(完整版)两点间距离公式与线段中点的坐标教案

合集下载

两点间的距离与线段中点坐标教案

两点间的距离与线段中点坐标教案

【课题】8.1两点间的距离与线段中点坐标【学习目标】1、掌握平面内两点间的距离公式和中点公式2、能熟练应用平面内两点间距离公式和中点公式进行运算【学习重点】平面内两点的距离公式和中点公式的应用【学习难点】平面内两点的距离公式和中点公式的应用【课时安排】 2 课时【课堂过程】课前准备(预习46页一一48页,找出疑惑的地方)复习(如图)在数轴上有两点x i =巧公2=7,贝卩=新知1:两点间的距离公式平面直角坐标系中,已知两点P i(x i,yj , P2(X2,y2),两点距离公式为P1P2I =1(X2 —X i)2 +M -y i)2说明(1)如果P1和P2两点在X轴上或在平行于X轴的直线上,两点距离是x2 -x1⑵如果P i和P2两点在y轴上或在平行于y轴的直线上,两点距离是目2一*试一试1:求平面上两点A(6,2) , B(5,3)间的距离|AB =试一试2:求下列两点间的距离:(1) A(—2,0), B(2,0) ⑵A(0,3), B (0,-7)(3) A(—2,3), B(2,4) ⑷ A( —5,9), B (8,6)试一试3:已知A(a ,3),点B在y轴上,点B的纵坐标为10, AB =12= 12,求a的值新知2:线段的中点公式点RXy),P2(X2°2)之间所连线段的中点P坐标为% y2说明公式对于P i和P2两点在平面内任意位置都是成立的试一试3:求下列两点的中点坐标(1)A(-2,3), B(2,13 ) ⑵ A(-15,9), B(18 ,6)(二)典型例题: 已知三角形的顶点是,A (1,0), B (-2,1), C (0,3),求此三角形两条中线CE和AD的长度(解题过程在书4 8页)【自我检测】1、平面直角坐标系中,已知两点,P1(X1,yJ , p2(X2,y2)两点距离公式为2、点P1(X1,y1), p2(X2,y2)之间所连线段的中点P坐标为巩固练习:1、已知下列两点,求AB及两点的中点坐标(1) A (8, 6), B (2, 1) (2) A (-2 , 4) B (-2 , -2 )3、已知A(-4 , 4) , B(8, 10)两点,求两点间的距离AB4、已知下列两点,求中点坐标:(1) A (5, 10), B (-3 , 0) (2) A (-3 , -1 ), B (5, 7)5、已知点A (-1 , -1 ), B (b, 5),且 | AB =10,求b 的值6、已知A在y轴上,B (4, -6 ),且两点间的距离|AB =5,求点A 的坐标7、已知A (a, -5 ),点B在y轴上,点B的纵坐标为10, AB=17 求a。

(完整word版)8.1两点间的距离公式及中点公式(教学设计)

(完整word版)8.1两点间的距离公式及中点公式(教学设计)

【课题】8.1 两点间的距离公式及中点公式【教材说明】本人所用教材为江苏教育出版社,凤凰职教《数学·第二册》。

平面解析是用代数方法研究平面几何问题的学科,第八章《直线与圆的方程》属于平面解析几何学的基础知识.它侧重于数形结合的方法和形象思维的特征,综合了平面几何、代数、三角等知识.【学情分析】学生是一年级数控中专班,上课不能长时间集中注意力,计算能力不强,对抽象的知识理解能力不强,但是对直观的事物能够理解,对新事物也有较强的接受能力。

【教学目标】知识目标:1. 了解平面直角坐标系中的距离公式和中点公式的推导过程.2。

掌握两点间的距离公式与中点坐标公式.能力目标:用“数形结合”的方法,介绍两个公式.培养学生解决问题的能力与计算能力.情感目标:通过观察、对比体会数学的对称美和谐美,培养学生的思考能力,学会从已有知识出发主动探索未知世界的意识及对待新知识的良好情感态度.【教学重点】两点间的距离公式与线段中点的坐标公式的运用.【教学难点】两点间的距离公式的理解.【教学备品】三角板.【教学方法】讨论合作法【课时安排】2课时.(90分钟)【教学设计】针对学生的情况,本人在教学中的引入尽量安排多个实例,多讲具体的东西,少说抽象的东西,以激发学生的学习兴趣。

在例题和练习的安排上多画图,努力贯彻数形结合的思想,让学生逐步接受和养成画图的习惯,用图形来解决问题。

这也恰恰和学生本身的专业比较符合,学生学过机械制图,数控需要编程,编程又需要对一些曲线方程有充分的了解.同时在教学中经常用分组讨论法,探究发现法,逐步培养学生的协作能力和独立思考的能力。

两点间距离公式和中点坐标公式是解析几何的基本公式,教材采用“知识回顾”的方式给出这两个公式.讲授时可结合刚学过的向量的坐标和向量的模的定义讲解,但讲解的重点应放在公式的应用上.大海中有两个小岛,PP的模离能不能用12教师在学生探究的投影距离公式,(教学设计)开始时的复习引入学生反应不是很好,前面的向量知识学生掌握不熟练,后面的公式推导不是很顺畅.所以在前面向量部分讲到这个知识点一定要强调,注重前后章节的联系。

两点间距离公式与中点坐标公式教学设计

两点间距离公式与中点坐标公式教学设计

【课题】& 1两点间的距离与线段中点的坐标【教学目标】知识目标:掌握两点间的距离公式与中点坐标公式:能力目标:用“数形结合”的方法,介绍两个公式,培养学生解决问题的能力与计算能力:情感目标:(1)经历公式的探索,增强学生的创新思维;(2)关注数学知识的应用,形成对数学的兴趣。

