船舶螺旋桨的设计与计算过程.

合集下载

船舶实验

船舶实验

船舶与海洋工程实验技术实验报告班级:姓名:学号:指导老师:华中科技大学船舶与海洋工程学院船模拖曳水池实验室2016年6月1日螺旋桨敞水试验一、实验目的(1)对于某一具体的螺旋桨,通过模型试验可以确定实际螺旋桨的水动力性能。

(2)通过多方案的试验研究,可以分析螺旋桨的各种几何要素对水动力性能的影响。

(3)检验理论设计的正确性,不断完善理论设计的方法。

(4)通过对螺旋桨模型的系列试验,可以绘制成专用图谱,供设计螺旋桨使用。

现时广泛使用的楚思德B 系列图谱和MAU 系列图谱等都是螺旋桨模型系列敞水试验的结果。

二、实验原理满足以下条件:几何相似; 螺旋桨模型有足够的深度; 试验时雷诺数应大于临界雷诺数。

进度系数相等。

22412252(,)(,)A A V nD T n D f nD V nD Q n D f nD ρνρν==螺旋桨雷诺数采用ITTC 推荐表达式:νπ2275.0)75.0(Re nD v c a +=临界雷诺数一般大于3×105为消除自由液面影响,桨模的沉深深度:m s D h )0.1-625.0(≥三、实验设备主要设备是螺旋桨动力仪 。

四、实验内容敞水试验通常是保持螺旋桨转速不变,改变拖车前进速度。

速度范围应从Va =0至推力小于零的进速之间,在该范围内测点取15个左右。

1、敞水箱安装敞水箱为流线型,螺旋桨的轴从敞水箱的前端伸出箱外,外伸长度必须使桨模位于箱前的距离大于螺旋桨直径的3倍,以避免箱体的影响。

敞水箱样式如下图所示。

动力仪和电机安装在敞水箱内。

2、仪器安装及操作进入数据采集界面,如图所示。

在拖车开动之前,要对采集系统进行调零。

即在水池水面平稳状态下,点击系统设定里面的“调零保存”,使该通道的工程值基本在0附近飘动。

在拖车开动之前,我们要给螺旋桨一定的转速。

具体转速的确定,要根据具体情况确定。

由进速系数公式 可知,螺旋桨直径D已定,如果螺旋桨转速n太低,我们需要提高进速V,才能是J达到足够到。

船用螺旋桨螺距计算公式

船用螺旋桨螺距计算公式

船用螺旋桨螺距计算公式船用螺旋桨的设计是船舶工程中的重要环节,其中螺距计算是一个关键步骤。

螺距是指螺旋桨每转一圈前进的距离,它直接影响到船舶的推进性能和效率。

在这篇文章中,我们将介绍船用螺旋桨螺距计算的公式及其应用。

船用螺旋桨的螺距计算公式可以根据船舶的设计要求和性能指标来确定。

一般来说,螺距的计算需要考虑船舶的速度、功率、转速以及螺旋桨的直径等因素。

下面是船用螺旋桨螺距计算的公式:螺距 = (速度× 60) / (π × 直径)其中,速度单位为节(1节=1852米/小时),直径单位为米。

这个公式的原理是通过船舶的速度和螺旋桨转速来计算螺旋桨每转一圈前进的距离。

螺距是船用螺旋桨设计中的重要参数,它直接影响到船舶的推进效率和性能。

通常情况下,为了提高船舶的推进效率,需要选择合适的螺距。

如果螺距选取不当,可能会导致船舶在高速航行时出现过载或低速航行时推进效率低下的问题。

根据船舶的设计要求和性能指标,可以通过螺距计算公式来确定螺旋桨的螺距。

首先,需要确定船舶的速度和螺旋桨的直径。

船舶的速度可以通过船舶设计参数或实测数据来获取,而螺旋桨的直径则可以根据船舶的设计要求和性能指标来确定。

然后,将速度和直径代入螺距计算公式,即可得到螺旋桨的螺距。

船用螺旋桨螺距计算公式的应用非常广泛,不仅可以用于船舶设计过程中,还可以用于船舶的改装和维修。

在船舶改装和维修中,通过调整螺距,可以改变船舶的推进性能和效率,以满足不同的使用需求。

除了螺距计算公式,还有一些其他的影响螺旋桨性能的因素需要考虑。

例如,螺旋桨的叶片数目、叶片形状、叶片角度等都会对螺旋桨的推进效率和性能产生影响。

因此,在实际应用中,需要综合考虑这些因素,以确保螺旋桨的设计满足船舶的要求。

船用螺旋桨螺距计算公式是船舶设计中的重要工具,它可以帮助工程师确定螺旋桨的螺距,以满足船舶的设计要求和性能指标。

在实际应用中,需要综合考虑船舶的速度、功率、转速、直径等因素,以确保螺旋桨的设计满足船舶的推进需求。

船舶螺旋桨知识

船舶螺旋桨知识
可以把螺旋桨看成是一个一面旋转一面前进的机翼进行讨论。流经桨叶各剖面的气流由沿旋
转轴方向的前进速度和旋转产生的切线速度合成。在螺旋桨半径r1和r2(r1<r2)两处各取极小一段,讨论桨叶上的气流情况。V—轴向速度;n—螺旋桨转速;φ—气流角,即气流与螺旋桨旋转平面夹角;α—桨叶剖面迎角;β—桨叶角,即桨叶剖面弦线与旋转平面夹角。显而易见β=α+φ。空气流过桨叶各小段时产生气动力,阻力ΔD和升力ΔL,合成后总空气动力为ΔR。ΔR沿飞行方向的分力为拉力ΔT,与旋螺桨旋转方向相反的力ΔP阻止螺旋桨转动。将整个桨叶上各小段的拉力和阻止旋转的力相加,形成该螺旋桨的拉力和阻止螺旋桨转动的力矩。从以上两图还可以看到。必须使螺旋桨各剖面在升阻比较大的迎角工作,才能获得较大的拉力,较小的阻力矩,也就是效率较高。螺旋桨工作时。轴向速度不随半径变化,而切线速度随半径变化。因此在接近桨尖,半径较大处气流角较小,对应桨叶角也应较小。而在接近桨根,半径较小处气流角较大,对应桨叶角也应较大。螺旋桨的桨叶角从桨尖到桨根应按一定规律逐渐加大。所以说螺旋桨是一个扭转了的机翼更为确切。从图中还可以看到,气流角实际上反映前进速度和切线速度的比值。对某个螺旋桨的某个剖面,剖面迎角随该比值变化而变化。迎角变化,拉力和阻力矩也随之变化。用进矩比“J”反映桨尖处气流角,J=V/nD。式中D—螺旋桨直径。理论和试验证明:螺旋桨的拉力(T),克服螺旋桨阻力矩所需的功率(P)和效率(η)可用下列公式计算:T=Ctρn2D4P=Cpρn3D5η=J·Ct/Cp式中:Ct—拉力系数;Cp—功率系数;ρ—空气密度;n—螺旋桨转速;D—螺旋桨直径。其中Ct和Cp取决于螺旋桨的几何参数,对每个螺旋桨其值随J变化。图1—1—21称为螺旋桨的特性曲线,它可通过理论计算或试验获得。特性曲线给出该螺旋桨拉力系数、功率系数和效率随前进比变化关系。是设计选择螺旋桨和计算飞机性能的主要依据之一。从图形和计算公式都可以看到,当前进比较小时,螺旋桨效率很低。对飞行速度较低而发动机转速较高的轻型飞机极为不利。例如:飞行速度为72千米/小时,发动转速为6500转/分时,η≈32%。因此超轻型飞机必须使用减速器,降低螺旋桨的转速,提高进距比,提高螺旋桨的效率。

