职高中职数学基础模块上册试题库

合集下载

职高(中职)数学(基础模块)(上册)题库完整

职高(中职)数学(基础模块)(上册)题库完整

集合测试题班级 座号 姓名 分数一 选择题:本大题共12小题,每小题4分,共48分。

在每小题给出的四个选项中只有一项是符合题目要求,把正确选项写在表格中。

1.给出 四个结论:①{1,2,3,1}是由4个元素组成的集合 ② 集合{1}表示仅由一个"1"组成的集合 ③{2,4,6}与{6,4,2}是两个不同的集合 ④ 集合{大于3的无理数}是一个有限集 其中正确的是 < >;A.只有③④B.只有②③④C.只有①②D.只有② 2.下列对象能组成集合的是< >;A.最大的正数B.最小的整数C. 平方等于1的数D.最接近1的数3.I ={0,1,2,3,4},M ={0,1,2,3} ,N ={0,3,4},)(N C M I =< >; A.{2,4} B.{1,2} C.{0,1} D.{0,1,2,3}4.I ={a,b,c,d,e } ,M={a,b,d },N={b },则N M C I )(=< >; A.{b }B.{a,d } C.{a,b,d } D.{b,c,e }5.A ={0,3} ,B={0,3,4},C={1,2,3}则=A C B )(< >; A.{0,1,2,3,4} B.φ C.{0,3} D.{0} 6.设集合M ={-2,0,2},N ={0},则< >;A.φ=NB.M N ∈C.M N ⊂D.N M ⊂7.设集合{}0),(>=xy y x A ,{},00),(>>=y x y x B 且则正确的是< >; A.B B A = B.φ=B A C.B A ⊃ D.B A ⊂ 8.设集合{}{},52,41<≤=≤<=x x N x x M 则=B A < >;A.{}51<<x xB.{}42≤≤x xC.{}42<<x x D.{}4,3,2 9.设集合{}{},6,4<=-≥=x x N x x M 则=N M < >;A.RB.{}64<≤-x xC.φD.{}64<<-x x 10.设集合{}{}==--=≥=B A x x x B x x A 则,02,22< >; A.φB.A C.{}1- A D.B11.下列命题中的真命题共有< >; ①x =2是022=--x x 的充分条件 ②x≠2是022≠--x x 的必要条件 ③y x =是x=y 的必要条件④x =1且y =2是0)2(12=-+-y x 的充要条件 A.1个 B.2个 C.3个 D.4个12.设{}{}共有则满足条件的集合M M ,4,3,2,12,1⊆⊂< >. A.1个 B.2个 C.3个 D.4个二 填空题:本大题共6小题,每小题4分,共24分. 把答案填在题中横线上. 1.用列举法表示集合{}=<<-∈42x Z x ; 2.用描述法表示集合{}=10,8,6,4,2; 3.{m,n }的真子集共3个,它们是;4.如果一个集合恰由5个元素组成,它的真子集中有两个分别是B ={a,b,c },C ={a,d,e },那么集合A =;5.{}{},13),(,3),(=+==-=y x y x B y x y x A 那么=B A ; 6.042=-x 是x +2=0的条件.三 解答题:本大题共4小题,每小题7分,共28分. 解答应写出推理、演算步骤. 1.已知集合A={}{}B A B A x x B x x ,,71,40求<<=<<. 2.已知全集I=R ,集合{}A C x x A I 求,31<≤-=.3.设全集I={}{}{},2,3,1,3,4,322+-=-=-a a M C M a I 求a 值.4.设集合{}{},,02,0232A B A ax x B x x x A ==-==+-= 且求实数a 组成的集合M.不等式测试题班级 座号 姓名 分数 一.填空题: <32%>1. 设2x -3 <7,则 x < ;2. 5->0且+1≥0 解集的区间表示为_________ ;3. |错误!|>1解集的区间表示为________________;4.已知集合A = [2,4],集合B = <-3,3] ,则A ∩ B = ,A ∪B = .5.不等式x 2>2 x 的解集为____________;不等式2x 2-3x -2<0的解集为________________.6. 当X 时,代数式 有意义.二.选择题:<20%>7.设、、均为实数,且<,下列结论正确的是< >。