【教学重点】两点间的距离公式与线段中点的坐标公式的运用。

【教学难点】两点间的距离公式与线段中点的坐标公式的理解。

【学情分析】我所上课的班级是中职三年级学前教育班学生,这个班级的学生大部分都是女生,她们的理解能力和逻借思维能力较差,但是上课专注力和动手能力强。

已有认知基础:数轴上两点间的距离:平而上平行坐标轴的两点间距离;向量的相关知识。

达成目标所需要认知基础:良好的数学学习习惯;对研究的目标、方法和途径有初步的认识:较好的归纳、猎想和推理能力。

【教学工具】教学课件.【课时安排】1课时.(45分钟)【教学过程】一般地,设人(心X)、£(w)为平而内任意两点,则线段片巴中点乙(无,儿)的坐标为补宁,沪呼【典型例题】例2已知点S (0, 2)、点7(-6. -1),现将线段ST四等分,试求岀各分点的坐标.分析如图8-2所示,首先求出线段ST的中点。

的坐标,然后再求S0的中点P及0T的中点R的坐标.同理,求出线段SO的中点"冷,线段"的中点2异) 教师学生行为行为词语教学时意图间解设线段ST的中点。

的坐标为%讥), 则由点S (0, 2)、点T (一6, -1)得说明强调观察0 + (-6) °皆= -32 + (-1) 1 即线段ST的中点为。

(-3占). 引领讲解说明思考主动求解通过例题进一步领会【教学反思】。

两点间的距离与线段中点的坐标教案

两点间的距离与线段中点的坐标教案

两点间的距离与线段中点的坐标教案一、教学目标1. 让学生理解两点间的距离的概念,能够运用两点间的距离公式计算两点间的距离。

2. 让学生掌握线段中点的坐标公式,能够运用线段中点的坐标公式求解线段的中点坐标。

3. 培养学生的数学思维能力,提高学生解决实际问题的能力。

二、教学内容1. 两点间的距离两点间的距离是指在平面直角坐标系中,两点之间的长度。

公式:d = √((x2 x1)²+ (y2 y1)²)其中,(x1, y1)和(x2, y2)分别是两点的坐标。

2. 线段中点的坐标线段中点是指线段上的一个点,该点到线段的两个端点的距离相等。

公式:中点横坐标:(x1 + x2) / 2中点纵坐标:(y1 + y2) / 2其中,(x1, y1)和(x2, y2)分别是线段的两个端点的坐标。

三、教学重点与难点1. 教学重点:两点间的距离公式和线段中点的坐标公式的掌握。

2. 教学难点:如何运用两点间的距离公式和线段中点的坐标公式解决实际问题。

四、教学方法1. 采用讲解法,讲解两点间的距离和线段中点的坐标的概念及公式。

2. 采用案例分析法,分析实际问题,引导学生运用两点间的距离和线段中点的坐标公式解决问题。

3. 采用练习法,让学生通过练习题目的形式,巩固所学知识。

五、教学步骤1. 导入新课:引导学生回顾平面直角坐标系的相关知识,为新课的学习做好铺垫。

2. 讲解两点间的距离:介绍两点间的距离的概念,讲解两点间的距离公式,并通过示例演示如何运用公式计算两点间的距离。

3. 讲解线段中点的坐标:介绍线段中点的坐标的概念,讲解线段中点的坐标公式,并通过示例演示如何运用公式求解线段的中点坐标。

4. 案例分析:分析实际问题,引导学生运用两点间的距离和线段中点的坐标公式解决问题。

5. 课堂练习:布置练习题目,让学生巩固所学知识。

7. 课后作业:布置课后作业,让学生进一步巩固所学知识。

六、教学活动设计1. 互动游戏:设计一个互动游戏,让学生在游戏中理解和运用两点间的距离和线段中点的坐标。

《两点之间的距离公式及中点坐标公式》课件模板

《两点之间的距离公式及中点坐标公式》课件模板

y
A (x,y)
y
o x A1 x
d(O,A)=
当A点在坐标轴上时这一公式 也成立吗?
y
A
A
o
x
A
显然,当A点在坐标轴上时
d(O,A)=
这一公式也成立。
A x 1 ,y 1 ,B x 2 ,y 2
一般地,已知平面上两点A(x1,y1)和 B(x2,y2),利用上y述方法求点A和B的距离
B2
B(x2,y2)
A 2 C B 2 D 2 A 2 B A 2 .D
证明:取A为坐标原点,AB所在直线为X轴建 立平面直角坐标系 xOy ,依据平行四边形的 性质可设点A,B,C,D的坐标为
A 0 , 0 ,B a , 0 , C b , c ,D b a , c .
所以 AB2 a2,
2、已知A(a,0), B(0,10)两点 的距离等于17,求a的值。
3、已知 : AB的CD三个顶点坐标分别是 A(- 1,-2),B(3,1),C(0,2).求:第D点的坐 标。
1.两点间的距离公式;
d (A ,B ) |A B |(x 2 x 1 )2 (y 2 y 1 )2
2.中点坐标公式
❖ 计算 d x2y2
❖ 给出两点的距离 d
题型分类举例与练习
【例1】已知A(2、-4)、B(-2,3). 求d(A,B)
解: x 1 2 ,x 2 2 ,y 1 4 ,y 2 3 x x 2 x 1 2 2 4 ,
y y 2 y 1 3 4 7
d(A B ,) (42)72 65
商务
图标元素
商务
图标元素
商务
图标元素
商务
图标元素
A(x1,y1) A2