螺旋桨设计计算公式

螺旋桨设计计算公式

桨叶的迎角只会影响升力的大小,不会前进。

直升机前进是靠螺旋桨的旋转面向前倾斜实现的,桨叶的迎角变化,指的只是桨叶本身绕横向的轴旋转。

就是对称的两只桨,成一条直线,以这个直线为轴旋转。

迎角增大,旋转阻力增大,如果转速不变的情况下,升力就会增大,直升机上升。

飞机螺旋桨由两个或者多个桨叶以及一个中轴组成,桨叶安装在中轴上。

飞机螺旋桨的每一个桨叶基本上是一个旋转翼。

由于他们的结构,螺旋桨叶类似机翼产生拉动或者推动飞机的力。

旋转螺旋桨叶的动力来自引擎。

引擎使得螺旋桨叶在空气中高速转动,螺旋桨把引擎的旋转动力转换成前向推力。

空气中飞机的移动产生和它的运动方向相反的阻力。

所以,飞机要飞行的话,就必须由力作用于飞机且等于阻力,而方向向前。

这个力称为推力。

典型螺旋桨叶的横截面如图3-26。

桨叶的横界面可以和机翼的横截面对比。

一种桨叶的表面是拱形的或者弯曲的,类似于飞机机翼的上表面,而其他表面类似机翼的下表面是平的。

弦线是一条划过前缘到后缘的假想线。

类似机翼,前缘是桨叶的厚的一侧,当螺旋桨旋转时前缘面对气流。

桨叶角一般用度来度量单位,是桨叶弦线和旋转平面的夹角,在沿桨叶特定长度的的特定点测量。

因为大多数螺旋桨有一个平的桨叶面,弦线通常从螺旋桨桨叶面开始划。

螺旋角和桨叶角不同,但是螺旋角很大程度上由桨叶角确定,这两个术语长交替使用。

一个角的变大或者减小也让另一个随之增加或者减小。

当为新飞机选定固定节距螺旋桨时,制造商通常会选择一个螺旋距使得能够有效的工作在预期的巡航速度。

然而,不幸运的是,每一个固定距螺旋桨必须妥协,因为他只能在给定的空速和转速组合才高效。

飞行时,飞行员是没这个能力去改变这个组合的。

当飞机在地面静止而引擎工作时,或者在起飞的开始阶段缓慢的移动时,螺旋桨效率是很低的,因为螺旋桨受阻止不能全速前进以达到它的最大效率。

这时,每一个螺旋桨叶以一定的迎角在空气中旋转,相对于旋转它所需要的功率大小来说产生的推力较少。

16000t成品油船螺旋桨液压无键联接的设计计算

16000t成品油船螺旋桨液压无键联接的设计计算

制。
在 35 e 时最小推入量 S35 为
S35 =
p
35
d1 K
1 E1
K
2 2
+
K
2 2
-
1 1
+
L2
+
1 E1
(
1-
L1 )
= 5. 721 mm
温度 t ( t< 35 e ) 时的最小推入量 St 为
St=
S 35 +
d1 K
(
a2
-
a1 ) ( 35-
t) =
7. 318 0- 0. 045 66t mm
[ 2] 高永平, 陈廷明, 王贵柔. 无键液压装配技术在螺旋 桨 与艉轴安装上的应用[ J] . 中国修船, 2005( 1) : 11- 14.
[ 3] 曾德隆. 液压无键 螺旋 桨德安 装[ J] . 船舶, 1996( 4) : 45- 49.
[ 4] 王卓楠. 无键螺 旋桨液 压安 装和计 算[ J] . 船 舶, 2000 ( 5) : 62- 64.
t/ e
S/ mm
p / M Pa
Wt/ N
0 7. 318 0
60. 056 0
7 886 285
5 7. 089 7
58. 182 5
7 640 266
10 6. 861 4
56. 309 0
7 394 246
15 6. 633 1
54. 435 5
7 148 226
20 6. 404 8
52. 562 0
文献标志码: A
文章编号: 1671- 7953( 2011) 01- 0040- 03

螺旋桨图谱设计

螺旋桨图谱设计

第九章螺旋桨图谱设计§9-1 设计问题与设计方法螺旋桨设计是整个船舶设计中的一个重要组成部分。

在船舶线型初步设计完成后,通过有效马力的估算或船模阻力试验,得出该船的有效马力曲线。

在此基础上,要求我们设计一个效率最佳的螺旋桨,既能达到预定的航速,又要使消耗的主机马力小;或者当主机已选定,要求设计一个在给定主机条件下使船舶能达到最高航速的螺旋桨。

因此,螺旋桨的设计问题可分为两类。

一、螺旋桨的初步设计对于新设计的船舶,根据设计任务书对船速的要求设计出最合适的螺旋桨,然后由螺旋桨的转速及效率决定主机的转速及马力,并据此订购主机。

具体地讲就是:①已知船速V,有效马力PE,根据选定的螺旋桨直径D,确定螺旋桨的最佳转速n、效率η0、螺距比P/D和主机马力P s;②已知船速V,有效马力PE,根据给定的转速n,确定螺旋桨的最佳直径D、效率η0、螺距比P/D和主机马力Ps。

