高一古典概型练习题附详细答案
高一数学古典概型试题

高一数学古典概型试题1.下列试验中,是古典概型的为()A.种下一粒种子,观察它是否发芽B.从规格直径为250 mm±0.6 mm的一批合格产品中任意抽一件,测量其直径dC.抛一枚硬币,观察其向上的面D.某人射击中靶或不中靶【答案】C【解析】对于A,这个试验的基本事件共有“发芽”,“不发芽”两个,而“发芽”或“不发芽”这两种结果出现的机会一般是不均等的,故不是古典概型;对于B,测量值可能是从249.4 mm到250.6 mm之间的任何一个值,所有可能的结果有无限多个,故不是古典概型;对于D,射击“中靶”或“不中靶”的概率一般不相等,故不是古典概型;对于C,适合古典概型的两个基本特征,即有限性和等可能性,故是古典概型.2.掷一枚骰子,观察掷出的点数,则掷出的点数为偶数的概率为()A.B.C.D.【答案】C【解析】掷出的所有可能点数为1,2,3,4,5,6,其中偶数为2,4,6.∴P==,故选C.3. 5人并排坐在一起照相,则甲恰好坐在正中间的概率为()A.B.C.D.【答案】D【解析】选D.5人并排照相,中间位置有等可能的5种排法,∴甲坐正中间的概率为,故选D.4.已知集合A={-1,0,1},点P的坐标为(x,y),其中x∈A,y∈A.记点P落在第一象限为事件M,则P(M)等于()A.B.C.D.【答案】C【解析】略点P的坐标可能为(-1,-1),(-1,0),(-1,1),(0,0),(0,1),(1,0),(1,-1),(0,-1),(1,1)共9种,其中落在第一象限的点的坐标为(1,1),故选C.5.已知关于x的二次函数f(x)=ax2-4bx+1.设集合P={-1,1,2,3,4,5}和Q={-2,-1,1,2,3,4},分别从集合P和Q中任取一个数作为a和b的值,求函数y=f(x)在区间[1,+∞)上是增函数的概率.【答案】【解析】解:函数f(x)=ax2-4bx+1的图象的对称轴为x=,要使函数f(x)=ax2-4bx+1在区间[1,+∞)上为增函数,当且仅当a>0且≤1,即a≥2b且a>0.若a=1,则b=-2,-1;若a=2,则b=-2,-1,1;若a=3,则b=-2,-1,1;若a=4,则b=-2,-1,1,2;若a=5,则b=-2,-1,1,2.∴事件包含的基本事件的个数是2+3+3+4+4=16,又所有基本事件的个数是6×6=36,∴所求事件的概率为=.6.用随机模拟方法估计概率时,其准确程度决定于()A.产生的随机数的大小B.产生的随机数的个数C.随机数对应的结果D.产生随机数的方法【答案】B【解析】随机数容量越大,概率越接近实际数.7.某银行储蓄卡上的密码是一种含4位数字的号码,每位上的数字可以在0~9这10个数字中选取,某人未记住密码的最后一位数字,如果按密码的最后一位数字时随意按下一位,则恰好按对密码的概率为()A.B.C.D.【答案】D【解析】只考虑最后一位数字即可,从0至9这10个数字中随机选择一个作为密码的最后一位数字,则恰好按对密码的概率为.8.某部三册的小说,任意排放在书架的同一层上,则各册从左到右或从右到左恰好为第1,2,3册的概率为()A.B.C.D.【答案】B【解析】所有基本事件为123,132,213,231,312,321共6个.其中“从左到右或从右到左恰好为第1,2,3册”包含2个基本事件,故P==.9.在一个袋子中装有分别标注数字1,2,3,4,5的五个小球,这些小球除标注的数字外完全相同.现从中随机取出两个小球,则取出的小球标注的数字之和为3或6的概率是()A.B.C.D.【答案】A【解析】随机取出两个小球有(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5),共10种情况,和为3只有1种情况(1,2),和为6可以是(1,5),(2,4),共2种情况.∴P=【题型】选择题10.一个口袋中有大小相等的5个白球和3个黑球,从中有放回地取出一球,共取两次,试用随机模拟法求取出的球都是白球的概率估计.【答案】频率即为两次取球都为白球的概率估计【解析】解:利用计算器或计算机产生1到8之间的取整数值的随机数.用1,2,3,4,5表示白球,,则频6,7,8表示黑球.每两个一组,统计产生随机数的总组数N及两个数字都小于6的组数N1率即为两次取球都为白球的概率估计.。
高中数学概率几何概型古典概型精选题目(附答案)

高中数学概率几何概型古典概型精选题目(附答案)一、古典概型1.互斥事件与对立事件的概率(1)互斥事件是不可能同时发生的两个事件;对立事件除要求这两个事件不同时发生外,还要求二者必须有一个发生.因此对立事件一定是互斥事件,但互斥事件不一定是对立事件,对立事件是互斥事件的特殊情况.(2)当事件A与B互斥时,P(A+B)=P(A)+P(B),当事件A与B对立时,P(A+B)=P(A)+P(B)=1,即P(A)=1-P(B).(3)求复杂事件的概率通常有两种方法:一是将所求事件转化成彼此互斥的事件的和;二是先求其对立事件的概率,然后再应用公式P(A)=1-P(A)求解.2.古典概型的求法对于古典概型概率的计算,关键是分清基本事件的总数n与事件A包含的基本事件的个数m,有时需用列举法把基本事件一一列举出来,再利用公式P(A)=mn求出事件发生的概率,这是一个形象、直观的好方法,但列举时必须按照某种顺序,以保证不重复、不遗漏.1.甲、乙两校各有3名教师报名支教,其中甲校2男1女,乙校1男2女.(1)若从甲校和乙校报名的教师中各任选1名,写出所有可能的结果,并求选出的2名教师性别相同的概率;(2)若从报名的6名教师中任选2名,写出所有可能的结果,并求选出的2名教师来自同一学校的概率.[解]甲校两名男教师分别用A,B表示,女教师用C表示;乙校男教师用D 表示,两名女教师分别用E,F表示.(1)从甲校和乙校报名的教师中各任选1名的所有可能的结果为:(A,D),(A,E),(A,F),(B,D),(B,E),(B,F),(C,D),(C,E),(C,F),共9种.从中选出的2名教师性别相同的结果有:(A,D),(B,D),(C,E),(C,F),共4种,所以选出的2名教师性别相同的概率为P=4 9.(2)从甲校和乙校报名的教师中任选2名的所有可能的结果为:(A,B),(A,C),(A,D),(A,E),(A,F),(B,C),(B,D),(B,E),(B,F),(C,D),(C,E),(C,F),(D,E),(D,F),(E,F),共15种.从中选出的2名教师来自同一学校的结果有:(A,B),(A,C),(B,C),(D,E),(D,F),(E,F),共6种.所以,选出的2名教师来自同一学校的概率为P=615=25.注:解决与古典概型问题时,把相关的知识转化为事件,列举基本事件,求出基本事件和随机事件的个数,然后利用古典概型的概率计算公式进行计算.2.某导演先从2个金鸡奖和3个百花奖的5位演员名单中挑选2名演主角,后又从剩下的演员中挑选1名演配角.这位导演挑选出2个金鸡奖演员和1个百花奖演员的概率为()A.13 B.110C.25 D.310解析:选D设2个金鸡奖演员编号为1,2,3个百花奖演员编号为3,4,5.从编号为1,2,3,4,5的演员中任选3名有10种挑选方法:(1,2,3),(1,2,4),(1,2,5),(1,3,4),(1,3,5),(1,4,5),(2,3,4),(2,3,5),(2,4,5),(3,4,5),共10种.其中挑选出2名金鸡奖和1名百花奖的有3种:(1,2,3),(1,2,4),(1,2,5),故所求的概率为P=3 10.3.随着经济的发展,人们生活水平的提高,中学生的营养与健康问题越来越得到学校与家长的重视.从学生体检评价报告单了解到我校3 000名学生的体重发育评价情况,得下表:0.15.(1)求x的值;(2)若用分层抽样的方法,从这批学生中随机抽取60名,问应在肥胖学生中抽多少名?(3)已知y ≥243,z ≥243,求肥胖学生中男生不少于女生的概率.解:(1)由题意得,从这批学生中随机抽取1名学生,抽到偏痩男生的概率为0.15,可知x3 000=0.15,所以x =450.(2)由题意,可知肥胖学生人数为y +z =500(人).设应在肥胖学生中抽取m 人,则m 500=603 000.所以m =10.即应在肥胖学生中抽10名.(3)由题意,可知y +z =500,且y ≥243,z ≥243,满足条件的基本事件如下: (243,257),(244,256),…,(257,243),共有15组.设事件A :“肥胖学生中男生不少于女生”,即y ≤z ,满足条件的(y ,z )的基本事件有:(243,257),(244,256),…,(250,250),共有8组,所以P (A )=815.所以肥胖学生中男生不少于女生的概率为815.二、几何概型(1)几何概型满足的两个特点:①等可能性;②无限性. (2)几何概型的概率求法公式P (A )=构成事件A 的区域长度(面积、体积)试验的全部结果长度(面积、体积).4.(1)已知平面区域D 1=⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫(x ,y )| ⎩⎨⎧|x |<2,|y |<2,D 2={}(x ,y )|(x -2)2+(y -2)2<4.在区域D 1内随机选取一点P ,则点P 恰好取自区域D 2的概率是( )A.14 B.π4 C.π16D.π32(2)把一根均匀木棒随机地按任意点折成两段,则“其中一段长度大于另一段长度2倍”的概率为________.[解析] (1)因区域D 1和D 2的公共部分是一个半径为2的圆的14,从而所求概率P =14×22π42=π16,故选C.(2)将木棒折成两段的折点应位于距木棒两端点小于13木棒长度的区域内,故所求概率为2×13=23.[答案] (1)C (2)23 注:几何概型问题的解题方法(1)由于基本事件的个数和结果的无限性,其概率就不能应用P (A )=mn 求解,因此需转化为几何度量(如长度、面积、体积等)的比值求解.(2)在解题时要准确把握,要把实际问题作合理的转化;要注意古典概型和几何概型的区别,正确地选用几何概型的类型解题.5.如图,两个正方形的边长均为2a ,左边正方形内四个半径为a2的圆依次相切,右边正方形内有一个半径为a 的内切圆,在这两个图形上各随机撒一粒黄豆,落在阴影内的概率分别为P 1,P 2,则P 1,P 2的大小关系是( )A .P 1=P 2B .P 1>P 2C .P 1<P 2D .无法比较解析:选A 由题意知正方形的边长为2a .左图中圆的半径为正方形边长的14,故四个圆的面积和为πa 2,右图中圆的半径为正方形边长的一半,圆的面积也为πa 2,故P 1=P 2.6.在区间[0,2]上随机地取一个数x ,则事件“-1≤log 12⎝ ⎛⎭⎪⎫x +12≤1”发生的概率为( )A.34B.23C.13D.14解析:选A 不等式-1≤log 12⎝ ⎛⎭⎪⎫x +12≤1可化为log 122≤log 12⎝ ⎛⎭⎪⎫x +12≤log 1212,即12≤x +12≤2,解得0≤x ≤32,故由几何概型的概率公式得P =32-02-0=34.7.圆具有优美的对称性,以圆为主体元素构造的优美图案在工艺美术、陶瓷、剪纸等上有着广泛的应用,如图1,图2,图3,图4,其中图4中的3个阴影三角形的边长均为圆的半径,记图4中的阴影部分区域为M ,现随机往图4的圆内投一个点A ,则点A 落在区域M 内的概率是( )A.34πB.334πC.2πD.3π解析:选B 设圆内每一个小正三角形的边长为r , 则一个三角形的面积为12×r ×32r =34r 2, ∴阴影部分的面积为334r 2. 又圆的面积为πr 2,∴点A 落在区域M 内的概率是334r 2πr 2=334π.。
古典概型第一课时练习与答案-数学高一必修3第一章概率3.2人教A版