两点间距离公式与线段中点的坐标教案

两点间距离公式与线段中点的坐标教案

两点间距离公式与线段中点的坐标教案一、两点间距离公式教学目标:1.理解两点间距离的概念。

2.掌握两点间距离的计算方法。

教学准备:1.教师准备一张黑板或白板。

2.学生准备铅笔和纸。

教学步骤:步骤一:引入问题(5分钟)教师可以提出一个问题:“如何计算两个点之间的距离?”让学生思考并尽可能多地提出自己的想法。

步骤二:引入两点间距离的定义(10分钟)教师可以介绍两点间距离的定义:“两点之间的距离是连接这两点的线段的长度。

”教师可以用图示的方式展示这个定义。

步骤三:推导两点间距离公式(15分钟)教师可以让学生假设A点坐标为(x1,y1),B点坐标为(x2,y2),然后引导学生进行推导:1.根据勾股定理可知,线段AB的长度等于x轴方向的差值的平方与y轴方向的差值的平方的和再开方。

2.根据上述推导可以得到两点间距离的公式:d=√((x2-x1)²+(y2-y1)²)。

步骤四:例题演练(20分钟)教师可以提供一些例题让学生进行计算,并辅导学生计算的过程。

例如:设A(2,3),B(-1,4),求线段AB的长度。

解:根据公式d=√((x2-x1)²+(y2-y1)²),代入坐标值可得d=√((-1-2)²+(4-3)²)=√((-3)²+1²)=√(9+1)=√10。

步骤五:总结并巩固(20分钟)教师可以让学生自己总结两点间距离的计算步骤和公式,并提供一些练习题让学生巩固练习。

二、线段中点的坐标教学目标:1.理解线段中点的概念。

2.掌握求线段中点坐标的方法。

教学准备:1.教师准备一张黑板或白板。

2.学生准备铅笔和纸。

教学步骤:步骤一:引入问题(5分钟)教师可以提出一个问题:“如何求线段的中点坐标?”让学生思考并尽可能多地提出自己的想法。

步骤二:引入线段中点的定义(10分钟)教师可以介绍线段中点的定义:“线段的中点是线段上离两个端点等距离的点。

(完整版)两点间距离公式与线段中点的坐标教案

(完整版)两点间距离公式与线段中点的坐标教案

平 面 直 角 坐 标 系 中 , 设 P1(x1, y1) , P2 (x2 , y2 ) , 则 P1P2 (x2 x1, y2 y1) .
计算向量 P1P2 .
【新知识】
我们将向量 P1P2 的模,叫做点 P1 、 P2 之间的距离,记作 P1P2 ,则
| P1P2 | P1P2 P1P2 P1P2 (x2 x1)2 ( y2 y1)2 *巩”的方法,介绍两个公式.培养学生解决问题的能力与计算能力.


情感目标:通过创设问题情景和多媒体教学,让学生在参与中感受和体验数学美,激发学生的学
习兴趣和求知欲望。
教学
掌握两点间的距离公式与线段中点的坐标公式的运用
重点
教学 两点间的距离公式和线段中点的坐标公式的理解
难点
课型
新授课
分组讨论后回答为本组加课件展示线段中点的的引例引入用代数方法计算线段的中点坐标动脑思考探索新知新知识设线段的两个端点分别为如图81则apuuuruuuuruuur师
教案
学科: 数

学校:甘肃省高台县职业中专
姓名:
【课题】8.1 两点间的距离与线段中点的坐标

知识目标:掌握两点间的距离公式与中点坐标公式;
教学方法
讲授法,启发式教学,小组竞赛集体积分
教具
三角板
多媒体课件 学案 实物投影
教 学过 程
*揭示课题
8.1 两点间的距离与线段中点的坐标
*创设情境 兴趣导入 观察课件上的图片,由平面几何问题引入用代数方法计算两点间的距离。
师生互动
师:引入提问 生:自由讨论后回答,为本组加 分。
*动脑思考 探究新知 【知识回顾】
*反思总结 理论升华 思考并回答下面的问题:两点间的距离公式、线段的中点坐标公式?学

中职数学基础模块下册《两点间距离公式及中点坐标公式》word教案

中职数学基础模块下册《两点间距离公式及中点坐标公式》word教案
例2求下列两点的线段的中点坐标
(1)
解:(1)根据中点坐标公式得:

(2)
解:(2)根据中点坐标公式得

8.跟踪练习 练一练
9.点评
10.例3已知 ,求三角形 中 边上的中线长.
解:设 是 边上的中点,根据中点坐标公式
即点 的坐标是
再由两点间距离公式,得
师:分析给出公式
生:思考回答
师:讲解例题
生:听解并掌握公式
生:上黑板做练习
师:点评
师:介绍公式
师:分析例子
生:边听边记公式
生:上黑板做练习
师:讲评并教学生记忆公式
理解公式为求距离准备
巩固所学知识,学以致用
掌握公式为求线段中点坐标准备
巩固所学知识,学以致用


两点间距离公式和中点坐标公式
师生合作.
梳理总结也可针对学生薄弱或易错处进行强调和总结.


练习
巩固拓展.
广西机电工程学校教案
本课题共3页
课题
8.1两点间距离公式及中点坐标公式
授课顺序
第1周
授课班级
数媒101班
目的及要求
1、掌握两点间距离公式及中点坐标公式
2、培养学生的数形结合思想、分类讨论的思想及公式应用能力。
3、通过创设问题情景和多媒体教学,让学生在参与中感受和体验数学美,激发学生的学习兴趣和求知欲望。
师:复习提问
生:自由回答
复习旧知识为学习新知识准备




1、一般地,如果 轴上的两点 与 的坐标分别 ,那么 与 的距离为
2.平面直角坐标系内任意两点 间的距离公式:
想一想:

两点间距离公式与线段中点的坐标教案

两点间距离公式与线段中点的坐标教案

两点间距离公式与线段中点的坐标教案一、教学目标:1. 让学生掌握两点间的距离公式,并能够运用该公式计算两点间的距离。

2. 让学生理解线段中点的概念,并能够运用中点公式计算线段的中点坐标。

3. 培养学生的数学思维能力和解决问题的能力。

二、教学内容:1. 两点间的距离公式:设两点P1(x1, y1)和P2(x2, y2),则两点间的距离d为:d = √((x2 x1)²+ (y2 y1)²)2. 线段中点公式:设线段的两个端点为P1(x1, y1)和P2(x2, y2),则线段的中点M的坐标为:M( (x1 + x2) / 2, (y1 + y2) / 2 )三、教学重点与难点:1. 教学重点:两点间的距离公式和线段中点公式的掌握。

2. 教学难点:两点间的距离公式的推导和线段中点公式的应用。

四、教学方法:1. 采用问题驱动的教学方法,引导学生通过思考和探索,发现两点间的距离公式和线段中点公式。

2. 利用多媒体课件和几何画板软件,直观地展示两点间的距离和线段中点的计算过程。

3. 通过例题和练习题,让学生巩固所学知识,提高解题能力。

五、教学过程:1. 导入:引导学生回顾坐标系的基础知识,激发学生的学习兴趣。

2. 新课讲解:讲解两点间的距离公式和线段中点公式的推导过程。

3. 例题讲解:讲解几个典型的例题,让学生理解并掌握两点间的距离和线段中点的计算方法。

4. 练习题:布置一些练习题,让学生巩固所学知识。

5. 总结:对本节课的内容进行总结,强调两点间的距离公式和线段中点公式的应用。

6. 作业布置:布置一些课后作业,让学生进一步巩固所学知识。

六、教学评估:1. 课堂讲解过程中,观察学生对两点间距离公式和线段中点公式的理解和掌握程度。

2. 通过提问,了解学生对公式推导过程的理解。

3. 课后收集学生的练习题答案,评估学生对知识的掌握和应用能力。

七、教学反思:1. 针对学生的掌握情况,调整教学方法和节奏,以便更好地帮助学生理解和掌握知识点。

两点间距离公式与线段中点的坐标教案

两点间距离公式与线段中点的坐标教案

两点间距离公式与线段中点的坐标教案一、教学目标1. 让学生理解两点间的距离公式,并能够运用该公式计算两点间的距离。

2. 让学生掌握线段中点的坐标公式,并能够运用该公式求解线段的中点坐标。

3. 培养学生的数学思维能力和解决问题的能力。

二、教学内容1. 两点间的距离公式:设两点P1(x1, y1)和P2(x2, y2),则两点间的距离d可以表示为:d = √((x2 x1)²+ (y2 y1)²)。

2. 线段中点的坐标公式:设线段的两个端点为P1(x1, y1)和P2(x2, y2),则线段的中点M的坐标为:M((x1 + x2) / 2, (y1 + y2) / 2)。

三、教学重点与难点1. 教学重点:两点间的距离公式和线段中点的坐标公式的理解和运用。

2. 教学难点:两点间的距离公式的推导和线段中点坐标公式的推导。

四、教学方法1. 采用问题驱动的教学方法,引导学生通过思考和讨论来发现和理解两点间的距离公式和线段中点的坐标公式。

2. 利用几何图形和实际例子,帮助学生直观地理解和记忆公式。

3. 通过练习题和小组合作活动,巩固学生的理解和运用能力。

五、教学步骤1. 引入:通过提问方式引导学生回顾坐标系和点的坐标的基础知识。

2. 讲解两点间的距离公式:解释公式中各个变量的含义,并通过几何图形和实际例子来说明公式的推导过程。

3. 讲解线段中点的坐标公式:解释公式中各个变量的含义,并通过几何图形和实际例子来说明公式的推导过程。

4. 练习题:给出一些题目,让学生独立完成,巩固对公式的理解和运用能力。

5. 小组合作活动:让学生分组讨论和解决一些实际问题,如计算线段的长度和求线段的中点坐标等。

六、教学评估1. 课堂练习:通过实时解答学生提出的练习题,评估学生对两点间距离公式和线段中点坐标公式的理解和运用能力。

2. 小组讨论:观察学生在小组合作活动中的参与程度、思考过程和解决方案,评估学生的合作能力和问题解决能力。

两点间距离公式与线段中点的坐标教案

两点间距离公式与线段中点的坐标教案

两点间距离公式与线段中点的坐标教案一、教学目标:1. 让学生掌握两点间的距离公式,并能应用于实际问题中。

2. 让学生理解线段中点的坐标含义,并能求解线段中点的坐标。

3. 培养学生的数学思维能力和解决问题的能力。

二、教学内容:1. 两点间的距离公式:设两点A(x1, y1)和B(x2, y2),则两点间的距离d为:d = √((x2 x1)^2 + (y2 y1)^2)。