二、终结设计主机马力和转速决定后(最后选定的主机功率及转速往往与初步设计所决定者不同),求所能达到的航速及螺旋桨的尺度。

具体地讲就是:已知主机马力Ps、转速n和有效马力曲线,确定所能达到的最高航速V,螺旋桨的直径D、螺距比P/D及效率η0。

新船采用现成的标准型号主机或旧船调换螺旋桨等均属此类问题。

在造船实践中,一般采用标准机型,所以在实际设计中,极大多数是这类设计问题。

目前设计船用螺旋桨的方法有两种,即图谱设计法及环流理论设计法。

图谱设计法就是根据螺旋桨模型敞水系列试验绘制成专用的各类图谱来进行设计。

用图谱方法设计螺旋桨不仅计算方便,易于为人们所掌握,而且如选用图谱适宜,其结果也较为满意,是目前应用较广的一种设计方法。

应用图谱设计螺旋桨虽然受到系列组型式的限制,但此类资料日益丰富,已能包括一般常用螺旋桨的类型。

环流理论设计方法是根据环流理论及各种桨叶切面的试验或理论数据进行螺旋桨设计。

用此种方法可以分别选择各半径处最适宜的螺距和切面形状,并能照顾到船后伴流不均匀的影响,因而对于螺旋桨的空泡和振动问题可进行比较正确的考虑。

船舶螺旋桨的设计与计算过程

船舶螺旋桨的设计与计算过程

船舶螺旋桨的设计与计算过程某沿海单桨散货船螺旋桨设计计算规范刘磊磊20211013202022年7月某沿海单桨散货船螺旋桨设计计算说明书1.已知船体的主要参数船长l=118.00米型宽b=9.70米设计吃水t=7.20米排水量△=5558.2吨方型系数cb=0.658桨轴中心距基线高度zp=3.00米模型试验提供的船体有效马力曲线数据如下:航速v(kn)13141516有效马力pe(hp)21602420300540452.主机参数型号6esdz58/100柴油机额定功率ps=5400hp额定转速n=165rpm转向右旋传递效率ηs=0.983.相关推广因素伴流分数w=0.279推力减额分数t=0.223相对旋转效率ηr=1.01.T1.0777船体效率?H1.W4.可以达到最大航速的计算Mau四叶螺旋桨图谱用于计算。

取功率储备10%,轴系效率ηs=0.98螺旋桨敞水收到马力:pd=4762.8hp根据mau4-40、mau4-55和mau4-70的BP——atlas list的δ计算:本项目假设速度为VVA=(1-W)VBP=nPd0 5/va2。

5台机组knδmau4-40p/dηopte=pdηhηoδmau4-55p/dηopte=pdηhηoδmau4-70p/dηopte=pdηhηohphp139。

37369.01304268.9654875.60.640.55833332863.990774.6291210.68600640.54142172777. 24173.7725630.692540.52107252672.8601值141510.09410.8151611.53669.0130469.0130425bp6901304225451.99967323.7116384.650 50720760.7440.7204980.6260672.1087864.879773690.6673210.6854205610.5827810.605 7068062989.3953106.9946263211.437768.6357663.5658914759.3410250.7130990.7409584660.77022360.5671380.5909414380.61119962909.1563031.2551443135.170567.7718563.0305555658.685030.7231620.7542806390.78611010.545710.5657927790.58286442799.2 382902.25422989.8239据上表的计算结果可绘制pte、δ、p/d及ηo对v的曲线,如下图所示。

48M_货船《螺旋桨强度计算书》

48M_货船《螺旋桨强度计算书》

0.42785 m
= 427.85 mm
螺 旋 桨 转 速:ne 333.33 r/mim
桨 叶 后 倾 角: ε
10 °
(铸
材 料 系 数: K = 0.91 钢)
主 机 额 定 功 率: Ne= 300 KW
二、桨叶厚度 1.由8.6.2.1规定在0.25R剖面处的桨叶厚度 t 不得小于按下式计算所得之值:
t1.0 = CoD mm
式中: C0 3
3×1.5
则: t1.0 = mm
= 4.5 mm
满足要
实取 t = 4.5 mm 等于 4.5 mm, 求. 3.由8.6.2.3规定其他半径处的叶切面厚度由 t0.25=45 mm 与 t1.0=4.5 mm 连直线决定.
实际桨叶厚度为:
t0.2 = 47.70 mm
页 页
一、概述
1、按《钢质内河船舶建造规范》(2009)校核本船螺旋桨的强度。
2、螺旋桨的主要参数

径: D = 1.500 m

距: P = 1.100 m


0.700
桨 叶 叶 数: Z = 4
0.7212
×
0.226D·
AE/AO/( 0.25R 剖面处的桨叶宽度: b = 0.1Z)=
48M 货船
技术设计
标记 数量 修改单号 签字 日期
编制 翁方勇
校对 顾春荣
标检
审核
审定
日期 2009.03
JHC4048A-101-05JS
螺旋桨强度计算书 标 记 质(Kg)量 比 例
共 2 页第 1 页
嘉兴金航船舶设计有限公司
《螺旋桨强度计算书》
JHC4048A-101-05JS

(完整word版)船用螺旋桨的功率计算

(完整word版)船用螺旋桨的功率计算

船用螺旋桨的功率计算功率(W)直径(D)螺距(P)转/分(N)功率(W)=(D/10)的4次方*(P/10)*(N/1000)的3次方*0。

45速度(SP)km/h=(P/10)*(N/1000)*15.24静止推力(Th)g=(D/10)的3次方*(P/10)*(N/1000)的2次方*22船用螺旋桨的工作原理可以把螺旋桨看成是一个一面旋转一面前进的机翼进行讨论。

流经桨叶各剖面的气流由沿旋转轴方向的前进速度和旋转产生的切线速度合成。

在螺旋桨半径r1和r2(r1〈r2)两处各取极小一段,讨论桨叶上的气流情况.V—轴向速度;n—螺旋桨转速;φ-气流角,即气流与螺旋桨旋转平面夹角;α—桨叶剖面迎角;β—桨叶角,即桨叶剖面弦线与旋转平面夹角.显而易见β=α+φ。

