驻极体MIC前置放大电路设计
功率放大器电路图全集
功率放大器电路图全集一.驻极体麦克风前置放大器该电路适用于采用驻极体麦克风的许多应用场合,这里用了以个1.5V的电池.C1和R3用来增强高音和压制低音,也可以根据愿意把它们去掉驻极体麦克风前置放大器二.TDA7057/TDA7057AQ伴音功放电路图· [图文] 差分功放仿真电路· [图文] 飞利浦有源重低音音箱功放电路图(SW2000)· [组图] 采用LM386制作的微小音频放大器电路· [图文] 5000W超轻,高功率放大器电路,无开关电源· [图文] 5,000W ultra-light, high-power amplifier, without switching-mode power supply· [图文] 简单实用的三极功放电路· [图文] 2N3055三极管功率放大器电路 (2N3055 Power Amplifier)· [组图] 摩托罗拉高保真功率放大器电路 (Motorola Hi-Fi power amplifier)· [图文] 带低音炮的10W的音频放大器(10W Audio Amplifier withBass-boost)· [图文] OPA604构成的音频功率放大器电路· [组图] STK465组成的2x30W(立体声)放大器及电路 (Amplifier 2x30W with STK465)·实用的大功率可控硅触发电路原理图· [组图] 低通滤波器电路/低音炮 (Low pass filter-Subwoofer)· [组图] 低阻抗麦克风放大器电路 (Low impedance microphone amplifier) · [图文] 22W音频放大器电路 (22W audio amplifier)· [图文] 100W RMS的放大器电路 (100W rms amplifier)· [组图] 50W功放电路 (50Watt Amplifier)· [图文] 迷你音箱:2W放大器电路 (Mini-box 2W Amplifier)· [图文] Two way cross-over 3500Hz· [组图] 25W场效应管音频放大器(25W Mosfet audio amplifier)· [图文] KMW-306通道无线话筒的原理及电路· [组图] LM1875功放器· [组图] 用LM317制作的功放电路图· [图文] LM1875制作功放电路(含电源电路)· [图文] TA8220功放电路图· [图文] XPT4990音频放大器应用电路· [图文] 大电流输出稳压电源· [图文] LM317高精度放大器电路· [图文] 2030功放电路图· [图文] 什么是高功率放大器· [图文] ZM312型十二路载波机线路放大器的功率放大级部分电路· [图文] 单边功率放大器的基本电路· [图文] 最大功率达到280W的LM3886功放电路图· [图文] BA328录音磁头放大电路· [组图] tda2822m功放电路· [组图] 大功率OCL立体声功放的制作及电路(20~100W×2双通道)· [组图] 用TDA1514制作的简单功放及电路· [组图] TDA2030型立体声功率放大器· [图文] DU30麦克前置放大器电路· [组图] 宽频带视频放大输出电路图· [图文] CD唱机加装自动放音电路· [组图] 傻瓜式混合型功率放大器电路及原理· [图文] 用TDA2822制作的助听器电路· [图文] 影像信号放大电路· [图文] 声音信号放大电路· [图文] 运算放大器音频电路· [图文] 四灯电子管发射机电路· [图文] 带有音频放大器的矿石收音机· [图文] 音频滤波电路· [图文] TDA2030功放电路双电源接法· [图文] TDA2030功放电路单电源电路· [图文] 视频放大器· [图文] 视频前置放大器· [图文] 由电子线路控制的可变增益视频支路放大器· [图文] 视频支路差动放大器· [图文] 双输入视频有线电视放大器· [图文] 简易视频放大器· [图文] 4.5MHz伴音中频放大器· [图文] 通用输出放大器· [图文] 具有低音控制的立体声电唱机放大器· [图文] 立体声前置放大器· [图文] 小型立体声放大器· [图文] 具有音调控制的单片机立体声前置放大器· [图文] 带晶体滤波器的45MHz IF放大器· [图文] RF前置放大器· [图文] 宽带前置放大器· [图文] LC调谐放大器· [图文] 5W 7MHz的RF功率放大器· [图文] 5W 7MHz的RF功率放大器· [图文] 455KHZ IF放大器· [图文] 可转换的HF VHF有源天线· [图文] 455KHz的中频放大器· [图文] 144-2304MHz的UHF宽带放大器· [图文] UHF放大器· [图文] 455KHz简易中频放大器· [图文] 20W 1296KHz的放大器模块· [图文] 采用MAR-1MMIC接收机和扫描机功率放大器· [图文] 用于手提式步话机的2M FET功率放大器· [图文] 10W 10M的线性放大器· [图文] 电视伴音系统· [图文] 宽带功率放大器· [图文] 20W 450MHz放大器· [图文] 30MHZ放大器· [图文] 小型宽带放大器· [图文] 70MHz RF功率放大器· [图文] 