初三数学三角函数解直角三角形练习

合集下载

(完整版)初三解直角三角形练习题基础

(完整版)初三解直角三角形练习题基础

初三解直角三角形练习题一、 真空题: 1、 在Rt △ABC 中,∠B =900,AB =3,BC =4,则sinA= 2、在Rt △ABC 中,∠C =900,AB =,35cm BC cm=则SinA= cosA= 3、Rt △ABC 中,∠C =900,SinA=54,AB=10,则BC =4、α是锐角,若sin α=cos150,则α= 若sin53018\=0.8018,则cos36042\=5、 ∠B 为锐角,且2cosB -1=0则∠B =6、在△ABC 中,∠C =900,∠A ,∠B ,∠C 所对的边分别为a ,b ,c ,a =9,b =12,则sinA= sinB=7、 Rt △ABC 中,∠C =900,tanA=0.5,则cotA= 8、 在Rt △ABC 中,∠C =900,若b a 32=则tanA= 9.等腰三角形中,腰长为5cm ,底边长8cm ,则它的底角的正切值是10、若∠A 为锐角,且tan 2A+2tanA -3=0则∠A = 11、Rt △ABC 中,∠A =600,c=8,则a = ,b = 12、在△ABC 中,若32=c ,b =3,则tanB= ,面积S = 13、在△ABC 中,AC :BC =1:3,AB =6,∠B = ,AC = BC = 14、在△ABC 中,∠B =900,AC 边上的中线BD =5,AB =8,则tanACB= 二、选择题1、在Rt △ABC 中,各边的长度都扩大2倍,那么锐角A 的正弦、余弦值 ( ) A 、都扩大2倍 B 、都扩大4倍 C 、没有变化 D 、都缩小一半2、若∠A 为锐角,且cotA <3,则∠A ( )A 、小于300B 、大于300C 、大于450且小于600D 、大于600 3、在Rt △ABC 中,已知a 边及∠A ,则斜边应为 ( ) A 、asinA B 、A a sin C 、acosA D 、Aa cos 4、等腰三角形底边与底边上的高的比是2:3,则顶角为( ) A 、600 B 、900 C 、1200 D 、15005、在△ABC 中,A ,B 为锐角,且有sinA =cosB ,则这个三角形是( )A 、等腰三角形 B 、直角三角形 C 、钝角三角形 D 、锐角三角形6、有一个角是300的直角三角形,斜边为1cm ,则斜边上的高为( )A 、41cmB 、21cmC 、43cmD 、23cm三、求下列各式的值1、sin 2600+cos 26002、sin600-2sin300cos3003. sin300-cos 24504. 2cos450+|32 |5. 0045cos 360sin 2+ 6. 130sin 560cos 300-7. 2sin 2300·tan300+cos600·cot300 8. sin 2450-tan 2300四、解答下列各题1、在Rt △ABC 中,∠C =900,,AB =13,BC =5, 求sinA, cosA, tanA, cotA2. 在Rt △ABC 中,∠C =900,若1312sin =A 求cosA, sinB, cosB3. 在Rt △ABC 中,∠C =900,b=17, ∠B=450,求a, c 与∠A四、根据下列条件解直角三角形。

三角函数练习题目初三

三角函数练习题目初三

三角函数练习题目初三1.已知直角三角形中一条直角边的长度为3cm,另一条直角边的长度为4cm。

求其两条直角边上的正弦、余弦和正切值。

解析:已知直角边 a = 3cm、直角边 b = 4cm。

根据三角函数的定义可知:正弦(sin) = 直角边a / 斜边c余弦(cos) = 直角边b / 斜边c正切(tan) = 直角边a / 直角边b其中,斜边c可以通过勾股定理求得:斜边c = √(a² + b²) = √(3² + 4²) = √(9 + 16) = √25 = 5代入计算得:正弦(sin) = 3 / 5 = 0.6余弦(cos) = 4 / 5 = 0.8正切(tan) = 3 / 4 = 0.75所以,该直角三角形的正弦值为0.6,余弦值为0.8,正切值为0.75。

2.已知角度θ的正弦值为0.5,求角度θ的余弦值和正切值。

解析:已知正弦(sin) = 0.5,要求余弦(cos)和正切(tan)。

根据正弦函数的定义可得:正弦(sin) = 直角边a / 斜边c已知正弦(sin) = 0.5,令直角边a = 0.5,斜边c = 1。

根据勾股定理可得:直角边b = √(c² - a²) = √(1² - 0.5²) = √(1 - 0.25) = √0.75 ≈ 0.866所以,余弦(cos) = 直角边b / 斜边c = 0.866 / 1 = 0.866正切(tan) = 直角边a / 直角边b = 0.5 / 0.866 ≈ 0.577所以,角度θ的余弦值为0.866,正切值为0.577。

3.已知角度α的正切值为2,求角度α的正弦值和余弦值。

解析:已知正切(tan) = 2,要求正弦(sin)和余弦(cos)。

根据正切函数的定义可得:正切(tan) = 直角边a / 直角边b已知正切(tan) = 2,令直角边a = 2,直角边b = 1。

初三数学解直角三角形试题

初三数学解直角三角形试题

初三数学解直角三角形试题1.如下图,表示甲、乙两山坡的情况, _____坡更陡。

(填“甲”“乙”)【答案】乙【解析】根据题中已知条件求出各自的坡度比进行比较即可.甲的垂直距离为:,坡度为:乙的坡度为:∵∴乙坡更陡.【考点】解直角三角形的应用点评:勾股定理的应用是初中数学极为重要的知识,与各个知识点联系极为容易,因而是中考的热点,在各种题型中均有出现,一般难度不大,需特别注意.2.在△ABC中,AB=AC=10,BC=16,则tanB=_____。

【答案】【解析】根据题意画出图形,由等腰三角形的性质求出BD的长,根据勾股定理求出AD的长,再根据锐角三角函数的定义即可求出tanB的值.如图,等腰△ABC中,AB=AC=10,BC=16,过A作AD⊥BC于D,则BD=8,在Rt△ABD中,AB=10,BD=8,则所以【考点】锐角三角函数的定义、等腰三角形的性质及勾股定理点评:辅助线问题是初中数学的难点,能否根据题意准确作出适当的辅助线很能反映一个学生的对图形的理解能力,因而是中考的热点,尤其在压轴题中比较常见,需特别注意.3.升国旗时,某同学站在离旗杆底部24米处行注目礼,当国旗升至旗杆顶端时,该同学视线的仰角恰为30°,若双眼离地面1.5米,则旗杆的高度为______米。

(用含根号的式子表示)【答案】8+1.5【解析】先根据仰角的正切函数求得旗杆超过该同学双眼的高度,再加上双眼离地面的高度即可. 由题意得旗杆的高度米.【考点】解直角三角形的应用点评:解直角三角形的应用是初中数学平面图形中极为重要的知识点,是中考的热点,在各种题型中均有出现,需特别注意.4.李红同学遇到了这样一道题:tan(α+20°)=1,你猜想锐角α的度数应是()A.40°B.30°C.20°D.10°【答案】D【解析】由tan(α+20°)=1可得tan(α+20°),根据特殊角的锐角三角函数值即可得到α+20°=30°,从而求得结果.∵tan(α+20°)=1∴tan(α+20°)∴α+20°=30°∴α=10°故选D.【考点】特殊角的锐角三角函数值点评:本题是特殊角的锐角三角函数值的基础应用题,在中考中比较常见,一般以选择题、填空题形式出现,难度一般.5.如图,某地夏季中午,当太阳移至房顶上方偏南时,光线与地面成80°角,房屋朝南的窗子高AB=1.8m,要在窗子外面上方安装水平挡光板AC,使午间光线不能直接射入室内,那么挡光板的宽度AC为( )A.1.8tan80°m B.1.8cos80°m C.1.8sin 80°m D.m【答案】D【解析】根据三角函数的定义结合图形的特征即可求得结果.由题意得∠ACB=80°则挡光板的宽度AC=m故选D.【考点】解直角三角形的应用点评:解直角三角形的应用是初中数学平面图形中极为重要的知识点,是中考的热点,在各种题型中均有出现,需特别注意.6.计算:cos30°+sin45°;【答案】【解析】根据特殊角的锐角三角函数值即可求得结果.原式【考点】特殊角的锐角三角函数值点评:计算能力是初中数学学习中一个极为重要的能力,是中考的热点,在各种题型中均有出现,一般难度不大,需特别注意.7.根据下列条件,求出Rt△ABC(∠C=90°)中未知的边和锐角.(1)BC=8,∠B=60°;(2)AC=,AB=2.【答案】(1)∠A=30°,AB=16,AC=8;(2)∠A=∠B=45°,BC=【解析】根据特殊角的锐角三角函数值及勾股定理即可求得结果.(1)∵∠B=60°,∠C=90°∴∠A=30°∵,即∴AC=8∴;(2)∵AC=,AB=2∴∴∠A=∠B=45°.【考点】解直角三角形点评:计算能力是初中数学学习中一个极为重要的能力,是中考的热点,在各种题型中均有出现,一般难度不大,需特别注意.8.如图,在Rt△ABC中,∠C=90°,AC=8,∠A的平分线AD=,求∠B的度数及边BC、AB的长.【答案】16,8【解析】在Rt△ACD中,根据∠CAD的余弦函数即可求得∠CAD=30°,∠BAD=∠CAD=30°,从而得到∠CAB=60°,∠B=90°-∠CAB=30°,再根据∠B的正弦函数即可求得AB的长,从而求得BC的长.在Rt△ACD中,∵cos∠CAD===,∠CAD为锐角.∴∠CAD=30°,∠BAD=∠CAD=30°,即∠CAB=60°.∴∠B=90°-∠CAB=30°.∵sinB=,∴AB===16.又∵cosB=,∴BC=AB·cosB=16·=8.【考点】解直角三角形点评:解直角三角形的应用是初中数学极为重要的知识,与各个知识点联系极为容易,因而是中考的热点,在各种题型中均有出现,一般难度不大,需特别注意.9.同学们对公园的滑梯很熟悉吧!如图是某公园在“六•一”前新增设的一台滑梯,该滑梯高度AC=2m,滑梯着地点B与梯架之间的距离BC=4m。

(完整版)初中解直角三角形练习题

(完整版)初中解直角三角形练习题

解直角三角形练习题一、 真空题: 1、 在Rt △ABC 中,∠B =900,AB =3,BC =4,则sinA= 2、在Rt △ABC 中,∠C =900,AB =,35cm BC cm=则SinA= cosA= 3、Rt △ABC 中,∠C =900,SinA=54,AB=10,则BC =4、α是锐角,若sin α=cos150,则α= 若sin53018\=0.8018,则cos36042\=5、 ∠B 为锐角,且2cosB -1=0则∠B =6、在△ABC 中,∠C =900,∠A ,∠B ,∠C 所对的边分别为a ,b ,c ,a =9,b =12,则sinA= sinB=7、 Rt △ABC 中,∠C =900,tanA=0.5,则cotA= 8、 在Rt △ABC 中,∠C =900,若b a 32=则tanA= 9.等腰三角形中,腰长为5cm ,底边长8cm ,则它的底角的正切值是10、若∠A 为锐角,且tan 2A+2tanA -3=0则∠A = 11、Rt △ABC 中,∠A =600,c=8,则a = ,b = 12、在△ABC 中,若32=c ,b =3,则tanB= ,面积S = 13、在△ABC 中,AC :BC =1:3,AB =6,∠B = ,AC = BC = 14、在△ABC 中,∠B =900,AC 边上的中线BD =5,AB =8,则tanACB=二、选择题1、在Rt △ABC 中,各边的长度都扩大2倍,那么锐角A 的正弦、余弦值 ( )A 、都扩大2倍B 、都扩大4倍C 、没有变化D 、都缩小一半2、若∠A 为锐角,且cotA <3,则∠A ( )A 、小于300B 、大于300C 、大于450且小于600D 、大于600 3、在Rt △ABC 中,已知a 边及∠A ,则斜边应为 ( ) A 、asinA B 、A a sin C 、acosA D 、Aa cos 4、等腰三角形底边与底边上的高的比是2:3,则顶角为( ) A 、600 B 、900 C 、1200 D 、15005、在△ABC 中,A ,B 为锐角,且有sinA =cosB ,则这个三角形是( )A 、等腰三角形B 、直角三角形C 、钝角三角形D 、锐角三角形6、有一个角是300的直角三角形,斜边为1cm ,则斜边上的高为( )A 、41cmB 、21cmC 、43cmD 、23cm三、求下列各式的值1、sin 2600+cos 26002、sin600-2sin300cos3003. sin300-cos 24504. 2cos450+|32-|5. 0045cos 360sin 2+ 6. 130sin 560cos 300-7. 2sin 2300·tan300+cos600·cot300 8. sin 2450-tan 2300四、解答下列各题1、在Rt △ABC 中,∠C =900,,AB =13,BC =5, 求sinA, cosA, tanA, cotA2. 在Rt △ABC 中,∠C =900,若1312sin =A 求cosA, sinB, cosB3. 在Rt △ABC 中,∠C =900,b=17, ∠B=450,求a, c 与∠A四、根据下列条件解直角三角形。