空气流过桨叶各小段时产生气动力,阻力ΔD和升力ΔL,合成后总空气动力为ΔR。

ΔR沿飞行方向的分力为拉力ΔT,与旋螺桨旋转方向相反的力ΔP 阻止螺旋桨转动。

将整个桨叶上各小段的拉力和阻止旋转的力相加,形成该螺旋桨的拉力和阻止螺旋桨转动的力矩。

从以上两图还可以看到。

必须使螺旋桨各剖面在升阻比较大的迎角工作,才能获得较大的拉力,较小的阻力矩,也就是效率较高。

螺旋桨工作时。

轴向速度不随半径变化,而切线速度随半径变化。

因此在接近桨尖,半径较大处气流角较小,对应桨叶角也应较小。

而在接近桨根,半径较小处气流角较大,对应桨叶角也应较大。

螺旋桨的桨叶角从桨尖到桨根应按一定规律逐渐加大。

所以说螺旋桨是一个扭转了的机翼更为确切。

从图中还可以看到,气流角实际上反映前进速度和切线速度的比值。

对某个螺旋桨的某个剖面,剖面迎角随该比值变化而变化。

迎角变化,拉力和阻力矩也随之变化。

用进矩比“J”反映桨尖处气流角,J=V/nD。

式中D-螺旋桨直径。

理论和试验证明:螺旋桨的拉力(T),克服螺旋桨阻力矩所需的功率(P)和效率(η)可用下列公式计算:T=Ctρn2D4 P=Cpρn3D5 η=J·Ct/Cp 式中:Ct—拉力系数;Cp—功率系数;ρ—空气密度;n—螺旋桨转速;D-螺旋桨直径。

螺旋桨设计计算表格

螺旋桨设计计算表格

取转速为 231
rpm
221
rpm
76
项目
单位

V
kn
10
VA=0.5144(1-ω)V
m/s
3.302448
J=VA/nD
#NAME?
KT
#NAME?
KQ
#NAME?
N=
231
rpm
PTE=KTρ n2D4(1-
PE/hp 111h01p00000
#NAME?
t)V/145.6
Ps=KQ2пnρ n2D5/75ηSηR
KT
#NAME?
1000
KQ
1000
#NAME?
N=
76
rpm
PTE=KTρ n2D4(1-
11
10-h01p0000
#NAME?
t)V/145.6
Ps=KQ2пnρ n2D5/76ηSη
30-h03p0000
#NAME?
R

50-050000
10
527.8912
70-070000

527.8912
单位 m
mm mm
0.25R #NAME?
634 250 1410 4 #NAME?
#NAME?
82 34 41 380 #NAME?
#NAME? 1.38 #NAME? #NAME?
数值 0.60R #NAME? 207 151 635 34 #NAME?
#NAME?
23 12 65 330 #NAME?
#NAME? m
d0/d=
#NAME?
榖重量Gn=
#NAME? kgf
③螺旋桨总重=

螺旋桨的强度计算

螺旋桨的强度计算

342第八章 螺旋桨的强度校核为了船舶的安全航行,必须保证螺旋桨具有足够的强度,使其在正常航行状态下不致破损或断裂。

为此,在设计螺旋桨时必须进行强度计算和确定桨叶的厚度分布。

螺旋桨工作时作用在桨叶上的流体动力有轴向的推力及与转向相反的阻力,两者都使桨叶产生弯曲和扭转。

螺旋桨在旋转时桨叶本身的质量产生径向的离心力,使桨叶受到拉伸,若桨叶具有侧斜或纵斜,则离心力还要使桨叶产生弯曲。

此外,桨叶上也可能受到意外的突然负荷,例如:碰击冰块或其他飘浮物体等。

同时螺旋桨处于不均匀的尾流场中工作,使桨叶受力产生周期性变化,故较难精确地算出作用在桨叶上的外力。

在计算桨叶的强度时,我们可以把桨叶看作是扭曲的、变截面的悬臂梁,而且其横截面是非对称的,故计算较为复杂,即使能正确地求得桨叶上的作用力,要精确地进行强度计算也是很困难的。

目前,对于动态负荷(即计及伴流不均匀性影响)下螺旋桨的强度计算方法虽然有所发展,但计算繁复,付之实用还为时尚早。

故在螺旋桨设计的实践中,一般都用理论和实验相结合的近似方法来进行螺旋桨的强度计算。

计算螺旋桨强度的近似方法很多,中国船级社于2001年颁发的《钢质海船入级与建造规范》(以下简称《规范》)中对螺旋桨的强度也有了规定,因为比较偏于安全,用近似方法计算的厚度未必一定能满足规范的要求,因此对“入级”海船应采用规范规定的方法计算。

本章中主要介绍我国2001年《规范》的规定,由此确定桨叶厚度。

为了使读者了解桨叶上的受力情况,对于分析计算方法也作必要的介绍。

§ 8-1 《规范》校核法一、螺旋桨桨叶厚度的确定为了保证螺旋桨的安全,中国船级社2001年《钢质海船入级与建造规范》第三分册第三篇第十一章中,对螺旋桨的强度要求作了明确具体的规定。

螺旋桨桨叶厚度t (固定螺距螺旋桨为0.25R 和0.6R 切面处,可调螺距螺旋桨为0.35R 和0.6R 切面处)不得小于按下式计算所得之值:XK Yt -=(mm ) (8-1) 式中 Y —— 功率系数,按(8-2)式求得;343K —— 材料系数,查表8-1;X —— 转速系数,按(8-3)式求得。

螺旋桨螺距怎么算[3篇]

螺旋桨螺距怎么算[3篇]

螺旋桨螺距怎么算[3篇]以下是网友分享的关于螺旋桨螺距怎么算的资料3篇,希望对您有所帮助,就爱阅读感谢您的支持。

螺旋桨螺距怎么算(一)调距螺旋桨通过设置于桨中的操纵机构使桨叶能够相对于桨转动而调节螺距的螺旋桨,称为可调螺距螺旋桨。

据记载,大约在一个半世纪以前,在帆船上首先开始装置蒸汽机和螺旋桨时就产生了应用可转动叶瓣的螺旋桨的观念,这些船舶在没有风力时,借机器和螺旋桨来航行。

在风里足够时,停机而靠风力来航行,在风帆航行的状态下,停止的螺旋桨会产生相当大的阻力,此时转动螺旋桨的叶瓣将阻力最小,到1884年英国人符特科洛夫脱研究的一只调距螺旋桨得到实际应用。

