∴口袋中红球和黑球个数之比为8: 17,∴黑球的个数8÷

8

17

= 17(个),故答

案选B.

【点睛】

本题主要考查的是通过样本去估计总体,只需将样本"成比例地放大”为总体是解本题的关键.

3.将三粒均匀的分别标有:1,2,3,4,5,6的正六面体骰子同时掷出,出现的数字分别为a,b,c,则a,b,c正好是直角三角形三边长的概率是()

A.1

36

B.

1

6

C.

1

12

D.

1

3

【答案】A

【解析】

【分析】

本题是一个由三步才能完成的事件,共有6×6×6=216种结果,每种结果出现的机会相同,a,b,c正好是直角三角形三边长,则它们应该是一组勾股数,在这216组数中,是勾股数的有3,4,5;3,5,4;4,3,5;4,5,3;5,3,4;5,4,3共6种情况,即可求出a,b,c正好是直角三角形三边长的概率.

【详解】

P(a,b,c正好是直角三角形三边长)=

61 21636

故选:A

【点睛】

本题考查概率的求法,概率等于所求情况数与总情况数之比.本题属于基础题,也是常考题型.

4.(2018•六安模拟)下列成语所描述的是必然事件的是()

A.揠苗助长 B.瓮中捉鳖 C.水中捞月 D.大海捞针

【答案】B

【解析】A,是不可能事件,故选项错误;B,是必然事件,选项正确;C,是不可能事件,故选项错误;D,是随机事件,故选项错误.故选B.

5.随机掷一枚质地均匀的硬币两次,落地后至少有一次正面向上的概率是 ()

A.3

4

B.

2

3

C.

1

2

D.

1

4

【答案】A

【解析】

【分析】

根据:随机掷一枚质地均匀的硬币两次,可能出现的情况为:正正,正反,反正,反反;

可求落地后至多有一次正面朝下的概率.

【详解】

∵随机掷一枚质地均匀的硬币两次,可能出现的情况为:正正,正反,反正,反反.

∴落地后至多有一次正面朝下的概率为3

4

故选:A

【点睛】

本题考核知识点:求概率.解题关键点:用列举法求出所有情况.

6.如图,AB是半圆O的直径,点C、D是半圆O的三等分点,弦2

CD=.现将一飞镖掷向该图,则飞镖落在阴影区域的概率为()

A.1

9

B.

2

9

C.

2

3

D.

1

3

【答案】D

【解析】

【分析】

连接OC、OD、BD,根据点C,D是半圆O的三等分点,推导出OC∥BD且△BOD是等边三角形,阴影部分面积转化为扇形BOD的面积,分别计算出扇形BOD的面积和半圆的面积,然后根据概率公式即可得出答案.

【详解】

解:如图,连接OC、OD、BD,

∵点C、D是半圆O的三等分点,

∴»»»

==

AC CD DB,

∴∠AOC=∠COD=∠DOB=60°,

∵OC=OD,

∴△COD是等边三角形,

∴OC=OD=CD,

相关文档
最新文档