九年级下册数学解直角三角形随堂练习及答案

九年级下册数学解直角三角形随堂练习及答案

九年级下册数学解直角三角形随堂练习及答案一、选择题.1.Rt △ABC 中,∠C=90°,AB=10,sinB=25,则BC 的长为( ).A ..4BCD 2.在Rt △ABC 中,∠C=90°,a 、b 分别是∠A 、∠B 的对边,如果sinA :sinB=2:3,那么a :b 等于( ).A .2:3B .3:2C .4:9D .9:43.在Rt △ABC 中,∠C=90°,则sinA+cosA 的值( ).A .大于1B .等于1C .小于1D .不能确定4.直角三角形中两边的比是1:2,则较短边所对的角的正弦值是( ).A .12BC .12D 5.△ABC 中,∠C=90°,AB=13,BC=5,tanB 的值是( ).A .5131212 (135135)B C D 6.在Rt △ABC 中,CD 为斜边AB 上的高,已知AD=8,BD=4,那么tanA 等于( ).A .2BCD 二、填空题7.在△ABC 中,∠C=90°,且cosA=2,∠B 平分线的长为26,则a=_______,b=______,c=_______.8.在Rt △ABC 中,∠C=90°,AB=5,sinA=35,则BC=_____. 9.AD 为Rt △ABC 斜边BC 上的高,已知AB=5cm ,BD=3cm ,那么BC=______cm .三、解答题.10.已知Rt △ABC 中,∠C=90°,sinA=2,求cosB 及tanB 的值.11.已知Rt△ABC中,∠C=90°,A的平分线AD=43角形.答案:一、1.A 2.A 3.A 4.C 5.D 6.A二、7.39,8.3 9.253三、10.∵∠C=90°,∠A=90°-∠B,∴sinA=sin(90°-B)=cosB=2.又∵sinB=1-cosB=1-34=14,且sinB>0.∴sinB=12,∴tanB=1sincosBB=3.即:,11.在Rt△ABC中,cos∠CAD=ACAD=2.∴∠CAD=30°,∠B=30°.在Rt△ACB中,。

三角函数《解直角三角形》及应用

三角函数《解直角三角形》及应用

《解直角三角形》提高测试一 选择题(本题15分,每小题3分):1.下列相等、不等关系中,成立的是…………………………………………………( ) (A )sin 60°>cos 30°,tan 30°<cot 60° (B )sin 60°>cos 30°,tan 30°>cot 60°(C )sin 60°-cos 30°=tan 30°-cot 60°=0(D )sin 260°+cos 230°=1 2.︒-︒︒-︒45cot 230cot 45tan 30sin 的值等于……………………………………………………( )(A )-1-23 (B )-21 (C )12323- (D )1+233.当锐角α≤45°时,角α的正切和余切值的大小关系应是……………………( ) (A )tan α≤cot α (B )tan α≥cot α (C )tan α=cot α (D )不确定4.在直角三角形中,各边的长度都扩大3倍,则锐角A 的四个三角形函数的值( )(A )也扩大3倍 (B )缩小为原来的31 (C )都不变 (D )有的扩大,有的缩小 5.在三角形ABC 中,C 为直角,sin A =32,则tan B 的值为…………………( ) (A )53 (B )35 (C )552 (D )25 二 填空题(CDACD): 1.已知tan α=125,α是锐角,则sin α= ; 2.等于1的三角函数有 ; 3.240cot 40tan 22-︒+︒= ;4.cos 2(50°+α)+cos 2(40°-α)-tan (30°-α)tan (60°+α)= ;5.a 3tan45°+32a 2b tan 260°+3ab 2cot 260°= . 1.135;2.sin 90°,cos 0°,tan 45°,cot 45°;3.tan 50°-tan 40°;4.0;5.a (a +b ) 三 解下列直角三角形(本题32分,第小题8分): 在直角三角形ABC 中,∠C =90°:1.已知:b =3310,3350=∆ABC S ; 2.已知:∠B =45°,a +b =10;3.已知:c 边上的高h =4,b =5; 4.已知:B =30°,CD 为AB 边上的高,且CD =4.四 (本题16分)在四边形ABCD 中,AC 恰好平分∠A ,AB =21,AD =9,BC =CD =10,试求AC 的长.五 (本题17分)1、一艘船向正东方先航行,上午10点在灯塔的西南方向k 海里处,到下午2点时航行到灯塔的东偏南60°的方向,画出船的航行方位图,并求出船的航行速度.2、如图:甲、乙两只捕捞船同时从A 港出海捕鱼 。

初三数学解直角三角形试题答案及解析

初三数学解直角三角形试题答案及解析

初三数学解直角三角形试题答案及解析1.一测量爱好者,在海边测量位于正东方向的小岛高度AC,如图所示,他先在点B测得山顶点A的仰角为30°,然后向正东方向前行62米,到达D点,在测得山顶点A的仰角为60°(B、C、D三点在同一水平面上,且测量仪的高度忽略不计).求小岛高度AC(结果精确的1米,参考数值:,)【答案】53米.【解析】首先利用三角形的外角的性质求得∠BAD的度数,得到AD的长度,然后在直角△ADC 中,利用三角函数即可求解.试题解析:∵∠ADC=∠B+∠BAD,∴∠BAD=∠ADC-∠B=60°-30°=30°,∴∠B=∠BAD,∴AD=BD=62(米).在直角△ACD中,AC=AD•sin∠ADC=62×=31≈31×1.7=52.7≈53(米).答:小岛的高度约为53米.【考点】解直角三角形的应用-仰角俯角问题.2.如图,等腰△ABC中,AB=AC,∠BAC=36°,BC=1,点D在边AC上且BD平分∠ABC,设CD=x.(1)求证:△ABC∽△BCD;(2)求x的值;(3)求cos36°-cos72°的值.【答案】(1)证明见解析;(2);(3).【解析】(1)由等腰三角形ABC中,顶角的度数求出两底角度数,再由BD为角平分线求出∠DBC的度数,得到∠DBC=∠A,再由∠C为公共角,利用两对角相等的三角形相似得到三角形ABC与三角形BCD相似;(2)根据(1)结论得到AD=BD=BC,根据AD+DC表示出AC,由(1)两三角形相似得比例求出x的值即可;(3)过B作BE垂直于AC,交AC于点E,在直角三角形ABE和直角三角形BCE中,利用锐角三角函数定义求出cos36°与cos72°的值,代入原式计算即可得到结果.试题解析:(1)∵等腰△ABC中,AB=AC,∠BAC=36°,∴∠ABC=∠C=72°,∵BD平分∠ABC,∴∠ABD=∠CBD=36°,∵∠CBD=∠A=36°,∠C=∠C,∴△ABC∽△BCD;(2)∵∠A=∠ABD=36°,∴AD=BD,∵BD=BC,∴AD=BD=CD=1,设CD=x,则有AB=AC=x+1,∵△ABC∽△BCD,∴,即,整理得:x2+x-1=0,解得:x1=,x2=(负值,舍去),则x=;(3)过B作BE⊥AC,交AC于点E,∵BD=CD,∴E为CD中点,即DE=CE=,在Rt△ABE中,cosA=cos36°=,在Rt△BCE中,cosC=cos72°=,则cos36°-cos72°=-=.【考点】1.相似三角形的判定与性质;2.等腰三角形的性质;3.黄金分割;4.解直角三角形.3.如图,在△ABC中,∠BAC=90°,AD⊥BC于D,AD=3,cosB=3/5,则AC等于()A.4B.5C.6D.7【答案】B.【解析】∵∠BAC=90°,AD⊥BC于D,∴∠BAD+∠CAD=90°,∠BAD+∠B=90°,∴∠CAD=∠B,∴cos∠CAD=cosB=,在直角△ACD中,∵∠ADC=90°,AD=3,∴cos∠CAD=,∴AC=5.故选B.【考点】解直角三角形.4.在△ACB中,∠C=90°,AB=10,,,.则BC的长为()A.6B.7.5C.8D.12.5【答案】A.【解析】∵∠C=90°,∴.又∵AB=10,∴.故选A.【考点】1.解直角三角形;2.锐角三角函数定义.5.已知:如图,斜坡AP的坡度为1:2.4,坡长AP为26米,在坡顶A处的同一水平面上有一座古塔BC,在斜坡底P处测得该塔的塔顶B的仰角为45°,在坡顶A处测得该塔的塔顶B的仰角为76°.求:(1)坡顶A到地面PQ的距离;(2)古塔BC的高度(结果精确到1米).(参考数据:sin76°≈0.97,cos76°≈0.24,tan76°≈4.01)【答案】(1)10米;(2)19米.【解析】(1)过点A作AH⊥PQ,垂足为点H,利用斜坡AP的坡度为1:2.4,得出AH,PH,AH的关系求出即可;(2)利用矩形性质求出设BC=x,则x+10=24+DH,再利用tan76°=,求出即可.试题解析::(1)过点A作AH⊥PQ,垂足为点H.∵斜坡AP的坡度为1:2.4,∴,设AH=5k,则PH=12k,由勾股定理,得AP=13k.∴13k=26.解得k=2.∴AH=10.答:坡顶A到地面PQ的距离为10米.(2)延长BC交PQ于点D.∵BC⊥AC,AC∥PQ,∴BD⊥PQ.∴四边形AHDC是矩形,CD=AH=10,AC=DH.∵∠BPD=45°,∴PD=BD.设BC=x,则x+10=24+DH.∴AC=DH=x-14.在Rt△ABC中,tan76°=,即,解得x=,即x≈19,答:古塔BC的高度约为19米.【考点】1.解直角三角形的应用-坡度坡角问题;2.解直角三角形的应用-仰角俯角问题.6.超速行驶是引发交通事故的主要原因之一.上周末,小明和三位同学尝试用自己所学的知识检测车速,如图,观测点设在A处,离益阳大道的距离(AC)为30米.这时,一辆小轿车由西向东匀速行驶,测得此车从B处行驶到C处所用的时间为8秒,∠BAC=75°.(1)求B、C两点的距离;(2)请判断此车是否超过了益阳大道60千米/小时的限制速度?(计算时距离精确到1米,参考数据:sin 75°≈0.965 9,cos 75°≈0.258 8,tan 75°≈3.732,≈1.732,60千米/小时≈16.7米/秒)【答案】(1)112(米) (2)此车没有超过限制速度【解析】解:(1)在Rt△ABC中,∠ACB=90°,∠BAC=75°,AC=30,∴BC=AC·tan ∠BAC=30×tan 75°≈30×3.732≈112(米).(2)∵此车速度=112÷8=14(米/秒)<16.7(米/秒)=60(千米/小时)∴此车没有超过限制速度.7.在△ABC中,若∠A、∠B满足|cos A-|+=0,则∠C=________.【答案】75°【解析】∵|cos A-|+=0,∴cos A-=0,sin B-=0,∴cos A=,sin B=,∴∠A=60°,∠B=45°,则∠C=180°-∠A-∠B=180°-60°-45°=75°.8.在△ABC中,∠C=90°,,则().A.B.C.D.【答案】D.【解析】由sin A=,设∠A的对边是3k,则斜边是5k,∠A的邻边是4k.再根据正切值的定义,得tanA=.故选D.【考点】锐角三角函数.9.如图,将45°的∠AOB按下面的方式放置在一把刻度尺上:顶点O与尺下沿的端点重合,OA与尺下沿重合,OB与尺上沿的交点B在尺上的读数恰为2cm.若按相同的方式将37°的∠AOC放置在该刻度尺上,则OC与尺上沿的交点C在尺上的读数约为cm.(结果精确到0.1cm,参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)【答案】2.7【解析】过点B作BD⊥OA于D,过点C作CE⊥OA于E.在△BOD中,∠BDO=90°,∠DOB=45°,∴BD=OD=2cm,∴CE=BD=2cm.在△COE中,∠CEO=90°,∠COE=37°,∵tan37°=≈0.75,∴OE≈2.7cm.∴OC与尺上沿的交点C在尺上的读数约为2.7 cm.10.如图,一段河坝的横截面为梯形ABCD,试根据图中数据,求出坝底宽AD.(i=CE∶ED,单位:m)【答案】(7.5+4)m【解析】解:作BF⊥AD于点F.则BF=CE=4m,在直角△ABF中,AF===3m,在直角△CED中,根据i=,则ED===4m.则AD=AF+EF+ED=3+4.5+4=(7.5+4)m.11.如图,A、B两地之间有一座山,汽车原来从A地到B地经过C地沿折线A→C→B行驶,现开通隧道后,汽车直接沿直线AB行驶.已知AC=10千米,∠A=30°,∠B=45°.则隧道开通后,汽车从A地到B地比原来少走多少千米?(结果保留根号)【答案】(5+5-5)千米【解析】解:过C作CD⊥AB于D,在Rt△ACD中,∵AC=10,∠A=30°,∴DC=ACsin30°=5,AD=ACcos30°=5,在Rt△BCD中,∵∠B=45°,∴BD=CD=5,BC=5,则用AC+BC-(AD+BD)=10+5-(5+5)=5+5-5(千米).答:汽车从A地到B地比原来少走(5+5-5)千米.12.在Rt△ABC中,若∠C=90°,cosA=,则sinA的值为()A.B.C.D.【答案】A.【解析】先根据特殊角的三角函数值求出∠A的值,再求出sinA的值即可.∵Rt△ABC中,∠C=90°,∴∠A是锐角,∵cosA==,∴设AB=25x,BC=7x,由勾股定理得:AC=24x,∴sinA=.故选A.考点:同角三角函数的关系.13.如图,在△中,,,则△的面积是()A.B.12C.14D.21【答案】A【解析】如图,作因为,所以.由勾股定理得.又,所以所以所以所以14.计算下列各题:(1);(2).【答案】(1)2 (2)【解析】解:(1)(2)15.在Rt△ABC中,∠C=90°,sinA=,则cosB的值为()A.B.C.D.【答案】C.【解析】在Rt△ABC中,∠C=90°,sinA=,设BC=3x,则AB=5x,∴AC=4x.∴cosB=.故选C.考点: 互余两角三角函数的关系.16.计算:【答案】-2.【解析】本题涉及零指数幂、特殊角的三角函数值、二次根式化简、负整数指数幂以及绝对值等考点.针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.试题解析:考点: 实数的混合运算.17.若(为锐角),则=【答案】1.【解析】因为所以得,代入可得值为1【考点】正切和正、余弦函数的关系.18.如图所示,直角三角形纸片的两直角边长分别为6,8,现将如图那样折叠,使点与点重合,折痕为,则的值是________【答案】.【解析】折叠后形成的图形相互全等,利用三角函数的定义可求出.根据题意,BE=AE.设CE=x,则BE=AE=8-x.在Rt△BCE中,根据勾股定理得:BE2=BC2+CE2,即(8-x)2=62+x2解得x=,∴tan∠CBE==考点:(1)锐角三角函数的定义;(2)勾股定理;(3)翻折变换(折叠问题).19.(1)一个人由山底爬到山顶,需先爬450的山坡200m,再爬300的山坡300m,求山的高度(结果可保留根号)。

