浇注系统浇口尺寸计算.ppt
合集下载
浇口设计ppt课件
点浇口流动阻力大,封凝快,不适合用料量大、 补缩要求高的厚壁制品成型。
精选ppt
19
模具
点浇口附近充模剪切速率高,取向度高,固 化残余应力大,为减弱其影响,须适当增加浇口 处的壁厚,图3-3-30。
为脱出浇道凝料, 采用点浇口的普通浇 注系统模具必须专设 脱浇道凝料分型面, 因而模具结构为带顺 序分型机构的三板式。
精选ppt
30
4)圆环形浇口
模具
精选ppt
31
模具
圆环形浇口可看成平缝形浇口的变异形式,图 3-3-25 。
相当于把平缝形浇口的最后一级分流道变成侧 壁与型腔边缘等距的圆环(图3-3-25e )或圆盘 (图3-3-25a、b、c) ,浇口成为圆环形窄缝。
圆环形浇口和盘形浇口主要用于圆筒形或带中 心孔的制品。
材料
POM CA PE
PC PMMA PVC PS
PP PA
材料系数 k 0.6 0.7 0.8 0.9
精选ppt
13
模具
③点浇口
点浇口,又称针点浇口,因形状似针刺小 孔而得名。
点浇口是典型的小浇口(限制性浇口)具 有小浇口的一般特性,如:剪切速率高,切力 变稀和升温作用明显、浇口附近物料取向度高; 流动阻力大,压力降大;封凝快,不倒流;料 把与制品连接强度低,可自行拉断,浇口痕迹 小等等。
精选ppt
25
模具
潜伏式浇口应用实例
精选ppt
26
模具
2)扇形分流道浇口
最后一级分流道呈由窄变宽、 由深变浅的鱼尾形(扇形)。
精选ppt
27
模具
扇形分流道浇口是一种变形的侧浇口,图3-323 。浇口为宽深比w/h较大的窄缝,计算思路及 方法与侧浇口相同,常用尺寸范围为:深度 h=0.25~1.5, 宽 度 b=6~B/4 ( B 进 浇 侧 型 腔 宽 度) 。最后一级分流道由窄变宽、由深变浅,结 构及断面尺寸设计类似于鱼尾形板片膜挤出机头。 这种浇口主要用于较宽的扁平制件或长扁制件。 与一般侧浇口相比扇形浇口物料入模均匀、制品 内应力小、裹入空气的可能性小,但浇口薄、凝 封快,浇口痕长、修饰困难。
精选ppt
19
模具
点浇口附近充模剪切速率高,取向度高,固 化残余应力大,为减弱其影响,须适当增加浇口 处的壁厚,图3-3-30。
为脱出浇道凝料, 采用点浇口的普通浇 注系统模具必须专设 脱浇道凝料分型面, 因而模具结构为带顺 序分型机构的三板式。
精选ppt
30
4)圆环形浇口
模具
精选ppt
31
模具
圆环形浇口可看成平缝形浇口的变异形式,图 3-3-25 。
相当于把平缝形浇口的最后一级分流道变成侧 壁与型腔边缘等距的圆环(图3-3-25e )或圆盘 (图3-3-25a、b、c) ,浇口成为圆环形窄缝。
圆环形浇口和盘形浇口主要用于圆筒形或带中 心孔的制品。
材料
POM CA PE
PC PMMA PVC PS
PP PA
材料系数 k 0.6 0.7 0.8 0.9
精选ppt
13
模具
③点浇口
点浇口,又称针点浇口,因形状似针刺小 孔而得名。
点浇口是典型的小浇口(限制性浇口)具 有小浇口的一般特性,如:剪切速率高,切力 变稀和升温作用明显、浇口附近物料取向度高; 流动阻力大,压力降大;封凝快,不倒流;料 把与制品连接强度低,可自行拉断,浇口痕迹 小等等。
精选ppt
25
模具
潜伏式浇口应用实例
精选ppt
26
模具
2)扇形分流道浇口
最后一级分流道呈由窄变宽、 由深变浅的鱼尾形(扇形)。
精选ppt
27
模具
扇形分流道浇口是一种变形的侧浇口,图3-323 。浇口为宽深比w/h较大的窄缝,计算思路及 方法与侧浇口相同,常用尺寸范围为:深度 h=0.25~1.5, 宽 度 b=6~B/4 ( B 进 浇 侧 型 腔 宽 度) 。最后一级分流道由窄变宽、由深变浅,结 构及断面尺寸设计类似于鱼尾形板片膜挤出机头。 这种浇口主要用于较宽的扁平制件或长扁制件。 与一般侧浇口相比扇形浇口物料入模均匀、制品 内应力小、裹入空气的可能性小,但浇口薄、凝 封快,浇口痕长、修饰困难。
3.4.9内浇口截面积计算(方法2)讲解
内浇口截面积:
Ag=217mm2/4=54mm2
结束语
谢
谢
压铸模具设计与制造
任务描述
内浇口截面积计算 (方法2)
主讲人:柯春松
1 内浇口截面积计算
根据管接头三维模型 产品体积:V=48898mm3
铝合金密度:ρ=2.7g/cm3
产品质量:G=ρ×V=132g。
1 内浇口截面积计算
由于产品一模四腔,所以产品总重 量G产= 4×132g=528g 考虑浇注系统和排溢系统的重量,
DCC160 1600
254
DCC280 2800
315
DCC400 4000
405
射料行程/mm 340 400 500 冲头直径/mm 40 50 60 50 60 70 60 70 80 射料量(铝 0.8 1.3 1.8 1.5 2.1 2.9 2.7 3.6 4.7 )kg 铸造压力(增 112. 82. 144. 202.3 129.5 89.9 162 106.1 81.2 压)/MPa 5 6 4 铸造面积/cm2 72.5 120 175 170 245 335 275 375 490 最大铸造面积 400 700 1000 (40MPa)/ cm2
整个铸件重量是产品的2倍,则
G铸=2×G产=2×528g=1056g
1 内浇口截面积计算
压室充满度取50% 压室充满度=铸件重量/压机射料量 压机射料量=铸件重量/压室充满度 =1056g/50%
=2112g(即2.112Kg)
1 内浇口截面积计算
表 力劲卧式冷室压铸机参数
项目名称 锁模力/kN 压射力(增压) kN
1 内浇口截面积计算
根据压铸机参数,选取与射料量相 近的压射冲头直径Ф60。 压射冲头截面积:A冲=2826mm2
第三章 浇注系统的设计与计算
湖北汽车工业学院材料工程系 Department of Materials Engineering
复习题
1.浇注系统由哪些部分组成?分别说明各个组元的 作用? 2.比较顶注式和底注式浇注系统的优缺点。 3.比较封闭式和开放式浇注系统的优缺点。
4 . 如何提高横浇道的撇渣效果?