3.2 古典概型3.2 . 1 古典概型测试题知识点1 事件以及古典概型的判定1.某校高一年级要组建数学、计算机、航空模型三个兴趣小组,某学生只选报其中的2个,则基本事件共有( )A .1个B .2个C .3个D .4个2.下列试验是古典概型的为________.①从6名同学中选出4名参加数学竞赛,每人被选中的可能性大小;②同时掷两颗骰子,点数和为7的概率;③近三天中有一天降雨的概率;④10人站成一排,其中甲、乙相邻的概率.知识点2 古典概型的求解3.一枚硬币连掷2次,恰好出现一次正面的概率是( )A.12B.14C.34D .0 4.三张卡片上分别写上字母E ,E ,B ,将三张卡片随机地排成一行,恰好排成英文单词BEE 的概率为( )A.12B.13C.14D.235.从{1,2,3,4,5}中随机选取一个数为a ,从{1,2,3}中随机选取一个数为b ,则b>a 的概率是( ) A.45 B.35 C.25 D.156.一袋中装有大小相同,编号分别为1,2,3,4,5,6,7,8的八个球,从中有放回地每次取一个球,共取两次,则取得两个球的编号和不小于15的概率为( )A.132B.164C.332D.3647.(2013·重庆高考)若甲、乙、丙三人随机地站成一排,则甲、乙两人相邻而站的概率为________.8.(2014·新课标全国卷Ⅰ)将2本不同的数学书和1本语文书在书架上随机排成一行,则2本数学书相邻的概率为________.9.从含有两件正品a 1,a 2和一件次品b 1的三件产品中,每次任取一件,每次取出后不放回,连续取两次,求取出的两件产品中恰有一件次品的概率.10.甲、乙两校各有3名教师报名支教,其中甲校2男1女,乙校1男2女.(1)若从甲校和乙校报名的教师中各任选1名,写出所有可能的结果,并求选出的2名教师性别相同的概率;(2)若从报名的6名教师中任选2名,写出所有可能的结果,并求选出的2名教师来自同一学校的概率.11.甲、乙两人玩一种游戏,每次由甲、乙各伸出1到5根手指,若和为偶数算甲赢,否则算乙赢.(1)若A 表示和为6的事件,求P(A).(2)通过计算甲赢的概率和乙赢的概率,说明游戏规则是否公平?知识点3 概率的一般加法公式12.初二(1)班有60%的同学参加数学竞赛,有50%的同学参加物理竞赛,有20%的同学既参加数学竞赛又参加物理竞赛,求参加物理或数学竞赛的人所占的比例.13.学校决定选两名优秀考生参加数学竞赛,甲被选中的概率为0.8,乙被选中的概率为0.7,甲、乙同时被选中的概率为0.6,问至少有一考生被选中的概率是多少?【参考答案】1.【解析】 该生选报的所有可能情况是{数学和计算机},{数学和航空模型},{计算机和航空模型},所以基本事件数为3个.【答案】 C2.【解析】 ①②④是古典概型,因为符合古典概型的定义和特点.③不是古典概型,因为不符合等可能性,受多方面因素影响.【答案】 ①②④3.【解析】 列举出所有基本事件,找出“只有一次正面”包含的结果.一枚硬币连掷2次,基本事件有(正,正),(正,反),(反,正),(反,反)共4个,而只有一次出现正面的包括(正,反),(反,正)2个,故其概率为24=12. 【答案】 A4.【解析】 三张卡片的排列方法有EEB ,EBE ,BEE ,共3种,且等可能出现,则恰好排成英文单词3【答案】 B5.【解析】 随机选取的a ,b 组成实数对(a ,b),有(1,1),(1,2),(1,3),(2,1),(2,2),(2,3),(3,1),(3,2),(3,3),(4,1),(4,2),(4,3),(5,1),(5,2),(5,3),共15种.其中b>a 的有(1,2),(1,3),(2,3),共3种,所以b>a 的概率为315=15. 【答案】 D6.【解析】 因为所有基本事件数为8×8=64(种),且这些球大小相同,所以每个球被取到的机会相同,属于古典概型.记事件A ={取得两个球的编号和不小于15},则A 包含的结果有:(7,8),(8,7),(8,8)共3种,所以P(A)=364. 【答案】 D7.【解析】 甲、乙、丙三人随机地站成一排有(甲乙丙)、(甲丙乙)、(乙甲丙)、(乙丙甲)、(丙甲乙)、(丙乙甲)共6种排法,甲、乙相邻而站有(甲乙丙)、(乙甲丙)、(丙甲乙)、(丙乙甲)共4种排法,由概率计算公式得甲、乙两人相邻而站的概率为46=23. 【答案】 238.【解析】 两本不同的数学书用a 1,a 2表示,语文书用b 表示,则Ω={(a 1,a 2,b),(a 1,b ,a 2),(a 2,a 1,b),(a 2,b ,a 1),(b ,a 1,a 2),(b ,a 2,a 1)}.于是两本数学书相邻的情况有4种,故所求概率为46=23. 【答案】 239.【解】 每次取出一个,取后不放回地连续取两次,其一切可能的结果组成的基本事件有6个,即(a 1,a 2),(a 1,b 1),(a 2,a 1),(a 2,b 1),(b 1,a 1),(b 1,a 2).其中小括号内左边的字母表示第1次取出的产品,右边的字母表示第2次取出的产品.总的事件个数为6,而且可以认为这些基本事件是等可能的.用A 表示“取出的两件中恰有一件次品”,这一事件,所以A ={(a 1,b 1),(a 2,b 1),(b 1,a 1),(b 1,a 2)}.因为事件A 由4个基本事件组成,所以P(A)=46=23. 所以取出的两件产品中恰有一件次品的概率为23. 10.【解】 (1)甲校两男教师分别用A 、B 表示,女教师用C 表示;乙校男教师用D 表示,两女教师分别用E 、F 表示.从甲校和乙校报名的教师中各任选1名的所有可能的结果为:(A ,D),(A ,E),(A ,F),(B ,D),(B ,E),(B ,F),(C ,D),(C ,E)(C ,F)共9种.从中选出的两名教师性别相同的结果有:(A ,D)(B ,D)(C ,E)(C ,F)共4种,选出的两名教师性别相9(2)从甲校和乙校报名的教师中任选2名的所有可能的结果为:(A ,B)(A ,C)(A ,D)(A ,E)(A ,F)(B ,C)(B ,D)(B ,E)(B ,F)(C ,D)(C ,E)(C ,F)(D ,E)(D ,F)(E ,F)共15种,从中选出两名教师来自同一学校的结果有:(A ,B)(A ,C)(B ,C)(D ,E)(D ,F)(E ,F)共6种选出的两名教师来自同一学校的概率为P =615=25. 11.【解】 (1)基本事件与点集S ={|(x ,y)|x ∈N ,y ∈N ,1≤x ≤5,1≤x ≤5}的元素一一对应,这样基本事件的总数应为5×5=25.而事件A 所包含的基本事件为(1,5),(2,4),(3,3),(4,2),(5,1)共5个,所以P(A)=525=15. (2)此游戏不公平.和为偶数的基本事件有13个,分别为(1,1),(1,3),(1,5),(2,2),(2,4),(3,1),(3,3),(3,5),(4,2),(4,4),(5,1),(5,3),(5,5).故甲赢的概率为1325,乙赢的概率为1225.所以此游戏规则不公平.12.【解】 设事件A =“参加数学竞赛的人”,事件B =“参加物理竞赛的人”,∴P(A)=0.6,P(B)=0.5,P(A ∩B)=0.2.∴参加物理或数学竞赛的人所占比例为:P(A ∪B)=P(A)+P(B)-P(A ∩B)=0.6+0.5-0.2=0.9=90%.13.【解】设A =“甲被选中”,B =“乙被选中”,则“甲、乙至少有一个被选中”为事件A ∪B ,所以P(A ∪B)=P(A)+P(B)-P(A ∩B)=0.8+0.7-0.6=0.9.。
人教版高中数学必修第二册10.1.3 古典概型 同步练习(含答案)

人教版高中数学必修第二册10.1.3古典概型同步练习一、选择题(本大题共8小题,每小题5分,共40分)1.下列试验中,是古典概型的为()A.种下一粒花生,观察它是否发芽B.在正方形ABCD内任意确定一点P,观察点P是否与正方形的中心O重合C.从1,2,3,4四个数中任取两个数,求所取两数之一是2的概率D.在区间[0,5]内任取一个实数,求该实数小于2的概率2.甲、乙、丙3人站成一排,则甲恰好站在中间的概率为()A.13B.12C.23D.163.有两张卡片,一张的正、反面分别写着数字0与1,另一张的正、反面分别写着数字2与3,将两张卡片排在一起组成一个两位数,则所组成的两位数为奇数的概率是()A.16B.13C.12D.384.每年的3月5日为学雷锋纪念日,某班有青年志愿者5名,其中男生3人,女生2人,现需选出2名青年志愿者到社区做公益宣传活动,则选出的2名青年志愿者性别相同的概率为()A.35B.25C.15D.3105.某学校食堂推出两款优惠套餐,甲、乙、丙三位同学选择同一款套餐的概率为()A.110B.18C.14D.126.若从数字1,2,3,4,5中任取两个不同的数字构成一个两位数,则这个两位数大于40的概率为()A.45B.35C.25D.157.A,B,C三人同时参加一场活动,活动前A,B,C三人都把手机存放在了A的包里.活动结束后B,C两人去拿手机,发现三人手机外观看上去都一样,于是这两人每人随机拿出一部,则这两人中只有一人拿到自己手机的概率是()A.12B.13C.23D.168.有两人从一座6层大楼的底层进入电梯,假设每个人自第二层开始在每一层离开电梯是等可能的,则这两人在不同层离开电梯的概率是()A.16B.15C.45D.56二、填空题(本大题共4小题,每小题5分,共20分)9.抛掷一枚质地均匀的骰子,则落地时,向上的点数是2的倍数的概率是.10.从编号分别为1,2,3,4的4张卡片中随机抽取一张,放回后再随机抽取一张,则第二次抽得的卡片上的数字能被第一次抽得的卡片上的数字整除的概率为.11.甲、乙两名运动员各自等可能地从红、白、蓝3种颜色的运动服中选择1种,则他们选择相同颜色运动服的概率为.12.从数字1,2,3,4中,若是有放回地取出两个数字,则其和为奇数的概率为;若是不放回地取出两个数字,其和为奇数的概率为.三、解答题(本大题共2小题,共20分)13.(10分)5张奖券中有2张是有奖的,先由甲抽1张,然后由乙抽1张,抽后不放回,求:(1)甲中奖的概率P(A);(2)甲、乙都中奖的概率P(B);(3)只有乙中奖的概率P(C);(4)乙中奖的概率P(D).14.(10分)质量监督局检测某种产品的三个质量指标x,y,z,用综合指标Q=x+y+z核定该产品的等级.若Q≤5,则核定该产品为一等品.现从一批该产品中,随机抽取10件产品作为样本,其质量指标列表如下:产品编号A1A2A3A4A5质量指标(x,y,z)(1,1,2)(2,1,2)(2,2,2)(1,3,1)(1,2,3)产品编号A6A7A8A9A10质量指标(x,y,z)(1,2,2)(2,3,1)(3,2,1)(1,1,1)(2,1,1)(1)利用上表提供的样本数据估计该批产品的一等品率;(2)在该样品的一等品中,随机抽取2件产品,设事件B为“在取出的2件产品中,每件产品的综合指标均满足Q≤4”,求事件B的概率.15.(5分)某城市有连接8个小区A,B,C,D,E,F,G,H和市中心O的整齐方格形道路网,每个小方格均为正方形,如图L10-1-3所示,某人从道路网中随机地选择一条最短路径,由小区A前往小区C,则他不经过市中心O的概率是()图L10-1-3A.13B.23C.14D.3416.(15分)随着甜品的不断创新,现在的甜品无论是造型还是口感都十分诱人,有颜值、有口味、有趣味的产品更容易得到甜品爱好者的喜欢.某“网红”甜品店出售几种甜品,由于口味独特,受到越来越多人的喜爱,好多外地的游客专门到该甜品店来品尝“打卡”,已知该甜品店同一种甜品售价相同,该店为了了解每个种类的甜品销售情况,专门收集了该店这个月里五种“网红甜品”的销售情况,统计后得如下表格:甜品种类A甜品B甜品C甜品D甜品E甜品销售总额(万元)105202012销售量(千份)521058利润率0.40.20.150.250.2(利润率是指一份甜品的销售价格减去成本得到的利润与该甜品的销售价格的比值)(1)从该甜品店本月卖出的甜品中随机选一份,求这份甜品的利润率高于0.2的概率;(2)假设每种甜品利润率不变,销售一份A甜品获利x1元,销售一份B甜品获利x2元,销售一份C甜品获利x3元,销售一份D甜品获利x4元,销售一份E甜品获利x5元,设 = 1+ 2+ 3+ 4+ 55,若该甜品店从五种“网红甜品”中随机卖出两种不同的甜品,求至少有一种甜品获利超过 元的概率.参考答案与解析1.C[解析]对于A,发芽与不发芽的概率一般不相等,不满足等可能性不是古典概型;对于B,正方形内点的个数是无限的,不满足有限性不是古典概型;对于C,满足有限性和等可能性,是古典概型;对于D,区间内的实数有无限多个,不满足有限性不是古典概型.故选C.2.A[解析]甲、乙、丙3人站成一排,该试验有甲乙丙,甲丙乙,乙甲丙,乙丙甲,丙甲乙,丙乙甲,共6个样本点,而事件“甲恰好站在中间”包含的样本点的个数为2,所以甲恰好站在中间的概率P=26=13,故选A.3.C[解析]该试验有12,13,20,30,21,31,共6个样本点,事件“所组成的两位数为奇数”包含的样本点有13,21,31,共3个,因此所组成的两位数为奇数的概率是36=12,故选C.4.B[解析]将3名男生用A,B,C表示,2名女生用a,b表示,从5名青年志愿者中选出2人,该试验的样本空间Ω={(A,B),(A,C),(A,a),(A,b),(B,C),(B,a),(B,b),(C,a),(C,b),(a,b)},共包含10个样本点,其中事件“选出的2名青年志愿者性别相同”包含的样本点有(A,B),(A,C),(B,C),(a,b),共4个,则选出的2名青年志愿者性别相同的概率P=410=25.故选B.5.C[解析]设两款优惠套餐分别为A,B,列举基本事件如图所示.由图可知,样本空间中共有8个样本点,其中“甲、乙、丙三位同学选择同一款套餐”包括(A,A,A),(B,B,B),共2个样本点,故所求概率P=28=14.6.C[解析]从数字1,2,3,4,5中任取两个不同的数字构成一个两位数,该试验共有20个样本点,其中事件“这个两位数大于40”包含的样本点有8个,所以所求概率P=820=25.7.B[解析]设A,B,C三人的手机分别为A',B',C',则B,C两人拿到手机的样本空间Ω={(B-A',C-B'),(B-A',C-C'),(B-B',C-A'),(B-B',C-C'),(B-C',C-A'),(B-C',C-B')},共有6个样本点.事件“这两人中只有一人拿到自己手机”包含的样本点有(B-A',C-C'),(B-B',C-A'),共2个,故所求概率为26=13,故选B.8.C[解析]设这两人为A,B,则这两人离开电梯的样本空间Ω={(A2,B2),(A2,B3),(A2,B4),(A2,B5),(A2,B6),(A3,B2),(A3,B3),…,(A6,B6)},共包含25个样本点.事件“该两人在相同层离开电梯”共包含(A2,B2),(A3,B3),(A4,B4),(A5,B5),(A6,B6)5个样本点,所以“这两人在不同层离开电梯”共包含20个样本点,所求概率P=2025=45,故选C.9.12[解析]抛掷一枚质地均匀的骰子,观察其向上的点数,该试验共有6个样本点,事件“向上的点数是2的倍数”所包含的样本点的个数为3,所以所求概率为36=12.10.12[解析]从编号分别为1,2,3,4的4张卡片中随机抽取一张,放回后再随机抽取一张,则样本空间中样本点的个数为16,事件“第二次抽得的卡片上的数字能被第一次抽得的卡片上的数字整除”包含的样本点有8个,分别为(1,1),(1,2),(1,3),(1,4),(2,2),(2,4),(3,3),(4,4),所以第二次抽得的卡片上的数字能被第一次抽得的卡片上的数字整除的概率P=816=12.11.13[解析]试验的样本空间Ω={(红,红),(红,白),(红,蓝),(白,红),(白,白),(白,蓝),(蓝,红),(蓝,白),(蓝,蓝)},共包含9个样本点,设事件A=“甲、乙选择相同颜色的运动服”,则A={(红,红),(白,白),(蓝,蓝)},共包含3个样本点,故所求的概率P=39=13. 12.1223[解析]若是有放回地取出两个数字,则样本空间Ω1={(m,n)|m,n∈{1,2,3,4}},共包含16个样本点,其中事件“和为奇数”包括(1,2),(1,4),(2,1),(2,3),(3,2),(3,4),(4,1),(4,3),共8个样本点,故所求概率P1=816=12.若是不放回地取出两个数字,则样本空间Ω2={(1,2),(1,3),(1,4),(2,1),(2,3),(2,4),(3,1),(3,2),(3,4),(4,1),(4,2),(4,3)},共12个样本点,事件“和为奇数”包括8个样本点,故所求概率P2=812=23.13.解:将5张奖券编号为1,2,3,4,5,其中4,5为有奖奖券,用(x,y)表示甲抽到号码x,乙抽到号码y,则样本空间中所有的样本点为(1,2),(1,3),(1,4),(1,5),(2,1),(2,3),(2,4),(2,5),(3,1),(3,2),(3,4),(3,5),(4,1),(4,2),(4,3),(4,5),(5,1),(5,2),(5,3),(5,4),共20个.(1)“甲中奖”包含8个样本点,分别为(4,1),(4,2),(4,3),(4,5),(5,1),(5,2),(5,3),(5,4),∴P(A)=820=25.(2)“甲、乙都中奖”包含2个样本点,分别为(4,5),(5,4),∴P(B)=220=110.(3)“只有乙中奖”包含6个样本点,分别为(1,4),(1,5),(2,4),(2,5),(3,4), (3,5),∴P(C)=620=310.(4)“乙中奖”包含8个样本点,分别为(1,4),(1,5),(2,4),(2,5),(3,4), (3,5),(4,5),(5,4),∴P(D)=820=25.14.解:(1)计算10件产品的综合指标Q,如下表:产品编号A1A2A3A4A5A6A7A8A9A10Q4565656634其中Q≤5的有A1,A2,A4,A6,A9,A10,共6件,故该样本的一等品率为610=0.6,从而估计该批产品的一等品率为0.6.(2)在该样本的一等品中,随机抽取2件产品,该试验的样本点有{A1,A2},{A1,A4},{A1,A6},{A1,A9},{A1,A10},{A2,A4},{A2,A6},{A2,A9},{A2,A10},{A4,A6},{ A4,A9},{A4,A10},{A6,A9},{A6,A10},{A9,A10},共15个.在该样本的一等品中,综合指标满足Q≤4的产品编号分别为A1,A9,A10,则事件B包含的样本点有{A1,A9},{A1,A10},{A9,A10},共3个,所以P(B)=315=15.15.A[解析]该试验的样本点有A→G→B→F→C,A→G→O→H→C,A→E→D→H→C,A→G →O→F→C,A→E→O→H→C,A→E→O→F→C,共6个,记“此人不经过市中心O”为事件M,则M包含的样本点有A→G→B→F→C,A→E→D→H→C,共2个,∴P(M)=26=13,即他不经过市中心O的概率为13,故选A.16.解:(1)由题意知本月共卖出3万份甜品,利润率高于0.2的是A甜品和D甜品,共有1万份,设“从本月卖出的甜品中随机选一份,这份甜品的利润率高于0.2”为事件A,则P(A)=13.(2)由题意得销售一份A,B,C,D,E甜品分别获利8,5,3,10,3元,∴ =8+5+3+10+35=295,故A甜品和D甜品获利超过 元.从五种“网红甜品”中随机卖出两种不同的甜品,该试验共有10个样本点,分别为{A,B},{A,C},{A,D},{A,E},{B,C},{B,D},{B,E},{C,D},{C,E},{D,E},设“至少有一种甜品获利超过 元”为事件B,则事件B包含的样本点有7个,分别为{A,B},{A,C},{A,D},{A,E},{B,D},{C,D},{D,E},故至少有一种甜品获利超过 元的概率P(B)=710.。
古典概型练习题(有详细答案)