九年级数学中考复习第一轮复习基础训练三角函数(一)三角函数与解直角三角形 课时作业同步练习含答案解析

九年级数学中考复习第一轮复习基础训练三角函数(一)三角函数与解直角三角形 课时作业同步练习含答案解析

微专题8 三角函数(一)三角函数与解直角三角形考点1锐角三角函数的定义1.如图,在Rt △ABC 中,∠C =90°,AB =10,AC =8,则 sin A 等于( ) A.35 B.45 C.34 D.432.如图,边长为1的小正方形网格中, ⊙O 的圆心在格点上,cos ∠AED = .3.如图,在△ABC 中,CA=CB =4, cos C =14,则sinB 的值为 . 考点2 特殊角的三角函数值4.(1) sin 30°= ; cos 60°= ;tan 45"= ;(2)3sin 60"—2cos 30°—tan 60°= .5.在△ABC 中,∠A ,∠B 为锐角,若|sinA 一22|+(32-cosB )2=0,则∠C = 度. 考点3 解直角三角形及其实际应用6.如图,在△ABC 中,∠B =30°,AC=2,cosC =35.则AB 边的长为 .7.如图,某地修建高速公路,要从B 地向C 地修一座隧道(B,C 在同一水平面上),为了测量B ,C 两地之间的距离,某工程队员乘坐热气球从C 地出发垂直上升100m 到达A 处,在A 处观察B 地的俯角为30°,则B,C 两地间的距离为 m .8.如图,一艘船由A 港沿北偏东65°方向航行302km 至B 港,然后再沿北偏西40°方向航行至C 港,C 港在A 港北偏东20°方向,则A,C 两港之间的距离为 km.DOB AECAC ABCB第1题图第2题图第3题图30°30°B CC A CAB AB 第6题图 第7题图 第8题图9.如图,小明在一块平地上测山高,先在B处测得山顶A的仰角为30°,然后向山脚直行100米到达C处,再测得山顶A的仰角为45°,求山高AD.10.某地的一座人行天桥如图所示,天桥高为6米,坡面BC的坡度为1:1,为了方便行人推车过天桥,有关部门决定降低坡度,使新坡面的坡度为1.(1)求新坡面的坡角α的度数;(2)原天桥底部正前方8米处(PB的长)的文化墙PM是否需要拆除?请说明理由. :C BC微专题8 三角函数(一)三角函数与解直角三角形考点精练精练1锐角三角函数的定义1.如图,在Rt △ABC 中,∠C =90°,AB =10,AC =8,则 sin A 等于( A ) A.35 B.45 C.34 D.432.如图,边长为1的小正方形网格中, ⊙O 的圆心在格点上,cos ∠AED =255. 3.如图,在△ABC 中,CA=CB =4, cos C =14,则sinB 的值为104.精练2 特殊角的三角函数值4.(1) sin 30°=12; cos 60°=12;tan 45"= 1 ;(2)3sin 60"—2cos 30°—tan 60°= 32 .5.在△ABC 中,∠A ,∠B 为锐角,若|sinA 一22|+(32-cosB )2=0,则∠C =105度. 精练3 解直角三角形及其实际应用6.如图,在△ABC 中,∠B =30°,AC=2,cosC =35.则AB 边的长为165.DOB AECAC ABCB第1题图第2题图第3题图30°30°BC CACABAB第6题图第7题图第8题图7.如图,某地修建高速公路,要从B地向C地修一座隧道(B,C在同一水平面上),为了测量B,C两地之间的距离,某工程队员乘坐热气球从C地出发垂直上升100m到达A处,在A处观察B地的俯角为30°,则B,C两地间的距离为.8.如图,一艘船由A港沿北偏东65°方向航行至B港,然后再沿北偏西40°方向航行至C港,C港在A港北偏东20°方向,则A,C两港之间的距离为(30+km.9.如图,小明在一块平地上测山高,先在B处测得山顶A的仰角为30°,然后向山脚直行100米到达C处,再测得山顶A的仰角为45°,求山高AD.解:设AD=x米,则BDx米.CD=AD=xx-x=100.解得:x=50.答:山高为(50)米.10.某地的一座人行天桥如图所示,天桥高为6米,坡面BC的坡度为1:1,为了方便行人推车过天桥,有关部门决定降低坡度,使新坡面的坡度为1.(1)求新坡面的坡角α的度数;(2)原天桥底部正前方8米处(PB的长)的文化墙PM是否需要拆除?请说明理由. 解:(1)30°:(2)过点C作CD⊥AB于点D.则BD=CD=6.AD∴AB=AD-BD一6<8∴文化培PM不需要拆除.C B。

历年初三数学中考解直角三角形练习题及答案

历年初三数学中考解直角三角形练习题及答案
所以 DC=DB+BC=2+
在Rt∆ADC中tanD=tan150=
评注: 利用含300角的直角三角形巧妙地构造出含150角的直角三角形,从而求出150角的三角函数值。利用此图还可以求出750的各三角函数值。
强化训练
一、填空题:
⒈ 在∆ABC中,若AC= 。BC= AB=3,则cosA=____________.
∴AB=4BD
在Rt∆ABD中,AD=
∴ sinB=
cosB=
tanB=
cotB=
[例4]计算
分析:本题主要是考察特殊角的三角函数值和分母有理化知识
解:原式= .
= =
=
[例5] 要求tan300的值.可构造如图19-5所示的直角三角形进行计算,作Rt∆ABC,使C=900,斜边AB=2,直角边AC=1,那么BC= ∠ABC=300,所以 tan300=
在此图的基础上,通过添加适当的辅助线,可求出tan150的值。请你就此图添加辅助线,并求出tan150的值。
分析:只需找出一个150的角,并放入一个可求出各边长的直角三角形中。
解:延长CB至D,使BD=AB。连结AD,如图19-6
A A
2 1
2 1
300
B C D B C
图19-5 图19-6
则BD=2,D=150
6、用计算器计算:sin56050/+cos39030/-tan46010/=_______
分析会用计算器求任意一个锐角的三角函数值,然后进行计算。原式=0.5671.
7、已知方程4x2-2(m+1)x+m=0的两根恰为一个直角三角形两锐角的余弦,则m=______
分析设这个直角三角形的两个锐角分别为α、β,且α+β=900。cosβ=sinα.由一元二次方程根与系数的关系得:cosα+cosβ= ,cosαcosβ=

初三数学解直角三角形试题答案及解析

初三数学解直角三角形试题答案及解析

初三数学解直角三角形试题答案及解析1.周末,小强在文化广场放风筝.如图,小强为了计算风筝离地面的高度,他测得风筝的仰角为58°,已知风筝线BC的长为10米,小强的身高AB为1.55米.请你帮小强画出测量示意图,并计算出风筝离地面的高度(结果精确到0.1米).(参考数据:sin58°=0.85,cos58°=0.53,tan58°=1.60)]【答案】10.1【解析】根据题意画出图形,根据sin58°=可求出CE的长,再根据CD=CE+ED即可得出试题解析:如图,过点C作地面的垂线CD,垂足为D,过点B作BE⊥CD于E.在Rt△CEB中,∵sin∠CBE=,∴CE=BC•sin58°=10×0.85≈8.5m,∴CD=CE+ED=8.5+1.55=10.05≈10.1m,【考点】解直角三角形的应用-仰角俯角问题2.在平面直角坐标系中,设点P到原点O的距离为,OP与x轴正方向的夹角为,则用[,]表示点P的极坐标;显然,点P的极坐标与它的坐标存在一一对应的关系.例如,点P的坐标(1,1),则极坐标为[,45°].若点Q的极坐标为[4,60°],则点Q的坐标为()A.B.C.D.(2,2)【答案】A.【解析】:作QA⊥x轴于点A,则OQ=4,∠QOA=60°,故OA=OQ×cos60°=2,AQ=OQ×sin60°=2,∴点Q的坐标为(2,2).故选A.【考点】点的坐标.3.在Rt△ABC中,∠A=90°,有一个锐角为60°,BC=6.若点P在直线AC上(不与点A,C重合),且∠ABP=30°,则CP的长为.【答案】6或2或4【解析】如图1:当∠C=60°时,∠ABC=30°,与∠ABP=30°矛盾;如图2:当∠C=60°时,∠ABC=30°,∵∠ABP=30°,∴∠CBP=60°,∴△PBC是等边三角形,∴CP=BC=6;如图3:当∠ABC=60°时,∠C=30°,∵∠ABP=30°,∴∠PBC=60°﹣30°=30°,∴PC=PB,∵BC=6,∴AB=3,∴PC=PB=;如图4:当∠ABC=60°时,∠C=30°,∵∠ABP=30°,∴∠PBC=60°+30°=90°,∴PC=BC÷cos30°=4.故答案为:6或2或4.【考点】解直角三角形4.如图,在电线杆上的C处引拉线CE、CF固定电线杆,拉线CE和地面成60°角,在离电线杆6米的B处安置测角仪,在A处测得电线杆上C处的仰角为30°,已知测角仪高AB为1.5米,求拉线CE的长(结果保留根号).【答案】CE的长为(4+)米【解析】根据题意过点A作AH⊥CD于H,由三角函数可求出CH的长,从而可求出CD的长,在Rt△CED中,由∠CED=60°,利用三角函数可求出CE的长.试题解析:过点A作AH⊥CD,垂足为H,由题意可知四边形ABDH为矩形,∠CAH=30°,∴AB=DH=1.5,BD=AH=6,在Rt△ACH中,tan∠CAH=,∴CH=AH•tan∠CAH,∴CH=AH•tan∠CAH=6tan30°=6×(米),∵DH=1.5,∴CD=2+1.5,在Rt△CDE中,∵∠CED=60°,sin∠CED=,∴CE=(米),答:拉线CE的长为(4+)米.【考点】1、三角函数;2、解直角三角形5.某煤矿发生瓦斯爆炸,该地救援队立即赶赴现场进行救援,救援队利用生命探测仪在地面A、B两个探测点探测到C处有生命迹象.已知A、B两点相距6米,探测线与地面的夹角分别是30°和45°,试确定生命所在点C的深度.(精确到0.1米,参考数据:)【答案】8.2米.【解析】过点C作CD⊥AB于点D,设CD=x,在Rt△ACD中表示出AD,在Rt△BCD中表示出BD,再由AB=6米,即可得出关于x的方程,解出即可.试题解析:过点C作CD⊥AB于点D,设CD=x,在Rt△ACD中,∠CAD=30°,则AD=CD=x,在Rt△BCD中,∠CBD=45°,则BD=CD=x,由题意得x-x=6,解得:x=3(+1)≈8.2.答:生命所在点C的深度为8.2米.【考点】解直角三角形的应用.6.如图1是一张折叠椅子,图2是其侧面示意图,已知椅子折叠时长1.2米,椅子展开后最大张角∠CBD=37°,且BD=BC,AB:BG:GC=1:2:3,座面EF与地面平行,当展开角最大时,请解答下列问题:(1)求∠CGF的度数;(2)求座面EF与地面之间的距离。