5. 内浇道在铸件浇铸中能够起到哪些重要作用? 6.确定内浇道位置要注意哪些具体问题? 湖北汽车工业学院材料工程系
配套措施:
1)浇口杯应足够大; 2)严格控制浇注时间。
湖北汽车工业学院材料工程系 Department of Materials Engineering
计算实例:
1、绘制模板布置简图
各层铸件内浇道的金属压力头: h1=100mm; h2=250mm; h3=350mm。
2、计算型内金属质量 m /kg
阶梯式的优缺点
兼有底注式和顶注式 的优点,充型平稳。 但结构复杂,设计和 计算较难。 用于高度大的中、大 型铸件。阶梯式或缝 隙式用于垂直分型无 箱挤压造型或金属型 铸造
湖北汽车工业学院材料工程系 Department of Materials Engineering
(二)按浇注系统各组元截面积的比例关系分
4、 选用浇口杯 根据铸型的浇注速度,使用4号浇口杯,铁液积存5.5 kg; 5、分别计算或由内浇道计算诺谟图查各层内浇道截面积: (流量系数取 μ=0.5) S1=70mm2 ; S2=45mm; S3=38mm2。 6、分直浇道截面积 ∑S内 =2×(70+45+38)=306mm2, S分直=1.2×S内=306×1.2=367mm2 分直浇道的截面尺寸: 上底宽11mm;下底宽22mm;高22mm 。 实际:S分直=363mm2。 7、 水平横浇道尺寸 S横=1.3×363 mm2=472 mm2。 选上底宽12.5mm;下底宽25mm;高25mm; 实际截面积469mm2。
浇注系统浇口尺寸计算 ppt课件
相同塑件多型腔各浇口bgv值必须相等不同塑件多型腔各剪口bgv值必须与其塑件的填充量成正比浇口的平衡相同塑件多型腔的bgv值mm从主流道中心到浇口的流动通道的长度mm浇口的长度mm浇口的平衡2不同塑件多型腔的bgv值garagbgbrbgabgvbgv分别为ab型腔的填充量熔体质量或体积分别为ab型腔的浇口截面积mm分别为主流道中心到达ab型腔的流动通道的长度mm分别为ab型腔的浇口长度gbgamm浇口的平衡无论是相同塑件还是不同塑件多型腔一般在设计时取矩形浇口或圆形浇口浇口截面积与分流道的截面积的比值取
或圆形浇口,浇口截面积 AG与分流道的截面积 AR 的比值取:
AG : AR 0.07 ~ 0.09
矩形浇口的截面的宽度b与厚度t的比值常取:
b:t 3:1
注意:求解时,一般取浇口长度为定值,通过调 节浇口的宽度和厚度来谋求浇口的平衡。
浇注系统相关尺寸计算
浇注系统相关尺寸计算
浇口的平衡例题
浇注系统相关尺寸计算
主流道小端直径d一般取3~6mm,主流道的长度由定模座厚 度确定,一般L不超过60mm,主流道大端与分流道相接处应有 过渡圆角(通常r′取1~3mm)以减少料流转向时的阻力。
浇注系统相关尺寸计算
正确情况:主流道小端直径d比注射机喷嘴直径d0大0.5~1mm, R≥r+(0.5~1)mm。
浇注系统相关尺寸计算
2.分流道的设计 分流道是主流道末端与浇口之间的通道。用于一模多腔或单型腔
多浇口(塑件尺寸大)的场合。
浇注系统相关尺寸计算
分流道的截面形状及尺寸 为便于机械加工及凝料脱模,分流道一般设置在分型面上。
浇注系统相关尺寸计算
3.浇口的设计 浇口亦称进料口,是连接分流道与型腔的最短通道。
或圆形浇口,浇口截面积 AG与分流道的截面积 AR 的比值取:
AG : AR 0.07 ~ 0.09
矩形浇口的截面的宽度b与厚度t的比值常取:
b:t 3:1
注意:求解时,一般取浇口长度为定值,通过调 节浇口的宽度和厚度来谋求浇口的平衡。
浇注系统相关尺寸计算
浇注系统相关尺寸计算
浇口的平衡例题
浇注系统相关尺寸计算
主流道小端直径d一般取3~6mm,主流道的长度由定模座厚 度确定,一般L不超过60mm,主流道大端与分流道相接处应有 过渡圆角(通常r′取1~3mm)以减少料流转向时的阻力。
浇注系统相关尺寸计算
正确情况:主流道小端直径d比注射机喷嘴直径d0大0.5~1mm, R≥r+(0.5~1)mm。
浇注系统相关尺寸计算
2.分流道的设计 分流道是主流道末端与浇口之间的通道。用于一模多腔或单型腔
多浇口(塑件尺寸大)的场合。
浇注系统相关尺寸计算
分流道的截面形状及尺寸 为便于机械加工及凝料脱模,分流道一般设置在分型面上。
浇注系统相关尺寸计算
3.浇口的设计 浇口亦称进料口,是连接分流道与型腔的最短通道。
浇注系统设计
23:29
38
• C)根据标准冒口形状,从圆柱形冒口中 选择与计算值最接近且大于计算值的冒 口。MR=0.84(6#)符合条件:
MR ≥0.79cm
23:29
39
• d) 冒口直径为:DR=45mm • e)冒口径的横截面积计算如下:
冒口径直径: DN>1/3DR=45/3=15mm 冒口径的面积(为圆形)
34
冒口计算范例
• 为更好的说明冒口计算,此处以球铁的 万向节冒口设计为例。很显然圆柱支柱 是铸件最紧实部分,这部分冷却最慢, 凝固最晚,因此在金属收缩时需要金属 补缩。模板的布置图如下:冒口放置在
圆柱的顶部,以便(1)获得顺序凝固
(2)补缩时借助重 力
23:29
35
如图:
冒口计算范例
35mm
80mm
45
铸造常见的几种缺陷
23:29
1.冷隔 2.砂渣眼 3.掉砂 4.粘板 5.押入
6.错模 7.粘砂 8.气孔 9.缩孔 10.打联
46
分析对铸件缺陷产生原因
1.浇注系统
a)因浇道位置引起的铸件缺陷。 b)因浇道形状引起的铸件缺陷。 c)因浇道面积引起的铸件缺陷。
2.因机器参数设置引起的缺陷
23:29
4. 冒口与铸件如何连接(冒口径) 冒口径的形状设计必须能保证冒口与铸
件间通道始终畅通,金属液以最佳的方式 对铸件进行补缩。
23:29
26
冒口有两种类型的收缩
1.表面缩孔。 2.内部缩松。 改善内部的缩松对策:
a.提高CE值 b.增加砂型强度 c.使用冷铁 d.顺序凝固 e.减少孕育用量 f.铁液净化 g.镁残留量趋进0.035
23:29
铸造浇注系统设计PPT课件
直浇道窝的作用
① 缓冲作用:液流下落的动能有相当大一部分被窝 内液体吸收而转变为压力能,再由压力能转化为 水平速度流向横浇道,减轻了对直浇道底部铸型 的冲刷。
直浇道窝的作用
② 改善内浇道的流量分布:例如在S直:S横: 2S内= 1 : 2.5 : 5的实验条件下,无直浇道窝时,两相等 截面的内浇道的流量分配为:31.5%(近直浇道者) 和68.5%(远者);有直浇道窝时的流量分配为: 40.5%(近直浇道者)和59.5%(远者)。
主要作用是捕集、保留由浇道流入的夹杂物,所以又称“捕渣 器”,是浇注系统最后一道挡渣关口。
要求横浇道平稳、缓慢地输送金属液,而低速流动又可减少充 填时对型腔时的冲击,利于渣粒在横浇道中上浮并滞留在其顶 部而不进入型腔。
1、横浇道中的液流分配
• 金属液从直浇道进入横浇道初期,以较大速度沿 长度方向向前运动,等到达横浇道末端冲击该处 型壁后,金属液的动能转变为势能,横浇道末端 附近液面升高,形成金属浪,并开始返回移动, 使横浇道内液面向直浇道方面逐渐升高,直到全 部充满。
浇注过程是不稳定流动过程 ✓ 在型内合金液淹没了内浇道之后,随着合金液面上升,
充型的有效压力头渐渐变小 ✓ 型腔内气体的压力并非恒定 ✓ 浇注操作不可能保持浇口杯内液面的绝对稳定
一、砂型流动的水力学特点
合金液在浇注系统中一般呈湍流状态
多相流动
一般合金液总含有某些少量固相杂质、液相夹杂和气 泡,在充型过程中还可能析出晶粒及气体,故充型时合 金液属于多相流动
第七章 浇注系统设计
本章主要讲授浇注系统类型的选择,浇注最小截 面尺寸的计算,其它铸造合金浇注系统的特点。要 求掌握浇注系统的选择原则。
重点为浇注系统的选择原则和确定浇注位置,难 点为浇注系统选择原则的灵活应用。
4、浇注系统设计 PPT课件
流动比是指熔体在模具中流动通道的最 长流动长度与其厚度的比值。
右图为点浇口进料塑件的流动距离比:
= ห้องสมุดไป่ตู้1 L2 L3 L4 L5 L6 t1 t2 t3 t4 t5 t6
§7.4 浇注系统设计
若流动比超过允许值时,会出现充型不足的现象, 常用塑料的极限流动比见下表
§7.4 浇注系统设计
Z形冷料穴:最常用
倒锥形冷料穴
圆环形冷料穴
§7.4 浇注系统设计
特点:
①开模时起拉凝料作用,推出时将凝料自动推出 ②拉料杆固定在推杆固定板上
作用:
①开模时起“拉主流道凝料”作用; ②推出时拉料杆将凝料自动推出。
应用:推杆、推管推出机构中
§7.4 浇注系统设计
底部不带推出的冷料穴
球头形,常用形式
§7.4 浇注系统设计
浇口设计
作用
浇口是连接分流道和型腔的进料通道,是浇 注系统的最远端
分类
限制性浇口 非限制性浇口
§7.4 浇注系统设计
限制性浇口
限制性浇口是指分流道与型腔间采用一段距离很短、截面 很小的流道。
作用:
(1) 通过截面的突然变化,使塑料熔体流速增加,摩擦加剧,温度 升高,黏度降低,提高流动性,有利于填充型腔; (2) 对多型腔模具,可调节浇口截面尺寸,以保证非平衡布置的型 腔同时充满; (3) 型腔充满后,熔体在浇口处首先凝固,防止熔体倒流,保证型 腔内熔料自由收缩固化成形,减小塑件内残余应力; (4) 便于浇注系统与塑件的分离,塑件上残留痕迹小。 但浇口尺寸过小会使压力损失增大,冷凝加快,补缩困难。
热流道
§7.4 浇注系统设计
普通浇注系统的组成
主流道 分流道 冷料穴 浇口
右图为点浇口进料塑件的流动距离比:
= ห้องสมุดไป่ตู้1 L2 L3 L4 L5 L6 t1 t2 t3 t4 t5 t6
§7.4 浇注系统设计
若流动比超过允许值时,会出现充型不足的现象, 常用塑料的极限流动比见下表
§7.4 浇注系统设计
Z形冷料穴:最常用
倒锥形冷料穴
圆环形冷料穴
§7.4 浇注系统设计
特点:
①开模时起拉凝料作用,推出时将凝料自动推出 ②拉料杆固定在推杆固定板上
作用:
①开模时起“拉主流道凝料”作用; ②推出时拉料杆将凝料自动推出。
应用:推杆、推管推出机构中
§7.4 浇注系统设计
底部不带推出的冷料穴
球头形,常用形式
§7.4 浇注系统设计
浇口设计
作用
浇口是连接分流道和型腔的进料通道,是浇 注系统的最远端
分类
限制性浇口 非限制性浇口
§7.4 浇注系统设计
限制性浇口
限制性浇口是指分流道与型腔间采用一段距离很短、截面 很小的流道。
作用:
(1) 通过截面的突然变化,使塑料熔体流速增加,摩擦加剧,温度 升高,黏度降低,提高流动性,有利于填充型腔; (2) 对多型腔模具,可调节浇口截面尺寸,以保证非平衡布置的型 腔同时充满; (3) 型腔充满后,熔体在浇口处首先凝固,防止熔体倒流,保证型 腔内熔料自由收缩固化成形,减小塑件内残余应力; (4) 便于浇注系统与塑件的分离,塑件上残留痕迹小。 但浇口尺寸过小会使压力损失增大,冷凝加快,补缩困难。
热流道
§7.4 浇注系统设计
普通浇注系统的组成
主流道 分流道 冷料穴 浇口
浇注系统
crystalline)三大类。因分子结构不同,导致其收缩率因走水方向,及胶料厚薄不同面有不同收缩率。
设计浇口时,必须注意塑料是何种塑料,以下是指定潜水设计‘D’形或锥形入水,除客户指
定其设计外,必须遵守。
Round gate
结晶体-圆头潜浇口 Crystalline-Round Gate Nylon,PA PBT PET POM PPS
e. H的高度是能做短就做短。
f. G>H。
应用:适用于外观不允许露出浇口痕迹的胶件。对于一模多腔的胶件,应保证各腔从浇口到型腔 的阻力尽可能相近,避免出现滞流,以获得较好的流动平衡。 手机模上广泛应用。
(5)牛角水口(HOOK GATE)(图5.6)
一般用于成品向外面不能有浇口痕,而亦不能用潜水或潜顶针。
使针点浇口 拉断时不致损伤胶件,R2为(1.5~2.0)mm,
R3为(2.5~3.0)mm,深度h=(0.4~0.8)mm。
应用:其表面浇口痕迹有一定要求的塑件。
R1
δ R2 R3
第四节:浇口的选用
由于不同的塑胶材料有不同的流动性能和充填性能,所以浇口类型的选用与塑胶材 料的种类有直接的关系,进行浇口设计时一定要明确产品材料,并根据产品材料、 产品外观要求、产品结构综合考虑浇口类型和尺寸。表2所列为浇口形式与塑料种 类的适用关系。
α
β
d A
缺点:a.浇口位置容易拖胶粉。 b.入水位置容易产生烘印。 c.需人工剪除胶片。 d.从浇口位置到型腔压力损失较大。
H G
h
参数:a. 浇口直径d为0.3~1.5mm。
b. 进胶方向与垂直方向的夹角α为30°~50°之间。
c.入水嘴的锥度β为15°~25°之间。
设计浇口时,必须注意塑料是何种塑料,以下是指定潜水设计‘D’形或锥形入水,除客户指
定其设计外,必须遵守。
Round gate
结晶体-圆头潜浇口 Crystalline-Round Gate Nylon,PA PBT PET POM PPS
e. H的高度是能做短就做短。
f. G>H。
应用:适用于外观不允许露出浇口痕迹的胶件。对于一模多腔的胶件,应保证各腔从浇口到型腔 的阻力尽可能相近,避免出现滞流,以获得较好的流动平衡。 手机模上广泛应用。
(5)牛角水口(HOOK GATE)(图5.6)
一般用于成品向外面不能有浇口痕,而亦不能用潜水或潜顶针。
使针点浇口 拉断时不致损伤胶件,R2为(1.5~2.0)mm,
R3为(2.5~3.0)mm,深度h=(0.4~0.8)mm。
应用:其表面浇口痕迹有一定要求的塑件。
R1
δ R2 R3
第四节:浇口的选用
由于不同的塑胶材料有不同的流动性能和充填性能,所以浇口类型的选用与塑胶材 料的种类有直接的关系,进行浇口设计时一定要明确产品材料,并根据产品材料、 产品外观要求、产品结构综合考虑浇口类型和尺寸。表2所列为浇口形式与塑料种 类的适用关系。
α
β
d A
缺点:a.浇口位置容易拖胶粉。 b.入水位置容易产生烘印。 c.需人工剪除胶片。 d.从浇口位置到型腔压力损失较大。
H G
h
参数:a. 浇口直径d为0.3~1.5mm。
b. 进胶方向与垂直方向的夹角α为30°~50°之间。
c.入水嘴的锥度β为15°~25°之间。
浇注系统