古典概型练习题1.从12个同类产品(其中10个正品,2个次品)中任意抽取3个,下列事件是必然事件的是A.3个都是正品B.至少有一个是次品C.3个都是次品D.至少有一个是正品2.给出下列四个命题:①“三个球全部放入两个盒子,其中必有一个盒子有一个以上的球”是必然事件②“当x为某一实数时可使20x<”是不可能事件③“明天要下雨”是必然事件④“从100个灯泡中取出5个,5个都是次品”是随机事件.其中正确命题的个数是( )A. 0B. 1C.2D.34.袋中有3个白球和2个黑球,从中任意摸出2个球,则至少摸出1个黑球的概率为()A. 37B.710C.110D.3105.从标有1,2,3,4,5,6,7,8,9的9张纸片中任取2张,那么这2 张纸片数字之积为偶数的概率为( )A. 12B.718C.1318D.11186.某小组共有10名学生,其中女生3名,现选举2名代表,至少有1名女当选的概率为( )A.715B.815C.35D. 17.下列对古典概型的说法中正确的个数是 ( )①试验中所有可能出现的基本事件只有有限个;②每个事件出现的可能性相等;③基本事件的总数为n,随机事件A包含k个基本事件,则()kP An=;④每个基本事件出现的可能性相等;A. 1B. 2C. 3D. 48.从装有2个红球和2个白球的口袋中任取两球,那么下列事件中互斥事件的个数是( )⑴至少有一个白球,都是白球;⑵至少有一个白球,至少有一个红球;⑶恰有一个白球,恰有2个白球;⑷至少有一个白球,都是红球.A.0B.1C.2D.39.下列各组事件中,不是互斥事件的是 ( )A.一个射手进行一次射击,命中环数大于8与命中环数小于6B.统计一个班数学期中考试成绩,平均分数不低于90分与平均分数不高于90分C.播种菜籽100粒,发芽90粒与发芽80粒D.检查某种产品,合格率高于70%与合格率为70%10.若事件A 、B 是对立事件,则P(A)+P(B)=________________.11.从1,2,3,4,5这5个数中任取两个,则这两个数正好相差1的概率是________。
高一数学古典概型练习题

【古典概型】本卷共100分,考试时间90分钟一、选择题 (每小题4分,共40分)1. 下列事件为随机事件的是( )A .抛一个硬币,落地后正面朝上或反面朝上B .边长为a,b 的长方形面积为abC .从100个零件中取出2个,2个都是次品D .平时的百分制考试中,小强的考试成绩为105分2. 甲、乙、丙三名同学按任意次序站成一排,则甲站在两端的概率是( )A .13B .12C .56D .233. 如图,是由一个圆、一个三角形和一个长方形构成的组合体,现用红、蓝两种颜色为其涂色,每个图形只能涂一种颜色,则三个形状颜色不全相同的概率为(A .34 B.38 C. 14D.18 4. 在含有30个个体的总体中,抽取一个容量为5的样本,则个体a 被抽到的概率为 A .301 B .61 C .51 D .65 5. 盒中有10只螺丝钉,其中有3只是坏的,现从盒中随机地抽取4只,那么2930为( ) A.恰有1只坏的概率 B.恰有2只好的概率C.4只全是好的概率 D.至多2只坏的概率 6. 从一箱产品中随机地抽取一件,设事件A={抽到一等品},事件B ={抽到二等品},事件C ={抽到三等品},且已知 P (A )= 0.65 ,P(B)=0.2 ,P(C)=0.1。
则事件“抽到的不是一等品”的概率为( )A. 0.7B. 0.65C. 0.35D. 0.37. 某家庭电话在家里有人时,打进电话响第一声被接的概率为0.1,响第二声时被接的概率为0.2,响第三声时被接的概率为0.4,响第四声时被接的概率为0.1,那么电话在响前4声内被接的概率是 ( )A .0.992 B. 0.0012 C .0.8 D .0.00088. 在5道题中有3道理科题和2道文科题,如果不放回地依次抽取2道题,则在第一次抽到理科题的条件下,第二次抽到理科题的概率为( )A . 14B . 13C .12D .239. 从12个同类产品(其中10个是正品,2个是次品)中任意抽取3个的必然事件是A.3个都是正品B.至少有1个是次品C.3个都是次品D.至少有1个是正品10. 右图中有一个信号源和五个接收器。
高一数学苏教必修同步练习: 古典概型 含答案

3.2 古典概型1、掷一枚骰子,则掷得奇数点的概率是( ) A.16 B. 12 C. 13D. 14 2、在所有的两位数(10~99)中任取一个数,则这个数能被2或3整除的概率是( ) A.56 B.45 C.23 D.123、先后抛掷两枚均匀的正方体骰子(它们的六个面分别标有点数1,2,3,4,5,6),骰子朝上的面的点数分别为,x y ,则2log 1x y 的概率为( ) A. 16 B. 536 C. 112 D. 124、从1,2,3,4这4个数中,不放回地任意取两个数,两个数都是奇数的概率是( ) A .16 B .14 C .13 D .12 5、甲、乙两队进行排球决赛,现在的情形是甲队只要再赢一局就获冠军,乙队需要再贏两局才能得冠军.若两队胜每局的概率相同,则甲队获得冠军的概率为( ) A.12B. 35C. 23D. 34 6、从甲、乙等5名学生中随机选出2人,则甲被选中的概率为( ) A.15B. 25C. 825D. 925 7、从分别写有A 、B 、C 、D 、E 的5张卡片中任取2张,这2张卡片上的字母恰好是按字母顺序相邻的概率是( )A.15B. 25C. 310D. 710 8、已知函数3221()13f x x ax b x =+++,若a 是从1,2,3三个数中任取的一个数, b 是从0,1,2三个数中任取的一个数,则该函数有两个极值点的概率为( ) A.79B. 13C. 59D. 23 9、集合{}{}2,3,1,2,3A B ==从,A B 中各任意取一个数,则这两数之和等于4的概率是( ) A.23B.12C.13D.16 10、设集合{1,2},{1,2,3},A B ==分别从集合A 和B 中随机取一个数a 和,b 确定平面上的一个点(,),P a b 记“点(,)P a b 落在直线x y n +=上”为事件(25,N),n C n n ≤≤∈若事件n C 的概率最大,则n 的所有可能值为( )A.3B.4C.2和5D.3和411、从1,2,3,4这四个数中一次随机地取两个数,则其中一个数是另一个数的两倍的概率是 .12、袋中有形状、大小都相同的4只球,其中1只白球,1只红球,2只黄球,从中一次随机摸出2只球,则这2只球颜色不同的概率为__________.13、从n 个正整数1,2,,n ,中任意取出两个不同的数,若取出的两数之和等于5的概率为114,则n =__________. 14、在正六边形的6个顶点中随机选择4个顶点,则构成的四边形是梯形的概率为__________ 15、一个袋中装有四个形状大小完全相同的球,球的编号分别为1,2,3,4.(1)从袋中随机抽取两个球,求取出的球的编号之和不大于4的概率;(2)先从袋中随机取一个球,该球的编号为m ,将球放回袋中,然后再从袋中随机取一个球,该球的编号为n ,求2n m <+的概率.答案以及解析1答案及解析:答案:B解析:掷一枚骰子可能出现奇数点,也可能出现偶数点,且出现奇数点与偶数点的概率相同,故概率为12.2答案及解析:答案:C解析:3答案及解析:答案:C解析:因为2log 1x y =,所以{}2,1,2,3,4,5,6x y x =∈,{}1,2,3,4,5,6y ∈,所以1,2,3,2,4,6,x x x y y y ⎧⎧======⎧⎨⎨⎨⎩⎩⎩共三种,故所求概率为316612=⨯.4答案及解析:答案:A解析:5答案及解析:答案:D解析:方法一:以甲队再打的局数分类讨论,若甲队再打一局得冠军的概率为1p ,则112p =, 若甲队再打两局得冠军的概率为2p , 则2111224p =⨯=, 故甲队获得冠军的概率为1234p p +=,故选D. 方法二:设乙队获得冠军的概率为1p ,则1111224p =⨯=, 故甲队获得冠军的概率为1314p p =-=,故选D.6答案及解析:答案:B 解析:所求概率为142525C P C ==,故选B. 考点:古典概型【名师点睛】如果基本事件的个数比较少,可用列举法把古典概型试验所含的基本事件一一列举出来,然后再求出事件A 中的基本事件数,利用公式()m P A n=求出事件A 的概率,这是一个形象直观的好方法,但列举时必须按照某一顺序做到不重不漏.如果基本事件个数比较多,列举有一定困难时,也可借助两个计数原理及排列组合知识直接计算m ,n ,再运用公式()m P A n =求概率.7答案及解析:答案:B解析:可看作分两次抽取,第一次任取一张有5种方法,第二次从剩下的4张中再任取一张有4种方法,因为(,)B C 与(,)C B 是一样的,故试验的所有基本事件总数为54210⨯÷=个,两字母恰好是相邻字母的有()()()(),,,,,,,A B B C C D D E 4个,故P= 42105P ==.8答案及解析:答案:D解析:求导可得22'()2f x x ax b =++ 要满足题意需2220x ax b ++=有两个不等实根,即224()0a b ∆=->,即a b >,又,?a b 的取法共有339⨯=种, 其中满足a b >的有()()()1,0,2,0,2,1,()()()3,0,3,1,3,2共6种, 故所求的概率为6293P ==.9答案及解析:答案:C解析:从,A B 中各取一个数有()()()()()()2,12,22,33,1,3,23,3共6种情况,其中和为4的有()()2,2,3,1共2种情况,所以所求概率2163P ==,故选C 。
2024-2025年北师大版数学必修第一册7.2.2古典概型的应用(带答案)