人教新版九年级下册《28.2_解直角三角形及其应用》2024年同步练习卷(13)+答案解析

人教新版九年级下册《28.2_解直角三角形及其应用》2024年同步练习卷(13)+答案解析

人教新版九年级下册《28.2解直角三角形及其应用》2024年同步练习卷(13)一、选择题:本题共9小题,每小题3分,共27分。

在每小题给出的选项中,只有一项是符合题目要求的。

1.如图,电线杆CD的高度为h,两根拉线AC与BC相互垂直,,则拉线BC的长度为、D、B在同一条直线上()A.B.C.D.2.身高相同的甲、乙、丙三人放风筝,各人放出线长分别为300米、250米、200米,线与地面的夹角分别为、、假设风筝线是拉直的,三人所放风筝()A.甲的最高B.乙的最高C.丙的最高D.一样高3.如图,一艘海轮位于灯塔P的南偏东方向的M处,它以每小时40海里的速度向正北方向航行,2小时后到达位于灯塔P的北偏东的N处,则N处与灯塔P的距离为()A.40海里B.60海里C.70海里D.80海里4.如图,在地面上的点A处测得树顶B的仰角为度,,则树高BC为用含的代数式表示()A.B.C.D.5.如图,这是拦水坝的横断面,斜坡AB的水平宽度为12m,斜面坡度为1:2,则斜坡AB的长为()A. B. C. D.24m6.如图,斜面AC的坡度与AD的比为1:2,米,坡顶有旗杆BC,旗杆顶端B点与A点有一条彩带相连.若米,则旗杆BC的高度为()A.5米B.6米C.8米D.米7.如图,小明利用一个锐角是的三角板测操场旗杆的高度,已知他与旗杆之间的水平距离BC为15m,AB为即小明的眼睛与地面的距离,那么旗杆的高度是()A.B.C.D.8.如图,在建筑物AB左侧距楼底B点水平距离150米的C处有一山坡,斜坡CD的坡度为:,坡顶D到BC的垂直距离米,点A、B、C、D、E在同一面内,在点D处测得建筑物顶点A的仰角为,则建筑物AB的高度约参考数据:,,A.米B.米C.米D.米9.如图,为了测量某建筑物BC高度,小明采用了如下的方法:先从与某建筑物底端B在同一水平线上的A 点出发,先沿斜坡AD行走260米至坡顶D处,再从D处沿水平方向继续前行若干米后至点E处,在E点测得该建筑物顶端C的仰角为,建筑物底端B的俯角为,其中点A、B、C、D、E在同一平面内,斜坡AD的坡度:,根据小明的测量数据,计算得出建筑物BC的高度约为计算结果精确到米,参考数据:,,,()A.米B.米C.米D.米二、填空题:本题共2小题,每小题3分,共6分。

中考数学三角函数和解直角三角形精选练习(附答案).docx

中考数学三角函数和解直角三角形精选练习(附答案).docx

2013屮考数学三角函数和解直角三角形精选练习(附答案)2013中考三角函数和解直角三角形精选题适合培优1.下图表示一个时钟的钟面垂直固定于水平桌面上,其中分针上有一点A,且当钟面显示3点30分时,分针垂直于桌面,A点距桌面的高度为10公分。

如图(十七),若此钟面显示3点45分时,A点距桌面的高度为16公分,则钟面显示3点50分时,A点距桌面的高度为多少公分?A. 22-3B. 16+ . 18 D. 19【答案】D2、RtAABC «|>, ZC=90°, a、b、c 分别是ZA、ZB、ZC 的对边,那么c等于()答案:B3.(2011河南三门峡模拟一)某人乘雪橇沿如图所示的斜坡笔直滑下,滑下的路S (米)与时间t (秒)间的关系式为S=10t + t2,若滑到坡底的时间为2秒,则此人下滑的高度为()A.24 米B.12 米D.11 米答案:B4、(2012年浙江省杭州市一模)如图,在RtAABC中,AB=CB, BO丄AC,把AABC折叠,使AB落在AC±,点B与AC ±的点E重合,展开后,折痕AD交BO于点F,连接DE、EF.下列结论:①lanZADB=2;②图小有4对全等三角形;③若将ADEF沿EF折叠,则点D不一定落在AC上;④BD二BF;⑤S四边形,上述结论屮正确的个数是()A. 4个B. 3个C. 2个D. 1个第1题答案:B5.若AABC 屮,锐角A 满足丨sinA- I +cos2C=0.则AABC 是()。

A.等腰直角三角形B.等腰三角形C.直角三角形D.锐角三角形6.等腰三角形的而积为40,底边长4,则底角的正切值为()。

A. 10B. 20C.D.7.如图,是一张宽m的矩形台球桌ABCD, 一球从点M (点M在长边CD±)出发沿虚线MN射向边BC,然后反弹到边AB上的P点.如果,那么P点与B 点的距离为【答案】(第15题8.长为4m的梯子搭在墙上与地面成45。

中考数学专题训练:解直角三角形及其应用(附参考答案)

中考数学专题训练:解直角三角形及其应用(附参考答案)

中考数学专题训练:解直角三角形及其应用(附参考答案)1.如图,在Rt△ABC中,∠BAC=90°,AD⊥BC于点D,则下列结论不正确的是( )A.sin B=ADAB B.sin B=ACBCC.sin B=ADAC D.sin B=CDAC2.如图,在由边长为1的小正方形组成的网格中,点A,B,C,D都在这些小正方形的格点上,AB,CD相交于点E,则sin ∠AEC=( )A.2√55B.√55C.12D.√1043.计算sin 30°·tan 45°的结果是( )A.12B.√32C.√36D.√244.已知在Rt△ABC中,∠C=90°,∠A=60°,则tan B的值为( ) A.√33B.1C.√3D.25.如图,在△ABC中,∠C=90°,∠A=30°,则cos B的值为( )A.13B.12C.√22D.√326.如图,AD是△ABC的高.若BD=2CD=6,tan C=2,则边AB的长为( )A.3√2B.3√5C.3√7D.6√27.已知α为锐角,且2sin (α-10°)=√3,则α等于( )A.50°B.60°C.70°D.80°8.如图,在点F处看建筑物顶端D的仰角为32°,向前走了15米到达点E,即EF=15米,在点E处看点D的仰角为64°,则CD的长用三角函数表示为( )A.15sin 32°B.15tan 64°C.15sin 64°D.15tan 32°9.如图,在Rt△ABC中,∠BAC=90°,AD⊥BC于点D,E为BD上一点,使得AE =AC.若BE=3ED,则sin ∠BAE=( )A.12B.15C.35D.3410.如图,河对岸有铁塔AB,C,D,B三点共线,在C处测得塔顶A的仰角为30°,向铁塔方向水平前进14 m到达D处,在D处测得A的仰角为45°,塔高AB为( )A.4(4√3-1)m B.7(√3+1)mC.(16√3+7)m D.(10√3+7)m11.如图,在一次数学实践活动中,小明同学要测量一座与地面垂直的塔AB的高度,他从塔底部点B处前行30 m到达斜坡CE的底部点C处,然后沿斜坡CE前行20 m到达最佳测量点D处,在点D处测得塔顶A的仰角为30°,已知斜坡的斜面坡度i=1∶√3,且点A,B,C,D,E在同一平面内,小明同学测得塔AB的高度是( )A.(10√3+20)m B.(10√3+10)mC.20√3 m D.40 m12.如图,已知在Rt△ABC中,∠ACB=90°,AC=1,AB=2,则sin B的值是______.13.在△ABC中,∠A=45°,AB=4√2,BC=5,则△ABC的面积为_________.14.如图,在平面直角坐标系中,已知点A(1,0),点B(0,-3),点C在x轴上,,则点C的坐标为______.且点C在点A右方,连接AB,BC.若tan ∠ABC=1315.如图,在杭州西湖风景区游船处,在离水面高度为5 m的岸上,有人用绳子拉船靠岸,开始时绳子BC的长为13 m,此人以0.5 m/s的速度收绳,10 s后船移动到点D的位置,则船向岸边移动了______________m.(假设绳子是直的,结果保留根号)16.某港口P位于东西方向的海岸线上,“远航”号、“海天”号轮船同时离开港口,各自沿一固定方向航行,“远航”号每小时航行16海里,“海天”号每小时航行12海里,它们离开港口一个半小时后相距30海里.如果知道“远航”号沿北偏东45°方向航行,那么“海天”号沿______________方向航行.17.湖中小岛上码头C处一名游客突发疾病,需要救援.位于湖面B点处的快艇和湖岸A处的救援船接到通知后立刻同时出发前往救援.计划由快艇赶到码头C 接该游客,再沿CA方向行驶,与救援船相遇后将该游客转运到救援船上.已知C在A的北偏东30°方向上,B在A的北偏东60°方向上,且B在C的正南方向900米处.(1)求湖岸A与码头C的距离;(结果精确到1米,参考数据:√3≈1.732)(2)救援船的平均速度为150米/分,快艇的平均速度为400米/分,在接到通知后,快艇能否在5分钟内将该游客送上救援船?请说明理由.(接送游客上下船的时间忽略不计)18.如图,已知正方形ABCD和正方形BEFG,点G在AD上,GF与CD交于点H,tan ∠ABG=1,正方形ABCD的边长为8,求BH的长.219.小华将一张纸对折后做成的纸飞机如图1,纸飞机机尾的横截面是一个轴对称图形,其示意图如图2.已知AD=BE=10 cm,CD=CE=5 cm,AD⊥CD,BE⊥CE,∠DCE=40°.(结果精确到0.1 cm,参考数据:sin 20°≈0.34,cos 20°≈0.94,tan 20°≈0.36,sin 40°≈0.64,cos 40°≈0.77,tan 40°≈0.84)(1)连接DE,求线段DE的长;(2)求点A,B之间的距离.参考答案1.C 2.A 3.A 4.A 5.B 6.D 7.C 8.C 9.C 10.B 11.A 12.12,0) 15.(12-√39) 16.北偏西45°13. 2或14 14.(9417.(1)湖岸A与码头C的距离约为1 559米(2)在接到通知后,快艇能在5分钟内将该游客送上救援船,理由略18.BH=1019.(1)DE的长为3.4 cm (2)点A,B之间的距离为22.2 cm。

中考数学复习《锐角三角函数和解直角三角形》经典题型及测试题(含答案)

中考数学复习《锐角三角函数和解直角三角形》经典题型及测试题(含答案)

中考数学复习《锐角三角函数和解直角三角形》经典题型及测试题(含答案)知识点一:锐角三角函数的定义 1.锐角三角函数 正弦: sin A =∠A 的对边斜边=ac余弦: cos A =∠A 的邻边斜边=bc正切: tan A =∠A 的对边∠A 的邻边=ab.来源:学&科&网]2.特殊角的三角函数值[来 度数三角函数[来源:Z 。