广播波段RF放大器· [图文] 435MHz的低噪音GASFET前置放大器· [图文] 宽频带RF放大器· [图文] 采用MAR-x的VHF和UHF前置放大器· [图文] HF前置放大器· [图文] 可增益放大器· [图文] 示波器前置放大器· [图文] 短波接收机的噪声放大限制器· [图文] 场效应管运算放大器传声器混合电路· [图文] 放大器冷却的电路Ⅱ· [图文] 放大器冷却电路Ⅰ· [图文] 前置放大器的收发定序器· [图文] 三极管功率放大电路· [图文] LMC6062仪表放大器· [图文] 红外光电二极管选择性前置放大器· [图文] 电子二分频功率放大器电路· [图文] 2×100W高保真双声道功率放大器· [图文] 单片音响功放集成电路TDA7294构成的100W功率放大器· [图文] 用两块高保真音响集成电路LM1875构成的BTL功率放大器· [图文] 2×70W双声道高保真功率放大器· [图文] 采用STK4040X1构成的70W音频功率放大器· [图文] 采用LM3875T构成的60W高保真功率放大器· [图文] 50W高保真功率放大器电路· [图文] 高保真音响功放集成电路TDA1514构成的40W功率放大器· [图文] 2×30W双声道音频功率放大器· [图文] 单电源、低压、低功耗运算放大器电路· [图文] NE5532前级放大电路· [组图] lm1875+ne5532功放电路· [图文] F4558基本接线图· [图文] 4558前级放大电路· [图文] 用LM1875构成的集成功率放大器电路· [图文] 甲乙类互补功率放大电路· [图文] 功放三极管的三种工作状态工作状态· [图文] 乙类互补对称功放电路· [图文] 实用OTL功放电路· [图文] 单片集成功率放大电路· [图文] QRP测音发声器/电码操作振荡器· [组图] tda2006单电源功放电路· [图文] 3V峰到峰单电源缓冲器· [图文] MOS场效应缓冲放大器· [图文] VFO缓冲放大器· [图文] 大电流缓冲器· [图文] 缓冲器/放大器· [图文] 分立元件功率放大器原理图· [图文] TDA2030功放集成块和BD907/BD908制作的40w功放电路· [图文] TDA7294功率放大电路· [图文] TDA7057/TDA7057AQ伴音功放电路图· [图文] TDA2822电路图· [图文] TDA2616功率放大电路图· [图文] TDA2040应用电路图· [图文] TDA2009 OTL单/双声道功率放大电路图· [图文] TDA1521A功率放大器电路· [图文] TDA1521双通道功率放大电路· [图文] TDA1514功放电路图· [图文] TDA1013伴音功放电路· [图文] TBA820/TBA820M功率放大电路图· [图文] TA8223/TA8223K双通道功率放大电路· [图文] TA8218/TA8218H三通道功放电路图· [图文] TA8211/TA8211AH双通道功放电路· [图文] TA7270/TA7270P功率放大器电路· [图文] TA7250/TA7250P功率放大器电路· [图文] LA4287伴音功放电路图· [图文] TDA3803/TDA3803A伴音处理器电路图· [组图] 音频分配放大器· [图文] 音频放大器。
驻极体话筒应用电路
驻极体话筒应用电路2008年11月23日星期日 16:071.单管放大电路2.低噪声话筒功放电路本文介绍的这款话筒功放电路,外围元件少,制作简单,音质却出乎意料的好。
采用一块双路音频放大集成电路。
其主要特点是效率高、耗电省,静态工作电流典型值只有6mA左右,该集成电路的电压适应能力强(1.8V~15VDC),即使在1.8V低电压下使用,仍会有约 100mW 的功率输出,具体电路如图所示。
一、工作原理驻极体话筒MIC将拾取的声音信号转换成电信号后,经C2和W从U1的②脚引入,经U1音频放大后,推动喇叭发音。
本机接成BTL输出电路,这对于改善音质,降低失真大有好处,同时输出功率也增加了4倍,当3V供电时,其输出功率为350mW。
二、元器件选择与调试电阻R1、R2均选用1/4W金属膜电阻,W为小型碳膜电位器,C2最好选用独石电容器,如没有应选用质量好的瓷片电容,C1、C4、C3选用优质耐压16V,漏电电流小的电解电容,MIC选用高灵敏度驻极体传声器。
K选用小型的按钮开关或拨动开关等,U1选用TDA2822M或TDA2822,也可用D2822代替。
按图1中数值制作,一般无需调试即可正常工作。
源极输出与漏极输出。
源极输出类似晶体三极管的射极输出。
需用三根引出线。
漏极D接电源正极。
源极S与地之间接一电阻Rs来提供源极电压,信号由源极经电容C输出。
编织线接地起屏蔽作用。
源极输出的输出阻抗小于2k,电路比较稳定,动态范围大。
但输出信号比漏极输出小。
漏极输出类似晶体三极管的共发射极放入。
只需两根引出线。
漏极D与电源正极间接一漏极电阻RD,信号由漏极D经电容C输出。
源极S与编织线一起接地。
漏极输出有电压增益,因而话筒灵敏度比源极输出时要高,但电路动态范围略小。
极性判别关于驻极体电容式话筒的检测方法是:首先检查引脚有无断线情况,然后检测驻极体电容式话筒。
驻极体话筒体积小,结构简单,电声性能好,价格低廉,应用非常广泛。