2. 线段中点的坐标:设线段的两个端点为A(x1, y1)和B(x2, y2),则线段的中点坐标为((x1 + x2) / 2, (y1 + y2) / 2)。

三、教学重点与难点:1. 教学重点:两点间的距离公式和线段中点的坐标公式的推导和应用。

2. 教学难点:理解两点间的距离公式的几何意义和线段中点的坐标含义。

四、教学方法:1. 采用问题驱动的教学方法,引导学生通过观察、思考、探索和解答问题来学习两点间的距离公式和线段中点的坐标。

2. 利用图形和实例进行直观演示,帮助学生理解和记忆公式。

3. 引导学生进行小组讨论和合作,培养学生的团队合作能力和解决问题的能力。

五、教学步骤:1. 引入:通过展示一个实际问题,如测量两点间的距离,引起学生对两点间距离公式的兴趣。

2. 推导两点间的距离公式:引导学生观察和思考两点间的距离公式的推导过程,解释公式的几何意义。

3. 应用两点间的距离公式:给出一些实际问题,让学生运用两点间的距离公式进行计算和解答。

4. 引入线段中点的坐标:引导学生思考线段中点的坐标含义,推导线段中点的坐标公式。

5. 应用线段中点的坐标:给出一些实际问题,让学生运用线段中点的坐标公式进行计算和解答。

六、教学评价:1. 课堂练习:学生在课堂上完成一些相关的练习题,以巩固对两点间的距离公式和线段中点的坐标的掌握。

2. 课后作业:学生完成一些相关的习题,以进一步巩固和应用所学的知识。

3. 小组讨论:学生进行小组讨论和合作,展示自己对问题的理解和解决问题的能力。

《两点间距离公式和线段中点坐标公式》教学设计

《两点间距离公式和线段中点坐标公式》教学设计

《6.1 两点间距离公式和线段的中点坐标公式》教学设计一、教材分析《两点间距离公式和线段中点坐标公式》是数学基础模块下册第六章第一节的内容。

作为本章节的起始课,他为后面直线方程的学习打下了基础,影响着学生能否培养起解析几何的思想方法,建立“数”与“形”的联系。

二、教学目标1.知识与技能:(1)了解平面直角坐标系中两点间的距离公式和中点坐标公式的推导过程;(2)理解平面直角坐标系中两点间的距离公式和中点坐标公式的结构特点;(3)能熟练应用这两个公式解决相关问题。

2.过程与方法:(1)通过公式的推导过程,让学生领会“数形结合”的数学思想方法和从特殊到一般的认知规律;(2)通过公式的使用过程,让学生领会方程的数学思想与方法;(3)充分利用引导探究、小组合作交流、竞赛等方法,实现知识形成与技能提升。

3.情感态度与价值观:(1)让学生在探索过程中体验探究的艰辛和成功的乐趣,培养学生锲而不舍的求索精神和合作交流的团队精神,提高学生的数学素养;(2)通过小组竞赛,培养学生的竞争意识,激发学习数学的浓厚兴趣。

三、教学重点难点1.教学重点:两点间距离公式与线段的中点坐标公式的运用。

2.教学难点:两点间距离公式的理解,感悟数形结合的思想方法,数学运算等核心素养的培养。

1.教师引入解析几何的数学发展史介绍著名数学家笛卡尔。

2.播放视频:从古代到现代的测量距离的工具。

3.以百度地图中从学校到超市的距离为例,提问两点间的距离是如何得到的。

例1 计算P1(2,-5) 与P2(5,-1)两点间的距离.解由两点间距离公式,得即P1与P2两点间的距离为5.练1求下列两点间的距离:【思考】你知道以此两点为端点的线段的中点坐标吗?1.教师用GGB软件演示得出上述两组点例2已知点A(2,3)与B(8,-3),求线段AB 的中点坐标.解设线段AB的中点为M(x0,y0),由中点坐标公式,得即线段AB的中点M的坐标为(5,0).练2 如图,已知△ABC的三个顶点分别是A(2,4)、B(-1,1)、C(5,3).(1)求BC边上的中点D的坐标;1.两个公式2.数学思想:数形结合、方程思想。

两点间的距离公式与线段中点坐标教案-中职版

两点间的距离公式与线段中点坐标教案-中职版
教学环节
课堂教学过程
说明
一、知识回顾与课题引入
15min
复习向量的坐标表示法
平面直角坐标系中,设 , ,则
我们将向量 的模叫做点 、 的距离,记作
则 =
通过回顾相关旧知识,为学生掌握新知识打下基础。
二、例题讲解、巩固知识10min
例1、求点A(8,9)、B(2,4)之间的距离
解:由两点间的距离公式可得:
借助几何画板的演示功能,生动直观地展示由抽象到形象、由量变到质变的过程,帮助学生突破重难点。
学生登录职教云app复习课件,完成课后作业,并对本次课进行几何画板
教学环节
课前预习
说明
老师课前把本节要的ppt上传到职教云平台,要求学生自主查看学习,老师通过教师端查看学生学习情况。
(2)体验“数形结合”研究问题的便捷,感受科学思维方法.
教学重点
两点间的距离公式与线段中点的坐标公式的运用
教学难点
两点间的距离公式的理解
教学过程
本课的教学过程分为四个环节,分别是课前预习知识点讲解
课堂练习教学评价
教学策略
及信息技
术的应用
教学策略:教学采用了自主学生法、讲授法、直观演示法、练习法,达到“做中学、学中做”的目的
结论:一般地,设 、 为平面内任意两点,则线段 中点 的坐标为
五、例题讲解 巩固知识10min
例2已知点S(0,2)、点T(−6,−1),现将线段ST四等分,试求出各分点的坐标.
解设线段ST的中点Q的坐标为 ,
则由点S(0,2)、点T(−6,−1)得
, .
即线段ST的中点为
Q .
同理,求出线段SQ的中点P ,线段QT的中
=
提高知识的运用能力