xx 。

]30°[来源:学#科#网] 45° 60°sinA1222 32 cosA32 2212tanA 331 33、锐角三角函数的增减性当角度在0°~90°之间变化时,(1)正弦值随着角度的增大(或减小)而增大(或减小) (2)余弦值随着角度的增大(或减小)而减小(或增大) (3)正切值随着角度的增大(或减小)而增大(或减小) 变式练习1:如图,在平面直角坐标系中,点A 的坐标为注意:根据定义求三角函数值时,一定根据题目图形来理解,严格按照三角函数的定义求解,有时需要通过辅助线来构造直角三角形.[(4,3),那么cos α的值是( ) A. 34 B. 43 C. 35 D. 45【解析】D 如解图,过点A 作AB ⊥x 轴于点B ,∵A (4,3),∴OB =4,AB =3,∴OA =32+42=5,∴cos α=OB OA =45.变式练习2:在Rt △ABC 中,∠ABC =90°,AB =3,BC =4,则sinA =________. 【解析】∵在Rt △ABC 中,由勾股定理得AC =22AB BC +=32+42=5,∴sin A =BC AC =45. 变式练习3:在Rt △ABC 中,∠C =90°,sin A =35,BC =6,则AB =( D )A .4B .6C .8D .10变式练习4:如图,若点A 的坐标为(1,3),则sin ∠1=__32__. ,知识点二 :解直角三角形 1.解直角三角形的概念在直角三角形中,除直角外,一共有五个元素,即三条边和两个锐角,由直角三角形中除直角外的已知元素求出所有未知元素的过程叫做解直角三角形. 2.解直角三角形的常用关系在Rt △ABC 中,∠C=90°,∠A ,∠B ,∠C 所对的边分别为a ,b ,c (1)三边之间的关系:a 2+b 2=c 2;(2)锐角之间的关系:∠A +∠B =90°; (3)边角之间的关系:,tan ,cos ,sin ;,tan ,cos ,sin abB c a B c b B b a A c b A c a A ======(sinA==cosB=ac,c osA=sinB=bc,tanA=ab.)变式练习1:在Rt△ABC中,已知a=5,sinA=30°,则c=10,b=5.变式练习2:如图,Rt△ACB中,∠B=30°,∠ACB=90°,CD⊥AB交AB于D.以CD为较短的直角边向△CDB的同侧作Rt△DEC,满足∠E=30°,∠DCE=90°,再用同样的方法作Rt△FGC,∠FCG=90°,继续用同样的方法作Rt△HIC,∠HCI =90°.若AC=a,求CI的长.解:在Rt△ABC中,∠B=30°,∠ACB=90°,CD⊥AB,∴∠A=60°,∵AC=a,∴CD=AC·sin60°=32a,依此类推CH=(32)3a=338a,在Rt△CHI中,∵∠CHI=60°,∴CI=CH·tan60°=338a×3=98a.变式练习3:如图,在Rt△ABC中,∠C=90°,∠B=30°,AB=8,则BC的长是( D )A.433B.4 C.8 3 D.4 3,灵活选择解直角三角形的方法顺口溜:已知斜边求直边,正弦、余弦很方便;已知直边求直边,理所当然用正切;已知两边求一边,勾股定理最方便;已知两边求一角,函数关系要记牢;已知锐角求锐角,互余关系不能少;已知直边求斜边,用除还需正余弦.变式练习4:如图,一山坡的坡度为i=1∶3,小辰从山脚A出发,沿山坡向上走了200米到达点B,则小辰上升了__100__米., ,变式练习5:一艘轮船在小岛A的北偏东60°方向距小岛80海里的B处,沿正西方向航行3小时后到达小岛的北偏西45°的C处,则该船行驶的速度为___40+4033___海里/小时.知识点三:解直角三角形的应用1.仰角、俯角、坡度、坡角和方向角(1)仰、俯角:视线在水平线上方的角叫做仰角.视线在水平线下方的角叫做俯角.(如图①)(2)坡度:坡面的铅直高度和水平宽度的比叫做坡度(或者叫做坡比),用字母i表示.坡角:坡面与水平面的夹角叫做坡角,用α表示,则有i=tanα.(如图②)(3)方向角:平面上,通过观察点Ο作一条水平线(向右为东向)和一条铅垂线(向上为北向),则从点O出发的视线与水平线或铅垂线所夹的角,叫做观测的方向角.(如图③)2.解直角三角形实际应用的一般步骤(1)弄清题中名词、术语,根据题意画出图形,建立数学模型;(2)将条件转化为几何图形中的边、角或它们之间的关系,把实际问题转化为解直角三角形问题;(3)选择合适的边角关系式,使运算简便、准确;(4)得出数学问题的答案并检验答案是否符合实际意义,从而得到问题的解.注意:解直角三角形中“双直角三角形”的基本模型:(1)叠合式(2)背靠式解题方法:这两种模型种都有一条公共的直角边,解题时,往往通过这条边为中介在两个三角形中依次求边,或通过公共边相等,列方程求解变式练习1:如图,某数学兴趣小组想测量一棵树CD 的高度,他们先在点A 处测得树顶C 的仰角为30°,然后沿AD 方向前行10 m ,到达B 点,点B 处测得树顶C 的仰角为60°(A 、B 、D 三点在同一直线上).请你根据他们的测量数据计算这棵树CD 的高度(结果精确到0.1 m).(参考数据:2≈1.414,3≈ 1.732)解:如解图,由题意可知∠CAB =30°,∠CBD =60°,AB =10 m ,∵∠CBD =∠CAB +∠BCA ,∴∠BCA =∠CBD -∠CAB =60°-30°=30°=∠CAB , ∴BC =AB =10 m . 在Rt △BCD 中,∵sin ∠CBD =CDBC,∴CD =BC ·sin ∠CBD =10×sin60°=10×32=53≈5×1.732≈8.7 m . 答:这棵树CD 的高度大约是8.7 m .变式练习2:如图,小山岗的斜坡AC 的坡度是tan α=34,在与山脚C 距离200米的D 处,测得山顶A 的仰角为26.6°,求小山岗的高AB (结果取整数;参考数据:sin26.6°≈0.45,cos26.6°≈0.89,tan26.6°≈0.50).解:设AB =x 米,在Rt △ABD 中,∠D =26.6°,∴BD =tan 26.6x≈2x ,在Rt △ABC 中,tan α=AB BC =34,∴BC =43x ,∵BD -BC =CD ,CD =200,∴2x-43x=200,解得x=300.答:小山岗的高AB约为300米.变式练习3:如图,小明所在教学楼的每层高度为3.5 m,为了测量旗杆MN的高度,他在教学楼一楼的窗台A处测得旗杆顶部M的仰角为45°,他在二楼窗台B 处测得M的仰角为30°,已知每层楼的窗台离该层的地面高度均为1 m,求旗杆MN的高度(结果精确到0.1 m).(参考数据:2≈1.414,3≈1.732)解:如解图,过点M的水平线交直线AB于点H,由题意,得∠AMH=∠MAH=45°,∠BMH=30°,AB=3.5 m,设MH=x m,则AH=x m,BH=x·tan30°=33x≈0.58x m,∴AB=AH-BH=x-0.58x=0.42x=3.5 m,解得x≈8.3,则MN=x+1=9.3 m.答:旗杆MN的高度约为9.3 m.变式练习4:小明去爬山,如图,在山脚看山顶的角度为30°,小明在坡比为5∶12的山坡上走了1300米,此时小明看山顶的角度为60°,则山高为( )A. (600-2505)米B. (6003-250)米C. (350+3503)米D. 500 3 米【解析】B如解图,∵BE∶AE=5∶12,∴设BE=5k,AE=12k,∴AB=2()5K+(12k)2=13k,∴BE∶AE∶AB=5∶12∶13,∵AB=1300米,∴AE=1200米,BE =500米,设EC=FB=x米,∵∠DBF=60°,∴DF=3x米,则DC=(3x+500)米,又∵∠DAC=30°,∴AC=3CD,即1200+x=3(3x+500),解得x=600-2503,∴DF=3x=(6003-750)米,∴CD=DF+CF=(6003-250)米,即山高CD为(6003-250)米.变式练习5:某兴趣小组借助无人飞机航拍校园.如图,无人飞机从A处水平飞行至B处需8秒,在地面C处同一方向上分别测得A处的仰角为75°,B处的仰角为30°.已知无人飞机的飞行速度为4米/秒,求这架无人飞机的飞行高度.(结果保留根号)解:如解图,过点A作AD⊥BC交BC于点D,过点B作BH⊥水平线交水平线于点H,由题意∠ACH=75°,∠BCH=30°,AB∥CH,∴∠ABC=30°,∠ACB=45°,∵AB=4×8=32米,∴CD=AD=AB·sin30°=16米,BD=AB·cos30°=32×32=163米,∴BC=CD+BD=(16+163)米,∴BH=BC·sin30°=(16+163)×12=(8+83)米.答:这架无人飞机的飞行高度为(8+83)米.变式练习6:如图,我国渔政船在钓鱼岛海域C处测得钓鱼岛A在渔政船的北偏西30°的方向上,随后渔政船以80海里/小时的速度向北偏东30°的方向航行,半小时后到达B处,此时又测得钓鱼岛A在渔政船的北偏西60°的方向上,求此时渔政船距钓鱼岛A的距离AB.(结果保留小数点后一位,其中3≈1.732) 解:∵CD∥BE,∴∠EBC+∠DCB=180°.∵∠ABE=60°,∠DCB=30°,∴∠ABC=90°.…………(4分)由题知,BC=80×12=40(海里),∠ACB=60°.在Rt△ABC中,AB=BC·tan60°=403≈40×1.732≈69.3(海里).答:此时渔政船距钓鱼岛A的距离AB的长约为69.3海里.。

九年级数学解直角三角形同步练习题(含答案)

九年级数学解直角三角形同步练习题(含答案)

九年级数学解直角三角形同步练习题(含答案)一、选择题(本大题共15小题,共45.0分)1.若角α的余角是30∘,则cosα的值是()A. 12B. √32C. √22D. √332.在Rt▵ABC中,∠C=90∘,sinA=35,则cosB的值是()A. 45B. 35C. 34D. 433.如图,Rt△ABC中,∠C=90°,点D在AC上,∠DBC=∠A.若AC=4,cosA=45,则BD的长度为()A. 94B. 125C. 154D. 44.已知a,b,c是△ABC的∠A,∠B,∠C的对边,且a:b:c=1:√2:√3,则cos B的值为()A. √63B. √33C. √22D. √245.如图,Rt△ABC中,∠C=90°,AB=5,cosA=45,以点B为圆心,r为半径作⊙B,当r=3时,⊙B与AC的位置关系是()A. 相离B. 相切C. 相交D. 无法确定6.如图,数学活动小组利用测角仪和皮尺测量学校旗杆的高度,在点D处测得旗杆顶端A的仰角∠ADE为55°,测角仪CD的高度为1米,其底端C与旗杆底端B之间的距离为6米,设旗杆AB的高度为x米,则下列关系式正确的是()A. tan55°=B. tan55°=C. sin55°=D. cos55°=7.如图,已知点A、点B是同一幢楼上的两个不同位置,从A点观测标志物C的俯角是65°,从B点观测标志物C的俯角是35°,则∠ACB的度数为()A. 25°B. 30°C. 35°D. 65°8.在Rt△ABC中,已知∠C=90∘.若AC=2BC,则sin∠A的值是()A. 12B. 2 C. √55D. √529.△ABC中,∠C=90°,若∠A=2∠B,则cosB等于()A. √3B. √33C. √32D. 1210.如图,△ABC中,AD⊥BC于点D,AD=2√3,∠B=30°,S△ABC=10√3,则tanC的值为()A. 13B. 12C. √33D. √3211.在Rt△ABC中,∠C=90,AC=12,cosA=1213,则tanA等于()A. 513B. 1312C. 125D. 51212.如图,点A、B、C均在小正方形的顶点上,且每个小正方形的边长均为1,则cos∠BAC的值为()A. 12B. √22C. 1D. √213.从一艘船上测得海岸上高为42米的灯塔顶部的仰角为30°时,船离灯塔的水平距离是()A. 42√3米B. 14√3米C. 21米D. 42米14.如图,在8×4的正方形网格中,若△ABC的三个顶点在图中相应的格点上,则tan∠ACB的值为()A. 13B. √1010C. 12D. √2215.把Rt△ABC三边的长度都扩大为原来的3倍,则锐角A的余弦值()A. 不变B. 缩小为原来的13C. 扩大为原来的3倍D. 扩大为原来的9倍二、填空题(本大题共1小题,共3.0分)16.计算:√27+(13)−2−3tan60°+(π−√2)0=______.三、计算题(本大题共1小题,共6.0分)17.如图,在A的正东方向有一港口B.某巡逻艇从A沿着北偏东55°方向巡逻,到达C时接到命令,立刻从C沿南偏东60°方向以20海里/小时的速度航行,从C到B航行了3小时.求A,B间的距离(结果保留整数).(参考数据:sin55°≈0.82,cos55°≈0.57,tan55°≈1.43,√3≈1.73)四、解答题(本大题共5小题,共40.0分)18.如图,A,B两点被池塘隔开,在AB外选一点C,连接AC,BC.测得BC=221m,∠ACB=45°,∠ABC=58°.根据测得的数据,求AB的长(结果取整数).参考数据:sin58°≈0.85,cos58°≈0.53,tan58°≈1.60.19.如图,在平面直角坐标系内,O为原点,点A的坐标为(10,0),点B在第一象限内,BO=5,sin∠BOA=.(1)求点B的坐标;(2)求tan∠BAO的值.)−1+√18−6sin45°.20.计算:(1221.如图,平台AB高为12m,在B处测得楼房CD顶部点D的仰角为45°,底部点C的俯角为30°,求楼房CD的高度(√3取1.7).22.如图,在△ABC中,∠C=90°,点D,E分别在AC,AB上,BD平分∠ABC,DE⊥AB于点E,AE=6,cosA=3.5(1)求CD的长;(2)求tan∠DBC的值.1.【答案】A【解析】【分析】本题考查了特殊角的三角函数值,属于基础题.先根据题意求得α的值,再求它的余弦值.【解答】解:因为角α的余角是30∘,所以α=90°−30°=60°,则.故选A.2.【答案】B【解析】解:在Rt△ABC中,∠C=90°,∴∠A+∠B=90°,∴cosB=sinA=,故选:B.3.【答案】C【解析】解:∵∠C=90°,AC=4,cosA=45,∴AB=ACcosA=5,∴BC=√AB2−AC2=3,∵∠DBC=∠A.∴cos∠DBC=cosA=BCBD =45,∴BD=3×54=154,故选:C.在△ABC中,由三角函数求得AB,再由勾股定理求得BC,最后在△BCD中由三角函数求得BD.本题主要考查了勾股定理,解直角三角形的应用,关键是解直角三角形.4.【答案】B【解析】解:∵,∴△ABC为直角三角形.cosB==.故选:B.5.【答案】B【解析】【分析】本题考查了直线与圆的位置关系的应用,注意:直线和圆有三种位置关系:相切、相交、相离.根据三角函数的定义得到AC,根据勾股定理求得BC,和⊙B的半径比较即可.【解答】解:∵Rt△ABC中,∠C=90°,AB=5,cosA=45,∴ACAB =AC5=45,∴AC=4,∴BC=√AB2−AC2=3,∵r=3,∴⊙B与AC的位置关系是相切,故选:B.6.【答案】B【解析】【解析】解:∵在Rt△ADE中,DE=6,AE=AB−BE=AB−CD=x−1,∠ADE=55°,∴sin55°=,cos55°=,tan55°=,故选:B.7.【答案】B【解析】【解析】解:根据题意可知:∠ACD=65°,∠BCD=35°,∴∠ACB=∠ACD−∠BCD=30°.故选:B.8.【答案】C【解析】【分析】本题主要考查了锐角三角函数的求法,属于基础题.可先求出斜边AB,然后根据正弦的定义求出角A的正弦即可.【答案】解:∵AC=2BC,由勾股定理可得:AB=√AC2+BC2=√(2BC)2+BC2=√5BC,∴sin∠A=BCAB =√5=√55,故选C.9.【答案】C【解析】解:∵∠C=90°,∴∠A+∠B=90°,∵∠A=2∠B,∴∠B=30°,∴cosB=cos30°=√32,故选:C.根据直角三角形的性质求出∠B,根据30°的余弦值是√32解答.本题考查的是特殊角的三角函数值、直角三角形的性质,熟记特殊角的三角函数值是解题的关键.10.【答案】D【解析】解:∵在△ABD中,∠ADB=90°,AD=2√3,∠B=30°,∴BD=ADtanB =√3√33=6.∵S△ABC=12BC⋅AD=10√3,∴12BC⋅2√3=10√3,∴BC=10,∴CD=BC−BD=10−6=4,∴tanC=ADCD =2√34=√32.故选:D.首先解直角△ABD,求得BD,再根据S△ABC=10√3,求出BC,那么CD=BC−BD,然后在直角△ACD中利用正切函数定义即可求得tanC的值.本题考查了解直角三角形,三角形的面积,锐角三角函数定义,解题的关键是求出CD的长.【解析】解:∵cosA=ACAB =1213,AC=12,∴AB=13,BC=√AB2−AC2=5,∴tanA=BCAC =512.故选:D.根据cosA=1213求出第三边长的表达式,求出tanA即可.本题利用了勾股定理和锐角三角函数的定义.12.【答案】B【解析】解:连接BC,∵每个小正方形的边长均为1,∴AB=√5,BC=√5,AC=√10,∵(√5)2+(√5)2=(√10)2,∴△ABC是直角三角形,∴cos∠BAC=ABAC =√5√10=√22,故选:B.根据题目中的数据和勾股定理,可以求得AB、BC、AC的长,然后根据勾股定理逆定理可以判断△ABC的形状,从而可以求得cos∠BAC的值.本题考查解直角三角形、勾股定理与逆定理,解答本题的关键是明确题意,判断出△ABC 的形状,利用锐角三角函数解答.13.【答案】A【解析】解:根据题意可得:船离海岸线的距离为42÷tan30°=42√3(米)故选:A.在直角三角形中,已知角的对边求邻边,可以用正切函数来解决.本题考查解直角三角形的应用−仰角的定义,要求学生能借助仰角构造直角三角形并解直角三角形.【解析】【分析】本题主要考查正切值的求法,解题的关键是构造直角三角形.作AH⊥CB,交CB延长线于H点,∠ACB的正切值是AH与CH的比值.【解答】解:如图,作AH⊥CB,交CB延长线于H点,则tan∠ACB=AHHC =26=13.故选A.15.【答案】A【解析】【分析】本题考查的是相似三角形的判定和性质、锐角三角函数的定义,掌握相似三角形的对应角相等是解题的关键.根据相似三角形的性质解答.【解答】解:三边的长度都扩大为原来的3倍,则所得的三角形与原三角形相似,∴锐角A的大小不变,∴锐角A的余弦值不变,故选:A.16.【答案】10【解析】解:原式=3√3+9−3√3+1=10.故答案为:10.直接利用零指数幂的性质以及特殊角的三角函数值、负整数指数幂的性质分别化简得出答案.此题主要考查了实数运算,正确化简各数是解题关键.17.【答案】解:如图,过点C作CD⊥AB于点D,由题意可知:∠ACD=55°,∠BCD=60°,BC=20×3=60(海里),BC=30(海里),BD=30√3(海里),在Rt△BCD中,CD=12在Rt△ADC中,AD=CD⋅tan55°=30×1.43≈42.90(海里),∴AB=AD+BD=42.90+30√3≈95(海里).答:A,B间的距离为95海里.【解析】过点C作CD⊥AB于点D,根据三角函数分别求出CD、BD、AD的长,进而可求出A、B间的距离.本题考查了解直角三角形的应用−方向角问题,解决本题的关键是掌握方向角的定义.18.【答案】解:如图,过点A作AD⊥BC,垂足为D,∵∠ACB=45°,∴AD=CD,设AB=x,在Rt△ADB中,AD=AB⋅sin58°≈0.85x,BD=AB⋅cos58°≈0.53x,又∵BC=221,即CD+BD=221,∴0.85x+0.53x=221,解得,x≈160,答:AB的长约为160m.【解析】通过作高,构造直角三角形,利用直角三角形的边角关系,列方程求解即可.本题考查直角三角形的边角关系,掌握直角三角形的边角关系,即锐角三角函数,是正确解答的前提,通过作辅助线构造直角三角形是常用的方法.19.【答案】解:(1)如图,过点B作BH⊥OA于点H,∵OB=5,sin∠BOA=,∴BH=3,OH=4,∴点B的坐标为(4,3),(2)∵OA=10,∴AH=OA−OH=10−4=6,∴在Rt△AHB中,tan∠BAO===.【解析】解答案20.【答案】解:(12)−1+√18−6sin45°=2+3√2−6×√2 2=2+3√2−3√2=2.【解析】首先计算负整数指数幂、开方和特殊角的三角函数值,然后计算乘法,最后从左向右依次计算,求出算式的值即可.此题主要考查了实数的运算,解答此题的关键是要明确:在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行.另外,有理数的运算律在实数范围内仍然适用.21.【答案】解:如图,过点B作BE⊥CD于点E,根据题意,∠DBE=45°,∠CBE=30°.∵AB⊥AC,CD⊥AC,∴四边形ABEC为矩形.∴CE=AB=12m.在Rt△CBE中,cot∠CBE=BE,CE∴BE=CE⋅cot30°=12×√3=12√3.在Rt△BDE中,由∠DBE=45°,得DE=BE=12√3.∴CD=CE+DE=12(√3+1)≈32.4.答:楼房CD的高度约为32.4m.【解析】首先分析图形,根据题意构造直角三角形.本题涉及多个直角三角形,应利用其公共边构造关系式求解.考查了解直角三角形的应用−仰角俯角问题,本题要求学生借助俯角构造直角三角形,并结合图形利用三角函数解直角三角形.22.【答案】解:(1)在Rt△ADE中,∠AED=90°,AE=6,cosA=3,5∴AD=AE=10,cosA∴DE=√AD2−AE2=√102−62=8.∵BD平分∠ABC,DE⊥AB,DC⊥BC,∴CD=DE=8;(2)由(1)AD=10,DC=8,∴AC=AD+DC=18,在△ADE与△ABC中,∵∠A=∠A,∠AED=∠ACB,∴△ADE∽△ABC,∴DEBC =AEAC,即8BC=618,BC=24,∴tan∠DBC=CDBC =824=13.【解析】(1)在Rt△ADE中,根据余弦函数的定义求出AD,利用勾股定理求出DE,再由角平分线的性质可得DC=DE=8;(2)由AD=10,DC=8,得AC=AD+DC=18.由∠A=∠A,∠AED=∠ACB,可知△ADE∽△ABC,由相似三角形对应边成比例可求出BC的长,根据三角函数的定义可求出tan∠DBC=13.本题考查了解直角三角形,角平分线的性质、相似三角形的判定与性质,三角函数的定义,求出DE是解第(1)小题的关键;求出BC是解第(2)小题的关键.。