驻极体话筒电路
标签:
杂谈
驻极体话筒应用电路(来源/%D0%A1%B2%A8%B5%E7%D7%D3%CA%D2/blog/item/f224f63251a000f11b4cff51.html)
1.单管放大电路
2.低噪声话筒功放电路
本文介绍的这款话筒功放电路,外围元件少,制作简单,音质却出乎意料的好。采用一块双路音频放大集成电路。其主要特点是效率高、耗电省,静态工作电流典型值只有6mA左右,该集成电路的电压适应能力强(1.8V~15VDC),即使在1.8V低电压下使用,仍会有约100mW的功率输出,具体电路如图所示。
一、工作原理
驻极体话筒MIC将拾取的声音信号转换成电信号后,经C2和W从U1的②脚引入,经U1音频放大后,推动喇叭发音。本机接成BTL输出电路,这对于改善音质,降低失真大有好处,同时输出功率也增加了4倍,当3V供电时,其输出功率为350mW。
二、元器件选择与调试
电阻R1、R2均选用1/4W金属膜电阻,W为小型碳膜电位器,C2最好选用独石电容器,如没有应选用质量好的瓷片电容,C1、C4、C3选用优质耐压16V,漏电电流小的电解电容,MIC选用高灵敏度驻极体传声器。K选用小型的按钮开关或拨动开关等,U1选用TDA 2822M或TDA2822,也可用D2822代替。按图1中数值制作,一般无需调试即可正常工作。
声电转换的关键元件是驻极体振动膜。它是一片极薄的塑料膜片,在其中一面蒸发上一层纯金薄膜。然后再经过高压电场驻极后,两面分别驻有异性电荷。膜片的蒸金面向外,与金属外壳相连通。膜片的另一面与金属极板之间用薄的绝缘衬圈隔离开。这样,蒸金膜与金属极板之间就形成一个电容。当驻
驻极体话筒结构图
极体膜片遇到声波振动时,引起电容两端的电场发生变化,从而产生了随声波变化而变化的交变电压。驻极体膜片与金属极板之间的电容量比较小,一般为几十pF。因而它的输出阻抗值很高(Xc=1/2~tfc),约几十兆欧以上。这样高的阻抗是不能直接与音频放大器相匹配的。所以在话筒内接入一只结型场效应晶体三极管来进行阻抗变换。场效应管的特点是输入阻抗极高、噪声系数低。普通场效应管有源极(S)、栅极(G)和漏极(D)三个极。这里使用的是在内部源极和栅极间再复合一只二极管的专用场效应管。接二极管的目的是在场效应管受强信号冲击时起保护作用。场效应管的栅极接金属极板。这样,驻极体话筒的输出线便有三根。即源极S,一般用蓝色塑线,漏极D,一般用红色塑料线和连接金属外壳的编织屏蔽线。
驻极体话筒放大电路.
一.设计思路1、语音放大器的基本构成根据要求,输出功率P=2W,电阻R=4Ω,由功率公式可得U=2.8V,对TDA2030输入100mv电压时,可达到设计要求。
另外,由于语音通过话筒输入信号为5mv,放大后要求达到100mv,放大倍数需在20倍以上,由电路设计要求得知,该放大器由三级组成,其总的电压增益AUf=AUf1AUf2AUf3。
应根据放大器所需的总增益AU,来合理分配各级电压增益(AUf1.AUf3)。
为了提高信噪比S/N,前置放大器的增益要适当取大。
为了使输出波形不致产生饱和失真,输出信号的幅值应小于电源电压。
2、性能指标(1)集成直流稳压电源①同时输出12V的电压②输出纹波电压小于5mV(2) 前置放大器①输入信号:Uid.10mV②输入阻抗:Ri=100k.③设定增益Auf1=30(3) 有源带通滤波器①带通频率范围:300Hz~3kHz②增益:Au=1(4) 功率放大器①最大不失真输出功率:Pmax>=2W②负载阻抗:RL=4Ω③电源电压:+12V,-12V(5) 输出功率连续可调①直流输出电压:.50mV(输出开路时)②静态电源电流:.100mA(输出短路时)3、要求(1)选取单元电路及元件根据设计要求和已知条件,确定集成直流稳压电源、前置放大电路、有源带通滤波器电路、功率放大电路的方案,计算和选取单元电路的元件参数。
(2)前置放大电路的组装与调试测量前置放大电路的电压增益AUd、输入电阻Ri等各项技术指标,并与设计要求值进行比较。
(3)有源带通滤波器的组装与调试测量有源带通滤波电路的电压增益AUd、带宽BW,并与设计要求值进行比较。
(4)功率放大电路的组装与调试测量功率放大电路的最大不失真输出功率Po,max、电源供给功率PDC、输出功率.、直流输出电压、静态电源电流等技术指标。
(5)整体电路的调试与试听(6)应用Multisim软件对电路进行仿真。
分析一下内容:前置放大器差模电压增益、共模电压增益、差模输入电阻、共模抑制比、有源带通滤波器的幅频响应。
综合电子设计 驻极体话筒放大电路
实验报告课程名称综合电子设计实验项目驻极体话筒放大电路实验环境学院信息与通信工程学院专业电子信息工程班级/学号学生姓名实验日期成绩指导教师苏进目录一.实验目的 (3)二.知识点和设计内容 (3)三.设计思路 (3)1、语音放大器的基本构成 (3)2、性能指标 (3)3、要求 (4)四.实验原理 (4)1、集成直流稳压电源 (4)2、前置放大电路 (6)3、有源带通滤波器 (7)4、功率放大器 (8)5、系统设计 (8)五.元器件实物及引脚顺序 (9)六.实验步骤 (10)1、电路焊接 (10)2、直流稳压电源的调试 (10)3、前置放大器的调试 (11)4、有源带通滤波器的调试 (11)5、功率放大器的调试 (12)6、系统联调 (12)7、试听 (13)七.实验中的问题提出与解决方法 (13)八.实验体会 (13)九.市场前景分析 (14)十.附录 (14)1、集成运算放大器LM324的管脚图及基本参数 (15)2、元器件符号 (15)3.元件清单 (16)一.实验目的(1)通过实验培养学生的市场素质、工艺素质、自主学习的能力、分析问题解决问题的能力以及团队精神。
