CT、MRI灌注成像的基本原理及其临床应用

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

复旦大学研究生课程教学讲义

功能成像在肿瘤诊断中的应用

复旦大学附属肿瘤医院影像中心

目录

1.CT、MRI灌注成像的基本原理及其临床应用-- 彭卫军(2) 2. 磁共振弥散成像的基本原理及临床应用----顾雅佳(14) 3.质子磁共振波谱基本原理及其在颅内肿瘤诊断中的应用---------------------------------------- 周正荣(25) 4.BOLD-fMRI脑功能成像--------------------周良平(42) 5.PET,SPECT在肿瘤诊断中的应用

-----------------------------------------章英剑(64)

CT、MRI灌注成像的基本原理及其临床应用

复旦大学附属肿瘤医院影像中心彭卫军吴斌

灌注(Perfusion)是血流通过毛细血管网,将携带的氧和营养物质输送给组织细胞的重要功能。灌注成像(perfusion imaging) 是建立在流动效应基础上成像方法,与磁共振血管成像不同的是,它观察的不是血液流动的宏观流动,而是分子的微观运动。利用影像学技术进行灌注成像可测量局部组织血液灌注,了解其血液动力学及功能变化,对临床诊断及治疗均有重要参考价值。灌注成像主要有两个方面的内容,一是采用对水分子微量运动敏感的序列来观察人体微循环的灌注状况,二是通过造影剂增强方法来动态的研究器官,组织或病灶区微血管灌注情况。肿瘤的灌注研究可以评价肿瘤的血管分布,了解肿瘤的性质和观察肿瘤对于放射治疗和/或化疗后的反应。

一、灌注成像的原理、技术及相关序列

核医学对局部组织血流灌注成像的研究较早,CT、MRI灌注技术为近年来发展较为迅速的成像方法。

1.CT灌注

CT灌注(CT perfusion)技术最早由Miles于1991年提出,并先后对肝、脾、胰、肾等腹部实质性脏器进行了CT灌注成像的动物实验和临床应用的初步探讨。所谓CT灌注成像是指在静脉注射对比剂同时,对选定层面通过连续多次同层扫描,以获得该层面每一像素

的时间-密度(time-density cur ve,TDC)曲线,其曲线反映的是对比剂在该器官中映了组浓度的变化,间接反织器官灌注量的变化。根据该曲线利用不同的数学模型计算出血流量(blood flow, BF)、血容量(blood volume, BV)、对比剂平均通过时间(mean transit time, MTT)、对比剂峰值时间(Transit time to the peak,TTP、毛细血管通透性等参数,对以上参数进行图像重建和伪彩染色处理得到上述各参数图。CT灌注成像的理论基础为核医学的放射性示踪剂稀释原理和中心容积定律(central volume principle):BF= BV/MTT。BF 指在单位时间内流经一定量组织血管结构的血流量(ml/min/ml);BV 指存在于一定量组织血管结构内的血容量(ml/g);MTT指血液流经血管结构时,包括动脉、毛细血管、静脉窦、静脉,所经过的路径不同,其通过时间也不同,因此用平均通过时间表示,主要反映的是对比剂通过毛细血管的时间(S);TTP指TDC上从对比剂开始出现到对比剂达峰值的时间(S)。增强CT所用的碘对比剂基本符合非弥散型示踪剂的要求,所以可以借用核医学灌注成像的原理。CT灌注成像使用的数学方法主要有两种:非去卷积法和去卷积法。前者忽略对比剂的静脉流出,假定在没有对比剂外渗和消除对比剂再循环的情况下,即对比剂首过现象(对比剂由动脉进入毛细血管到达静脉之前一段时间内,没有对比剂进入静脉再次循环的现象)去计算BF、BV、MTT等参数。而去卷积数学模型概念复杂,主要反映的是注射对比剂后组织器官中存留的对比剂随时间的变化量,其并不用对组织器官的血流动力学状况预先做一些人为的假设,而是根据实际情况综合考虑了流入动脉和

流出静脉进行数学计算处理,因此更真实反映组织器官的内部情况。总之,非卷积数学方法概念相对简单,便于理解,但易低估BF,注射对比剂进要求注射流率大,增加了操作难度和危险性。而去卷积数学方法计算偏差小,注射速度要求不高(一般4~5ml/s),预计去卷积法将会被广泛应用。

CT灌注是最早应用的影像学功能成像方法之一,1983年Axel首次利用动态CT扫描技术和对比剂团注射法获得了脑的CBF和CBV定量数值。由于受当时CT扫描速度原因的限制,此项技术没有在临床应用。经数十年的发展,目前此项技术已经较为成熟。随着多排CT 的推广应用,CT灌注已经从单层面的灌注发展到多层面灌注,大大提高了时间及空间分辨率。

2.磁共振灌注成像(Perfusion-weighted MR imaging,PWI)磁共振灌注成像是指用来反映组织的微血管灌注分布及血流灌注情况的磁共振检查技术。目前依据其成像原理可大致分为二种类型,即对比剂首过灌注成像、动脉血质子自旋标记技术。

对比剂首过灌注成像属于动态增强磁共振成像(dynamic contrast enhanced MRI,DCE MRI)范畴。动态增强磁共振成像技术的方法与CT增强扫描方法大致相同,所不同的是注入顺磁性造影剂如Gd-DTPA。顺磁性的钆剂一进入毛细血管床便在毛细血管内外建立起多个小的局部磁场,即形成一定的磁敏感性差别,类似于在毛细管与组织间建立了无数小梯度磁场,这样不仅使组织质子所经历的磁场均匀性降低,而且导致质子相位相干的损失,即加速了质子的失

相位过程,从而使组织的T1、T2时间均缩短。这时使用T2*敏感序列进行测量,即可观察到组织信号的显著减小,即所谓的“负性增强(negative enhancement)”;如果用对T1时间敏感的序列检查,则表现为组织的正性增强。这种方法能综合评价组织灌注,血容量以及血管的渗透率。虽然这种方法简便,实用,但也有其局限性:首先,顺磁性造影剂对T1和T2时间都有影响,其浓度与增强的程度不成线性关系,所以不能像CT那样进行定量的评价;其次,现在临床使用的磁共振机器的空间和时间分辨率都不够,以前多选择T1-动态增强最强的部分层面进行单层面T2*-首过灌注,但T1动态增强与多种因素有关,如肿瘤组织的T1值、肿瘤的灌注情况、肿瘤间质的T1值、毛细血管密度及毛细血管的渗透性等。有时不能完全反映整个肿瘤的微血管灌注特征。只在肿瘤中一个感兴趣层面进行动态扫描,从而片面地反映肿瘤的整体情况。当然,新型磁共振扫描仪及EPI等快速成像序列的出现,使得对整个肿瘤的首过灌注成像已成为可能。EPI以一连串梯度回波为特征,单次激发EPI仅激发1次即可完成K空间的信号采集。因此在提高时间分辨率的同时又保证了高的空间分辨率。多层动态的T2*首过MR灌注成像(Dynamic sussuptibility contrast T2*-weighted imaging)能较全面的反映肿瘤的微血管灌注。

第二种是流入法,具体的技术有动脉自旋标记法(artery spin-labeling),将血液水分子作为内在的弥散标记物,磁化标记成像层面上游的动脉血液内水分子,然后观察它弥散进入组织的效应,具体做法是在感兴趣的层面之前即用反转或预饱和技术将动脉血

相关文档
最新文档