九年级数学下册《解直角三角形》典型例题(含答案)

九年级数学下册《解直角三角形》典型例题(含答案)

《解直角三角形》典型例题例1 在Rt △ABC 中,∠C=90°,∠B=60°,a=4,解这个三角形.分析 本题实际上是要求∠A 、b 、c 的值.可根据直角三角形中各元素间的关系解决.解 (1); (2)由ab B =tan ,知 ; (3)由c a B =cos ,知860cos 4cos =︒==B a c . 说明 此题还可用其他方法求b 和c .例 2 在Rt △ABC 中, ∠C=90°,∠A=30°,3=b ,解这个三角形.解法一 ∵∴设,则由勾股定理,得 ∴ .∴. 解法二 133330tan =⨯=︒=b a说明 本题考查含特殊角的直角三角形的解法,它可以用目前所学的解直角三角形的方法,也可以用以前学的性质解题.例 3 设中, 于D ,若 ,解三角形ABC .分析“解三角形ABC”就是求出的全部未知元素.本题CD不是的边,所以应先从Rt入手.解在Rt中,有:∴在Rt中,有说明(1)应熟练使用三角函数基本关系式的变形,如:(2)平面几何中有关直角三角形的定理也可以结合使用,本例中“”就是利用“对30°角的直角边等于斜边的一半”这一定理.事实上,还可以用面积公式求出AB的值:所以解直角三角形问题,应开阔思路,运用多种工具.例4在中,,求.分析(1)求三角形的面积一方面可以根据面积公式求出底和底上的高的长,也可以根据其中规则面积的和或差;(2)不是直角三角形,可构造直角三角形求解.解如图所示,作交CB的延长线于H,于是在Rt△ACH中,有,且有;在中,,且,∴;于是,有,则有说明还可以这样求:例5 如图,在电线杆上离地面高度5m 的C 点处引两根拉线固定电线杆,一根拉线AC 和地面成60°角,另一根拉线BC 和地面成45°角.求两根拉线的总长度(结果用带根号的数的形式表示).分析 分别在两个直角三角形ADC 和BDC 中,利用正弦函数的定义,求出AC 和BC .解: 在Rt △ADC 中,331023560sin ==︒=DCAC在Rt △BDC 中,221022545sin ==︒=DC BC说明 本题考查正弦的定义,对于锐角三角函数的定义,要熟练掌握.。

特殊三角函数值和解直角三角形+练习课件-2023-2024学年人教版+九年级数学下册++

特殊三角函数值和解直角三角形+练习课件-2023-2024学年人教版+九年级数学下册++


设30°所对的直角边长为a,那么斜边长为2a,
另一条直角边长 = 2a2 a2 3a.
60°
∴ sin 30 a 1, 2a 2
∴ sin 60 3a 3 , 2a 2
30°
cos 30 3a 3 , cos 60 a 1,
2a 2
2a 2
tan 30 a 3 . 3a 3
在Rt△ACD中,∵∠A=30°, ∴∠ACD=90°-∠A=60°,
∴CD= 1 AC 2,
D
2
AD=AC cos A 4 3 2 3. 2
在Rt△CDB中,∵∠DCB=∠ACB-∠ACD=45°,
∴BD=CD=2.
BC
2 cos∠DCB
2
2.
∴AB AD BD 2 2 3.
3 、如图,在Rt△ABC 中,∠C=90°,cosA = 1,BC = 5, 试求AB的长.
1
2
2
2
3
1
3
3
1、求下列各式的值:
(1) cos260°+sin260°;
解:cos260°+sin260°
1 2
2
2
3 2
1.
cos260°表示(cos60°)2, 即(cos60°)×(cos60°).
(2) sin230°+ cos230°-tan45°.
解:原式 =
1 2
2
AC 15k 15
3、 如图,在△ABC中,∠B=30°,∠C=45°,AC=2,求BC的长.
解:过点 A作 AD⊥BC于点D. 在△ACD中,∠C=45°,AC=2, ∴CD=AD=sinC · AC= 2sin45°= 2 . 在△ABD中,∠B=30°,