(2)掌握分立或集成运放放大器的工作原理及其应用。
(3)通过实验总结回顾所学模拟电子技术基础理论和基础实验,掌握低频小信号放大电路和功放电路的设计方法。
(4)了解语言识别知识。
二.知识点和设计内容本实验的知识点为分立元件放大器或集成运放、有源滤波器、功率放大器;涉及电子电路各个模块之间的联合调试技术。
三.设计思路1、语音放大器的基本构成根据要求,输出功率P=2W,电阻R=4Ω,由功率公式可得U=2.8V,对TDA2030输入100mv电压时,可达到设计要求。
另外,由于语音通过话筒输入信号为5mv,放大后要求达到100mv,放大倍数需在20倍以上,由电路设计要求得知,该放大器由三级组成,其总的电压增益AUf=AUf1AUf2AUf3。
应根据放大器所需的总增益AU,来合理分配各级电压增益(AUf1.AUf3)。
驻极体话筒放大电路
一.设计思路1、语音放大器的基本构成根据要求,输出功率P=2W,电阻R=4Ω,由功率公式可得U=2.8V,对TDA2030输入100mv电压时,可达到设计要求。
另外,由于语音通过话筒输入信号为5mv,放大后要求达到100mv,放大倍数需在20倍以上,由电路设计要求得知,该放大器由三级组成,其总的电压增益AUf=AUf1AUf2AUf3。
应根据放大器所需的总增益AU,来合理分配各级电压增益(AUf1.AUf3)。
为了提高信噪比S/N,前置放大器的增益要适当取大。
为了使输出波形不致产生饱和失真,输出信号的幅值应小于电源电压。
2、性能指标(1)集成直流稳压电源①同时输出12V的电压②输出纹波电压小于5mV(2) 前置放大器①输入信号:Uid.10mV②输入阻抗:Ri=100k.③设定增益Auf1=30(3) 有源带通滤波器①带通频率范围:300Hz~3kHz②增益:Au=1(4) 功率放大器①最大不失真输出功率:Pmax>=2W②负载阻抗:RL=4Ω③电源电压:+12V,-12V(5) 输出功率连续可调①直流输出电压:.50mV(输出开路时)②静态电源电流:.100mA(输出短路时)3、要求(1)选取单元电路及元件根据设计要求和已知条件,确定集成直流稳压电源、前置放大电路、有源带通滤波器电路、功率放大电路的方案,计算和选取单元电路的元件参数。
(2)前置放大电路的组装与调试测量前置放大电路的电压增益AUd、输入电阻Ri等各项技术指标,并与设计要求值进行比较。
(3)有源带通滤波器的组装与调试测量有源带通滤波电路的电压增益AUd、带宽BW,并与设计要求值进行比较。
(4)功率放大电路的组装与调试测量功率放大电路的最大不失真输出功率Po,max、电源供给功率PDC、输出功率.、直流输出电压、静态电源电流等技术指标。
(5)整体电路的调试与试听(6)应用Multisim软件对电路进行仿真。
分析一下内容:前置放大器差模电压增益、共模电压增益、差模输入电阻、共模抑制比、有源带通滤波器的幅频响应。
驻极体话筒放大电路汇总
一.设计思路1、语音放大器的基本构成根据要求,输出功率P=2W,电阻R=4Ω,由功率公式可得U=2.8V,对TDA2030输入100mv电压时,可达到设计要求。
另外,由于语音通过话筒输入信号为5mv,放大后要求达到100mv,放大倍数需在20倍以上,由电路设计要求得知,该放大器由三级组成,其总的电压增益AUf=AUf1AUf2AUf3。
应根据放大器所需的总增益AU,来合理分配各级电压增益(AUf1.AUf3)。
为了提高信噪比S/N,前置放大器的增益要适当取大。
为了使输出波形不致产生饱和失真,输出信号的幅值应小于电源电压。
2、性能指标(1)集成直流稳压电源①同时输出12V的电压②输出纹波电压小于5mV(2) 前置放大器①输入信号:Uid.10mV②输入阻抗:Ri=100k.③设定增益Auf1=30(3) 有源带通滤波器①带通频率范围:300Hz~3kHz②增益:Au=1(4) 功率放大器①最大不失真输出功率:Pmax>=2W②负载阻抗:RL=4Ω③电源电压:+12V,-12V(5) 输出功率连续可调①直流输出电压:.50mV(输出开路时)②静态电源电流:.100mA(输出短路时)3、要求(1)选取单元电路及元件根据设计要求和已知条件,确定集成直流稳压电源、前置放大电路、有源带通滤波器电路、功率放大电路的方案,计算和选取单元电路的元件参数。
(2)前置放大电路的组装与调试测量前置放大电路的电压增益AUd、输入电阻Ri等各项技术指标,并与设计要求值进行比较。
(3)有源带通滤波器的组装与调试测量有源带通滤波电路的电压增益AUd、带宽BW,并与设计要求值进行比较。
(4)功率放大电路的组装与调试测量功率放大电路的最大不失真输出功率Po,max、电源供给功率PDC、输出功率.、直流输出电压、静态电源电流等技术指标。
(5)整体电路的调试与试听(6)应用Multisim软件对电路进行仿真。