(完整版)两点间的距离与线段的中点坐标教案

(完整版)两点间的距离与线段的中点坐标教案

张掖市职业学校文化课优质课教案|P 1P 2|=21221221)()(||y y x x P P -+-=→121200,.22x x y y x y ++==单位:民乐县职教中心 学科:数学 教者:张成仁 时间:2013.4.26图8-2文化课优质课教案12PP = ( .已知 a = 探究一、平面直角坐标系中两点间的距离公式已知111(,)P x y ,1P 2|等于什么?1212PP 的坐标时差的顺序必须是表示这个向量的终点坐标减起点坐标)1、,2(-B 分析:将其中一点作为向量的起点,另外调说明:向12PP 的坐算中差的顺序教师引导学生独立完成并对学生的回答,及时鼓励并适时点评.(x a =及应用合作探究引导应用直线的斜截式方程及应用设线段的两个端点分别为),(11yxA和),(22yxB,线段的中点为),(yxM,则这三个点的坐标之间存在什么关系?结论2:一般地,设点),(111yxP、),(222yxP为平面内任意两点,则线段21PP的中点),(yxP的坐标为121200,.22x x y yx y++==说明:公式中涉及三个量,可“知二求一”体显方程的数学思想与方法.应用二:例2. 已知点)16()2,0(--,、TS,现将线段ST四等分,试求出各分点的坐标.分析:如图8-2所示,首先求出线段ST的中点Q的坐标,然后再求SQ的中点P及QT的中点R的坐标.例3. 已知ABC∆的三个顶点为)30()12()0,1(,、,、CBA-)5,2(-B)5,2(-B,试求BC边上的中线AD的长度.分析:先求出BC边的中点D的坐标,再代入两点间的距离公式求解.师引导,通过两向量相等,得到对应坐标相等,从而让学生观察、发现,列出方程组,根据学生对问题的认识情况,教师做补充,师生共同总结出线段中点的坐标公式.教师引导学生观察,发现公式中存在三个量,及时总结出公式的使用技巧.师生共同分析、探讨、明确线段ST的四等分点的求解思路后,让学生积极参与独立完成运算结果,教师根据学生完成情况及时鼓励并适时点评.教师引导学生明确三角形的中线是一条线段,要求线段的长度,需知道线段端点的坐标,从而启发学生找到解题途径.学生分单、双行进行竞赛练习,教师进给学生自由空间,让学生主动探讨,发挥学生的主观能动性,充分调动学生的积极性,培养学生锲而不舍的求索精神和合作交流的团队精神,加深对平面直角坐标系中线段中点的坐标公式的理解.通过探讨总结,深刻理解公式的特点,总结出可“知二求一”体现方程的数学思想与方法,为后面公式的应用奠定基础。

8.1 两点间的距离与线段中点的坐标

8.1  两点间的距离与线段中点的坐标

【课题】8.1 两点间的距离与线段中点的坐标【教学目标】知识目标:掌握两点间的距离公式与中点坐标公式;能力目标:用“数形结合”的方法,介绍两个公式.培养学生解决问题的能力与计算能力.【教学重点】两点间的距离公式与线段中点的坐标公式的运用【教学难点】两点间的距离公式的理解【教学设计】两点间距离公式和中点坐标公式是解析几何的基本公式,教材采用“知识回顾”的方式给出这两个公式.讲授时可结合刚学过的向量的坐标和向量的模的定义讲解,但讲解的重点应放在公式的应用上.例1是巩固性练习题.题目中,两个点的坐标既有正数,又有负数.讲授时,要强调两点间的距离公式的特点特别是坐标为负数的情况.例2是中点公式的知识巩固题目.通过连续使用公式(8.2),强化学生对公式的理解与运用.例3是本节两个公式的综合性题目,是知识的简单综合应用.要突出“解析法”,进行数学思维培养.【教学备品】教学课件.【课时安排】2课时.(90分钟)【教学过程】过 程行为 行为 意图 间 【知识回顾】平面直角坐标系中,设111(,)P x y ,222(,)P x y ,则122121(,)=--u u u u r PP x x y y .质疑 引导 分析思考 启发 学生思考 15 *动脑思考 探索新知 【新知识】我们将向量12u u u u rPP 的模,叫做点1P、2P 之间的距离,记作12PP ,则22121212122121||()()===-+-u u u u r u u u u r u u u u r g PP PP PP PP x x y y (8.1)总结归纳思考 记忆 带领 学生 分析 25 *巩固知识 典型例题例1 求A (−3,1)、B (2,−5)两点间的距离. 解 A 、B 两点间的距离为说明 强调 引领 讲解说明观察 思考 主动 求解通过例题进一步领会30*运用知识 强化练习 提问思考反复第1题图过 程行为 行为 意图 间 1.请根据图形,写出M 、N 、P 、Q 、R 各点的坐标. 2.在平面直角坐标系内,描出下列各点: 、、.并计算每两点之间的距离.巡视 指导口答强调38*创设情境 兴趣导入 【观察】练习8.1.1第2题的计算结果显示,.这说明点B 是线段AB 的中点,而它们三个点的坐标之间恰好存在关系,质疑 引导 分析思考 参与 分析引导启发学生思考43*动脑思考 探索新知 【新知识】设线段的两个端点分别为和,线段的中点为(如图8-1),则0101(,),=--u u u u rAM x x y y由于M 为线段AB 的中点,则即即解得.总结 归纳仔细 分析 讲解关键 词语思考 归纳 理解 记忆带领 学生 总结52yOxA (x 1, y 1)M (x 0, y 0)B (x 2, y 2)过 程行为行为意图间图8-1一般地,设111(,)P x y 、222(,)P x y 为平面内任意两点,则线段1P 2P 中点000(,)P x y 的坐标为121200,.22x x y y x y ++== (8.2) *巩固知识 典型例题例2 已知点S (0,2)、点T (−6,−1),现将线段ST 四等分,试求出各分点的坐标.分析 如图8-2所示,首先求出线段ST 的中点Q 的坐标,然后再求SQ 的中点P 及QT 的中点R 的坐标.解 设线段ST 的中点Q 的坐标为(,)Q Q x y , 则由点S (0,2)、点T (−6,−1)得0(6)32Q x +-==-,2(1)122Q y +-==. 即线段ST 的中点为 Q.同理,求出线段SQ 的中点P 35,24-(),线段QT 的中点91,24R --(). 故所求的分点分别为P 35,24-()、Q 13,2-()、91,24R --(). 例3 已知ABC ∆的三个顶点为(1,0)A 、(2,1)B -、(0,3)C ,试求BC 边上的中线AD 的长度.解 设BC 的中点D 的坐标为(,)D D x y ,则由(2,1)B -、说明 强调引领 讲解说明引领 分析观察 思考 主动 求解 观察通过例题进一步领会 注意 观察 学生图8-2【教师教学后记】。