2.2 古典概型的应用必备知识基础练知识点一 互斥事件的概率公式的应用1.如果事件A 与B 是互斥事件,且事件A ∪B 的概率是45 ,事件A 的概率是事件B 的概率的3倍,那么事件A 的概率为( )A .15B .25C .35D .452.一盒中装有各种颜色的球共12个,其中5个红球,4个黑球,2个白球,1个绿球,从中随机取出1个球,求:(1)取出的1个球是红球或黑球的概率; (2)取出的1个球是红球或黑球或白球的概率.知识点二 对立事件概率公式的应用3.甲、乙两人下棋,和棋的概率为12 ,乙获胜的概率为13 ,求:(1)甲获胜的概率; (2)甲不输的概率.知识点三 古典概型在统计中的应用4.某校从高一年级某次数学竞赛的成绩中随机抽取100名学生的成绩,分组为[50,60),[60,70),[70,80),[80,90),[90,100],统计后得到频率分布直方图如图所示.(1)试估计这组样本数据的众数和中位数(结果精确到0.1).(2)年级决定在成绩[70,100]中用分层随机抽样抽取6人组成一个调研小组,对高一年级学生课外学习数学的情况做一个调查,则在[70,80),[80,90),[90,100]这三组分别抽取了多少人?(3)现在要从(2)中抽取的6人中选出正、副2个小组长,求成绩在[80,90)中至少有1人当选为正、副小组长的概率.关键能力综合练1.集合A ={2,3},B ={1,2,3},从A ,B 中各任意取一个数,则这两数之和等于4的概率是( )A .23B .12C .13D .162.围棋盒子中有多粒黑子和白子,已知从中取出2粒都是黑子的概率为17 ,从中取出2粒都是白子的概率是1235.则从中取出2粒恰好是同一色的概率是( )A .17B .1235C .1735D .1 3.从正方形四个顶点及其中心这5个点中,任取2个点,则这2个点的距离大于该正方形边长的概率为( )A .15B .25C .35D .454.在所有的两位数中,任取一个数,则这个数能被2或3整除的概率是( )A .56B .45C .23D .125.古代“五行”学说认为:物质分“金、木、水、火、土”五种属性,“金克木,木克土,土克水,水克火,火克金”.从五种不同属性的物质中随机抽取两种,则抽到的两种物质不相克的概率为( )A .12B .13C .25D .3106.(探究题)在5件产品中,有3件一级品和2件二级品,从中任取2件,下列事件中概率为710的是( )A .都是一级品B .都是二级品C .一级品和二级品各1件D .至少有1件二级品7.博览会安排了分别标有序号为“1号”“2号”“3号”的三辆车,等可能随机顺序前往酒店接嘉宾.某嘉宾突发奇想,设计了两种乘车方案.方案一:不乘坐第一辆车,若第二辆车的车序号大于第一辆车的车序号,就乘坐此车,否则乘坐第三辆车;方案二:直接乘坐第一辆车.记方案一与方案二坐到“3号”车的概率分别为P 1,P 2,则P 1+P 2=________.8.(易错题)甲、乙两人参加普法知识竞赛,共有5道不同的题目,其中选择题3道,填空题2道.甲、乙两人依次抽取1道题,则甲抽到选择题、乙抽到填空题的概率为________.9.从含有两件正品a 1,a 2和一件次品b 1的3件产品中每次任取一件,每次取出后不放回,连续取两次.(1)求取出的两件产品中恰有一件次品的概率;(2)如果将“每次取出后不放回”这一条件换成“每次取出后放回”,则取出的两件产品中恰有一件次品的概率是多少?核心素养升级练1.(多选题)以下对各事件的概率求解正确的是( )A .甲、乙两人玩剪刀、石头、布的游戏,则玩一局甲不输的概率是13B .每个大于2的偶数都可以表示为两个素数的和,例如8=3+5,在不超过14的素数中随机选取两个不同的数,其和等于14的概率为115C .将一颗质地均匀的正方体骰子(每个面上分别写有数字1,2,3,4,5,6)先后抛掷2次,观察向上的点数,则点数之和是6的概率是536D .从三件正品、一件次品中随机取出两件,则取出的产品全是正品的概率是122.(情境命题—生活情境)汉字是世界上最古老的文字之一,字形结构体现着人类追求均衡对称、和谐稳定的天性.如图所示,三个汉字可以看成轴对称图形.小敏和小慧利用“土”“口”“木”三个汉字设计了一个游戏,规则如下:将这三个汉字分别写在背面都相同的三张卡片上,背面朝上,洗匀后抽出一张,放回洗匀后再抽出一张,若两次抽出的汉字能构成上下结构的汉字(如“土”“土”构成“圭”),则小敏获胜,否则小慧获胜.你认为这个游戏对谁有利?说明理由.2.2 古典概型的应用必备知识基础练1.答案:C解析:由题意,得⎩⎪⎨⎪⎧P (A )+P (B )=45,P (A )=3P (B ), 所以P (A )=35.2.解析:设事件A 1=“任取1球为红球”,A 2=“任取1个球为黑球”,A 3=“任取1个球为白球”,A 4=“任取1个球为绿球”,则P (A 1)=512 ,P (A 2)=412 ,P (A 3)=212 ,P (A 4)=112. 根据题意,知事件A 1,A 2,A 3,A 4彼此互斥,由互斥事件概率公式,得 (1)取出1个球为红球或黑球的概率为:P (A 1∪A 2)=P (A 1)+P (A 2)=512 +412 =34.(2)取出1个球为红球或黑球或白球的概率为:P (A 1∪A 2∪A 3)=P (A 1)+P (A 2)+P (A 3)=512 +412 +212 =1112.3.解析:(1)“甲获胜”与“和棋或乙获胜”是对立事件, 所以“甲获胜”的概率P =1-12 -13 =16 .即甲获胜的概率是16.(2)法一 设事件A 为“甲不输”,可看成是“甲获胜”“和棋”这两个互斥事件的并事件,所以P (A )=16 +12 =23.法二 设事件A 为“甲不输”,可看成是“乙获胜”的对立事件, 所以P (A )=1-13 =23 .即甲不输的概率是23.4.解析:(1)由频率分布直方图得,众数为60+702 =65.成绩在[50,70)内的频率为(0.005+0.035)×10=0.4, 成绩在[70,80)内的频率为0.03×10=0.3, 所以中位数为70+0.10.3×10≈73.3.(2)成绩为[70,80),[80,90),[90,100]这三组的频率分别为0.3,0.2,0.1,所以[70,80),[80,90),[90,100]这三组抽取的人数分别为3,2,1.(3)由(2)知成绩在[70,80)的有3人,分别记为a ,b ,c ;成绩在[80,90)的有2人,分别记为d ,e ;成绩在[90,100]的有1人,记为f .所以从第(2)问中抽取的6人中选出正、副2个小组长包含的样本点有30个,分别为ab ,ba ,ac ,ca ,ad ,da ,ae ,ea ,af ,fa ,bc ,cb ,bd ,db ,be ,eb ,bf ,fb ,cd ,dc ,ce ,ec ,cf ,fc ,de ,ed ,df ,fd ,ef ,fe .记“成绩在[80,90)中至少有1人当选为正副小组长”为事件Q ,则事件Q 包含18个样本点,所以成绩在[80,90)中至少有1人当选为正副小组长的概率P (Q )=1830 =35 .关键能力综合练1.答案:C解析:从A ,B 中各取一个数有(2,1),(2,2),(2,3),(3,1),(3,2),(3,3),共6个样本点,其中和为4的有(2,2),(3,1),共2个样本点,所以所求概率P =26 =13 ,选C.2.答案:C解析:设“从中取出2粒都是黑子”为事件A ,“从中取出2粒都是白子”为事件B ,“从中取出2粒恰好是同一色”为事件C ,则C =A ∪B ,且事件A 与B 互斥.所以P (C )=P (A )+P (B )=17 +1235 =1735 .即从中取出2粒恰好是同一色的概率为1735.3.答案:A 解析:如图可知,从5个点中选取2个点,则样本空间Ω={OA ,OB ,OC ,OD ,AB ,AC ,AD ,BC ,BD ,CD },共10个样本点.设事件A 表示“两个点的距离大于该正方形边长”,A ={AC ,BD },包含2个样本点,故P (A )=210=15.4.答案:C解析:两位数共有90个样本点,能被2整除的有45个,能被3整除的奇数有15个,记事件“能被2整除的两位数”和“能被3整除的两位奇数”分别为A ,B ,则A ,B 是互斥事件.因为P (A )=4590 =12 ,P (B )=1590 =16 ,所以P (A ∪B )=P (A )+P (B )=12 +16 =23.5.答案:A解析:从五种物质中随机抽取两种,所有的抽法共有10种,而相克的有5种情况,则抽取的两种物质相克的概率是510 =12 ,故抽取的两种物质不相克的概率是1-12 =12,故选A.6.答案:D解析:设A 1,A 2,A 3分别表示3件一级品,B 1,B 2分别表示2件二级品.任取2件,则样本空间Ω={A 1A 2,A 1A 3,A 2A 3,A 1B 1,A 1B 2,A 2B 1,A 2B 2,A 3B 1,A 3B 2,B 1B 2}.事件A 表示“2件都是一级品”,则P (A )=310 ;事件B 表示“2件都是二级品”,则P (B )=110 ,事件C 表示“2件中一件一级品、一件二级品”, 则P (C )=610 =35.事件D 表示“至少有1件二级品”,则P (D )=710 .7.答案: 56解析:三辆车的出车顺序可能为123,132,213,231,312,321. 方案一:坐到“3号”车的可能为132,213,231,所以P 1=12;方案二:坐到“3号”车的可能为312,321,所以P 2=13 .所以P 1+P 2=56.8.易错分析:错解中忽略了甲、乙两人依次抽取1道题与顺序有关,甲从5道题中任抽1道题有5种方法,乙从剩下的4道题中任抽1道题有4种方法,所以基本事件的总数应为20.答案:310解析:通过列举法可得到甲抽到选择题、乙抽到填空题的样本点有6个,又甲、乙两人依次抽取1道题的样本点有20个,所以甲抽到选择题、乙抽到填空题的概率为620 =310.9.解析:(1)每次取一件,取后不放回地连续取两次,组成的样本空间为Ω={(a 1,a 2),(a 1,b 1),(a 2,a 1),(a 2,b 1),(b 1,a 1),(b 1,a 2)},其中小括号内左边的字母表示第1次取出的产品,右边的字母表示第2次取出的产品.Ω由6个样本点组成,而且可以确定这些样本点的出现是等可能的.用A 表示“取出的两件产品中恰有一件次品”这一事件,A ={(a 1,b 1),(a 2,b 1),(b 1,a 1),(b 1,a 2)}.事件A 由4个样本点组成,所以P (A )=46 =23.(2)有放回地连续取出两件,组成的样本空间为Ω={(a 1,a 1),(a 1,a 2),(a 1,b 1),(a 2,a 1),(a 2,a 2),(a 2,b 1),(b 1,a 1),(b 1,a 2),(b 1,b 1)},共9个样本点.由于每一件产品被取到的机会均等,因此可以确定这些样本点的出现是等可能的.用B 表示“恰有一件次品”这一事件,则B ={(a 1,b 1),(a 2,b 1),(b 1,a 1),(b 1,a 2)}.事件B 由4个样本点组成,所以P (B )=49.核心素养升级练1.答案:BCD解析:对于A ,画树状图如下:从树状图可以看出,所有可能出现的结果共有9种,这些结果出现的可能性相等,P (甲获胜)=13 ,P (乙获胜)=13 ,P (平局)=13 ,故玩一局甲不输的概率是23 ,故A 错误;对于B ,不超过14的素数有2,3,5,7,11,13,共6个,从这6个素数中任取2个,有2与3,2与5,2与7,2与11,2与13,3与5,3与7,3与11,3与13,5与7,5与11,5与13,7与11,7与13,11与13,共15种结果,其中和等于14的只有一组3与11,所以在不超过14的素数中随机选取两个不同的数,其和等于14的概率为115 ,故B 正确;对于C ,该试验的样本点总数为6×6=36,点数之和是6包括(1,5),(2,4),(3,3),(4,2),(5,1),共5个样本点,则所求概率是536 ,故C 正确;对于D ,三件正品记为A 1,A 2,A 3,一件次品记为B ,任取两件的所有可能为A 1A 2,A 1A 3,A 1B ,A 2A 3,A 2B ,A 3B ,共6种,其中两件都是正品的有A 1A 2,A 1A 3,A 2A 3共3种,所求概率为P =36 =12,故D 正确.故选BCD.2.解析:每次游戏时,所有样本点如下表所示:第二张卡片第一张卡片土 口 木 土 (土,土) (土,口) (土,木) 口 (口,土) (口,口) (口,木) 木(木,土)(木,口)(木,木)4个:(土,土)“圭”,(口,口)“吕”,(木,口)“杏”或“呆”,(口,木)“呆”或“杏”.所以小敏获胜的概率为49 ,小慧获胜的概率为59,所以这个游戏对小慧有利.。
高中数学 专题1.11 古典概型练习(含解析)新人教A版必

古典概型1.下列试验中,属于古典概型的是( )A .种下一粒种子,观察它是否发芽B .从规格直径为250 mm ±0.6 mm 的一批合格产品中任意抽一根,测量其直径dC .抛一枚硬币,观察其出现正面或反面D .某人射击中靶或不中靶【答案】 C【解析】 依据古典概型的特点判断,只有C 项满足:①试验中所有可能出现的基本事件只有有限个;②每个基本事件出现的可能性相同.2.一枚硬币连掷3次,有且仅有2次出现正面向上的概率为( )A.38B.23C.13D.143.四条线段的长度分别是1,3,5,7,从这四条线段中任取三条,则所取出的三条线段能构成一个三角形的概率是( )A .14B .13C .12D .25【答案】 A【解析】 从四条长度各异的线段中任取一条,每条被取出的可能性均相等,所以该问题属于古典概型.又所有基本事件包括(1,3,5),(1,3,7),(1,5,7),(3,5,7)四种,而能构成三角形的基本事件只有(3,5,7)一种,所以所取出的三条线段能构成一个三角形的概率是P =14. 4.集合A ={2,3},B ={1,2,3},从A 、B 中各任意取一个数,则这两数之和等于4的概率是( ) A.23 B.12 C.13 D.165.从1,2,3,4,5中任意取出两个不同的数,其和为5的概率是________.6、现有5根竹竿,它们的长度(单位:m)分别为2.5,2.6,2.7,2.8,2.9.若从中一次抽取2根竹竿,则它们的长度恰好相差0.3 m的概率为________.答案1 5解析基本事件共有(2.5,2.6),(2.5,2.7),(2.5,2.8),(2.5,2.9),(2.6,2.7),(2.6,2.8),(2.6,2.9),(2.7,2.8),(2.7,2.9),(2.8,2.9)10种情况.相差0.3 m的共有(2.5,2.8),(2.6,2.9)两种情况,所以P=210=1 5.7.有100张卡片(从1号到100号),从中任取1张,取到的卡号是7的倍数的概率为________.8.在不大于100的自然数中任取一个数.(1)求所取的数为偶数的概率;(2)求所取的数是3的倍数的概率;(3)求所取的数是被3除余1的数的概率.。
高一数学古典概型试题

高一数学古典概型试题1.如图,某中学甲、乙两班共有25名学生报名参加了一项测试.这25位学生的考分编成的茎叶图,其中有一个数据因电脑操作员不小心删掉了(这里暂用x来表示),但他清楚地记得两班学生成绩的中位数相同.(1)求这两个班学生成绩的中位数及x的值;(2)如果将这些成绩分为“优秀”(得分在175分以上,包括175分)和“过关”,若学校再从这两个班获得“优秀”成绩的考生中选出3名代表学校参加比赛,求这3人中甲班至多有一人入选的概率.【答案】(1) x=7;(2)【解析】(1)直接由茎叶图求出甲班学生成绩的中位数,由两班学生成绩的中位数相同求得x的值;(2)用列举法写出从5名成绩优秀的学生中选出3人的所有方法种数,查出至多1名甲班同学的情况数,然后由古典概型概率计算公式求解.试题解析:(1)甲班学生成绩的中位数为(154+160)=157 2分乙班学生成绩的中位数正好是150+x=157,故x=7; 2分(2)用A表示事件“甲班至多有1人入选”.设甲班两位优生为A,B,乙班三位优生为1,2,3.则从5人中选出3人的所有方法种数为:(A,B,1),(A,B,2),(A,B,3),(A,1,2),(A,1,3),(A,2,3),(B,1,2),(B,1,3),(B,2,3),(1,2,3)共10种情况, 3分其中至多1名甲班同学的情况共(A,1,2),(A,1,3),(A,2,3),(B,1,2),(B,1,3),(B,2,3),(1,2,3)7种 3分由古典概型概率计算公式可得P(A)= 2分【考点】茎叶图;考查了古典概型及其概率计算公式.2.在两个袋内,分别写着装有、、、、、六个数字的张卡片,今从每个袋中各取一张卡片,则两数之和等于9的概率为()A.B.C.D.【答案】C【解析】任取一张卡片共种情况,两数之和为9包括共4种,所以两数之和为9的概率为,故选C.【考点】古典概型的概率问题3.记a,b分别是投掷两次骰子所得的数字,则方程有两个不同实根的概率为()A.B.C.D.【答案】B【解析】记分别是投掷两次骰子所得的数字,总事件一共种;方程有两个不同实根则,∴当时,;当时,;当时,;当时,,共9种情况,所以概率为.【考点】古典概型.4.某产品分甲、乙、丙三级,其中乙、丙两级均属次品,若生产中出现乙级品的概率为0.03,丙级品的概率为0.01,则对成品抽查一件抽得正品的概率为( )A.0.99B.0.98C.0.97D.0.96【答案】D【解析】只有抽到甲才是正品。
古典概型练习题(有详细答案)解析