3、边缘浇口(侧浇口)(tab gate) (1)结构 (2)特点 断面形状简单; 浇口尺寸可达到精确加工,尺寸修改容易; 适应性强,一般塑料均可采用。 (3)常用尺寸 w:1.5~5; h:0.5~2(1/3~2/3)t; l: 1 ±0.2mm 。
4、扇形浇口(fan gate) (1)结构 (2)特点: 成型宽度较大的制品; 易于型腔气体的排出; 制品内应力小;
(三)浇口型式 1、针点浇口(pin point gate) (1)结构 (2)特点 相比较而言,浇口的位置不受限制; 对多型腔模具, 能取得浇口的平衡; 开模时,能自动切断料把,制品表面光滑 ; 对投影面积大又易变形的制品,点浇口可以防止变形;
热流道模具大都采用点浇口。 3)计算公式
D=( Q / γ) ^ 1 / 3 (cm)
以流道的断面积相等为条件,圆形流道的比表面积最小,矩形也比较小。 因此流道的形状常采用圆形、半圆形、梯形和 U 形。
2、分流道的尺寸
影响分流道尺寸的因素: 制品的体积与壁厚;主流道到型腔的距离。
圆形浇口直径: D=( Q / γ) ^ 1 / 3 (cm)
矩形浇口深度: h=( 4 Q / γ) ^ 1 / 3 (cm)
(1)结构
(2)特点
成型圆环形制品,进料均匀,易排气;
无熔接痕;
浇口去除困难。
(3)常用尺寸
同侧浇口。
7、轮辐式浇口
(spoke gate)
(1)结构
(2)特点
圆环形浇口的改进;
浇口去除容易;
制品中有熔接痕,制品强度降低。
(3)常用尺寸
同侧浇口。
8、直浇口 (1)结构 (2)特点 流动阻力小,适于大型 深制品; 注射压力直接作用在制品上,易产生残余应力; 浇口尺寸大,补料时间长; 成型薄而平制品时易变形,浇口去除困难。 (3)常用尺寸
4、扇形浇口(fan gate) (1)结构 (2)特点: 成型宽度较大的制品; 易于型腔气体的排出; 制品内应力小;
(三)浇口型式 1、针点浇口(pin point gate) (1)结构 (2)特点 相比较而言,浇口的位置不受限制; 对多型腔模具, 能取得浇口的平衡; 开模时,能自动切断料把,制品表面光滑 ; 对投影面积大又易变形的制品,点浇口可以防止变形;
热流道模具大都采用点浇口。 3)计算公式
D=( Q / γ) ^ 1 / 3 (cm)
以流道的断面积相等为条件,圆形流道的比表面积最小,矩形也比较小。 因此流道的形状常采用圆形、半圆形、梯形和 U 形。
2、分流道的尺寸
影响分流道尺寸的因素: 制品的体积与壁厚;主流道到型腔的距离。
圆形浇口直径: D=( Q / γ) ^ 1 / 3 (cm)
矩形浇口深度: h=( 4 Q / γ) ^ 1 / 3 (cm)
(1)结构
(2)特点
成型圆环形制品,进料均匀,易排气;
无熔接痕;
浇口去除困难。
(3)常用尺寸
同侧浇口。
7、轮辐式浇口
(spoke gate)
(1)结构
(2)特点
圆环形浇口的改进;
浇口去除容易;
制品中有熔接痕,制品强度降低。
(3)常用尺寸
同侧浇口。
8、直浇口 (1)结构 (2)特点 流动阻力小,适于大型 深制品; 注射压力直接作用在制品上,易产生残余应力; 浇口尺寸大,补料时间长; 成型薄而平制品时易变形,浇口去除困难。 (3)常用尺寸
浇注系统PPT课件
32
第8章 铸 造
• 2. 合金的收缩对铸件质量的影响 • (1) 缩孔与缩松 • 浇入铸型中的液态合金,在随后的冷却和凝固过
程中,若其液态收缩和凝固收缩引起的容积缩减 得不到合金液的补充,则在铸件上最后凝固的部 位形成一些孔洞。其中容积较大且集中的孔洞叫 缩孔,细小且分散的孔叫缩松。
33
第8章 铸 造
浇道四部分组成。
9
第8章 铸 造
图8.4 典型浇注系统
10
第8章 铸 造
• 2. 冒口 • 常见的缩孔、缩松等缺陷是由于铸件冷却
凝固时体积收缩而产生的。为防止缩孔和 缩松,往往在铸件的顶部或厚实部位设置 冒口。冒口是指在铸型内特设的空腔及注 入该空腔的金属。冒口中的金属液可不断 地补充铸件的收缩,从而使铸件避免出现 缩孔、缩松。冒口是多余部分,清理时要 切除掉。冒口除了补缩作用外,还有排气 和集渣的作用。
气性。铸型的透气性受砂的粒度、粘土含量、水分 含量及砂型紧实度等因素的影响。
2
第8章 铸 造
• ③ 可塑性 型(芯)砂在外力作用下变 形,去除外力后能完整地保持已有形状 的能力称为可塑性。
• ④ 耐火性 型(芯)砂抵抗高温热作用 的能力称为耐火性。耐火性差,铸件易 产生粘砂。
• ⑤ 退让性 铸件在冷凝时,型砂可被压 缩的能力称为退让性。型砂越紧实,退 让性越差。
d) 松开夹子,轻敲芯盒;e) 打开芯盒,取出砂芯,上涂料
25
第8章 铸 造
• 8.2.5合型和浇注 • 1. 砂型的合型 • 合型是指将铸型的各个组元如上型、下型、砂芯