两点间距离公式与线段中点的坐标教案

两点间距离公式与线段中点的坐标教案

两点间距离公式与线段中点的坐标教案一、教学目标:1. 理解两点间的距离公式和线段中点的坐标公式。

2. 能够运用两点间的距离公式和线段中点的坐标公式解决实际问题。

3. 培养学生的数学思维能力和解决问题的能力。

二、教学内容:1. 两点间的距离公式:两点A(x1, y1)和B(x2, y2)之间的距离d可以表示为:d = √[(x2 x1)²+ (y2 y1)²]2. 线段中点的坐标公式:线段AB的两个端点A(x1, y1)和B(x2, y2)的中点M的坐标可以表示为:M((x1 + x2) / 2, (y1 + y2) / 2)三、教学步骤:1. 导入:通过一个实际问题引入两点间的距离和线段中点的概念,例如:“在平面直角坐标系中,已知点A(2, 3)和点B(6, 7),求点A和点B之间的距离以及线段AB的中点坐标。

”2. 讲解:讲解两点间的距离公式和线段中点的坐标公式的推导过程,让学生理解其含义和应用。

3. 示例:给出一个示例,让学生根据公式计算两点间的距离和线段的中点坐标。

4. 练习:让学生独立完成一些相关的练习题,巩固所学知识。

四、作业布置:1. 请运用两点间的距离公式和线段中点的坐标公式,解决一些实际问题。

2. 预习下一节课的内容。

五、教学反思:通过本节课的教学,学生是否能够理解两点间的距离公式和线段中点的坐标公式,以及能否运用到实际问题中,是教学效果的重要评价标准。

教师应通过作业批改和课堂提问等方式,了解学生的掌握情况,及时进行教学调整。

六、教学活动:1. 小组合作:学生分组讨论,尝试运用两点间的距离公式和线段中点的坐标公式解决复杂问题,如:给定三个点A、B、C,证明三角形ABC是等腰三角形。

2. 游戏环节:设计一个坐标系寻宝游戏,让学生在游戏中运用所学知识,寻找隐藏的宝藏。

3. 课堂展示:邀请学生上台展示他们运用两点间的距离公式和线段中点的坐标公式解决实际问题的过程和结果。

两点间距离公式与线段中点的坐标教案

两点间距离公式与线段中点的坐标教案

两点间距离公式与线段中点的坐标教案教案:两点间距离公式与线段中点的坐标一、引入两点间的距离是数学中一个重要的概念。

它用来描述两个点之间的空间距离或距离的度量大小。

在数学中,我们可以通过使用两点间的坐标来计算它们之间的距离。

本节课将介绍两点间的距离公式以及如何计算线段的中点坐标。

二、知识点1.两点间的距离公式两点之间的距离可以通过计算其坐标差值的平方和的平方根来获得。

设A(x1,y1)和B(x2,y2)两点,则它们之间的距离为d=√((x2-x1)²+(y2-y1)²)。

2.线段的中点在坐标平面中,线段的中点是指连接线段的两个端点的线段上点的坐标。

要计算线段的中点坐标,只需对线段的两个端点的x坐标和y坐标分别取平均值即可。

设线段的两个端点为A(x1,y1)和B(x2,y2),则线段的中点C的坐标为C((x1+x2)/2,(y1+y2)/2)。

三、教学过程1.导入引导学生回顾直线的斜率计算,并提问:在坐标平面中,如何计算两点之间的距离呢?引导学生思考,然后介绍两点间的距离公式。

2.讲解a)介绍两点间的距离公式,以一道题目为例进行讲解。

例题:已知点A(1,2)和点B(4,6),求它们之间的距离。

b)利用两点间的距离公式进行计算,解题步骤如下:步骤1:根据题目条件,得到A(x1,y1)和B(x2,y2)的坐标值。

步骤2:代入两点间的距离公式d=√((x2-x1)²+(y2-y1)²)进行计算。

步骤3:计算得到d的值,并给出结论。

c)引导学生反思解题过程和实际意义。

3.训练指导学生进行相关练习,巩固两点间的距离公式的使用。

4.讨论a)引导学生讨论如何计算线段的中点坐标。

b)引导学生由线段的端点坐标出发,讨论如何计算线段的中点坐标,并举例说明。

c)帮助学生理解线段中点概念的几何直观意义,并加深对平均值的掌握。

5.讲解a)整理学生的讨论结果,给出计算线段中点坐标的公式。

两点间的距离与线段中点的坐标教案

两点间的距离与线段中点的坐标教案

两点间的距离与线段中点的坐标教案第一章:引言1.1 课程背景本节课将介绍两点间的距离和线段中点的坐标。

这是初中学历水平数学课程中的一个重要概念,对于学生来说,理解并掌握这些概念对于解决实际问题和进一步学习数学都是非常有帮助的。

1.2 教学目标通过本节课的学习,学生将能够:理解两点间的距离的概念及其计算方法;理解线段中点的概念及其坐标计算方法;应用这些概念解决实际问题。

第二章:两点间的距离2.1 定义两点间的距离是指在坐标平面上,两点之间的直线距离。

2.2 计算公式d = √((x2 x1)^2 + (y2 y1)^2)2.3 例题例题:计算点A(2, 3)和点B(5, 7)之间的距离。

解答:d = √((5 2)^2 + (7 3)^2)= √(3^2 + 4^2)= √(9 + 16)= √25= 5第三章:线段中点3.1 定义线段中点是指线段AB上的一点C,使得AC = CB。