初中数学锐角三角函数练习、解直角三角形练习及详细解答

初中数学锐角三角函数练习、解直角三角形练习及详细解答

初中三角函数练习及解答1.锐角三角函数1.比较下列各组三角函数值的大小:(1)sin19︒与cos70︒;(2)cot 65︒与cos40︒;(3)cos1︒,tan 46︒,sin88︒和cot 38︒.2.化简求值:(1)tan1tan 2tan3tan89︒⋅︒⋅︒⋅⋅︒ ;(2sin83︒;(3)2222tan sin tan sin αααα⋅-;(4cos 79sin 79-︒-︒;3.若tan 3α=求2sin sin 13sin cos αααα-+的值.4.下列四个数中哪个最大:A .tan 48cot 48︒+︒B .sin 48cos48︒+︒C .tan 48cos48︒+︒D .cot 48sin 48︒+︒5.设x 为锐角,且满足sin 3cos x x =,求sin cos x x .6.已知sin cos αα+=,求sin cos αα的值.7.已知m 为实数,且sin α、cos α是关于x 的方程2310x mx -+=的两根.求44sin cos αα+的值.8.设A 、B 是一个直角三角形的两个锐角,满足2sin sin 2A B -=.求sin A 及sin B 的值.9.已知关于x 的一元二次方程()()22211120m x m x +--+=的两个根是一个直角三角形的两个锐角的正弦,求实数m 的值.10.已知方程2450x x k -+=的两根是直角三角形的两个锐角的正弦,求k .11.若直角三角形中的两个锐角A 、B 的正弦是方程20x px q ++=的两个根;(1)那么,实数p 、q 应满足哪些条件?(2)如果p 、q 满足这些条件,方程20x px q ++=的两个根是否等于直角三角形的两个锐角A 、B 的正弦?12.已知方程()24210x m x m -++=的两个根恰好是一个直角三角形的两个锐角的余弦,试求m 的值.13.不查表,求15︒的四种三角函数值.14.求22.5︒角的正切值(不查表,不借助计算器).15.求sin18︒的值.16.若x 、y 为实数,221x y +=,α为锐角,求证:sin cos x y αα+的绝对值不大于1.2解直角三角形1.如图,在直角三角形ABC 中,90C ∠=︒,AD 是A ∠的平分线,且CD =,DB =求ABC △的三边长.2.在Rt ABC △中(如图),D 、E 是斜边AB 的三等分点,已知sin CD x =,()cos 090CE x x =︒<<︒.试求AB 的长.3.如图,ABC △中,90C ∠=︒,10AB =,6AC =,AD 是BAC ∠的平分线,求点B 到直线AD 的距离BH .4.已知ABC △是非等腰直角三角形,90BAC ∠=︒,在BC 所在直线上取两点D 、E 使DB BC CE ==,连结AD 、AE .已知45BAD ∠=︒.求tan CAE ∠的值.5.设有一张矩形纸片ABCD (如图),3AB =,4BC =.现将纸片折叠,使C 点与A 点重合,试求折痕EF 的长.6.已知三角形两边之和是10,这两边的夹角为30︒,面积为254,求证:此三角形为等腰三角形.7.在ABC △中,90C ∠=︒,其周长为2+,且已知斜边上的中线长为1.如果BC AC >,求tan A的值.8.已知a 、b 、c 分别是ABC △中A ∠、B ∠,C ∠的对边,且a 、b 是关于x 的一元二次方程()()2 424x c c x ++=+的两个根.(1)判断ABC △的形状;(2)若3tan 4A =求a 、b 、c .9.在Rt ABC △中,90C ∠=︒,12ABC S m =△,且两直角边长满足条件32a b m +=.(1)证明:24m ≥;(2)当m 取最小值时,求ABC △中最小内角的正切值.10.如图所示.90A BEF EBC ECD ∠=∠=∠=∠=︒,30ABF ∠=︒,45BFE ∠=︒,60ECB ∠=︒且2AB CD =.求tan CDE ∠的值.11.如图所示.在锐角ABC △中,4sin 5B =,tan 2C =,且10ABC S =△.求BC .12.如图所示.在ACD △中,45A ∠=︒,5CB =,7CD =,3BD =.求CBD ∠及AC .13.如图,已知ABC △中,1AB =,D 是AB 的中点,90DCA ∠=︒,45DCB ∠=︒.求BC 的长.14.如图,ABC △中,90ACB ∠=︒,CD AB ⊥于D ,DE AC ⊥于E ,DF BC ⊥于F .求证:33AE AC BF BC =.15.如图,在ABC △中,90A ∠=︒,AB AC =,M 是AC 边的中点,AD 垂直于BM 且交BC 于D .求证:AMB CMD ∠=∠.16.如图(a ),正方形ABCD 的边长E 、F 分别是AB 、BC 的中点,AF 分别交DE 、DB 于点M 、N ,求DMN △的面积.17.已知a 、b 、c 是ABC △三边的长,其中b a c >=,且方程20ax c +=两根的差的绝对值等.求ABC △中最大角的度数.18.如图,AB 是圆的直径,弦CD AB ∥,AC 与BD 相交于E ,已知AED θ∠=,试求:CDE ABE S S △△.19.如图所示,已知电线杆AB 直立于地面上,它的影子恰好照在土坡的坡面CD 和地面BC 上.如果CD与地面成45︒,60A ∠=︒,4m CD =,(m BC =-,求电线杆AB 的长(精确到0.1m ).20.如图,某岛S 周围42海里内存在着大量的暗礁.现在一轮船自西向东以每小时15海里的速度航行,在、A 处测得S 在北偏东60︒,2小时后在B 处测得S 在正东北方向,试问轮船是否需要改变航行方向行驶,才能避免触礁危险,说明理由.21.如图,某污水处理站计划砌一段截面为等腰梯形的排污渠,如果渠深为h ,截面积为S ,试求当倾角θ为多少时造价最小?1.锐角三角函数(详细解答)1.比较下列各组三角函数值的大小:(1)sin19︒与cos70︒;(2)cot 65︒与cos40︒;(3)cos1︒,tan 46︒,sin88︒和cot 38︒.解析(1)利用互余角的三角函数关系式,将cos70︒化sin 20︒,再与sin19︒比大小.因为()cos70cos 9020sin 20︒=︒-︒=︒,而sin19sin 20︒<︒,所以sin19cos70︒<︒.(2)余切函数与余弦函数无法化为同名函数,但是可以利用某些特殊的三角函数值,间接比较它们的大小.32cot 60cos 4532︒=<︒=,再将cot 65︒,cos40︒分别与cot 60︒,cos45︒比大小.因为cot 65cot 60︒<︒=,cos 40cos 45︒>︒>,所以cot 60cos45︒<︒,所以cot 65cos40︒<︒.(3)tan 451︒=,显然cos1︒,sin88︒均小于1,而tan 46︒,cot 38︒均大于1.再分别比较cos1︒与sin88︒,以及tan 46︒与cot 38︒的大小即可.因为()cos38cot 9052tan52︒=︒-︒=︒,所以tan52tan 46tan 451︒>︒>︒=.因为()cos1cos 9089sin89︒=︒-︒=︒,所以sin88sin891︒<︒<,所以cot 38tan 46cos1sin88︒>︒>︒>︒.评注比较三角函数值的大小,一般分为三种类型:(1)同名的两个锐角三角函数值,可直接利用三角函数值随角变化的规律,通过比较角的大小来确定三角函数值的大小.(2)互为余函数的两锐角三角函数值,可利用互余角的三角函数关系式化为同名三角函数,比较其大小.(3)不能化为同名的两个三角函数,可通过与某些“标准量”比大小,间接判断它们的大小关系,常选择的标准量有:0,1以及其他一些特殊角如30︒,45︒,60︒的三角函数值.2.化简求值:(1)tan1tan 2tan3tan89︒⋅︒⋅︒⋅⋅︒ ;(2sin83︒;(3)2222tan sin tan sin αααα⋅-;(4cos 79sin 79-︒-︒;解析(1)原式=tan1tan 2tan3tan 44tan 45cot 44cot 43cot 3cot 2cot1︒⋅︒⋅︒⋅⋅︒⋅︒⋅︒⋅︒⋅⋅︒⋅︒⋅︒ ()()()tan1cot1tan 2cot 2tan 44cot 44tan 45=︒⋅︒⋅︒⋅︒⋅⋅︒⋅︒⋅︒ 1111=⋅⋅⋅= .(2)原式1cos7cos71cos7=︒=⋅︒=︒.(3)原式()22442242222sin sin sin sin cos 1sin sin sin 1cos sin cos ααααααααααα⋅====--.(4)原式sin11cos11sin11cos11sin11cos110-︒-︒=︒-︒-︒-︒=.3.若tan 3α=求2sin sin 13sin cos αααα-+的值.原式2222sin cos sin sin cos sin 13sin cos sin cos 3sin cos αααααααααααα--==+++2222tan tan 336tan 13tan 313319αααα--===-++++⨯.4.下列四个数中哪个最大:A .tan 48cot 48︒+︒B .sin 48cos48︒+︒C .tan 48cos48︒+︒D .cot 48sin 48︒+︒解析显然0sin 481<︒<,0cos481<︒<0<cos48°<1.因此有:sin 48sin 48tan 48cos 48︒︒<=︒︒,cos 48cos 48cot 48sin 48︒︒<=︒︒所以A 最大.5.设x 为锐角,且满足sin 3cos x x =,求sin cos x x .解析我们将sin 3cos x x =代入22sin cos 1x x +=,得到210cos 1x =,并且x 是锐角,因此cos x=所以sin x =.因此3sin cos 10x x =.6.已知sin cos αα+=,求sin cos αα的值.解析由sin cos αα+=两边平方得()22sin cos αα+=.又22sin cos 1αα+=,所以12sin cos 2αα+=,得1sin cos 2αα=.7.已知m 为实数,且sin α、cos α是关于x 的方程2310x mx -+=的两根.求44sin cos αα+的值.解析由根与系数的关系知1sin cos 3αα=.则有()()2244227sin cos sin cos 2sin cos 9αααααα+=+-=.8.设A 、B 是一个直角三角形的两个锐角,满足2sin sin 2A B -=.求sin A 及sin B 的值.解析由于90A B +=︒,故由互余关系得()sin sin 90cos B A A =︒-=.因此条件即为sin cos A A -=,①将上式平方,得221sin cos 2sin cos 2A A A A +-=,由正、余弦的平方关系,即有12sin cos 2A A =,所以()2223sin cos sin cos 2sin cos 12sin cos 2A A A A A A A A +=++=+=,因sin A 、cos A 均为正数,故sin cos 0A A +>.因此由上式得sin cos A A +=,②由①、②得sin A =,cos A =sin B =9.已知关于x 的一元二次方程()()22211120m x m x +--+=的两个根是一个直角三角形的两个锐角的正弦,求实数m 的值.解析设方程的两个实根1x 、2x 分别是直角三角形ABC 的锐角A 、B 的正弦.则()22222212sin sin sin cos 190x x A B A A A B +=+=+=+=︒,又122112m x x m -+=+,12122x x m =+,所以()2222111212211242122m x x x x x x m m -⎛⎫+=+-=-= ⎪++⎝⎭.化简得224230m m -+=,解得1m =或23.检验,当1m =时,()()22114820m m =--+<△;当23m =时,()()22114820m m =--+△≥.所以23m =.评注本题是三角函数与一元二次方程的综合,基本解法是利用韦达定理和22sin cos 1αα+=列方程求解.要注意最后检验方程有无实数根.10.已知方程2450x x k -+=的两根是直角三角形的两个锐角的正弦,求k .解析根据韦达定理,有12125 , 4.4x x k x x ⎧+=-⎪⎪⎨⎪=⎪⎩并且由于其两根是直角三角形的两个锐角的正弦,所以又有22121x x +=.于是有()2222121212512244k x x x x x x ⎛⎫=+=+-=--⨯ ⎪⎝⎭.解得98k =.11.若直角三角形中的两个锐角A 、B 的正弦是方程20x px q ++=的两个根;(1)那么,实数p 、q 应满足哪些条件?(2)如果p 、q 满足这些条件,方程20x px q ++=的两个根是否等于直角三角形的两个锐角A 、B 的正弦?解析(1)设A 、B 是某个直角三角形两个锐角,sin A 、sin B 是方程20x px q ++=的两个根,则有240p q =-△≥.①由韦达定理,sin sin A B p +=-,sin sin A B q =.又sin 0A >,sin 0B >,于是0p <,0q >.由于()sin sin 90cos B A A =︒-=.所以sin cos A A p +=-,sin cos A A q =,所以()()22sin cos 1sin cos 12p A A A A q -=+=+=+,即221p q -=.由①得21240q p q -=-≥,则12q ≤.故所求条件是0p <,102p <≤,221p q -=.②(2)设条件②成立,则24120p q q -=-≥,故方程有两个实根:α==,β==.由②知p -=p <=-,所以0p p <--+,故0βα>≥.又()2222221p q αβαβαβ+=+-=-=,故01αβ<<≤.12.已知方程()24210x m x m -++=的两个根恰好是一个直角三角形的两个锐角的余弦,试求m 的值.解析设题中所述的两个锐角为A 及B ,由题设得()241160 , 1cos cos , 2cos cos .4m m m A B m A B ⎧=+-⎪⎪+⎪+=⎨⎪⎪=⎪⎩△≥因为cos sin B A =,故()2, 1cos sin , 2cos sin , 410m A A m A m m A ++==⎧=-⇒⎪⎪⎪⎨⎪⎪⎪⎩可△≥取任意实数①②①式两边平方,并利用恒等式22sin cos 1A A +=,得()()221cos sin 12sin cos 4m A A A A ++=+=.再由②得()21124m m ++=,解得m =.由cos 0A >,sin 0A >及②知0m >.所以m =.13.不查表,求15︒的四种三角函数值.解析30︒、45︒、60︒这些特殊角的三角函数值,我们可以利用含有这些特殊角的直角三角形的几何性质及勾股定理直接推出.同样,15︒角的三角函数值,也可以利用直角三角形的性质将其推出.如图所示.在ABC △中,90C ∠=︒,30ABC ∠=︒,延长CB 到D ,使BD BA =,则1152D BAD ABC ∠=∠=∠=︒.设1AC =,则2AB =,3BC =2BD =,所以 23CD CB BD =+=+所以()()())2222123843242323123162AD AC CD =++++++=+=+.所以162sin15462AC AD -︒===+,2362cos15462CD AD ++︒===+1tan152323AC CD ︒===-+cot1523CDAC︒==.评注将15︒角的三角函数求值问题,通过构造适当的三角形,将它转化为30︒角的三角函数问题,这种将新的未知问题通过一定途径转化为旧的已解决了的问题的方法,是我们研究解决新问题的重要方法.根据互余三角函数关系式,我们很容易得到75︒角的四种三角函数值.14.求22.5︒角的正切值(不查表,不借助计算器).解析4522.52︒︒=,所以设法构造一个含22.5︒角的直角三角形,用定义求值.