分析一下内容:前置放大器差模电压增益、共模电压增益、差模输入电阻、共模抑制比、有源带通滤波器的幅频响应。
LM324---自制电脑驻极体话筒麦克风【前置】放大器 ---解决声音小的问题
LM324---自制电脑驻极体话筒麦克风【前置】放大器---解决声音小的问题采用四运放LM324设计的高灵敏度声音探听器左手665收藏时间:2017年3月13日10:03 来源: 互联网关键字:四运放LM324 高灵敏度声音探听器采用四运放LM324设计的高灵敏度声音探听器LM324是四运放集成电路,它采用14脚双列直插塑料封装,外形如图所示。
它的内部包含四组形式完全相同的运算放大器,除电源共用外,四组运放相互独立。
LM324 pdf 每一组运算放大器可用图1所示的符号来表示,它有5个引出脚,其中“+”、“-”为两个信号输入端,“V+”、“V-”为正、负电源端,“Vo”为输出端。
两个信号输入端中,Vi-(-)为反相输入端,表示运放输出端Vo的信号与该输入端的相位相反;Vi+(+)为同相输入端,表示运放输出端Vo的信号与该输入端的相位相同。
LM324的引脚排列见下图。
下面介绍一例LM324应用电路:高灵敏度探听器(其实和助听器一个道理) 利用本装置,可以听到远处极微弱的声音,它的极强的指向性和极高的灵敏度,能将运动场上运动员和教练员的低声细语尽收耳底,使用起来十分有趣。
工作原理电路见上图,装在特制筒子里的话筒,将一定方向上的声音接收下来(其他方向的声音被抑制),送入放大器放大。
放大器由两级组成,第一级由LM324四运放中的一运放构成,有110倍增益的放大量,第二级由另一运放构成,有500倍增益的放大量。
这样高的放大能力,足以将极微弱的声音信号放大,由耳机输出。
利用它就能听到很远处人耳无法直接听到的微弱声音。
注意事项1、LM324内集成了四个运放,这里只用了A和D,接线方法可参照上图2、R1=R2,取值范围在10K---100K间3、供电+6V---9V,可将两个(或三个)电池夹串联起来使用,4、本机灵敏度极高,试机时不要靠近MIC讲话!关键字:四运放LM324 高灵敏度声音探左手665收藏时间:2017年3月13日10:03自制电脑驻极体话筒麦克风放大器,解决电脑麦克风声音小的问题。
话筒放大器电路图大全(六款话筒放大器电路设计原理图详解)
话筒放大器电路图大全(六款话筒放大器电路设计原理图详解)话筒放大器简称“话放”,是对话筒输入的信号进行放大的设备。
话放的全称是:话筒专用“前置”放大器,现在很多高档话放采用“电子管”放大,目的是要得到“电子管”的柔美韵味。
其实话放不仅仅是“功率放大”的单纯功能,很多还包含参量均衡、压缩器、幻向供电等等功能,特别是压缩器和参量均衡器。
很多话放设备还拥有高采集率的A/D模数转换器,将话筒的模拟信号转换成数字音频信号,输出AES等等数字音频格式。
话筒放大器的基本组成结构为压限器、均衡效果器、扑声消除器、嘶声消除器、噪声门等。
无论我们把话筒插在调音台上,声卡上,或是卡拉OK机上,这些设备都有一个(或多个)话放,那么,还有一种是独立工作的话放,他只负责把话筒信号放大并且进行一些必要的处理,然后变成线路输出信号再输出出去。
话筒放大器电路图设计(一)原理图如下图所示,采用MC2830形成语音电路。
传统的语音电路无法区分语音和噪声的输入信号。
在嘈杂的环境,往往是开关引起的噪音,为了克服这一弱点。
语音电路一级以上的噪声,这样做是利用不同的语音和噪声波形。
语音波形通常有广泛的变化幅度,而噪音波形更稳定。
语音激活取决于R6。
语音激活的敏感性降低,如果R6变化14K到7.0k,从3分贝到8分贝以上的噪音。
话筒放大器电路图设计(二)巧用NE5532作平衡输入话筒放大器电路图一般单端不平衡输入话筒放大器,无论指标做得多高,都无法抑制话筒引入的共模干扰信号,使信噪比受到局限。
这里介绍的采用NE5532高速运算放大器制作的平衡输入话筒放大器则无此缺点,信噪比可以做得很高,能满足专业级的要求,且电路简单,制作方便。
平衡输入话筒放大器的电路见下图所示。
电路核心为3只运算放大器,实际只要用两块运算放大器,还多出1只运放可移作它用,如作音调控制,或再添一块运算放大器组成两路平衡输人话筒放大器。
电路原理:由Cannon(卡依)插座平衡输入的话筒信号经Rl-R4组成的阻抗匹配和抗射频干扰网络后分别进入两只远放的同相输入端进行放大,R5-R7决定两只运放的增益(约为34dB)。
驻极体MIC前置放大电路设计
目录第一章摘要 (2)第二章引言 (2)第三章基本原理 (2)3.1驻极体话筒原理概述 (2)3.2前置放大电路的原理概述 (4)第四章参数设计及运算 (4)4.1结构设计 (4)4.2测量电路的设计与参数计算 (4)4.2.1 放大电路的简化模型 (4)4.2.2中频段通带增益的估算 (6)4.2.4 下限截止频率的估算 (7)4.2.5 具体参数设计 (8)4.3仿真结果 (9)第五章误差分析 (10)5.1理论计算中的误差分析 (11)5.2运算放大器的非理想误差分析 (11)第六章结论 (12)第七章心得体会 (12)参考文献 (14)第一章摘要驻极体前置放大器是基本的低电平音频放大电路,因为可能要处理大动态范围的信号电平、多种类型的驻极体话筒以及各种等级的信号源阻抗,所以它有丰富多样的组成形式。