后来调距螺旋桨在内燃机船舶也得到应用,那时的蒸汽机和内燃机还没有建立转向装置。

是通过调距螺旋桨达到换向目的而引起人们的兴趣。

由于某些船舶的航行状态经常需要变更(如军舰的巡航航速和最高航速,拖轮和渔船的自由航行与拖拽航行) ,一些船舶因增加吃水、风浪中航行及污底等影响而降低航速,而港内拖轮、渡轮、破冰船等对操纵性能要求较高,这些都对调距桨的发展提出了要求。

近几十年来调距桨的技术发展较快,已被广泛应用于各种商船和军舰。

20世纪30年代是调距桨发展的新时期,1934年瑞士爱舍维斯(Escher —Wyss )公司首次将调距桨装在一艘184kW (250马力)的游艇艾彩尔(Etzel )号上,1936年挪威的列爱思(Liaacn )公司生产了其第一套调距桨,1937年瑞典的卡米瓦(Kamewa )公司开始生产了其第一套调距桨装在110kW (150马力)的湖泊帆船上。

之后英国的罗托尔(Rotol )公司、美国的摩根史密斯(Morgen Smith)公司、荷兰的列泼斯(Lipes )公司等也相继开发了具有各自特点的螺旋桨。

1963年的瑞典的Kamewa 公司制造了当时世界上最大的调距桨(桨重28.5吨,桨直径5.8米)安装在25000吨散货船Sliver Isle号上,主机功率7281kW (9900马力)。

螺旋桨强度计算的参数化设计

螺旋桨强度计算的参数化设计

螺旋 桨桨 叶为扭 曲、 截 面悬臂 梁 , 变 在工 作 时 主要 受轴 向力 、 向力 、 心力 和偶然 作用力 等外 周 离
2 程序 设 计 的主要 步骤
2 1 螺旋 桨参数 分析 和数据 输入 窗体 的设计 .
力 作用 , 产生 弯 曲、 扭转 和拉伸 变形 。为确保 船 舶
安 全航行 , 旋桨必 须具 有足 够 的强 度 。为此 , 螺 在 船 舶设计 时 必须 核 校 螺旋 桨 的 强 度 , 确 定 桨 叶 并 厚 度 的径 向分布 。 根 据 中 国船 级社 2 0 年 颁发 的《 质海船 人 01 钢 级 与建 造规 范 》 以下 简称 《 ( 规范 》 进 行 螺旋 桨 的 ) 强度计 算 , 数据处 理量 较大 , 过程 繁琐 。本文采 用
功 率系数 计算 模块 主过 程 的部分程 序代 码如 下 :
P bi S b功 率系数 计算 过程 ( u l u c )
C l初 始化计 算模 块. 8过程 al K1
C l初 始化计 算 模块 . 片弦长 计算过 程 al 叶
Di s I e r m IA nt ge Fo : 1 T o 2 rI = :
图 1 数据 输入 窗体
2 2 程 序 主 模 块 的 设 计 .
参 数化 强度 计算 主要 分为五 大步骤 : ( ) 析得 出 强度 计 算 所需 的螺 旋 桨 主要 参 1分
数。
在 Auo AD 中 , 开 【 A 管 理 器 】 话 tC 打 VB 对 框 , 入 VB 集 成 开 发 环 境 , 建 一 个 新 的 工 进 A 创 程, 同时根据需 要创 建模块 和窗 体 ( 图 2 示 ) 如 所 、 声 明表示 螺旋 桨参 数 等 的有关 模 块 级 变量 , 各 在 模 块 中创建若 干过程 , 并保 存在 适 当的位置 。 工 程主模 块 的主过程 部分 代码如 下 : P bi S b螺距 修正 主过程 ( ,3 * 1/P — K1 8I ) D 8

船舶推进_螺旋桨图谱设计

船舶推进_螺旋桨图谱设计
75PD K Q ρ n (VA / nJ ) 2πn
2 5
75PD Q 2πn
2 πρ K Q
PD --- 螺旋桨收到马力 ( hp )
75 J 5
PD n 2 5 VA
VA --- 螺旋桨进速 ( m/s )
n ---为螺旋桨转速( r/s )
2 πρ K Q 75 J 5 PD n 2.5 VA
7
8.1 螺旋桨的设计问题及设计方法
一、螺旋桨的初步设计
对于新设计的船舶,根据设计任务书对船速的要求设 计出最合适的螺旋桨,然后由螺旋桨的转速及效率决 定主机的转速及功率,并据此订购主机。
选定桨的直径D
船速 V
有效马力 PE
确定桨的最佳转速n、效率η0、 螺距比P/D、主机马力PS
确定桨的最佳直径D、效率η0、 螺距比P/D、主机马力PS 选定桨的转速n
船舶推进 Ship Propulsion
华中科技大学船海学院
1
课程安排
第1 章 第2 章 第3 章 第4 章 第5 章 第6 章 第7 章 第8 章 第9 章 概述(2学时) 螺旋桨几何特征(2学时) 螺旋桨基础理论(3学时) 螺旋桨模型的敞水试验(4学时) 螺旋桨与船体相互作用(4学时) 螺旋桨的空泡现象(4学时) 螺旋桨的强度校核(4学时) 螺旋桨图谱设计(7学时) 实船推进性能(2学时)
③ AUw型 --- AU型桨叶切面的后缘具有一定翘度(这
对于改善桨叶根部叶间干扰有一定效果 ),在六叶 上采用这种型式。 ④ MAUw型
22
8.2 B-δ型设计图谱及其应用
这种型式是对原型AU桨在叶梢部分切面的前缘形状进 行了局部修正。AU型的四叶螺旋桨系列就是采用这种 形式。

集装箱船螺旋桨设计计算说明书

集装箱船螺旋桨设计计算说明书

集装箱船螺旋桨设计计算说明书班级:船舶11-3学号:1102120324姓名:孙凯凯指导老师:刘大路1.已知船体的主要参数设计水线长 Lwl=91.6 垂线间长 Lpp=90.0m 型宽 B = 16.7m 设计吃水 T = 5.3m 排水体积 ▽ =6253.2m ³ 排水量 △ = 6409.6t 方型系数 C B = 0.785 桨轴中心距基线高度 Zp = 1.90m 棱形系数 Cp = 0.790由模型试验提供的船体有效马力曲线数据如下:航速V (kn ) 10 11 12 13 14 有效马力PE (hp ) 763 1066 1535 2254 19222.主机参数主机功率 Ps=2900kw 主机转速 N = 755r/min 转向 右旋减速比 i=3.355:1传递效率 ηs=0.97(已将减速箱考虑在内)3.相关推进因子伴流分数 w = 0.3425 推力减额分数 t = 0.275 相对旋转效率 ηR = 1.0 船身效率 1027.111=--=wt H η4.可以达到最大航速的计算采用MAU 四叶桨图谱进行计算。