如图,Rt ABC △中,90C ∠=︒,45B ∠=︒,延长CB 到D ,使BD BA =,则122.52D B ∠=∠=︒.设AC b =,有222AB b b b =+=,()21DC DB BC b =+=+.故()tan 22.52121ACDCb︒==+.15.求sin18︒的值.解析构造一个顶角A 为36︒的等腰ABC △,AB AC =,如图,作内角平分线则36ABD DBC ∠=∠=︒,设1AC =,BC x =.由于36DBA DAB ∠=∠=︒,72BDC BCD ∠=∠=︒,故CB BD DA x ===,而CAB △∽CBD △(36CAB CBD ∠=∠=︒),故AC BC BC DC =,故11xx x=-,有512x -=(舍去512-).再作AH BC ⊥于H ,则18CAH ∠=︒,514CH -=.所以1sin184-︒=.评注本题所构造的等腰三角形是圆内接正十边形的相邻顶点与圆心确定的三角形,利用它可以求出半径为R 的圆内接正十边形的边长.16.若x 、y 为实数,221x y +=,α为锐角,求证:sin cos x y αα+的绝对值不大于1.解析由221x y +=,22sin cos 1αα+=,得()()2222sin cos 1x y αα++=,即22222222sin cos cos sin 1x y x y αααα+++=,加一项减一项,得22222222sin 2sin cos cos cos 2cos sin sin 1x xy y x xy y αααααααα+++-+=.即()()2sin cos cos sin 1x y x y αααα2++-=,因为()2cos sin 0x y αα-≥,所以()2sin cos 1x y αα+≤,故sin cos 1x y αα+≤.2解直角三角形(详细解答)1.如图,在直角三角形ABC 中,90C ∠=︒,AD 是A ∠的平分线,且CD =,DB =求ABC △的三边长.解析由角平分线想到对称性,考虑过D 作DE AB ⊥,交AB 于E ,则由90C ∠=︒得CD DE ==.在直角三角形BDE 中,1sin 2DE B DB ==,则60B ∠=︒,所以3tan3AC BC B ==+⋅=,2sin ACAB AC B===,BC CD DB =+=.故ABC △的三边长分别为,.2.在Rt ABC △中(如图),D 、E 是斜边AB 的三等分点,已知sin CD x =,()cos 090CE x x =︒<<︒.试求AB 的长.解析作DF AC ⊥于F ,EG AC ⊥于G ;DP BC ⊥于P ,EQ BC ⊥于Q .令BP PQ QC a ===,AG GF FC b ===.则2DF a =,EG a =.在Rt CDF △和Rt CEG △中,由勾股定理,得()2222sin a b x +=,及()2222cos a b x +=,两式相加得()2251a b +=,2215a b +=.所以35AB BD ===.3.如图,ABC △中,90C ∠=︒,10AB =,6AC =,AD 是BAC ∠的平分线,求点B 到直线AD 的距离BH .解析已知Rt ABH △中,10AB =,要求BH ,可求出BAH ∠的正弦值,而BAH CAD ∠=∠,因而可先求出DC 的长.作DE AB ⊥于E ,有6AE AC ==,ED CD =.设3DC k =,由三角形内角平分线性质有106BD DC =,则5BD k =.Rt BDE △中,222DE BE BD +=,即()()()22231065k k +-=,得1k =.33CD k ==,AD ==sin10BHDAC ∠==,故BH =.4.已知ABC △是非等腰直角三角形,90BAC ∠=︒,在BC 所在直线上取两点D 、E 使DB BC CE ==,连结AD 、AE .已知45BAD ∠=︒.求tan CAE ∠的值.解析如图,过B 、C 两点作BM AC ∥、CN AB ∥分别交AD 、AE 于M 、N .易知2AC BM =,2AB CN =,tan BM BAD AB ∠=,tan CNCAE AC∠=,从而,1tan tan 4BAD CAE ∠∠=.因为tan 1BAD ∠=,则1tan 4CAE ∠=.5.设有一张矩形纸片ABCD (如图),3AB =,4BC =.现将纸片折叠,使C 点与A 点重合,试求折痕EF 的长.解析设O 是矩形对角线AC 的中点.连结CF ,由折叠知CF AF =,故FO AC ⊥,即EF AC ⊥.由3AB =,4BC =,得5AC =,从而1522AO AC ==.在Rt AOF △中,90AOF ∠=︒,故tan OF AO FAO =⋅∠.又由Rt ADC △得3tan tan 4DC FAO DAC AD ∠=∠==,所以5315248OF =⋅=,1524EF OF ==.7.已知三角形两边之和是10,这两边的夹角为30︒,面积为254,求证:此三角形为等腰三角形.解析由题意可设10a b +=,30α=︒,则125sin 24S ab α==△,即1125224ab ⋅=,得25ab =.于是,由10a b +=,25ab =,得a 、b 是方程210250x x -+=的两个根.而此方程有两个相等的根,所以5a b ==,即此三角形为等腰三角形.评注也可以直接由()()2240a b a b ab -=+-=,得a b =.7.在ABC △中,90C ∠=︒,其周长为2+,且已知斜边上的中线长为1.如果BC AC >,求tan A的值.解析由于斜边长是斜边上中线长的2倍,故2AB c ==.于是,由题设及勾股定理,得224. a b a b ⎧++==⎪⎨⎪⎩①②把①式两边平方,得2226a ab b ++=.再由②得1ab =.③由①、③知,a 、b 分别是二次方程210u +=的两根,解得622u ±=.因为BC AC >(即a b >),故12BC =,12AC =,所以tan 2BC A AC ===+.8.已知a 、b 、c 分别是ABC △中A ∠、B ∠,C ∠的对边,且a 、b 是关于x 的一元二次方程()()2 424x c c x ++=+的两个根.(1)判断ABC △的形状;(2)若3tan 4A =求a 、b 、c .解析(1)根据题意,尝试从边来判断.因为4a b c +=+,()42ab c =+,所以()2222a b a b ab +=+-()()224242c c c =+-⨯+=,从而知ABC △是直角三角形,90C ∠=︒.(2)由90C ∠=︒,3tan 4A ∠=,得34a b =.令3a =,()40b k k =>,则5c k =,于是754k k =+,得2k =,从而有6a =,8b =,10c =.9.在Rt ABC △中,90C ∠=︒,12ABC S m =△,且两直角边长满足条件32a b m +=.(1)证明:24m ≥;(2)当m 取最小值时,求ABC △中最小内角的正切值.解析(1)由题设得 , 32.ab m a b m =⎧⎨+=⎩消去b ,得32m a a m -⎛⎫= ⎪⎝⎭,故实数a 满足二次方程2320x mx m -+=.①所以()224240m m m m =-=-△≥.因为0m >,所以24m ≥.10.如图所示.90A BEF EBC ECD ∠=∠=∠=∠=︒,30ABF ∠=︒,45BFE ∠=︒,60ECB ∠=︒且2AB CD =.求tan CDE ∠的值.解析因为tan CECDE CD∠=,已知2AB CD =,因此,只需求出AB 与CE 的比值即可.不妨设1CD =,则2AB =.在Rt ABF △中,90A ∠=︒,30ABF ∠=︒,所以cos30AB BF ==︒.在Rt BEF △中,90BEF ∠=︒,45BFE ∠=︒,所以2cos 452BE BF =︒==在Rt BEC △中,90EBC ∠=︒,60ECB ∠=︒,42sin 603BE CE ===︒,所以42tan 3CE CDE CD ∠==.11.如图所示.在锐角ABC △中,4sin 5B =,tan 2C =,且10ABC S =△.求BC.解析作AD BC ⊥于D ,设AD x =,在Rt ABD △中,因为4sin 5B =,所以3cos 5B ==,所以sin 4tan cos 3B B B ==,所以43AD BD =,34BD x =.在Rt ADC △中,因为tan 2AD C DC ==,所以22AD x CD ==,所以35424x BC BD CD x x =+=+=.①因为1102ABC S BC AD =⨯=△,所以151024x x ⨯⋅=,所以4x =.由①知5454BC =⨯=.评注在一般三角形中,在适当位置作高线,将其转化为直角三角形求解,这是解斜三角形常采用的方法.12.如图所示.在ACD △中,45A ∠=︒,5CB =,7CD =,3BD =.求CBD ∠及AC.解析作CE AD ⊥于E ,设CE x =,BE y =,则有()2222225 , 37. x y x y ⎧+=⎪⎨++=⎪⎩①②②-①得22697524y +=-=,所以52y =.因为2x =,所以512cos 52BE CBE CB ∠===,所以60CBE ∠=︒,18060120CBD ∠=︒-︒=︒,所以5356sin 4522CE AC ==︒.13.如图,已知ABC △中,1AB =,D 是AB 的中点,90DCA ∠=︒,45DCB ∠=︒.求BC 的长.解析作BE AC ⊥B ,交AC 的延长线于E ,设BC x =.则sin 45BE BC =⨯︒=,cos 45CE BC =⋅︒=由DC BE ∥,D 是AB 的中点,知2AE EC ==.而222AE BE AB +=,得221+=.即x =,所以BC =.评注通过构造直角三角形,使用三角函数、勾股定理等知识将边角联系起来是求线段长的常用方法.14.如图,ABC △中,90ACB ∠=︒,CD AB ⊥于D ,DE AC ⊥于E ,DF BC ⊥于F .求证:33AE AC BF BC =.解析ADE ACD B ∠=∠=∠,而tan AE ADE DE ∠=,tan ED ACD EC ∠=,tan DFB BF=,所以tan AE ED DFB DE EC FB===,又DF EC =,所以3tan AE ED EC B DE EC BF ⋅⋅=,所以3tan AEB BF=.又tan ACB BC=,所以33AE AC BF BC =.15.如图,在ABC △中,90A ∠=︒,AB AC =,M 是AC 边的中点,AD 垂直于BM 且交BC 于D .求证:AMB CMD ∠=∠.解析作DF AC ⊥于F ,不妨设3AB =,因AD BM ⊥,90BAM ∠=︒,所以DAF ABM ∠=∠.又112tan 2AC MA ABM AB AB ∠===.1tan 2DF DAF FA ∠==.又90BAC ∠=︒,AB AC =,45C ∠=︒,而90DFC ∠=︒,故FC FD =.由于12FC FA =,而3FC FA +=,1FC =,2FA =,而32MC =,31122FM =-=,1FD =,即1tan 212FD CMD FM ∠===,又tan 2AB AMB AM ∠==,AMB ∠,CMD ∠是锐角.因此AMB CMD ∠=∠.16.如图(a ),正方形ABCD的边长E 、F 分别是AB 、BC 的中点,AF 分别交DE 、DB 于点M 、N ,求DMN △的面积.解析记正方形ABCD 的边长为2a .由题设易知BFN △∽DAN △,则有21AD AN DN BF NF BN ===,得2AN NF =,所以23AN AF =.在直角ABF △中,2AB a =,BF a =,则AF ==,于是cos 5AB BAF AF ∠==.由题设可知ADE △≌BAF△,所以AED AFB ∠=∠,18018090AME BAF AED BAF AFB ∠=︒-∠-∠=︒-∠-∠=︒.于是cos AM AE BAF =⋅∠=,23MN AN AM AF AM =-=-=,从而415MND AFD S MN S AF ==△△.又()()212222AFD S a a a =⋅⋅=△,所以2481515MND AFD S S a ==△△.因a =8MND S =△.17.已知a 、b 、c 是ABC △三边的长,其中b a c >=,且方程20ax c +=两根的差的绝对值等.求ABC △中最大角的度数.解析由已知条件b a c >=可知,这是一个等腰三角形,且底边b 最长,则最大角为B ∠,求出ABC △中的底角A (或C )即可.我们可以先求角A (或C )的三角函数值,再确定角的大小,如图所示.由图知2cos 2b AD b A AB c c===,则关键是求出b 与c 的比值.通过一元二次方程中的条件,可得到关于c 、b 的方程,则问题得到解决.因为a c =,所以方程为20cx c +=.设1x 、2x 为方程的两个根,则有122b x x c +=,121x x =.因为12x x -=,()2122x x -=,即()2121242x x x x +-=,所以2242c ⎛⎫-= ⎪ ⎪⎝⎭,c =,b c =,所以cos 22b A c ==,所以30A ∠=︒,所以1803030120B ∠=︒-︒-︒=︒.评注这是一道方程与几何知识的综合题.三角形的边是一元二次方程的系数,利用方程条件导出边的关系,由边的关系再进一步求角的大小.18.如图,AB 是圆的直径,弦CD AB ∥,AC 与BD 相交于E ,已知AED θ∠=,试求:CDE ABE S S △△.解析由AB CD ∥,得CDE △∽ABE △.所以22::CDE ABE S S DE BE =△△.连结AD ,则90ADB ∠=︒.故由Rt ADE △,有cos DE AEθ=,又AE BE =,所以2:cos CDE ABE S S θ=△△.19.如图所示,已知电线杆AB 直立于地面上,它的影子恰好照在土坡的坡面CD 和地面BC 上.如果CD 与地面成45︒,60A ∠=︒,4m CD =,(m BC =-,求电线杆AB 的长(精确到0.1m ).解析如图,延长AD 交地面于点E ,过点D 作DF CE ⊥于点F .因为45DCF ∠=︒,60A ∠=︒,4CD =,所以2sin 4542CF DF CD ==︒=⨯=,tan 60EF DF =︒==.因为3tan 303AB BE =︒=,所以(()8.5m 33AB BE ==++⨯=≈.20.如图,某岛S 周围42海里内存在着大量的暗礁.现在一轮船自西向东以每小时15海里的速度航行,在、A 处测得S 在北偏东60︒,2小时后在B 处测得S 在正东北方向,试问轮船是否需要改变航行方向行驶,才能避免触礁危险,说明理由.解析若设船不改变航向,与小岛S 的最近距离为SC .则有tan 60tan 45152SC SC ︒-︒=⨯,解得1542SC =<.因此需要改变航向,以免触礁.21.如图,某污水处理站计划砌一段截面为等腰梯形的排污渠,如果渠深为h ,截面积为S ,试求当倾角θ为多少时造价最小?解析要使造价最小,只需考虑AD DC CB ++最小,故首先设法用h 、S 、θ表示AD DC CB ++.()()()1122cot cot 22S AB CD h CD h h CD h h θθ=+=+=+.有cot S CD h h θ=-,则2AD DC CB AD CD ++=+2cot sin h S h θθ⎛⎫=+- ⎪⎝⎭()2cos sin h S hθθ-=+.因S 、h 为常数,则要求AD DC CB ++的最小值,只需求2cos sin m θθ-=的最小值.设2cos sin m θθ-=,两边平方整理得()()2221cos 4cos 40m m θθ+---=,cos θ=由上式知()2230m m -≥,解得m m =时,2cos sin θθ-有最小值.当m =时,221cos 12m θ==+,从而得60θ=︒,此时排污渠造价最小.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档