这些因素都会影响特定应用场合的电路优化。
本课程设计讨论的主要是驻极体话筒的前置放大电路设计。
第二章引言随着我国通讯事业的迅猛发展,对驻极体传声器的需求也越来越大。
目前,一些小型的驻极体传声器虽然可以将场效应管集成于传声器内部,但由于高端产品的售价高昂,低端产品传声器的精度和灵敏度又无法保证,再加上传统的前置放大器体积又过于庞大。
因此,设计一种体积尽可能小,成本低廉而性能优良的前置放大器具有十分重要的意义。
第三章基本原理3.1 驻极体话筒原理概述传声器是一种将声信号转变为相应的电信号的电声换能器。
驻极体传声器是一种用驻极体材料制造的新型传声器。
它具有结构简单、灵敏度高等优点,被广泛应用于语言拾音、声信号检测等方面。
驻极体传声器内部主要包括声电转换和阻抗变换两部分。
声电转换部分包括振膜、极板、空隙三部分。
声电转换的关键元件是振动膜,它是一片极。
驻极体话筒结构原理及应用电路设计
驻极体话筒结构原理及应用电路设计驻极体话筒的结构主要由振动膜片、驻极板和输出电路组成。
振动膜片通常由金属或塑料材料制成,用于接收声压波并产生振动。
驻极板与振动膜片之间存在电容,当振动膜片受到声波的作用时,电容发生变化,导致电信号的产生。
输出电路将产生的电信号放大,并输出为声音信号。
首先是驻极体话筒的电容放大电路设计。
电容放大电路是驻极体话筒的核心部分,用于将微弱的电信号转化为可用的声音信号。
在设计电容放大电路时,需要选择合适的放大倍数和频率响应,以提高音质和减少噪音。
其次是供电电路的设计。
驻极体话筒通常需要直流电源供电,因此需要设计一个合适的供电电路,以提供稳定的电压和电流。
供电电路还需要考虑防止干扰和噪音的设计,以保证音质的清晰度和信号的稳定性。
另外,为了进一步提高声音质量,还可以在驻极体话筒的输出电路中添加滤波电路。
滤波电路可以减少声音中的杂音和失真,并根据需要调整音频的频率范围。
此外,驻极体话筒的应用电路设计还需要考虑信号传输和接收的问题。
一般情况下,驻极体话筒的信号需要通过电缆或无线方式传输给其他设备,因此需要设计合适的信号传输电路和接收电路。
这些电路可以保证信号的稳定传输和准确接收,以及防止干扰和干扰。
最后,驻极体话筒的应用电路设计还需要考虑功耗和体积的问题。
随着现代电子设备的迅速发展,人们对功耗和体积的要求越来越高。
因此,在设计驻极体话筒的应用电路时,需要尽量选择低功耗和小尺寸的元件和模块,以满足现代设备的需求。
总之,驻极体话筒的结构原理及应用电路设计是一个复杂而重要的课题。
只有深入理解其工作原理,并根据实际需求进行合理的电路设计,才能实现高质量的声音采集和放大。
驻极体麦克风电路原理
驻极体麦克风电路原理
驻极体麦克风是一种常用的电容式麦克风,其原理基于电容变化。
其电路原理如下:
1. 构成驻极体麦克风的主要组成部分包括电容式传感器和放大电路。
2. 电容式传感器由一个细而轻的金属膜(振动膜)与固定的金属板(驻极板)组成,形成一个电容。
当声波通过振动膜时,振动膜会产生微小的位移,从而改变电容的值。
3. 放大电路用于放大驻极板和振动膜之间微弱的电容变化信号。
4. 放大电路一般包括一个低噪声的预放大器和一个后级放大器。
预放大器对微弱的电容变化信号进行放大和滤波,后级放大器进一步放大信号以增加输出电平。
5. 驻极体麦克风电路通常还包括直流偏置电路,用于给驻极板施加一个稳定的直流电压以保持麦克风的工作正常。
总之,驻极体麦克风电路通过将声音转化为电容变化信号,并经过放大与处理,最终输出声波的电信号。
驻极体麦克风(ECM)电路设计总结
驻极体麦克风(ECM)电路设计总结1. ECM原理ECM是指驻极体电容式麦克风,与MEMS硅麦不同,其内部结构如图1所示。
MIC内部有一个充有一定电荷的膜片电容,电容其中一个极板与FET连接,由于FET的基极输入阻抗很高,可以认为电容的电荷不会消失。
膜片随着外部声压振动,使得电容两个极板之间距离发生变化,从而导致电容发生变化,从电容公式可以知道,电荷一定的情况下,当电容值发生改变时,电压也会发生变化,即FET的GS电压改变导致DS电流发生变化,电流的变化导致外部偏置电阻上的电压发生变化,从而使得MIC输出端DS电压发生变化,其电压变化量和偏置电阻的电压变化量相等。
图1上述的工作原理其实就是三极管(或MOSFET)的放大用法,在实际工作中,我们使用三极管(或MOSFET)多数是开关作用居多,我在之前的一篇文章《三极管放大区静态工作点设置》,就简单讲述过三极管放大区的静态工作点设置方法,其本质与MIC内部FET的工作原理相同,使FET工作于饱和区(对应三极管的线性放大区)。
2. ECM参数规格根据上述参考文章的讲解,要想MIC输出电压的动态范围最大,需要合适的偏置电阻将正极+输出电压设置在Vs的一半。
根据MIC规格书中的电气参数可知(图2),静态电流为500uA,因此RL=(Vs-V+)/Idss=(2-1)V/500uA=2K,实际选择了2.2K,相差不大。
这也是多数MIC推荐的工作条件:2V偏置电压、2.2K偏置电阻。
在此条件下,可以计算得出MIC两端的静态电压Vbias=2-2.2K*500uA=0.9V。
图2设定好偏置电阻后,我们需要确定MIC输出的交流电压,因为真正有用的声音信息包含在交流电压信号中。