等组合成一个完整铸型的操作过程,又称合箱。 • 合型工作包括: • (1) 清洁型腔和下芯 • (2) 合型 • (3) 铸型的紧固
第8章 铸 造
• 2. 合金的收缩对铸件质量的影响 • (1) 缩孔与缩松 • 浇入铸型中的液态合金,在随后的冷却和凝固过
程中,若其液态收缩和凝固收缩引起的容积缩减 得不到合金液的补充,则在铸件上最后凝固的部 位形成一些孔洞。其中容积较大且集中的孔洞叫 缩孔,细小且分散的孔叫缩松。
33
第8章 铸 造
浇道四部分组成。
9
第8章 铸 造
图8.4 典型浇注系统
10
第8章 铸 造
• 2. 冒口 • 常见的缩孔、缩松等缺陷是由于铸件冷却
凝固时体积收缩而产生的。为防止缩孔和 缩松,往往在铸件的顶部或厚实部位设置 冒口。冒口是指在铸型内特设的空腔及注 入该空腔的金属。冒口中的金属液可不断 地补充铸件的收缩,从而使铸件避免出现 缩孔、缩松。冒口是多余部分,清理时要 切除掉。冒口除了补缩作用外,还有排气 和集渣的作用。
气性。铸型的透气性受砂的粒度、粘土含量、水分 含量及砂型紧实度等因素的影响。
2
第8章 铸 造
• ③ 可塑性 型(芯)砂在外力作用下变 形,去除外力后能完整地保持已有形状 的能力称为可塑性。
• ④ 耐火性 型(芯)砂抵抗高温热作用 的能力称为耐火性。耐火性差,铸件易 产生粘砂。
• ⑤ 退让性 铸件在冷凝时,型砂可被压 缩的能力称为退让性。型砂越紧实,退 让性越差。
d) 松开夹子,轻敲芯盒;e) 打开芯盒,取出砂芯,上涂料
25
第8章 铸 造
• 8.2.5合型和浇注 • 1. 砂型的合型 • 合型是指将铸型的各个组元如上型、下型、砂芯
等组合成一个完整铸型的操作过程,又称合箱。 • 合型工作包括: • (1) 清洁型腔和下芯 • (2) 合型 • (3) 铸型的紧固
浇注系统浇口尺寸计算
一般在塑件形状及模具结构允许的情况下,主流道到各型腔的分 流道设计成长度相等、形状及截面尺寸相同的形式(型腔布局为对 称式布局)。
若不满足上述条件,需要通过调节浇口尺寸使各浇口 的流量及成型工艺条件达到一致,这就是浇注系统的平衡。
浇注系统相关尺寸计算
分流道的布置 在多型腔模具中分流道的布置中有平衡式和非平衡式两类: 平衡式布置:
③扇形浇口 成型大平面板状及薄壁塑件时,宜采用扇形浇口。在扇形浇口的
整个长度上,沿进料方向截面宽度逐渐变大,为保持断面积处处相 等,浇口的截面厚度逐渐减小。
浇注系统相关尺寸计算
④点浇口 又称针点浇口或橄榄形浇口,是一种在塑件中央开设浇口时使
用的圆形限制性浇口,用于成型壳类、盒类的热塑性塑件。
优点: 浇口残留痕迹小,易取
浇注系统相关尺寸计算
浇口的平衡 当采用非平衡式布置的浇注系统或者同模生产不同塑件时,需
对浇口的尺寸加以调整,以达到浇注系统的平衡。
浇口平衡的计算思路: 通过计算各个浇口的BGV值(Balanced Gate Value)来判断和 设计。 浇口平衡时满足下述要求:
①相同塑件多型腔,各浇口BGV值必须相等 ②不同塑件多型腔,各剪口BGV值必须与其塑件的填充量成正比
由上式可得:
AG1 3t12 0.73mm2,t1 0.49mm,b1 3t1 1.47mm AG3 3t32 1.87mm2, t3 0.79mm,b3 3t3 2.37mm
浇注系统相关尺寸计算
3.浇口的设计 浇口亦称进料口,是连接分流道与型腔的最短通道。
浇注系统相关尺寸计算
浇口的尺寸一般根据经验确定,截面积为分流道断面积的 3%~9%,截面形状常为矩形或圆形,浇口的长度为1~1.5mm。
若不满足上述条件,需要通过调节浇口尺寸使各浇口 的流量及成型工艺条件达到一致,这就是浇注系统的平衡。
浇注系统相关尺寸计算
分流道的布置 在多型腔模具中分流道的布置中有平衡式和非平衡式两类: 平衡式布置:
③扇形浇口 成型大平面板状及薄壁塑件时,宜采用扇形浇口。在扇形浇口的
整个长度上,沿进料方向截面宽度逐渐变大,为保持断面积处处相 等,浇口的截面厚度逐渐减小。
浇注系统相关尺寸计算
④点浇口 又称针点浇口或橄榄形浇口,是一种在塑件中央开设浇口时使
用的圆形限制性浇口,用于成型壳类、盒类的热塑性塑件。
优点: 浇口残留痕迹小,易取
浇注系统相关尺寸计算
浇口的平衡 当采用非平衡式布置的浇注系统或者同模生产不同塑件时,需
对浇口的尺寸加以调整,以达到浇注系统的平衡。
浇口平衡的计算思路: 通过计算各个浇口的BGV值(Balanced Gate Value)来判断和 设计。 浇口平衡时满足下述要求:
①相同塑件多型腔,各浇口BGV值必须相等 ②不同塑件多型腔,各剪口BGV值必须与其塑件的填充量成正比
由上式可得:
AG1 3t12 0.73mm2,t1 0.49mm,b1 3t1 1.47mm AG3 3t32 1.87mm2, t3 0.79mm,b3 3t3 2.37mm