3.2 坐标计算公式Cx = (x1 + x2) / 2Cy = (y1 + y2) / 23.3 例题例题:计算线段AB,其中A(2, 3)和B(5, 7)的中点C的坐标。

解答:Cx = (2 + 5) / 2 = 7 / 2 = 3.5Cy = (3 + 7) / 2 = 10 / 2 = 5中点C的坐标是(3.5, 5)。

第四章:应用4.1 实际问题在本节中,我们将应用两点间的距离和线段中点的概念来解决实际问题。

例题:在坐标平面上,两点A(2, 3)和B(5, 7)之间有一条线段。

求线段的中点坐标,并计算线段的长度。

解答:Cx = (2 + 5) / 2 = 7 / 2 = 3.5Cy = (3 + 7) / 2 = 10 / 2 = 5中点C的坐标是(3.5, 5)。

d = √((5 2)^2 + (7 3)^2)= √(3^2 + 4^2)= √(9 + 16)= √25= 5线段的长度是5。

第五章:总结5.1 本节课我们学习了两点间的距离和线段中点的概念。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

师:分析例题 生:学生讨论分析后口述完成
*运用知识 强化练习 1.已知点 A(2,3) 和点 B(8, 3) ,求线段 AB 中点的坐标.
2.已知 ABC 的三个顶点为 A(2, 2) 、 B(4,6) 、 C(3, 2) ,求 AB 边 上的中线 CD 的长度.
生:上黑板做练习,其他学生 学案上完成后,实物投影展示 师:讲评并教学生记忆公式
师生互动
师:引入提问 生:自由讨论后回答,为本组加 分。
*动脑思考 探究新知 【知识回顾】
平 面 直 角 坐 标 系 中 , 设 P1(x1, y1) , P2 (x2 , y2 ) , 则 P1P2 (x2 x1, y2 y1) .
计算向量 P1P2 .
【新知识】
我们将向量 P1P2 的模,叫做点 P1 、 P2 之间的距离,记作 P1P2 ,则
*反思总结 理论升华 思考并回答下面的问题:两点间的距离公式、线段的中点坐标公式?学
习了那种解决几何问题的方法?
师生合作. 总结表扬各小组比赛结果
*课后作业、巩固提高 1.巩固题:教科书第 48 页习题 8.1A 组第 1、2 题; 2.探究题:教科书第 48 页习题 8.1B 组第 1、2 题;
学生根据实际学习情况完成 自己的作业.
标为
x0
x1
2
x2
,
y0y12Fra biblioteky2.
生:引入公式后识记公式
*巩固知识 典型例题
师:分析例题
例 2 已知点 A(1,-2)、点 B(3,5),求线段 AB 的中点 Q 的坐标. 生:学生口述完成 分析 可以直接利用线段中点坐标公式计算。
*综合运用,提升能力
例 3 已知 ABC 的三个顶点为 A(1,0) 、 B(2,1) 、C(0,3) ,试求 BC 边 上的中线 AD 的长度.
习兴趣和求知欲望。
教学
掌握两点间的距离公式与线段中点的坐标公式的运用
重点
教学 两点间的距离公式和线段中点的坐标公式的理解
难点
课型
新授课
教学方法
讲授法,启发式教学,小组竞赛集体积分
教具
三角板
多媒体课件 学案 实物投影
教 学过 程
*揭示课题
8.1 两点间的距离与线段中点的坐标
*创设情境 兴趣导入 观察课件上的图片,由平面几何问题引入用代数方法计算两点间的距离。
师:复习提问 生:自由积极回答,为本组加分
师:分析给出公式 生:理解后识记 师:讲解例题 生:听解并掌握公式,理解书写 格式
生:学案上计算过程,实物投影 学生学案的过程 师:板书后点评
*创设情境 兴趣导入
【观察】 课件展示线段中点的的引例,引入用代数方法计算线段的中点坐标
*动脑思考 探索新知
【新知识】
(x x1, y y1) (x2 x, y2 y), 即
x x1 x2 x,
y
y1
y2
y,
解得
x x1 x2 , y y1 y2 .
2
2
师:分步骤引导推理公式
y B(x2, y2)
P(x, y)
A(x1, y1)
O
x
生:思考后自由回答,为本组加 分,配合老师
一般地,设
P1(x1, y1) 、P2 (x2 , y2 ) 为平面内任意两点,则线段 P1 P2 中点 P0 (x0 , y0 ) 的坐
师:分析引入 生:分组讨论后回答,为本组加 分
设线段的两个端点分别为 A(x1, y1) 和 B(x2 , y2 ) ,线段的中点为 P(x, y) (如图 8-1),则 AP (x x1, y y1),
PB (x2 x, y2 y), 由 于 M 为 线 段 AB 的 中 点 , 则 AM MB, 即
教案
学科: 数

学校:甘肃省高台县职业中专
姓名:
【课题】8.1 两点间的距离与线段中点的坐标

知识目标:掌握两点间的距离公式与中点坐标公式;

能力目标:用“数形结合”的方法,介绍两个公式.培养学生解决问题的能力与计算能力.


情感目标:通过创设问题情景和多媒体教学,让学生在参与中感受和体验数学美,激发学生的学
| P1P2 | P1P2 P1P2 P1P2 (x2 x1)2 ( y2 y1)2 *巩固知识 典型例题
例 1 求 A(−3,1)、B(2,−5)两点间的距离. 解 A、B 两点间的距离为
| AB | (3 2)2 1 (5)2 61
*运用知识 强化练习 练习:计算 A(-1,1)B(-3,4)两点之间的距离
相关文档
最新文档