取功率储备10%,轴系效率ηs = 0.97 螺旋桨敞水收到马力:P D = R s S P ηη9.0=0.9×2900×1.36×0.97×1.0=2531.7hp231355.3775==N r/min根据MAU4-40、MAU4-55、MAU4-70的Bp --δ图谱列表计算:项 目 单位 数 值 假定航速V kn 11 12 13 14 V A =(1-w)V kn 7.2325 7.89 8.5475 9.205 Bp=NP D 0.5/V A 2.596.3526 77.516 63.458 52.726 Bp9.816 8.239 7.966 7.261 MAU 4-40δ106.5 97.5 89.8 83 P/D 0.562 0.575 0.592 0.612 ηO 0.4510.47750.505 0.525 P TE =P D ·ηH ·ηOhp 1712.261 1812.870 1917.277 1993.208 MAU 4-55δ106 96.5 88.5 81.8 P/D 0.598 0.615 0.635 0.655 ηO 0.4332 0.46 0.487 0.51 P TE =P D ·ηH ·ηOhp 1644.682 1746.4301848.938 1936.260 MAU 4-70δ104.5 95.5 87.5 80.67 P/D 0.60.6180.638 0.661 ηO0.42 1.4475 0.47250.495 P TE =P D ·ηH ·ηOhp1594.567 1698.9731793.8871879.311据上表的计算结果可绘制PT E 、δ、P/D 及ηO 对V 的曲线,如下图所示。

船用螺旋桨盘前方诱导速度计算

船用螺旋桨盘前方诱导速度计算

船用螺旋桨盘前方诱导速度计算在船舶动力系统中,螺旋桨盘前方诱导速度是衡量推进功率的有效指标。

它是推进器前方流体的平均速度。

目前,螺旋桨盘前方诱导速度的研究是推进和流体动力学领域的一个重要方面。

螺旋桨盘前方诱导速度的计算可以分为三个步骤:第一步,先根据螺旋桨特性,建立桨轮面前流动的基本模型,以确定诱导流场的分布;第二步,通过诱导流场的分布和元胞自由度等参数,建立流速场并计算诱导速度;第三步,通过对流速场的数值积分,得出螺旋桨盘前方的平均诱导速度。

从文献中可以看出,螺旋桨盘前方诱导速度的计算方法可以分为传统方法和现代方法两大类。

传统方法有模型分析法、解析法和分析解析法等;而现代方法主要是基于数值方法的计算,可以分为三角网格法和多面体网格法等。

模型分析法是传统方法中应用最多的,是利用模型参数来描述桨片前方流动由两个螺旋桨片构成的三维流场。

它使用简单的计算公式来求解螺旋桨盘前方诱导速度,但存在计算精度低和非线性响应不易处理等问题。

解析法是另一种传统方法,它建立的模型是使用高斯函数来描述螺旋桨片前方流场的流动,利用积分对诱导速度进行计算,此方法计算出的结果相对更精确,但需要更多的参数,使解析方法的实施变得更加复杂。

三角网格法是现代方法中应用最为广泛的,它是基于计算流体力学(CFD)的结构,可以很好地描述螺旋桨片前方流动场。

它通过分割给定的桨片表面区域为三角形,然后利用 Navier-Stokes程对每一个三角形进行分析,最后再根据该网格的网格节点的流量,来计算诱导速度。

多面体网格法也是基于 CFD一种现代方法,它主要是通过离散化采用多面体网格来模拟螺旋桨前方流场,然后再利用计算流体力学数值方法,对每一个多面体进行分析,最后再根据多面体网格的网格节点的流量,来计算诱导速度。

总之,螺旋桨盘前方诱导速度的计算是推进和流体动力学领域的重要方面,可以分为传统方法和现代方法两大类。

传统方法有模型分析法、解析法和分析解析法等;而现代方法又可以分为三角网格法和多面体网格法等。

螺旋桨的定义及其效率计算

螺旋桨的定义及其效率计算

螺旋桨的定义及其效率计算一、工作原理可以把螺旋桨看成是一个一面旋转一面前进的机翼进行讨论。

流经桨叶各剖面的气流由沿旋转轴方向的前进速度和旋转产生的切线速度合成。

在螺旋桨半径r1和r2(r1<r2)两处各取极小一段,讨论桨叶上的气流情况。

V—轴向速度;n—螺旋桨转速;φ—气流角,即气流与螺旋桨旋转平面夹角;α—桨叶剖面迎角;β—桨叶角,即桨叶剖面弦线与旋转平面夹角。

显而易见β=α+φ。

空气流过桨叶各小段时产生气动力,阻力ΔD和升力ΔL,见图1—1—19,合成后总空气动力为ΔR。

ΔR沿飞行方向的分力为拉力ΔT,与旋螺桨旋转方向相反的力ΔP 阻止螺旋桨转动。

将整个桨叶上各小段的拉力和阻止旋转的力相加,形成该螺旋桨的拉力和阻止螺旋桨转动的力矩。

从以上两图还可以看到。

必须使螺旋桨各剖面在升阻比较大的迎角工作,才能获得较大的拉力,较小的阻力矩,也就是效率较高。

螺旋桨工作时。

轴向速度不随半径变化,而切线速度随半径变化。

因此在接近桨尖,半径较大处气流角较小,对应桨叶角也应较小。

而在接近桨根,半径较小处气流角较大,对应桨叶角也应较大。

螺旋桨的桨叶角从桨尖到桨根应按一定规律逐渐加大。

所以说螺旋桨是一个扭转了的机翼更为确切。

从图中还可以看到,气流角实际上反映前进速度和切线速度的比值。

对某个螺旋桨的某个剖面,剖面迎角随该比值变化而变化。

迎角变化,拉力和阻力矩也随之变化。

用进矩比“J”反映桨尖处气流角,J=V/nD。

式中D—螺旋桨直径。

理论和试验证明:螺旋桨的拉力(T),克服螺旋桨阻力矩所需的功率(P)和效率(η)可用下列公式计算:T=Ctρn2D4P=Cpρn3D5η=J·Ct/Cp式中:Ct—拉力系数;Cp—功率系数;ρ—空气密度;n—螺旋桨转速;D—螺旋桨直径。