根据模电MOSFET交流等效模型可得,MIC的交流等效电路如图3所示。
由于FET的rgs很大,所以膜片电容上的电荷基本不会放电消失;由于rd相对RL很大,并联之后可以忽略rd,因此MIC的交流输出电压V=gmVgs*RL,由此可知,要想获得较大的有效交流输出信号,可以增大偏置电阻RL。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
目录第一章摘要 (2)第二章引言 (2)第三章基本原理 (2)3.1驻极体话筒原理概述 (2)3.2前置放大电路的原理概述 (4)第四章参数设计及运算 (4)4.1结构设计 (4)4.2测量电路的设计与参数计算 (4)4.2.1 放大电路的简化模型 (4)4.2.2中频段通带增益的估算 (6)4.2.4 下限截止频率的估算 (7)4.2.5 具体参数设计 (8)4.3仿真结果 (9)第五章误差分析 (10)5.1理论计算中的误差分析 (11)5.2运算放大器的非理想误差分析 (11)第六章结论 (12)第七章心得体会 (12)参考文献 (14)第一章摘要驻极体前置放大器是基本的低电平音频放大电路,因为可能要处理大动态范围的信号电平、多种类型的驻极体话筒以及各种等级的信号源阻抗,所以它有丰富多样的组成形式。
这些因素都会影响特定应用场合的电路优化。
本课程设计讨论的主要是驻极体话筒的前置放大电路设计。
第二章引言随着我国通讯事业的迅猛发展,对驻极体传声器的需求也越来越大。
目前,一些小型的驻极体传声器虽然可以将场效应管集成于传声器内部,但由于高端产品的售价高昂,低端产品传声器的精度和灵敏度又无法保证,再加上传统的前置放大器体积又过于庞大。
因此,设计一种体积尽可能小,成本低廉而性能优良的前置放大器具有十分重要的意义。
第三章基本原理3.1 驻极体话筒原理概述传声器是一种将声信号转变为相应的电信号的电声换能器。
驻极体传声器是一种用驻极体材料制造的新型传声器。
它具有结构简单、灵敏度高等优点,被广泛应用于语言拾音、声信号检测等方面。
驻极体传声器内部主要包括声电转换和阻抗变换两部分。
声电转换部分包括振膜、极板、空隙三部分。
声电转换的关键元件是振动膜,它是一片极薄的塑料膜片,在其中一面蒸发上一层纯金薄膜,然后再经过高压电场驻极后,两面分别驻有异性电荷,膜片的蒸金面向外,与金属外壳相连通。
膜片的另一面与金属极板之间用薄的绝缘衬圈隔离开,这样,蒸金膜与金属极板之间就形成一个电容。
当声音传入时,振膜随声波的运动发生振动,此时振膜与固定电极间的电容量也随声音而发生变化。
从而产生了随声波变化而变化的交变电压信号,如此就完成了声音转换为电信号的过程。
电压变化的大小,反映了外界声压的强弱,这种电压变化频率反映了外界声音的频率。
驻极体传声器振膜与极板之间的电容量比较小,一般为几十pF。
因而这个电信号输出阻抗很高,而且很弱。
因此,不能将驻极体传声器的输出直接与音频放大器相接。
而场效应晶体管具有输入阻抗极高、噪声系数低的特点,因此,一般是在传声器内部接入一只输入阻抗极高的结型场效应晶体三极管用来放大驻极体电容产生的电压信号,同时以比较低的阻抗在源极S或者漏极G输出信号,实现阻抗变换,如图1所示。
传声器图3.1 阻抗转换器图1可以看出UOUT1或UOUT2为传声器的输出信号,由于UOUT1不会受到电源噪声VDD的影响,具有较强抗电源噪声干扰能力,所以将UOUT1接到前置放大器进行放大。
3.2 前置放大电路的原理概述前置放大器的作用一方面是对电容传声头输出的信号进行预放大,另一方面主要是将电容头的高输出阻抗转换为低阻抗输出。
下面将详细分析的放大电路。
传声器的前置放大电路运放采用了NE5532,低成本,微功耗。
它的作用是包括对输入电压的放大和根据输入信号的要求对其进行滤波。
第四章参数设计及运算4.1结构设计驻极体话筒电路主要包括三部分如图4.1所示:图4.1 驻极体放大电路结构图本课程设计主要针对图中第二部分进行讨论与研究。
其功能主要是对前边的输入信号进行放大和滤波,并根据输入输出0到2.5V的电压,以便显示系统对被测量量进行显示。
4.2 测量电路的设计与参数计算4.2.1 放大电路的简化模型传声器的前置放大电路如图4.2.1所示。
为便于电路的分析,令=+1/(jω)=//1/(jω)=/(1+jω),根据理想运放所具有的虚短和虚断的特点,可以得到电路的传递函数为:A U==1+=1+=4.2.1从式4.2.1可以看出。
当ω→∞或ω→0时,电路的传递函数Au→1。
V CCC 2R 2R 1C 1R 3R 4C 3NE5532+-U 0U OUT1图 4.2.1 驻极体话筒前置放大电路4.2.2中频段通带增益的估算在语音信号的频段(20 Hz ~20 kHz)内,选择合适的、值,使≈O ,则1+≈1,若1+j ω≈j ω则带入式4.2.1传递函数中,可得Au ≈1+/。
若取=1,则Au=1+/≈/。
4.2.3 上限截止频率的估算当信号的频率较高时,即在通频带内ω值较大,且=时,式4.2.1可变为:A U =1+=4.2.3从上式可以看出,),即)是电路对应的上限截止频率。
4.2.4 下限截止频率的估算当信号的频率较低时,即在通频带内ω值较小且=时,则1+jωR2 C2≈1,式4.2.1可变为:A U=1+= 4.2.4 从上式可以看出,ω=1/()时,即f=1/()是电路对应的下限截止频率。