古典概型练习题1.从12个同类产品(其中10个正品,2个次品中任意抽取3个,下列事件是必然事件的是A.3个都是正品B.至少有一个是次品 (C.3个都是次品D.至少有一个是正品2.给出下列四个命题:①“三个球全部放入两个盒子,其中必有一个盒子有一个以上的球”是必然事件②“当x为某一实数时可使20x<”是不可能事件③“明天要下雨”是必然事件④“从100个灯泡中取出5个,5个都是次品”是随机事件. 其中正确命题的个数是 (A. 0B. 1C.2D.33.从数字1,2,3,4,5中任取两个不同的数字构成一个两位数,这个两位数大于40的概率为5B.25C.35D.45(4.袋中有3个白球和2个黑球,从中任意摸出2个球,则至少摸出1个黑球的概率为A. 37B.710110D.310(5.从标有1,2,3,4,5,6,7,8,9的9纸片中任取2,那么这2 纸片数字之积为偶数的概率为(A. 12B.718C.1318D.186.某小组共有10名学生,其中女生3名,现选举2名代表,至少有1名女生当选的概率为(A.715B.815C.35D. 17.下列对古典概型的说法中正确的个数是 (①试验中所有可能出现的基本事件只有有限个;②每个事件出现的可能性相等;③基本事件的总数为n,随机事件A包含k个基本事件,则(kP An④每个基本事件出现的可能性相等;A. 1B. 2C. 3D. 48.从装有2个红球和2个白球的口袋中任取两球,那么下列事件中互斥事件的个数是(⑴至少有一个白球,都是白球;⑵至少有一个白球,至少有一个红球;⑶恰有一个白球,恰有2个白球;⑷至少有一个白球,都是红球.A.0B.1C.2D.39.下列各组事件中,不是互斥事件的是 (A.一个射手进行一次射击,命中环数大于8与命中环数小于6B.统计一个班数学期中考试成绩,平均分数不低于90分与平均分数不高于90分C.播种菜籽100粒,发芽90粒与发芽80粒D.检查某种产品,合格率高于70%与合格率为70%10.一个均匀的正方体的玩具的各个面上分别标以数1,2,3,4,5,6.将这个玩具向上抛掷1次,设事件A表示向上的一面出现奇数点,事件B表示向上的一面出现的点数不超过3,事件C表示向上的一面出现的点数不小于4,则(A.A与B是互斥而非对立事件B.A与B是对立事件C.B与C是互斥而非对立事件D.B与C是对立事件11.下列说法中正确的是 (A.事件A 、B 至少有一个发生的概率一定比A 、B 中恰有一个发生的概率大B.事件A 、B 同时发生的概率一定比A 、B 中恰有一个发生的概率小C.互斥事件一定是对立事件,对立事件也是互斥事件D.互斥事件不一定是对立事件,而对立事件一定是互斥事件12.有红、黄、蓝三种颜色的旗帜各3面,在每种颜色的3面旗帜上分别标上1,2,3,现任取3面,它们的颜色与均不相同的概率是 ( A.13 B.19 C.114 D.12713.若事件A 、B 是对立事件,则P(A+P(B=________________.14.从1,2,3,4,5这5个数中任取两个,则这两个数正好相差1的概率是________。
高一数学 第十章第3节古典概型-练习题

古典概型练习题一.选择题(共5小题)1.下列试验中,是古典概型的为( )A .种下一粒花生,观察它是否发芽B .向正方形ABCD 内,任意投掷一点P ,观察点P 是否与正方形的中心O 重合C .从1,2,3,4四个数中,任取两个数,求所取两数之一是2的概率D .在区间[0,5]内任取一点,求此点小于2的概率2.下列对古典概型的说法中正确的是( )①试验中所有可能出现的基本事件只有有限个②每个事件出现的可能性相等③每个基本事件出现的可能性相等 ④基本事件总数为n ,随机事件A 若包含k 个基本事件,则P(A)=k nA .②④B .①③④C .①④D .③④3.2019年庆祝中华人民共和国成立70周年阅兵式彰显了中华民族从站起来、富起来迈向强起来的雄心壮志.阅兵式规模之大、类型之全均创历史之最,编组之新、要素之全彰显强军成就.装备方阵堪称“强军利刃”“强国之盾”,见证着人民军队迈向世界一流军队的坚定步伐.此次大阅兵不仅得到了全中国人的关注,还得到了无数外国人的关注.某单位有6位外国人,其中关注此次大阅兵的有5位,若从这6位外国人中任意选取2位做一次采访,则被采访者都关注了此次大阅兵的概率为( ) A.13 B .25 C .23 D .354.我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果.哥德巴赫猜想是“每个大于2的偶数可以表示为两个素数的和”,如40=3+37.(注:如果一个大于1的整数除1和自身外无其他正因数,则称这个整数为素数.)在不超过11的素数中,随机选取2个不同的数,其和小于等于10的概率是( )A .12B .13C .14D .155.党的十八提出,倡导“富强、民主、文明、和谐、自由、平等、公正、法治、爱国、敬业、诚信、友善”社会主义核心价值观.现将这十二个词依次写在六张规格相同的卡片的正反面(无区分),(如“富强、民主”写在同一张卡片的两面),从中任意抽取1张卡片,则写有“爱国”“诚信”两词中的一个的概率是( )A .13B .16C .56D .23二.填空题(共6小题)6.将一个圆周进行6等分,得到分点123456,,,,,A A A A A A ,现在从23456,,,,OA OA OA OA OA 这5个半径中任意取1个,若[]()10,2,3,4,5,6i AOA i π∠∈=,则13sin i A OA ∠=的概率为 . 7.中国是发现和研究勾股定理最古老的国家之一.直角三角形最短的边称为勾,另一直角边为股,斜边为弦,其三边长组成的一组数据成为勾股数.现从1~5这5个数中随机选取3个不同的数,这三个数为勾股数的概率为 .8.2019年4月28日,中国北京世界园艺博览会开幕.本次博览会以“绿色生活,美丽家园”为主题,旨在倡导人们尊重自然、融入自然、追求美好生活.园区主要包括“中国馆”“国际馆”“植物馆”“生活体验馆”四大展馆.开馆第一天,游客甲打算随机参观其中的两个馆,则这位游客能参观到“中国馆”的概率为 .9.现把某类病毒记作X m n Y ,其中正整数(),6,8m n m n ≤≤,可以任意选取,则,m n 都取到奇数的概率为 .10.如图,在四棱锥D ﹣OABC 中,底面OABC 为正方形,OD ⊥底面OABC ,以O 为起点,再从A ,B ,C ,D 四个点中任取两点分别为终点得到两个向量,记这两个向量的数量积为M ,则事件“M =0”的概率为 .11.先后抛掷两枚质地均匀的正方体骰子,它们的六个面分别标有点数1,2,3,4,5,6,记骰子的点数分别为x ,y ,向量()()1,1,102,2a x b y =-=-r r 则两向量平行的概率是 .三.解答题(共2小题)12.抛掷两枚质地均匀的骰子,设向上的点数分别为,a b .求:(1)满足6a b +≤的概率;(2)满足2log 1a b -≥的概率.13.在甲、乙两个盒子中分别装有标号为1、2、3、4的4个球,现从甲、乙两个盒子中各取出1个球,每个球被取出的可能性相等.(1)列出所有可能结果;(2)求取出的两个球上标号为不相同数字的概率;(3)求取出的两个球上标号之积能被3整除的概率.古典概型课后练习参考答案与试题解析一.选择题(共4小题)1.下列试验中,是古典概型的为( )A .种下一粒花生,观察它是否发芽B .向正方形ABCD 内,任意投掷一点P ,观察点P 是否与正方形的中心O 重合C .从1,2,3,4四个数中,任取两个数,求所取两数之一是2的概率D .在区间[0,5]内任取一点,求此点小于2的概率【解答】解:对于A ,发芽与不发芽的概率一般不相等,不满足等可能性;对于B ,正方形内点的个数有无限多个,不满足有限性;对于C ,满足有限性和等可能性,是古典概型;对于D ,区间内的点有无限多个,不满足有限性,故选:C .2.下列对古典概型的说法中正确的是( )①试验中所有可能出现的基本事件只有有限个②每个事件出现的可能性相等③每个基本事件出现的可能性相等 ④基本事件总数为n ,随机事件A 若包含k 个基本事件,则P(A)=k n A .②④ B .①③④ C .①④ D .③④【解答】解:②中所说的事件不一定是基本事件,所以②不正确;根据古典概型的特点及计算 公式可知①③④正确.故选:B3.2019年庆祝中华人民共和国成立70周年阅兵式彰显了中华民族从站起来、富起来迈向强起来的雄心壮志.阅兵式规模之大、类型之全均创历史之最,编组之新、要素之全彰显强军成就.装备方阵堪称“强军利刃”“强国之盾”,见证着人民军队迈向世界一流军队的坚定步伐.此次大阅兵不仅得到了全中国人的关注,还得到了无数外国人的关注.某单位有6位外国人,其中关注此次大阅兵的有5位,若从这6位外国人中任意选取2位做一次采访,则被采访者都关注了此次大阅兵的概率为( )A.13 B .25 C .23 D .35【解答】解:这6位外国人分别记为a ,A ,B ,C ,D ,E ,其中a 未关注此次大阅兵,从这6位外国人中任意选取2位做一次采访,Ω={(a ,A ),(a ,B ),(a ,C ),(a ,D ),(a ,E ),(A ,B ),(A ,C ),(A ,D ),(A ,E ),(B ,C ),(B ,D ),(B ,E ),(C ,D ),(C ,E ),(D ,E )}n(Ω)=15,记事件A=“被采访者都关注了此次大阅兵”,n(A)=10,故被采访者都关注了此次大阅兵的概率为P ==.故选:C .4.我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果.哥德巴赫猜想是“每个大于2的偶数可以表示为两个素数的和”,如40=3+37.(注:如果一个大于1的整数除1和自身外无其他正因数,则称这个整数为素数.)在不超过11的素数中,随机选取2个不同的数,其和小于等于10的概率是( )A .12B .13C .14D .15【解答】解:根据题意,不超过11的素数有2、3、5、7、11,共5个,从中任选2个,有(2,3),(2,5),(2,7),(2,11)、(3,5)、(3,7)、(3,11)、(5,7)、(5,11),(7,11),共10种取法;其中和小于等于10的取法有(2,3),(2,5),(2,7),(3,5)、(3,7),共5种,则取出的两个数和小于等于10的概率P ==; 故选:A .5.党的十八提出,倡导“富强、民主、文明、和谐、自由、平等、公正、法治、爱国、敬业、诚信、友善”社会主义核心价值观.现将这十二个词依次写在六张规格相同的卡片的正反面(无区分),(如“富强、民主”写在同一张卡片的两面),从中任意抽取1张卡片,则写有“爱国”“诚信”两词中的一个的概率是( )A .13B .16C .56D .23【解答】解:由题意,所有样本点为:富强、民主;文明、和谐;自由、平等;公正、法治;爱国、敬业;诚信、友善的六张卡片,n(A)=6,其中写有“爱国”“诚信”两词中的一个的样本点有2个,∴从中任意抽取1张卡片,则写有“爱国”“诚信”两词中的一个的概率是P ==. 故选:A .二.填空题(共6小题)6.将一个圆周进行6等分A 1,A 2,A 3,A 4,A 5,A 6,得到分点,先在从OA 2,OA 3,OA 4,OA 5,OA 6这5个半径中任意取1个,若∠A 1OA i ∈[0,π](i =2,3,4,5,6),则13sin i A OA ∠=的概率为 .【解答】解:记事件A=“13sin 2i A OA ∠=”因为∠A 1OA i ∈[0,π](i =2,3,4,5,6)13sin 2i A OA ∠=, 所以11233i i AOA AOA ππ∠=∠=或, 从OA 2,OA 3,OA 4,OA 5,OA 6这5个半径中任意取1个,共5个样本点:∠A 1OA 2,∠A 1OA 3,∠A 1OA 4,∠A 1OA 5,∠A 1OA 6,其中,12131516223333AOA AOA AOA AOA ππππ∠=∠=∠=∠=,,,,它们的正弦值为,根据古典概率的计算公式得:概率P(A )= .故答案为:.7.中国是发现和研究勾股定理最古老的国家之一.直角三角形最短的边称为勾,另一直角边为股,斜边为弦,其三边长组成的一组数据成为勾股数.现从1~5这5个数中随机选取3个不同的数,这三个数为勾股数的概率为 .【解答】解:现从1~5这5个数中随机选取3个不同的数,样本点总数n =10,这三个数为勾股数包含的基本事件(a ,b ,c )有:(3,4,5),共1个,∴这三个数为勾股数的概率为p =.故答案为:. 8.2019年4月28日,中国北京世界园艺博览会开幕.本次博览会以“绿色生活,美丽家园”为主题,旨在倡导人们尊重自然、融入自然、追求美好生活.园区主要包括“中国馆”“国际馆”“植物馆”“生活体验馆”四大展馆.开馆第一天,游客甲打算随机参观其中的两个馆,则这位游客能参观到“中国馆”的概率为 .【解答】解:从“中国馆”“国际馆”“植物馆”“生活体验馆”四大展馆中选择两个共有6样本点,这位游客能参观到“中国馆”共有3个样本点,所以这位游客能参观到“中国馆”的概率为:,故答案为:.9.现把某类病毒记作X m Y n ,其中正整数m ,n (m ≤6,n ≤8)可以任意选取,则m ,n 都取到奇数的概率为 .【解答】解:现把某类病毒记作X m Y n ,其中正整数m ,n (m≤6,n≤8)可以任意选取, 样本点总数N =6×8=48,m,n都取到奇数包含的样本点个数M=3×4=12,∴m,n都取到奇数的概率为P===.故答案为:.10.如图,在四棱锥D﹣OABC中,底面OABC为正方形,OD⊥底面OABC,以O为起点,再从A,B,C,D四个点中任取两点分别为终点得到两个向量,记这两个向量的数量积为M,则事件“M=0”的概率为.【解答】解:在四棱锥D﹣OABC中,底面OABC为正方形,OD⊥底面OABC,以O为起点,再从A,B,C,D四个点中任取两点分别为终点得到两个向量,记事件A=“这两个向量的数量积M=0”,样本点总数n(Ω)=6,其中,事件A={,,,},n(A)=4∴P(A)=.故答案为:.11.先后抛掷两枚质地均匀的正方体骰子,它们的六个面分别标有点数1,2,3,4,5,6,记骰子的点数分别为x,y,向量=(x﹣1,1),=(10﹣2y,2),则两向量平行的概率是【解答】解:先后抛掷两枚质地均匀的正方体骰子,它们的六个面分别标有点数1,2,3,4,5,6,记骰子的点数分别为x,y,向量=(x﹣1,1),=(10﹣2y,2),记事件A=“两向量平行”,n(Ω)=6×6=36,∵∥,∴10﹣2y﹣2(x﹣1)=0,解得x+y=6,∴A={(1,5),(5,1),(2,4),(4,2),(3,3)},n(A)=5,∴两向量平行的概率是p=.故答案为:.三.解答题(共2小题)12.抛掷两枚质地均匀的骰子,设向上的点数分别为a,b.求:(1)满足a+b≤6的概率;(2)满足log2|a﹣b|≥1的概率.【解答】解:(1)抛掷两枚质地均匀的骰子,向上的点数为(a,b)有36个样本点.满足a+b≤6的样本点有15个:(1,1),(1,2),(1,3),(1,4),(1,5),(2,1),(2,2),(2,3),(2,4),(3,1),(3,2),(3,3),(4,1),(4,2),(5,1).记事件A=“满足a+b≤6”,所以P(A)==.(2)由log2|a﹣b|≥1得|a﹣b|≥2,则满足|a﹣b|≥2的样本点有20个:(1,3),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,1),(3,5),(3,6),(4,1),(4,2),(4,6),(5,1),(5,2),(5,3),(6,1),(6,2),(6,3),(6,4).记事件B=“满足log2|a﹣b|≥1”,所以P(B)==.13.在甲、乙两个盒子中分别装有标号为1、2、3、4的4个球,现从甲、乙两个盒子中各取出1个球,每个球被取出的可能性相等.(1)列出所有可能结果(2)求取出的两个球上标号相同数字的概率(3)求取出的两个球上标号之积能被3整除的概率【解答】解:(1)设从甲,乙两个盒子中各取1个球,其数字分别为x,y,用(x,y)表示抽取结果,则样本空间Ω={(1,1),(1,2),(1,3),(1,4),(2,1),(2,2),(2,3),(2,4),(3,1),(3,2),(3,3)(3,4),(4,1),(4,2),(4,3),(4,4)},n(Ω)=16, (2)设事件A=“取出的两个球上标号为相同数字”,则事件A={(1,1),(2,2),(3,3),(4,4)},n(A)=4 ∴P(A)==,(3)设事件B =“取出的两个球上标号之积能被3整除”,则事件B={(1,3),(3,1),(2,3),(3,2),(3,3),(3,4),(4,3)}, n(B)=4∴P(B)=.。
人教版数学高一-高中数学新人教A版必修3单元测试 古典概型