其中Ct和Cp取决于螺旋桨的几何参数,对每个螺旋桨其值随J变化。

图1—1—21称为螺旋桨的特性曲线,它可通过理论计算或试验获得。

特性曲线给出该螺旋桨拉力系数、功率系数和效率随前进比变化关系。

船用螺旋桨生产工艺

船用螺旋桨生产工艺

船用螺旋桨生产工艺船用螺旋桨是船舶推进设备中最为关键的一种。

其生产工艺包括有浆叶设计、材料选择、模具制造、叶片铸造、叶轮组装和动平衡六个基本环节。

1.浆叶设计浆叶设计是螺旋桨制造的起点。

浆叶的设计要根据船舶型号和推进功率等要素,经计算求出最合适的参数,以达到较好的推进效果。

浆叶的结构包括两大部分,即浆翼和浆叶。

浆翼是浆叶的承载部分,相当于“脊梁”;浆叶则是实际起推进作用的部分。

对于大型船用螺旋桨,还需要设计转子与定子的透面,以消减推进时的离心力。

2.材料选择螺旋桨的材料选择至关重要,因为它关系到其推进效能、使用寿命和抗腐蚀能力。

对于大部分船轮毂,选择HT250铸铁或高锰钢铸造;而钢和合金材料则通常用于叶轮的铸造。

3.模具制造模具制造是螺旋桨生产的关键环节之一。

其目的是为了定型铸造,并达到尺寸精度和表面质量要求。

模具制造工艺主要包括木样制作、沙模制作、金属模制作等。

模具的制作要满足浆叶设计的需求,制模时应考虑到浆叶的曲率、斜度、展弦比等特点,以便于铸造时填充浆翼和浆叶。

4.叶片铸造叶片铸造是螺旋桨生产的核心环节,也是最为复杂的一个工序。

叶片铸造技术对模具制作和铸造工艺有着很高的要求。

在实际操作中,先进行慢跑放砂处理,然后在模具中浇注熔融的铸造合金材料,待铸造材料冷却后进行拆模,形成叶片。

5.叶轮组装叶轮组装是螺旋桨生产的重要环节之一,即将铸造好的叶片组成一个完整的浆叶。

组装时要保证叶片间的间隙均匀,并根据叶轮的设计要求调整各个叶片的相对位置,以保证浆翼和浆叶的质量和精度。

6.动平衡叶轮的动平衡是螺旋桨生产的最后一步,是制造工艺中的重要环节。

动平衡的目的是消除螺旋桨运转时的振动和共振,确保其正常运行和使用寿命。

动平衡过程中,先是将叶轮装备在动平衡机上,然后对其逐一检测、调整叶片的角度和平衡质量,以达到预定的平衡标准,同时也保证了螺旋桨的质量。

综上所述,船用螺旋桨的生产工艺包括浆叶设计、材料选择、模具制造、叶片铸造、叶轮组装和动平衡等环节。

35000T散货船螺旋桨课程设计

35000T散货船螺旋桨课程设计

重庆交通大学船舶与海洋工程专业MAU型螺旋桨毕业设计计算书设计题目35000吨螺旋桨图谱设计航海学院二本船舶与海洋工程专业1001班设计者张超(eb08040310)指导教师赵藤重庆交通大学完成日期2012年1月2 日目录螺旋桨的设计任务书 (1)螺旋桨的设计计算书 (3)可以达到最大航速的计算 (3)空泡校核 (3)强度校核 (6)螺距修正 (7)重量及惯性矩计算 (7)系柱特性计算 (8)航行特性计算 (9)螺旋桨计算总结 (10)螺旋桨课程设计总结 (11)35000吨散货船船用螺旋桨课程设计任务书1.前言本船阻力通过艾尔法来估算出结果得出阻力曲线。

计算时以设计吃水T=11.5m 情况来进行。

由于在艾尔法计算过程中已将本船的附体部分(舵、轴支架、舭龙骨等)考虑在其中,但考虑本船建造以后及在以后的使用过程中产生的表面粗糙度增加及螺旋桨等影响在换算本船阻力时再相应增加10%。

本船主机最大持续功率9480KW ,额定转速为127转/分,考虑本船主机的经济性和长期使用后主机功率折损。

在船速计算中按%9094801⨯⨯Kw 来考虑。

螺旋桨转速为127转/分。

2.船体主要参数水线长 wl L 180m 垂线间长 pp L175m型宽 B 30m 型深 D 17m 设计吃水 d 11.5m 桨轴中心高 3.343m 排水量 Δ47188t本船的D B =1.788; d D=1.435; BL pp =5.858 ; dB=2.565 3.主机参数 :型 号 6S50MCC (大连船用柴油机厂) 一台额定功率 s P =9480kw (12889hp) 额定转速 N=127 r/min 减速比 1传送效率S η=0.974.推进因子伴流分数 ω=0.5C B -0.05=0.5×0.785-0.05=0.34 (泰洛公式---单桨船) 推力减额 t=k ω=0.588×0.34=0.2 (商赫公式---取k=0.588流线型舵)船身效率ηH =wt--11=1.212相对旋转效率ηR=15.阻力计算6.设计任务①我在本次设计中按d=11.5m,设计叶数为4叶的MAU型螺旋桨;②完成所设计螺旋桨的设计计算书。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

某沿海单桨散货船螺旋桨设计计算说明书刘磊磊20081013202011年7月某沿海单桨散货船螺旋桨设计计算说明书1.已知船体的主要参数船长 L = 118.00 米 型宽 B = 9.70 米 设计吃水 T = 7.20 米 排水量 △ = 5558.2 吨 方型系数 C B = 0.658 桨轴中心距基线高度 Zp = 3.00 米由模型试验提供的船体有效马力曲线数据如下:2.主机参数型号 6ESDZ58/100 柴油机 额定功率 Ps = 5400 hp 额定转速 N = 165 rpm 转向 右旋 传递效率 ηs=0.983.相关推进因子伴流分数 w = 0.279 推力减额分数 t = 0.223 相对旋转效率 ηR = 1.0船身效率 0777.111=--=wtH η4.可以达到最大航速的计算采用MAU 四叶桨图谱进行计算。

取功率储备10%,轴系效率ηs = 0.98 螺旋桨敞水收到马力: P D = 4762.8 hp根据MAU4-40、MAU4-55、MAU4-70的Bp--δ图谱列表计算:对V的曲线,如下图所示。