4.2.5 具体参数设计1.由以上分析可知电路增益A取决于〖〗__ 〖〗_________________________ㆴ_ㆶ_ㆸ_ㆸ_㇄_㇆_㇊_㙄_令2.由设计要求可知驻极体话筒传感器敏感范围为20-2kHz,则设计的放大器的上下限频率范围应分别是2kHz和20Hz.。
则有以上分析可知、f=1/(2π)=2kHzf=1/(2π=20Hz则由以上四个式子可得3.令到此可得放大电路的所有参数。
4.3 仿真结果在运算放大电路设计完了以后,我们对其结果进行了Multisim仿真,其仿真图如图6.1所示:图6.1 Multisim仿真电路由于在第四章中计算的电容不是标准电容值,因此在仿真的过程中C2用的是0.82nF的电容,C1用的是820nF的电容。
另外,由于在multisim中没有驻极体话筒传感器,无法得到其真实的输出情况,因此只能用交变的电压源代替用来仿真。
用示波器测量其输入和输出电压,并对其进行对比,其仿真结果如图6.2所示:图 6.2 multisim仿真结果当设定电源频率为1000Hz的时候,其multisim仿真结果如图6.2所示,由此可知,其放大倍数大体为10倍,其频率不变。
其对0V的偏置取决于_/(_ U=15*第五章误差分析这个电路的误差主要包括三部分:理论计算中的误差、运算放大器的非理想误差和各种元件误差。
而理论计算中的误差和运算放大器非理想误差是主要的部分,因此在下边主要分析这两种误差。
5.1 理论计算中的误差分析在理论计算中,其放大倍数实际是Au=1+,而在实际的计算中,把放大倍数当做__D_Dd,而实际的放大倍数为11倍,并非10倍,因此在multisim仿真的结果并非严格的10倍。
其误差可表示为:*100%=1/11*100%=9.1%5.2 运算放大器的非理想误差分析在我们的设计中都是假设有一种完美的放大器,适用于任何电路设计。
这种完美的运算放大器具有无限大的开环增益和带宽,其偏置电压、输入偏置电流、输入噪声和电源电流都为零,它能够在任意电源电压下工作。
既然它是真正完美的,那也应该是免费的。
但这种完美的运算放大器实际上根本不存在,也不可能存在。
在精密电路设计中,偏置电压是一个关键因素。
对于那些经常被忽视的参数,诸如随温度而变化的偏置电压漂移和电压噪声等,也必须测定。
精确的放大器要求偏置电压的漂移小于200μV和输入电压噪声低于6nV/√Hz。
随温度变化的偏置电压漂移要求小于1μV/℃。
低偏置电压的指标在高增益电路设计中很重要,因为偏置电压经过放大可能引起大电压输出。
在音频应用中,运算放大器主要有两个作用:麦克风放大、耳机或扬声器输出。
对麦克风放大器的噪声要求很高,这是因为放大器能提供20dB到40dB 的增益,它既能放大麦克风的信号,也能放大任何来自运放的噪声。
因此,运算放大器的有限增益和带宽、偏置电压和对音频噪声的放大都会增加整个电路的误差。
第六章结论本文中所设计的传声器前置放大电路具有设计简单,实现方便的特点。
输入阻抗高,抗干扰性能强等优点。
此外,前置电路还可根据需要选用3~18 V电压源供电,以满足不同条件下的工程需求。
目前1/2英寸驻极体传声器前置电路器在工程实践中已经得到了很好的应用。
第七章心得体会两周的测控电路课程设计结束了,通过本次课程设计我的感触颇多,首先谈谈我的收获。
作为一名检测专业的学生,应该具备基本的设计电路和仿真结果的技能,之前对这门课的掌握仅仅停留在给一个题会照着公式算出来的水平,对于设计电路却一点概念都没有,通过这次对驻极体前置放大电路的设计我们不但对熟练掌握了multisim这个软件,了解了更多实际应用当中用到的放大器型号,而且更加深刻的体会到理想和实际的差别,为了让自己的设计更加完善,更加符合工程标准,且有很好的仿真结果,我们一次次翻阅各种电路设计书,不能只要求电路美观,它必须要有一定的实用性。
我们做的是课程设计,而不是艺术家的设计。
艺术家可以抛开实际,尽情在幻想的世界里翱翔,我们是以后要干的是实际的设计,一切都要有据可依.有理可寻,不切实际的构想永远只能是构想,永远无法升级为设计。
而且通过用multisim对结果一次次的仿真我发现有时候结果并不像我们想象中的那样,只有对电路进行十分准确的分析和理解才能的到要求的结果。
另外,课堂上也有部分知识不太清楚,于是我又不得不边学边用,时刻巩固所学知识,这也是我作本次课程设计的第二大收获。
而且通过学习掌握了一些基本的绘图知识,对公式的编辑也有了更深的了解,而仅仅是复制粘贴这么简单。
因为是第一次做电路这方面的设计,在其过程中难免会遇到一些问题。
在设计过程中也看到了自己的一些不足之处,虽然感觉理论上已经掌握,但在运用到实践的过程中还会遇到一些意想不到的困惑,经过一番努力才得以解决。
这也激发了我今后努力学习的动力,这将对我以后的学习产生积极地影响。
通过这次设计我懂得了努力学习的重要性,了解到了理论与实践结合的重要性学会了坚持,耐心和努力。
整个设计我基本上还满意,由于水平有限,难免会有错误,还望老师批评指正。
希望老师有什么意见尽管提出来,以便我们能更好的了解到自己的不足,在课后予以弥补。
参考文献1.基于运算放大器和模拟集成电路的电路设计2.模拟电子技术3.电路理论4.数字电子技术。