浇注系统相关尺寸计算
3.浇口的设计 浇口亦称进料口,是连接分流道与型腔的最短通道。
浇注系统相关尺寸计算
浇口的尺寸一般根据经验确定,截面积为分流道断面积的 3%~9%,截面形状常为矩形或圆形,浇口的长度为1~1.5mm。
《浇注系统设计》课件
实现浇注系统的自动化操作和精确控制。
与增材制造技术结合
优化浇注系统结构,提高生产效率和产品质量。
与物联网技术结合
实现浇注系统的远程监控和数据采集。
与人工智能技术结合
利用人工智能技术对浇注过程进行智能分析和优化。
THANKS
感谢观看
充型。
经济性原则
在满足使用要求的前提下,尽 量减少浇注系统的材料消耗和 加工成本。
可靠性原则
浇注系统应具有足够的强度和 刚度,能够承受金属液的冲刷 和压力。
易维护性原则
浇注系统应便于安装、调试和 维修,降低使用过程中的维护
成本。
设计流程
方案设计
根据需求分析,设计浇注系统 的结构形式和尺寸参数。
加工制造
开放式浇注系统
开放式浇注系统是指塑料或金属从进 料口直接流入模具型腔,没有溢流槽 的浇注系统。
封闭式浇注系统
封闭式浇注系统是指塑料或金属从进 料口流入模具型腔后,通过溢流槽将 多余的塑料或金属收集起来,并从溢 流槽中排出。
02
浇注系统的设计原则与 流程
设计原则
高效性原则
浇注系统应高效地完成浇注任 务,确保金属液快速、均匀地
溢流槽的设计
溢流槽位置
合理设置溢流槽的位置,以引导金属 液流向正确的方向,避免金属液溢出 模具。
溢流槽尺寸
根据金属液的流量和流动特性,设计 合适的溢流槽尺寸,以确保金属液能 够顺畅地流入溢流槽并排出模具。
排气槽的设计
排气槽位置
在模具的关键部位设置排气槽,以排除 气体,避免形成气孔和疏松等缺陷。
VS
01
新材料应用
探索和应用新型材料,提高浇注系 统的耐磨、耐高温等性能。
仿真பைடு நூலகம்拟技术
与增材制造技术结合
优化浇注系统结构,提高生产效率和产品质量。
与物联网技术结合
实现浇注系统的远程监控和数据采集。
与人工智能技术结合
利用人工智能技术对浇注过程进行智能分析和优化。
THANKS
感谢观看
充型。
经济性原则
在满足使用要求的前提下,尽 量减少浇注系统的材料消耗和 加工成本。
可靠性原则
浇注系统应具有足够的强度和 刚度,能够承受金属液的冲刷 和压力。
易维护性原则
浇注系统应便于安装、调试和 维修,降低使用过程中的维护
成本。
设计流程
方案设计
根据需求分析,设计浇注系统 的结构形式和尺寸参数。
加工制造
开放式浇注系统
开放式浇注系统是指塑料或金属从进 料口直接流入模具型腔,没有溢流槽 的浇注系统。
封闭式浇注系统
封闭式浇注系统是指塑料或金属从进 料口流入模具型腔后,通过溢流槽将 多余的塑料或金属收集起来,并从溢 流槽中排出。
02
浇注系统的设计原则与 流程
设计原则
高效性原则
浇注系统应高效地完成浇注任 务,确保金属液快速、均匀地
溢流槽的设计
溢流槽位置
合理设置溢流槽的位置,以引导金属 液流向正确的方向,避免金属液溢出 模具。
溢流槽尺寸
根据金属液的流量和流动特性,设计 合适的溢流槽尺寸,以确保金属液能 够顺畅地流入溢流槽并排出模具。
排气槽的设计
排气槽位置
在模具的关键部位设置排气槽,以排除 气体,避免形成气孔和疏松等缺陷。
VS
01
新材料应用
探索和应用新型材料,提高浇注系 统的耐磨、耐高温等性能。
仿真பைடு நூலகம்拟技术
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
浇注系统相关尺寸计算
浇口的尺寸一般根据经验确定,截面积为分流道断面积的 3%~9%,截面形状常为矩形或圆形,浇口的长度为1~1.5mm。
注意: 在设计浇口时,往往先取较小的尺寸值,以便在试模时
逐步加以修正。
浇注系统相关尺寸计算
(2)浇口的类型
①直接浇口 直接浇口又称中心浇口、主流道浇口,这种浇口由主流道直接进
LRb LGb LRa LGa
Wa、 Wb ----分别为a、b型腔的填充量(熔体质量或体积) AGa、 AGb ----分别为a、b型腔的浇口截面积( mm 2)
LRa、 LRb ----分别为主流道中心到达a、b型腔的流动通道的长度 ( mm )
LGa 、 LGb ----分别为a、b型腔的浇口长度(mm )
浇注系统相关尺寸计算
浇口的平衡 无论是相同塑件还是不同塑件多型腔,一般在设计时取矩形浇口
或圆形浇口,浇口截面积 AG 与分流道的截面积 AR 的比值取:
AG : AR ? 0 .07 ~ 0 .09
矩形浇口的截面的宽度b与厚度t的比值常取:
b :t ? 3 :1
注意:求解时,一般取浇口长度为定值,通过调 节浇计算
浇口的平衡
相同塑件多型腔的BGV值
BGV ?