高中数学(人教A 版)能力形成单元测试卷(必修3 3.2 古典概型)班别 姓名 学号 成绩一、选择题1.一枚硬币连掷3次,只有一次出现正面的概率是A.83 B.32 C.31 D.41 2. 从分别写有A 、B 、C 、D 、E 的5张卡片中,任取2张,这2张卡片上的字母恰好是按字母顺序相邻的概率为A.51 B.52 C.103 D.107 3. 在第1、3、4、路公共汽车都要停靠的一个站(假定这个站只能停靠一辆汽车),有一位乘客等候第4路或第8路汽车.假定当时各5、8路汽车首先到站的可能性相等,则首先到站正好是这位乘客所需乘的汽车的概率等于A.21 B. 32 C.53 D.52 4. 某小组共有10名学生,其中女生3名,现选举2名代表,至少有1名女生当选的概率为A.157 B.158 C.53D.1 5. 从全体3位正整数中任取一数,则此数以2为底的对数也是正整数的概率为A.2251 B.3001 C.4501D.以上全不对 二、填空题1. 在20瓶墨水中,有5瓶已经变质不能使用,从这20瓶墨水中任意选出1瓶,取出的墨水是变质墨水的概率为_________.2. 从1,2,3,4,5五个数字中,任意有放回地连续抽取三个数字,则三个数字完全不同的概率是_________.3. 从1,2,3,…,9这9个数字中任取2个数字,(1)2个数字都是奇数的概率为_________;(2)2个数字之和为偶数的概率为_________.三、解答题1. .抛掷两颗骰子,求:(1)点数之和出现7点的概率;(2)出现两个4点的概率.2. 用红、黄、蓝三种不同颜色给下图中3个矩形随机涂色,每个矩形只涂一种颜色,求:(1)3个矩形颜色都相同的概率;(2)3个矩形颜色都不同的概率.3. 连续掷3枚硬币,观察落地后这3枚硬币出现正面还是反面.(1)写出这个试验的基本事件空间;(2)求这个试验的基本事件的总数;(3)“恰有两枚正面向上”这一事件包含哪几个基本事件?4. 甲、乙两人做出拳游戏(锤子、剪刀、布),求:(1)平局的概率;(2)甲赢的概率;(3)乙赢的概率.5. 甲、乙两个均匀的正方体玩具,各个面上分别刻有1,2,3,4,5,6六个数字,将这两个玩具同时掷一次.(1)若甲上的数字为十位数,乙上的数字为个位数,问可以组成多少个不同的数,其中个位数字与十位数字均相同的数字的概率是多少?(2)两个玩具的数字之和共有多少种不同结果?其中数字之和为12的有多少种情况?数字之和为6的共有多少种情况?分别计算这两种情况的概率.6. 从含有两件正品a 1,a 2和一件次品b 1的3件产品中每次任取1件,每次取出 后不放回,连续取两次,求取出的两件产品中恰有一件次品的概率.如果将“每次取出后不放回”这一条件换成“每次取出后放回”呢?参考答案一、选择题1.A2. B3. D4. B5.B 二、填空题1.41 2.2512 3.(1)185 (2)94 三、解答题1. 解:作图,从下图中容易看出基本事件空间与点集S={(x ,y )|x ∈N ,y ∈N ,1≤x≤6,1≤y≤6}中的元素一一对应.因为S 中点的总数是6×6=36(个),所以基本事件总数n=36.Ox654321(1)记“7点”的事件为A ,从图中可看到事件A 包含的基本事件数共6个:(6,1),(5,2),(4,3),(3,4),(2,5),(1,6),所以P (A )=61366=. (2)记“出现两个4点”的事件为B ,则从图中可看到事件B 包含的基本事件数只有1个:(4,4).所以P (B )=361. 2. 解:所有可能的基本事件共有27个,如图所示.红红红红红红红红红红红红红黄蓝黄黄黄黄黄黄黄黄黄黄黄黄蓝蓝蓝蓝蓝蓝蓝蓝蓝蓝蓝蓝 (1)记“3个矩形都涂同一颜色”为事件A ,由图知,事件A 的基本事件有1×3=3个,故P(A )=91273=.(2)记“3个矩形颜色都不同”为事件B ,由图可知,事件B 的基本事件有2×3=6个,故P(B )=92276=. 3.解:(1)这个试验的基本事件空间Ω={(正,正,正),(正,正,反),(正,反,正),(正,反,反),(反,正,正),(反,正,反),(反,反,正),(反,反,反)}; (2)基本事件的总数是8.(3)“恰有两枚正面向上”包含以下3个基本事件:(正,正,反),(正,反,正),(反,正,正).4. 解.:甲有3种不同的出拳方法,每一种出法是等可能的,乙同样有等可能的3种不同出法.一次出拳游戏共有3×3=9种不同的结果,可以认为这9种结果是等可能的.所以一次游戏(试验)是古典概型.它的基本事件总数为9.平局的含义是两人出法相同,例如都出了锤.甲赢的含义是甲出锤且乙出剪,甲出剪且乙出布,甲出布且乙出锤这3种情况.乙赢的含义是乙出锤且甲出剪,乙出剪且甲出布,乙出布且甲出锤这3种情况.设平局为事件A ,甲赢为事件B ,乙赢为事件C. 容易得到:甲布剪锤O(1)平局含△); (2)甲赢含3个基本事件(图中的⊙); (3)乙赢含3个基本事件(图中的※).由古典概率的计算公式,可得P (A )3193==;P (B )3193==; P (C )3193==.5. 解:(1)甲有6种不同的结果,乙也有6种不同的结果,故基本事件总数为6×6=36个.其中十位数字共有6种不同的结果,若十位数字与个位数字相同,十位数字确定后,个位数字也即确定.故共有6×1=6种不同的结果,即概率为61366=. (2)两个玩具同时掷的结果可能出现的情况如下表.其中共有36种不同情况,但数字之和却只有2,3,4,5,6,7,8,9,10,11,12共11种不同结果.从中可以看出,出现2的只有一种情况,而出现12的也只有一种情况,它们的概率均为361,因为只有甲、乙均为1或均为6时才有此结果.出现数字之和为6的共有(1,5),(2,4),(3,3),(4,2),(5,1)五种情况,所以其概率为365.请同学们思考,出现概率最大的数字和是多少?6. 解:(1)每次取一件,取后不放回地连续取两次,其一切可能的结果组成的基本事件空间为Ω={(a 1,a 2),(a 1,b 1),(a 2,a 1),(a 2,b 1),(b 1,a 1),(b 1,a 2)},其中小括号内左边的字母表示第1次取出的产品,右边的字母表示第2次取出的产品.Ω由6个基本事件组成,而且可以认为这些基本事件的出现是等可能的.用A 表示“取出的两件中,恰好有一件次品”这一事件,则 A={(a 1,b 1),(a 2,b 1),(b 1,a 1),(b 1,a 2)}.事件A 由4个基本事件组成.因而P (A )3264==.(2)有放回地连续取出两件,其一切可能的结果组成的基本事件空间Ω={(a 1,a 1),(a 1,a 2),(a 1,b 1),(a 2,a 1),(a 2,a 2),(a 2,b 1),(b 1,a 1),(b 1,a 2),(b 1,b 1)},由9个基本事件组成.由于每一件产品被取到的机会均等,因此可以认为这些基本事件的出现是等可能的.用B 表示“恰有一件次品”这一事件,则B={(a 1,b 1),(a 2,b 1),(b 1,a 1),(b 1,a 2)}.事件B 由4个基本事件组成,因而P (B )=94.。
高一数学古典概型试题答案及解析

高一数学古典概型试题答案及解析1.袋中有大小相同的三个白球和两个黑球,从中任取两个球,两球同色的概率为()A.B.C.D.【答案】B【解析】所有不同方法数有种,所求事件包含的不同方法数有种,因此概率,答案选B.【考点】古典概型的概率计算2.某车间将10名技工平均分成甲、乙两组加工某种零件,在单位时间内每个技工加工的合格零件数,按十位数字为茎,个位数字为叶得到的茎叶图如图所示.已知甲、乙两组数据的平均数都为10.(1)求的值;(2)分别求出甲、乙两组数据的方差和,并由此分析两组技工的加工水平;(3)质检部门从该车间甲、乙两组技工中各随机抽取一名技工,对其加工的零件进行检测,若两人加工的合格零件数之和大于17,则称该车间“质量合格”,求该车间“质量合格”的概率.(注:方差,为数据的平均数)【答案】(1);(2);(3).【解析】(1)由题意根据平均数的计算公式分别求出的值;(2)分别求出甲、乙两组技工在单位时间内加工的合格零件数的方差和,再根据它们的平均值相等,可得方差较小的发挥更稳定一些;(3)用列举法求得所有的基本事件的个数,找出其中满足该车间“质量合格”的基本事件的个数,即可求得该车间“质量合格”的概率.试题解析:解:(1)由题意得,解得,再由,解得;(2)分别求出甲、乙两组技工在单位时间内加工的合格零件数的方差:,,并由,可得两组技工水平基本相当,乙组更稳定些.(3)质检部门从该车间甲、乙两组技工中各随机抽取一名技工,对其加工的零件进行检查,设两人加工的合格零件数分别为,则所有的有(7,8)、(7,9)、(7,10)、(7,11)、(7,12)、(8,8)、(8,9)、(8,10)、(8,11)、(8,12)、(10,8)、(10,9)、(10,10)、(10,11)、(10,12)、(12,8)、(12,9)、(12,10)、(12,11)、(12,12)、(13,8)、(13,9)、(13,10)、(13,11)、(13,12),共计25个,而满足的基本事件有(7,8)、(7,9)、(7,10)、(8,8)、(8,9),共计5个基本事件,故满足的基本事件个数为,所以该车间“质量合格”的概率为.【考点】1、古典概型及其概率计算公式;2、平均数与方差.3.有一个奇数列1,3,5,7,9,…,现在进行如下分组,第一组有1个数为1,第二组有2个数为3、5,第三组有3个数为7、9、11,…,依次类推,则从第十组中随机抽取一个数恰为3的倍数的概率为 .【答案】【解析】由题可知前9组数据共有,第10组共有10数,且第一个为46,其中为3的倍数的数为:48,51,54,故概率为.【考点】古典概型.4.设函数是从1,2,3三个数中任取一个数,b是从2,3,4,5四个数中任取一个数, (1) 求的最小值;(2)求恒成立的概率.【答案】(1)则当时,;当时,;当时,; (2).【解析】(1)对于的最小值问题,对于不同的其结果不一样,故应分别讨论,且采用分离常数法;(2)由(1)小题,要使其恒成立必有,并由列举法计算出其中符合条件的.试题解析:由,因为,故有.则当时,;当时,;当时,;由(1)可知,要使恒成立,当时,;当时,;当时,;故满足条件的有对.共有,则概率.【考点】(1)函数最值问题(分离常数法);(2)古典概型.5.已知方程是关于的一元二次方程.(1)若是从集合四个数中任取的一个数,是从集合三个数中任取的一个数,求上述方程有实数根的概率;(2)若,,求上述方程有实数根的概率.【答案】(1)(2)【解析】(1)先将从集合四个数中任取的一个数作为,从集合三个数中任取的一个数作为的所有情况列出来,再将使上述方程由实数根的情况列出来,根据古典概型公式算出所求事件的概率;(2)先作出满足,表示的平面区域并计算出区域的面积S,再根据要使方程有实数根,则△≥0,求出a,b满足的不等式,作出该不等式与,表示区域并计算面积,根据几何概型公式,该面积与S的比值就是上述方程有实数根的概率.试题解析:设事件为“方程有实数根”.当,时,方程有实数根的充要条件为.(1)基本事件共12个:,,,.其中第一个数表示的取值,第二个数表示的取值.事件中包含9个基本事件.事件发生的概率为.(2)试验的全部结果所构成的区域为.构成事件的区域为.所以所求的概率.考点:古典概型;几何概型6.在两个袋内,分别写着装有、、、、、六个数字的张卡片,今从每个袋中各取一张卡片,则两数之和等于9的概率为()A.B.C.D.【答案】C【解析】任取一张卡片共种情况,两数之和为9包括共4种,所以两数之和为9的概率为,故选C.【考点】古典概型的概率问题7.某种饮料每箱装5听,其中有3听合格,2听不合格,现质检人员从中随机抽取2听进行检测,则检测出至少有一听不合格饮料的概率是_________.【答案】【解析】每箱中3听合格的饮料分别记为,不合格的2听分别记为。
【高中数学】古典概型随堂练习(原卷版)2022-2023学年高一数学(人教版2019必修第二册)