据上表的计算结果可绘制PT E、δ、P/D及ηO从PTE—f(V)曲线与船体满载有效马力曲线之交点,可获得不同盘面比所对应的设计航速及螺旋桨最佳要素P/D、D及η如下表所列。

OMAU Vmax P/D δ D ηO4-40 15.137 0.68919 64.1006 4.239876691 0.6086224-55 15.037 0.74201 63.3998 4.165819112 0.591738724-70 14.851 0.749606 63.68688 4.132919936 0.563077426 5.空泡校核按柏利尔空泡限界线中商船上限线,计算不发生空泡之最小展开面积比。

桨轴沉深hf =T-Zp=7.2-3.00=4.2mp 0-p v = pa + γhs-pv = 10300+1025×4.2-174= 14461kgf/m2计算温度t = 15°C ,Pv = 174kgf/ m2 , P D = 4762.8hp, ρ= 104.63kgfs2/m4序号 项目单位 数值 MAU4-40MAU4-55MAU4-701 VmaxKn 5.614046889 5.576958649 5.507974522 2 V A =0.5144Vmax(1-w) m/s657.4605465 634.6935143 624.7082313 3 (0.7πND/60)2 (m/s)2 688.978069 665.795982 655.0460146 4 V 20.7R =V 2A +32(m/s)20.401205334 0.415174744 0.421988181 5 σ=(p 0- p v ) / 21ρV 0.7R 20.4012053340.415174744 0.421988181 6 Τc(柏利尔空泡限界图) 0.16 0.162 0.163333333 7 T=P D ·ηO ·75/V Akgf38725.33823 37901.48027 36517.3961 8 A P =T /21ρV 0.7R 2·τc m 2 6.7149627736.7169754016.5241950849 A E =A P / (1.067-0.229P/D) m 210A E /A O =A E /41πD 27.3857718857.4876015217.286833423按上述结果作图,可求得不发生空泡的最小盘面比以及对应的最佳螺旋桨要素A E / A O = 0.549200516 P/D= 0.741852486 D= 4.166m ηo=0.591857369 Vmax= 15.03775 kn6.强度校核按1983年<<规范>>校核t 0.25R 及t 0.6r ,应不小于按下式计算之值:t=XK Y -,ZbNN A Y e1=, X=A 2GA d N 2D 3/1010Zb计算功率Ne=5400×0.98=5292hpA D = A E / A O = 0.549200516, P/D=0.741852486, ︒=8ε,G=7.6gf/cm 3 ,N=165rpmb 0.66R =0.226D ·A E / A O/0.1Z=0.226*0.549200516*4.166m/0.4=1.292702683 m b 0.25R =0.7212b 0.66R = 0.93229717 m b 0.6R =0.9911b 0.66R = 1.281197629 m实取桨叶厚度按t 1.0R =0.0035D=14.581 与t 0.25R =146.7063535 连直线决定:t 0.2R = 155.5147104 mm t 0.3R = 137.8979966 mm t 0.4R = 120.2812828 mm t 0.5R = 102.664569 mm t 0.6R = 85.04785519 mm t 0.7R = 67.43114139 mm t 0.8R = 49.8144276 mm t 0.9R = 32.1977138 mm7.螺距修正根据尾轴直径大小,决定毂径比d h /D=0.18,此值与MAU 桨标准毂径比相同,故对此项螺距无需修正。

由于实际桨叶厚度大于MAU 桨标准厚度,故需因厚度差异进行螺距修正。

设计桨 )(b t0.7R =0.052351381标准桨 )(bt0.7R = 0.0552269751-s = NP V A =NP V 866.30)-1(⨯ω=0.656262685△)(b t 0.7R =〔)(b t 0.7R 设-)(b t 0.7R 标×51.055.0〕×0.75=-0.002216992△)(D P t =-2)(D P 0(1-s) △)(b t0.7R =0.002158685修正后的螺距比: D P =)(D P 0+△)(DPt =0.744011171 8.重量及惯性矩计算根据MAU 桨切面的面积数据用积分方法计算得:桨叶重量 3582.9355 kgf 桨毂重量 6589.59094 kgf 螺旋桨重量 10172.53 kgf 桨叶惯性矩 435.6 kg.m.s^2 桨毂惯性矩 360.85 kg.m.s^2 螺旋桨总惯性矩 796.45 kg.m.s^29.敞水特性曲线由MAU4-40,MAU4-55,P/D=0.7和0.8 的敞水特性曲线内插得到MAU4-0.549,P/D=0.744 的敞水特性曲线,其数据如下:J 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 10KQ 0.3611 0.32468 0.28826 0.25184 0.21542 0.179 0.14258 0.10616 KT 0.3395 0.29845 0.2574 0.21635 0.1753 0.13425 0.0932 0.05215(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) r/R面积系 数Ka 弦长╳最大 厚度 b ╳t切面面 积(m 2) S=Kabt 辛式 系数 SM(4)╳(5)rr 2(6)╳(7)(6)╳(8)0.2 0.674 0.145487857 0.0980588 1 0.098059 0.4166 0.173556 0.040851 0.017019 0.3 0.674 0.150221946 0.1012495 4 0.404998 0.6249 0.3905 0.253083 0.158152 0.4 0.6740.1463157 0.09861672 0.197234 0.8332 0.694222 0.164335 0.136924 0.5 0.6745 0.134635523 0.09081164 0.363247 1.0415 1.084722 0.378321 0.394022 0.6 0.6745 0.116356831 0.0784826 2 0.156965 1.24981.5620.196175 0.245180.7 0.677 0.091758804 0.0621207 4 0.248483 1.4581 2.126056 0.362313 0.528288 0.8 0.683 0.062051002 0.0423808 2 0.084762 1.6664 2.776889 0.141247 0.235374 0.9 0.695 0.030528429 0.0212172 4 0.084869 1.8747 3.5145 0.159104 0.298272 10.70 010 2.083 4.338889 0.013103 0.027293∑(6)= 1.638616∑(9)= 1.69543 ∑(10)=2.013210.螺旋桨计算总结螺旋桨直径 4.166 m螺距比 0.744型式 MAU叶数 Z=4盘面比 0.549ε纵倾角︒=8螺旋桨效率 0.592设计航速 15.04 kn毂径比d h/D=0.18旋向右旋材料铝镍青铜重量10172.53 kgf惯性矩796.45 kg.m.s^2。

相关文档
最新文档