AG LR LG
AG ----浇口的截面积( mm 2) LR ----从主流道中心到浇口的流动通道的长度( mm 2) LG ----浇口的长度( mm )
浇注系统相关尺寸计算
浇口的平衡
2)不同塑件多型腔的 BGV值
Wa ? BGV a ? AGa Wb BGV b AGb
浇注系统相关尺寸计算
浇注系统相关尺寸计算
浇口的平衡例题 下图为相同10个型腔的模具流道分布图,各浇口均为矩形狭缝,且 各段分流道直径(d R =5.08mm)相等,各浇口长度 LG =1.27mm, 各相邻型腔中心相距143mm,上下型腔分流道长度为102mm。为 保证浇注系统平衡,试确定浇口尺寸?
致因浇口痕迹而影响塑件的表面美观效果。
浇注系统相关尺寸计算
浇注系统的平衡问题
中小塑件的注射模广泛采用一模多腔形式,设计时应 保证所 有型腔同时充填和成型。
一般在塑件形状及模具结构允许的情况下,主流道到各型腔的分 流道设计成长度相等、形状及截面尺寸相同的形式(型腔布局为 对 称式布局 )。
若不满足上述条件,需要 通过调节浇口尺寸使各浇口 的流量及成型工艺条件达到一致,这就是浇注系统的平衡。
浇注系统相关尺寸计算
④点浇口 又称针点浇口或橄榄形浇口,是一种在塑件中央开设浇口时使
用的圆形限制性浇口,用于成型壳类、盒类的热塑性塑件。
优点: 浇口残留痕迹小,易取
得浇注系统的平衡,也利于 自动化操作。
缺点: 在模具结构上需增加一个
分型面,即双分型面,以便 浇口凝料取出。
浇注系统相关尺寸计算
⑤潜伏浇口 浇口的分流道位于分型面上,浇口本身设在模具内的隐蔽处,不
浇注系统相关尺寸计算
主流道小端直径d一般取3~6mm,主流道的长度由定模座厚 度确定,一般L不超过60mm,主流道大端与分流道相接处应有 过渡圆角(通常r′取1~3mm)以减少料流转向时的阻力。
浇注系统相关尺寸计算
正确情况:主流道小端直径d比注射机喷嘴直径d0大0.5~1mm, R≥r+(0.5~1)mm 。
浇注系统相关尺寸计算
分流道的布置 在多型腔模具中分流道的布置中有平衡式和非平衡式两类: 平衡式布置:
特点:分流道到各型腔浇口的长度、断面形状、尺寸都相同。 优点:可均衡送料和同时充满型腔,塑件的力学性能基本一致。 缺点:分流道比较长。
浇注系统相关尺寸计算
非平衡式布置: 特点:分流道到各型腔浇口长度不相等的布置。 优点:适应于型腔数量较多的模具,使模具结构紧凑 缺点:不利于均衡送料。为同时充满型腔,各浇口的断面尺寸要 制作得不同,在试模中要多次修改才能实现。
2)基准浇口2A的截面尺寸:
由:AG 2 ? 0 .07 AR ? 1 .42 mm 2 得:t 2 ? 0 .69 mm , b2 ? 3t 2 ? 2 .07 mm
浇注系统相关尺寸计算
浇口的平衡 当采用非平衡式布置的浇注系统或者同模生产不同塑件时,需
对浇口的尺寸加以调整 ,以达到浇注系统的平衡。
浇口平衡的计算思路: 通过计算各个浇口的BGV值(Balanced Gate Value)来判断和 设计。 浇口平衡时满足下述要求:
①相同塑件多型腔,各浇口 BGV值必须相等 ②不同塑件多型腔,各剪口 BGV值必须与其塑件的填充量成正比
浇注系统相关尺寸计算
2.分流道的设计 分流道是主流道末端与浇口之间的通道。用于一模多腔或单型腔
多浇口(塑件尺寸大)的场合。
浇注系统相关尺寸计算
分流道的截面形状及尺寸 为便于机械加工及凝料脱模,分流道一般设置在分型面上。
浇注系统相关尺寸计算
3.浇口的设计 浇口亦称进料口,是连接分流道与型腔的最短通道。
浇注系统相关尺寸计算
浇口的平衡例题
解:由排列位置知2A2B4A4B相同,3A3B5A5B相同,1A1B相同,
因此只需求1A2A3A尺寸即可。先求2A尺寸,并以此为基准求2A3A
的尺寸。
2
2
)分流道圆形截面积
AR
:A R
?
? ?
d
R
? ??
?
? ?
5 . 08
? ?
? mm
2
?
20 .27
mm 2
?2? ? 2 ?
浇注系统相关尺寸计算
一、浇注系统设计 1.主流道的设计
主流道轴线垂直于分型面,属于 直浇注系统;主流道轴线平行于 分型面,属于 横浇注系统。
直浇注系统
横浇注系统
浇注系统相关尺寸计算
为便于流道凝料的脱出,内壁粗糙度Ra小于0.4μm,主流道 设计成圆锥形,其锥度α=2°~6°,如果锥度过大,易发生涡 流,锥度过小则流道凝料脱出困难
料,常用于成型大而深的塑件。
浇注系统相关尺寸计算
②侧浇口 侧浇口又称边缘浇口,一般开设在分型面上,调整其截面的厚
度和宽度可以调节熔体充模时的剪切速率及浇口固化时间,主要用 于中小型塑件的多型腔模具。
浇注系统相关尺寸计算
③扇形浇口 成型大平面板状及薄壁塑件时,宜采用扇形浇口。在扇形浇口的
整个长度上,沿进料方向截面宽度逐渐变大,为保持断面积处处相 等,浇口的截面厚度逐渐减小。