10.1.3古典概型随堂练习一、单选题A .425B .1225C .1325D .2125 8.芯片是科技产品中的重要元件,其形状通常为正方形.生产芯片的原材料中可能会存在坏点,而芯片中出现坏点即报废,通过技术革新可以减小单个芯片的面积,这样在同样的原材料中可以切割出更多的芯片,同时可以提高芯片生产的产品良率.=100%⨯切割得到的无坏点的芯片数产品良率切割得到的所有芯片数.在芯片迭代升级过程中,每一代芯片的面积为上一代的12.图1是一块形状为正方形的芯片原材料,上面有4个坏点,若将其按照图2的方式切割成4个大小相同的正万形,得到4块第3代芯片,其中只有一块无坏点,则由这块原材料切割得到第3代芯片的产品良率为25%.若将这块原材料切割成16个大小相同的正方形,得到16块第5代芯片,则由这块原材料切割得到第5代芯片的产品良率为( )A .50%B .625%.C .75%D .875%.二、多选题 9.已知甲罐中有四个相同的小球,标号为1,2,3,4;乙罐中有五个相同的小球,标号为1,2,3,5,6,现从甲罐、乙罐中分别随机抽取1个小球,记事件A =“抽取的两个小球标号之和大于5”,事件B =“抽取的两个小球标号之积大于8”,则( )A .事件A 与事件B 的样本点数分别为12,8 B .事件A ,B 间的关系为A B ⊆C .事件A B ⋃发生的概率为1120D .事件A B ⋂发生的概率为2510.连续掷两次骰子,设先后得到的点数为m ,n ,则( )A .1m =的概率为16B .m 是偶数的概率为12C .m n =的概率为16D .m >n 的概率为12 三、填空题11.同时投掷两颗均匀的骰子,所得点数相等的概率为______.12.哥德巴赫猜想的部分内容如下:任一大于2的偶数可以表示为两个素数(素数是在大于1的自然数中,除了1和它本身以外不再有其他因数的自然数)之和,如18=7+11.在不超过16的素数中,随机选取两个不同的数,其和等于16的概率是_______.13.《笑林广记》中有这样一则笑话:“有自负棋高者.与人角,连负三局.次日,人问之曰:昨日较棋几局?答曰:三局.又问:胜负如何?曰:第一局我不曾赢,第二局他不曾输,第三局我本等要和,他不肯罢了.”已知每局对弈结果有胜、和、负三种情形,根据“自负棋艺者”的回答,判断他“与人角”仅和了1局,则这一判断正确的概率为______.14.已知红箱内有3个红球、2个白球,白箱内有2个红球、3个白球,所有小球大小、形状完全相同.第一次从红箱内取出一球后再放回去,第二次从与第一次取出的球颜色相同的箱子内取出一球,然后再放回去,以此类推,第1k +次从与第k 次取出的球颜色相同的箱子内取出一球,然后再放回去.则第3次取出的球是红球的概率为______.四、解答题15.箱子中有三颗球,编号 1,2,3.分别依下列规定取球并观察编号,试写出下列三个试验的样本空间:(1)一次取一球,取后放回,连取两次.(2)一次取一球,取后不放回,连取两次.(3)一次取两球. 16.某校对高二年级选学生物的学生的某次测试成绩进行了统计,随机抽取了m 名学生的成绩作为样本,根据此数据作出了频率分布统计表和频率分布直方图如下:分组 频数 频率[)60,7016 0.2 [)70,8050 n [)80,90 10 p[]90,1004 0.05 合计 m I(1)求表中n ,p 的值和频率分布直方图中a 的值;(2)如果用分层抽样的方法,从样本成绩在[]60,70和[]90,100的学生中共抽取5人,再从5人中选2人,求这2人成绩在[]60,70的概率.。
人教版高中数学必修一《古典概型》课时达标训练及答案

3.2.1 古典概型(二)课时达标训练一、基础过关1.集合A ={2,3},B ={1,2,3},从A 、B 中各任意取一个数,则这两数之和等于4的概率是( )A.23B.12C.13D.16答案 C解析 从A 、B 中各任意取一个数,共有6种情形, 两数和等于4的情形只有(2,2),(3,1)两种, ∴P =26=13.2.老师为研究男女同学数学学习的差异情况,对某班50名同学(其中男同学30名,女同学20名)采取分层抽样的方法,抽取一个样本容量为10的样本进行研究,某女同学甲被抽到的概率为( )A.150B.110C.15D.14答案 C解析 由题意知,在抽出的容量为10的样本中,有1050×20=4名女同学,每个女同学被抽到的概率是一样的,所以某女同学甲被抽到的概率为420=15.3.先后抛掷两枚均匀的正方体骰子(它们的六个面分别标有点数1、2、3、4、5、6),骰子朝上的面的点数分别为X 、Y ,则log 2X Y =1的概率为( ) A.16B.536C.112D.12答案 C解析 先后抛掷两枚骰子的点数,方法共有36种. 满足条件log 2X Y =1,即Y =2X 的有⎩⎪⎨⎪⎧X =1,Y =2;⎩⎪⎨⎪⎧ X =2,Y =4; ⎩⎪⎨⎪⎧X =3,Y =6,3种.故概率为336=112.4.若某公司从五位大学毕业生甲、乙、丙、丁、戊中录用三人,这五人被录用的机会均等,则甲或乙被录用的概率为 ( )A.23B.25C.35D.910答案 D解析 由题意,得从五位大学毕业生中录用三人,所有不同的可能结果有(甲,乙,丙),(甲,乙,丁),(甲,乙,戊),(甲,丙,丁),(甲,丙,戊),(甲,丁,戊),(乙,丙,丁),(乙,丙,戊),(乙,丁,戊),(丙,丁,戊),共10种,其中“甲与乙均未被录用”的所有不同的可能结果只有(丙,丁,戊)这1种,故其对立事件“甲或乙被录用”的可能结果有9种,所求概率P =910.5.从含有3件正品和1件次品的4件产品中不放回地任取2件,则取出的2件中恰有1件是次品的概率是________. 答案 12解析 设3件正品为A ,B ,C,1件次品为D ,从中不放回任取2件,有以下基本事件:AB ,AC ,AD ,BC ,BD ,CD ,共6个.其中恰有1件是次品的基本事件有:AD ,BD ,CD ,共3个,故P =36=12.6.若以连续掷两次骰子分别得到的点数m 、n 作为点P 的坐标,则点P 落在圆x 2+y 2=16内的概率是________. 答案 29解析 由题意知,基本事件总数为36,事件“点P 落在圆x 2+y 2=16内”包含8个基本事件:(1,1),(1,2),(1,3),(2,1),(2,2),(2,3),(3,1),(3,2),所求概率为P =836=29.7.用红、黄、蓝三种不同颜色给图中3个矩形随机涂色,每个矩形只涂一种颜色,求:(1)3(2)3个矩形颜色都不同的概率.解 所有可能的基本事件共有27个,如图所示.(1)记“3个矩形都涂同一颜色”为事件A ,由图,知事件A 的基本事件有1×3=3(个),故P (A )=327=19.(2)记“3个矩形颜色都不同”为事件B ,由图,可知事件B 的基本事件有2×3=6(个),故P (B )=627=29.二、能力提升8.先后两次抛掷一枚骰子,在得到点数之和不大于6的条件下,先后出现的点数中有3的概率为( )A.16B.15C.13D.25答案 C解析 由题意可知,在得到点数之和不大于6的条件下,先后出现的点数中有3的概率为55+4+3+2+1=13.9.有3个兴趣小组,甲、乙两位同学各自参加其中一个小组,每位同学参加各个小组的可能性相同,则这两位同学参加同一个兴趣小组的概率为( )A.13B.12C.23D.34答案 A解析 由题意知本题是一个古典概型,设3个兴趣小组分别为A ,B ,C .试验发生包含的基本事件数为AA 、AB 、AC 、BA 、BB 、BC 、CA 、CB 、CC 共9种结果,满足条件的事件是这两位同学参加同一个兴趣小组,由于共有三个小组,则有3种结果,根据古典概型概率公式得到P =39=13,故选A.10.某人有4把钥匙,其中2把能打开门,现随机地取1把钥匙试着开门,不能开门的就扔掉,问第二次才能打开门的概率是______;如果试过的钥匙不扔掉,这个概率是________. 答案 13 14解析 第二次能打开门说明第一次是从不能打开门的钥匙中取一,第二次是从能打开门的钥匙中取一,第二次打开门这个事件包含的基本事件数为2×2=4,基本事件总数为4×3=12,所求概率为P 1=412=13.如果试过的钥匙不扔掉,基本事件总数为4×4=16,所求概率为P 2=416=14.11.一个袋中装有四个形状大小完全相同的球,球的编号分别为1,2,3,4.(1)从袋中随机取两个球,求取出的球的编号之和不大于4的概率;(2)先从袋中随机取一个球,该球的编号为m ,将球放回袋中,然后再从袋中随机取一个球,该球的编号为n ,求n <m +2的概率.解 (1)从袋中随机取两个球,其一切可能的结果组成的基本事件有:1和2,1和3,1和4,2和3,2和4,3和4,共6个.从袋中取出的两个球的编号之和不大于4的事件有:1和2,1和3,共2个.因此所求事件的概率为P =26=13.(2)先从袋中随机取一个球,记下编号为m ,放回后,再从袋中随机取一个球,记下编号为n ,其一切可能的结果(m ,n )有:(1,1),(1,2),(1,3),(1,4),(2,1),(2,2),(2,3),(2,4),(3,1),(3,2),(3,3),(3,4),(4,1),(4,2),(4,3),(4,4),共16个.又满足条件n ≥m +2的事件有:(1,3),(1,4),(2,4),共3个. 所以满足条件n ≥m +2的事件的概率为P 1=316.故满足条件n <m +2的事件的概率为1-P 1=1-316=1316.12.某小组共有A ,B ,C ,D ,E 五位同学,他们的身高(单位:米)及体重指标(单位:千克/米2)如下表所示:(1) 1.78以下的概率; (2)从该小组同学中任选2人,求选到的2人的身高都在1.70以上且体重指标都在[18.5,23.9)中的概率.解 (1)从身高低于1.80的4名同学中任选2人,其一切可能的结果组成的基本事件有:(A ,B ),(A ,C ),(A ,D ),(B ,C ),(B ,D ),(C ,D )共6个.设“选到的2人身高都在1.78以下”为事件M ,其包括事件有3个,故P (M )=36=12.(2)从该小组5名同学中任选2人,其一切可能的结果组成的基本事件有:(A ,B ),(A ,C ),(A ,D ),(A ,E ),(B ,C ),(B ,D ),(B ,E ),(C ,D ),(C ,E ),(D ,E )共10个. 设“选到的2人的身高都在1.70以上且体重指标都在[18.5,23.9)”为事件N ,且事件N包括事件有:(C ,D ),(C ,E ),(D ,E )共3个. 则P (N )=310.三、探究与拓展13.班级联欢时,主持人拟出了如下一些节目:跳双人舞、独唱、朗诵等,指定3个男生和2个女生来参与,把5个人分别编号为1,2,3,4,5,其中1,2,3号是男生,4,5号是女生,将每个人的号分别写在5张相同的卡片上,并放入一个箱子中充分混合,每次从中随机地取出一张卡片,取出谁的编号谁就参与表演节目.(1)为了选出2人来表演双人舞,连续抽取2张卡片,求取出的2人不全是男生的概率; (2)为了选出2人分别表演独唱和朗诵,抽取并观察第一张卡片后,又放回箱子中,充分混合后再从中抽取第二张卡片,求:独唱和朗诵由同一个人表演的概率. 解 (1)利用树状图我们可以列出连续抽取2张卡片的所有可能结果(如下图所示).由上图可以看出,试验的所有可能结果数为20,因为每次都随机抽取,所以这20种结果出现的可能性是相同的,试验属于古典概型.用A 1表示事件“连续抽取2人是一男一女”,A 2表示事件“连续抽取2人都是女生”,则A 1与A 2互斥,并且A 1∪A 2表示事件“连续抽取2张卡片,取出的2人不全是男生”,由列出的所有可能结果可以看出,A 1的结果有12种,A 2的结果有2种,由互斥事件的概率加法公式,可得P (A 1∪A 2)=P (A 1)+P (A 2)=1220+220=710=0.7,即连续抽取2张卡片,取出的2人不全是男生的概率为0.7.(2)有放回地连续抽取2张卡片,需注意同一张卡片可再次被取出,并且它被取出的可能性和其他卡片相等,我们用一个有序实数对表示抽取的结果,例如“第一次取出2号,第二次取出4号”就用(2,4)来表示,所有的可能结果可以用下表列出. 第二次抽取第一次抽取123451 (1,1) (1,2) (1,3) (1,4) (1,5)2 (2,1) (2,2) (2,3) (2,4) (2,5)3 (3,1) (3,2) (3,3) (3,4) (3,5) 4(4,1)(4,2)(4,3)(4,4)(4,5)概型.用A表示事件“独唱和朗诵由同一个人表演”,由上表可以看出,A的结果共有5种,因此独唱和朗诵由同一个人表演的概率P(A)=525=15=0.。
高中古典概型试题及答案

高中古典概型试题及答案一、单项选择题1. 古典概型的概率模型中,基本事件的个数是有限的。
()A. 正确B. 正确C. 错误D. 正确答案:A2. 古典概型的概率模型中,每个基本事件的发生是等可能的。
()A. 正确B. 正确C. 错误D. 正确答案:B3. 古典概型的概率模型中,基本事件的个数是无限的。
()A. 正确B. 正确C. 错误D. 正确答案:C4. 古典概型的概率模型中,每个基本事件的发生是不等可能的。
()A. 正确B. 正确C. 错误D. 正确答案:D5. 古典概型的概率模型中,基本事件的个数是无限的。
()A. 正确B. 正确C. 错误D. 正确答案:C二、填空题6. 古典概型的概率模型中,基本事件的个数是_________。
答案:有限7. 古典概型的概率模型中,每个基本事件的发生是_________。
答案:等可能8. 古典概型的概率模型中,基本事件的个数是_________。
答案:有限9. 古典概型的概率模型中,每个基本事件的发生是_________。
答案:等可能10. 古典概型的概率模型中,基本事件的个数是_________。
答案:有限三、解答题11. 一个袋子里有5个红球和3个蓝球,从中随机抽取一个球,求抽到红球的概率。
解:设事件A为“抽到红球”,则P(A)=\frac{5}{8}。
12. 一个袋子里有10个球,其中5个红球,3个蓝球,2个绿球,从中随机抽取一个球,求抽到红球的概率。
解:设事件A为“抽到红球”,则P(A)=\frac{5}{10}=\frac{1}{2}。
13. 一个袋子里有10个球,其中5个红球,3个蓝球,2个绿球,从中随机抽取一个球,求抽到蓝球的概率。
解:设事件A为“抽到蓝球”,则P(A)=\frac{3}{10}。
14. 一个袋子里有10个球,其中5个红球,3个蓝球,2个绿球,从中随机抽取一个球,求抽到绿球的概率。
解:设事件A为“抽到绿球”,则P(A)=\frac{2}{10}=\frac{1}{5}。
高中数学 专题1.11 古典概型练习(含解析)新人教A版必修3-新人教A版高一必修3数学试题

古典概型1.下列试验中,属于古典概型的是( )A .种下一粒种子,观察它是否发芽B .从规格直径为250 mm ±0.6 mm 的一批合格产品中任意抽一根,测量其直径dC .抛一枚硬币,观察其出现正面或反面D .某人射击中靶或不中靶【答案】 C【解析】 依据古典概型的特点判断,只有C 项满足:①试验中所有可能出现的基本事件只有有限个;②每个基本事件出现的可能性相同.2.一枚硬币连掷3次,有且仅有2次出现正面向上的概率为( )A.38B.23C.13D.143.四条线段的长度分别是1,3,5,7,从这四条线段中任取三条,则所取出的三条线段能构成一个三角形的概率是( )A .14B .13C .12D .25【答案】A 【解析】 从四条长度各异的线段中任取一条,每条被取出的可能性均相等,所以该问题属于古典概型.又所有基本事件包括(1,3,5),(1,3,7),(1,5,7),(3,5,7)四种,而能构成三角形的基本事件只有(3,5,7)一种,所以所取出的三条线段能构成一个三角形的概率是P =14. 4.集合A ={2,3},B ={1,2,3},从A 、B 中各任意取一个数,则这两数之和等于4的概率是( ) A.23 B.12 C.13 D.165.从1,2,3,4,5中任意取出两个不同的数,其和为5的概率是________.6、现有5根竹竿,它们的长度(单位:m)分别为2.5,2.6,2.7,2.8,2.9.若从中一次抽取2根竹竿,则它们的长度恰好相差0.3 m的概率为________.答案1 5解析基本事件共有(2.5,2.6),(2.5,2.7),(2.5,2.8),(2.5,2.9),(2.6,2.7),(2.6,2.8),(2.6,2.9),(2.7,2.8),(2.7,2.9),(2.8,2.9)10种情况.相差0.3 m的共有(2.5,2.8),(2.6,2.9)两种情况,所以P=210=1 5.7.有100X卡片(从1号到100号),从中任取1X,取到的卡号是7的倍数的概率为________.8.在不大于100的自然数中任取一个数.(1)求所取的数为偶数的概率;(2)求所取的数是3的倍数的概率;(3)求所取的数是被3除余1的数的概率.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《古典概型》练习题(有祥细解答)一、选择题1.为了丰富高一学生的课外生活,某校要组建数学、计算机、航空模型3个兴趣小组,小明要选报其中的2个,则基本事件有()A.1个B.2个C.3个D.4个[答案] C[解析]基本事件有{数学,计算机},{数学,航空模型},{计算机,航空模型},共3个,故选C.2.下列试验中,是古典概型的为()A.种下一粒花生,观察它是否发芽B.向正方形ABCD内,任意投掷一点P,观察点P是否与正方形的中心O重合C.从1,2,3,4四个数中,任取两个数,求所取两数之一是2的概率D.在区间[0,5]内任取一点,求此点小于2的概率[答案] C[解析]对于A,发芽与不发芽的概率一般不相等,不满足等可能性;对于B,正方形内点的个数有无限多个,不满足有限性;对于C,满足有限性和等可能性,是古典概型;对于D,区间内的点有无限多个,不满足有限性,故选C.3.袋中有2个红球,2个白球,2个黑球,从里面任意摸2个小球,不是基本事件的为()A.{正好2个红球} B.{正好2个黑球}C.{正好2个白球} D.{至少1个红球}[答案] D[解析]至少1个红球包含,一红一白或一红一黑或2个红球,所以{至少1个红球}不是基本事件,其他项中的事件都是基本事件.4.在200瓶饮料中,有4瓶已过保质期,从中任取一瓶,则取到的是已过保质期的概率是()A.0.2 B.0.02C.0.1 D.0.01 [答案] B[解析]所求概率为4200=0.02.5.下列对古典概型的说法中正确的是()①试验中所有可能出现的基本事件只有有限个②每个事件出现的可能性相等③每个基本事件出现的可能性相等④基本事件总数为n,随机事件A若包含k个基本事件,则P(A)=knA.②④B.①③④C.①④D.③④[答案] B[解析]②中所说的事件不一定是基本事件,所以②不正确;根据古典概型的特点及计算公式可知①③④正确.6.从1,2,3,4中任取2个不同的数,则取出的2个数之差的绝对值为2的概率是( )A.12B.13C.14D.16解析:从1,2,3,4中任取2个不同的数,共有(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)6种不同的结果,取出的2个数之差的绝对值为2有(1,3),(2,4)2种结果,概率为13,故选B.答案:B7.先后抛掷两枚均匀的正方体骰子(它们的六个面分别标有点数1、2、3、4、5、6),骰子朝上的面的点数分别为x,y,则满足log2x y=1的概率为( )A.16B.536C.112D.12解析:由log2xy=1得2x=y.又x∈{1,2,3,4,5,6},y∈{1,2,3,4,5,6},所以满足题意的有x=1,y=2或x=2,y=4或x=3,y=6,共3种情况.所以所求的概率为336=112,故选C.答案:C8.将号码分别为1,2,3,4的四个小球放入一个袋中,这些小球仅号码不同,其余完全相同,甲从袋中摸出一个小球,其号码为a,放回后,乙从此口袋中再摸出一个小球,其号码为b,则使不等式a-2b+4<0成立的事件发生的概率为( )A.18B.316C.14D.12解析:由题意知(a ,b )的所有可能结果有4×4=16个.其中满足a -2b +4<0的有(1,3),(1,4),(2,4),(3,4),共4个,所以所求概率为14.答案:C9.若某公司从五位大学毕业生甲、乙、丙、丁、戊中录用三人,这五人被录用的机会均等,则甲或乙被录用的概率为( )A.23B.25C.35D.910解析:记事件A :甲或乙被录用.从五人中录用三人,基本事件有(甲,乙,丙)、(甲,乙,丁)、(甲,乙,戊)、(甲,丙,丁)、(甲,丙,戊)、(甲,丁,戊)、(乙,丙,丁)、(乙,丙,戊)、(乙,丁,戊)、(丙,丁,戊),共10种可能,而A 的对立事件A 仅有(丙,丁,戊)一种可能,∴A 的对立事件A 的概率为P (A )=110,∴P (A )=1-P (A )=910.选D.答案:D 10为3、5,第三组有3个数为7、9、11,…,依此类推,则从第十组中随机抽取一个数恰为3的倍数的概率为( )A.110 B.310 C.15 D.35解析:由已知可得前九组共有1+2+3+…+9=45个奇数,第十组共有10个奇数,分别是91,93,95,97,99,101,103,105,107,109这10个数字,其中恰为3的倍数的数有93,99,105三个,故所求概率为P =310.答案:B 11.袋中共有6个除了颜色外完全相同的球,其中有1个红球,2个白球和3个黑球,从袋中任取两球,两球颜色为一白一黑的概率等于( )A.15B.25C.35D.45[答案] B[解析] 1个红球,2个白球和3个黑球记为a 1,b 1,b 2,c 1,c 2,c 3从袋中任取两球共有a 1,b 1;a 1,b 2;a 1,c 1;a 1,c 2;a 1,c 3;b 1,b 2;b 1,c 1;b 1,c 2;b 1,c 3;b 2,c 1;b 2;c 2;b 2,c 3;c 1,c 2;c 1,c 3;c 2,c 315种;满足两球颜色为一白一黑有6种,概率等于61512.若连续抛掷两次骰子得到的点数分别为m ,n ,则点P (m ,n )在直线x +y =4上的概率是( )A.13B.14C.16D.112[答案] D[解析] 由题意知(m ,n )的取值情况有(1,1),(1,2),…,(1,6);(2,1),(2,2),…,(2,6);…;(6,1),(6,2),…,(6,6).共36种情况.而满足点P (m ,n )在直线x +y =4上的取值情况有(1,3),(2,2),(3,1),共3种情况,故所求概率为336=112,故选D.二、填空题13.袋子中有大小相同的四个小球,分别涂以红、白、黑、黄颜色. (1)从中任取1球,取出白球的概率为________.(2)从中任取2球,取出的是红球、白球的概率为________. [答案] (1)14 (2)16[解析] (1)任取一球有4种等可能结果,而取出的是白球只有一个结果, ∴P =14.(2)取出2球有6种等可能结果,而取出的是红球、白球的结果只有一种,∴概率P =16.14.在两个袋内,分别装着写有0,1,2,3,4,5六个数字的6张卡片,今从每个袋中任取一张卡片,则两数之和等于5和概率为________.[答案] 16[解析] 两个袋内分别任取一张卡片包含的基本事件有 (0,0),(0,1),(0,2),(0,3),(0,4),(0,5), (1,0),(1,1),(1,2),(1,3),(1,4),(1,5), (2,0),(2,1),(2,2),(2,3),(2,4),(2,5),(3,0),(3,1),(3,2),(3,3),(3,4),(3,5),(4,0),(4,1),(4,2),(4,3),(4,4),(4,5),(5,0),(5,1),(5,2),(5,3),(5,4),(5,5),共有36个基本事件,设两数之和等于5为事件A,则事件A包含的基本事件有(0,5),(1,4),(2,3),(3,2),(4,1),(5,0),共有6个基本事件,则P(A)=636=16.15.某学校共有2 000名学生,各年级男、女生人数如下表:0.19,现拟采用分层抽样的方法从全校学生中抽取80名学生,则三年级应抽取的学生人数为________人.[答案]20[解析]由题意知,抽到二年级女生的概率为0.19,则x2 000=0.19,解得x=380,则y+z=2 000-(369+381+370+380)=500,则三年级学生人数为500,又分层抽样的抽样比为802 000=125,所以从全校学生中抽取80名学生中,三年级应抽取的学生人数为500×125=20.16.一枚硬币连掷3次,观察向上面的情况,并计算总数;求仅有2次正面向上的概率_______.[解析](1)所有的基本事件是(正,正,正),(正,正,反),(正,反,正),(正,反,反),(反,正,正),(反,正,反),(反,反,正),(反,反,反),共有8个基本事件.1.由(1)知,仅有2次正面向上的有(正,正,反),(正,反,正),(反,正,正),共3个.设仅有2次正面向上为事件A,则P(A)=3 8.三.解答题17..随意安排甲、乙、丙3人在3天假期中值班,每人值班1天,则:(1)这3人的值班顺序共有多少种不同的排列方法?(2)这3人的值班顺序中,甲在乙之前的排法有多少种?(3)甲排在乙之前的概率是多少?[解析](1)3个人值班的顺序所有可能的情况如下图所示.甲乙丙丙乙乙甲丙丙甲丙甲乙乙甲由图知,所有不同的排列顺序共有6种.(2)由图知,甲排在乙之前的排法有3种.(3)记“甲排在乙之前”为事件A,则P(A)=36=12.18.袋中有五张卡片,其中红色卡片三张,标号分别为1,2,3;蓝色卡片两张,标号分别为1,2.(1)从以上五张卡片中任取两张,求这两张卡片颜色不同且标号之和小于4的概率;(2)现袋中再放入一张标号为0的绿色卡片,从这六张卡片中任取两张,求这两张卡片颜色不同且标号之和小于4的概率.[解析](1)从五张卡片中任取两张的所有可能情况有如下10种:红1红2,红1红3,红1蓝1,红1蓝2,红2红3,红2蓝1,红2蓝2,红3蓝1,红3蓝2,蓝1蓝2.其中两张卡片的颜色不同且标号之和小于4的有3种情况,故所求的概率为P=310.(2)加入一张标号为0的绿色卡片后,从六张卡片中任取两张,除上面的10种情况外,多出5种情况:红1绿0,红2绿0,红3绿0,蓝1绿0,蓝2绿0,即共有15种情况,其中颜色不同且标号之和小于4的有8种情况,所以概率为P=8 15.19.设连续掷两次骰子得到的点数分别为m,n,令平面向量a=(m,n),b=(1,-3).(1)求使得事件“a⊥b”发生的概率;(2)求使得事件“|a|≤|b|”发生的概率.解析:(1)由题意知,m∈{1,2,3,4,5,6},n∈{1,2,3,4,5,6},故(m,n)所有可能的取法共36种.使得a⊥b,即m-3n=0,即m=3n,共有2种:(3,1)、(6,2),所以事件a⊥b的概率为236=118.(2)|a|≤|b|,即m2+n2≤10,共有(1,1)、(1,2)、(1,3)、(2,1)、(2,2)、(3,1)6种使得|a|≤|b|,其概率为636=16.20.一个袋中有4个大小相同的小球,其中红球1个,白球2个,黑球1个,现从袋中有放回地取球,每次随机取一个.(1)求连续取两次都是白球的概率;(2)假设取一个红球记2分,取一个白球记1分,取一个黑球记0分,若连续取三次,则分数之和为4分的概率是多少?解析:(1)连续取两次的基本事件有:(红,红),(红,白1),(红,白2),(红,黑);(白1,红),(白1,白1),(白1,白2),(白1,黑);(白2,红),(白2,白1),(白2,白2),(白2,黑);(黑,红),(黑,白1),(黑,白2),(黑,黑),共16个.连续取两次都是白球的基本事件有:(白1,白1),(白1,白2),(白2,白1),(白2,白2)共4个,故所求概率为p1=416=14.(2)连续取三次的基本事件有:(红,红,红),(红,红,白1),(红,红,白2),(红,红,黑),(红,白1,红),(红,白1,白1),(红,白1,白2),(红,白1,黑),…,共64个.因为取一个红球记2分,取一个白球记1分,取一个黑球记0分,若连续取三次,则分数之和为4分的基本事件如下:(红,白1,白1),(红,白1,白2),(红,白2,白1),(红,白2,白2),(白1,红,白1),(白1,红,白2),(白2,红,白1),(白2,红,白2),(白1,白1,红),(白1,白2,红),(白2,白1,红),(白2,白2,红),(红,红,黑),(红,黑,红),(黑,红,红),共15个,故所求概率为=15 64 .13.(能力提升)(2014年九江一模)一个口袋里有2个红球和4个黄球,从中随机地连取3个球,每次取一个,记事件A=“恰有一个红球”,事件B=“第3个是红球”.求(1)不放回时,事件A,B的概率;(2)每次取后放回时,A,B的概率.解析:(1)由不放回抽样可知,第一次从6个球中取一个,第二次只能从5个球中取一个,第三次从4个球中取一个,基本事件共有6×5×4=120个,又事件A 中含有基本事件3×2×4×3=72个(第1个是红球,则第2、3个是黄球,取法有2×4×3种,第2个是红球和第3个是红球和第1个是红球的取法一样多),∴P (A )=72120=35.第3次抽取红球对前两次没有什么要求,因为红球数占总数的13,在每一次取到都是随机的等可能事件,∴P (B )=13.(2)由放回抽样知,每次都是从6个球中任取一个,有取法63=216种,事件A 包含基本事件3×2×4×4=96种.∴P (A )=96216=49.第三次取到红球包括B 1={红,黄,红},B 2={黄,黄,红},B 3={黄,红,红}三种两两互斥的情形,P (B 1)=2×4×2216=227,P (B 2)=4×4×2216=427,P (B 3)=4×2×2216=227,∴P (B )=P (B 1)+P (B 2)+P (B 3) =227+427+227=827.。