中职数学基础模块(上册)1~5章基础知识测试卷及参考答案

中职数学基础模块(上册)1~5章基础知识测试卷及参考答案

一 选择题:本大题共10小题,每小题3分,共30分。

在每小题给出的四个选项中只有一项是符合题目要求,把正确选项写在表格中。

1.设集合M ={-2,0,2},N ={0},则( ) A.φ=N B.M N ∈ C.M N ⊂ D.N M ⊂ 2、已知集合{}20<<=x x A ,集合{}31≤<=x x B ,则=B A ( )A .{}30<<=x x A B. {}30≤<=x xB C. {}21<<=x x B D. {}31≤<=x x B 3.下列不等式中正确的是 ( ) A.5a >3a B.5+a >3+a C.3+a >3-a D.aa 35> 4.不等式6≥x 的解集是( ) A.[)+∞,6 B.[]6,6- C.(]6,-∞- D. (][)+∞-∞-,66, 5、不等式02142≤-+x x 的解集为( )A .(][)+∞-∞-,37, B. []3,7- C. (][)+∞-∞-,73, D. []7,3- 6、函数x y 32-=的定义域是( )A .⎪⎭⎫ ⎝⎛∞-32, B.⎥⎦⎤ ⎝⎛∞-32, C.⎪⎭⎫ ⎝⎛+∞,32 D.⎪⎭⎫⎢⎣⎡+∞,32 7.关于函数34)(2+-=x x x f 的单调性正确的是( )A .上减函数),(+∞-∞ B.(-)4,∞减函数 C. )0,(-∞上减函数 D.在(-)2,∞ 上减函数8. 不等式的41log 2x >解集是( ). A. (2,)+∞ B. (0,2) C. 1(,)2+∞ D. 1(0,)29.050-角的终边在( ). A.第一象限 B. 第二象限 C. 第三象限 D. 第四象限 10. 34sinπ的值为( ). A. 21 B. 21- C. 23 D. 23-二 填空题:本大题共8小题,每小题4分,共32分. 把答案填在题中横线上. 1、用集合相关的数学符号填空:1 {}1,0;φ {}1 (请用⊄⊇⊆∉∈、、、、填空)2、已知集合{}4,3,21,=A ,集合{},7,5,3,1=B ,则=B A ,=B A 。

中职数学基础模块上册期末试题

中职数学基础模块上册期末试题

中职数学基础模块上册期末试题中职数学(基础模块)期末试题一、选择题:1.给出四个结论:①{1,2,3,1}是由4个元素组成的集合②集合{1}表示仅由一个“1”组成的集合③{2,4,6}与{6,4,2}是两个不同的集合④集合{大于3的无理数}是一个有限集其中正确的是(B):只有②③④。

2.M={0,1,2,3},N={0,3,4},M∩N=(B):{0,3}。

3.I={a,b,c,d,e},N={b,f},则I∪N=(D):{a,b,c,d,e,f}。

4.A={0,3},B={0,3,4},C={1,2,3}则(B∪C)∩A=(C):{0,3}。

5.设集合M={-2,0,2},N={},则(A):N=∅。

6.设a、b、c均为实数,且a<b<c,则下列结论正确的是(A):a<c。

7.设a、b、c均为实数,且a<b<c,则下列结论正确的是(D):a<b。

8.下列不等式中,解集是空集的是(A):x-3x–4>。

9.一元二次方程x–mx+4=0有实数解的条件是m∈(C):(-∞,-4)∪(4,+∞)。

10.设a>0,b>0且ab。

11.函数y=x+1-1/x的定义域为(B):(-1,+∞)。

12.下列各函数中,既是偶函数,又是区间(0,+∞)内的增函数的是(C):y=x+2x2.二、填空题:1.{m,n}的真子集共3个,它们是:{m},{n},{}。

2.集合{ x | x≥-2 }用区间表示为[-2,+∞)。

1.已知集合A={1,2,3,4,5},B={(x,y)|3x+y=1},求A∩B和A∪B。

A∩B=空集,因为A中只有整数,而B中只有满足3x+y=1的有序数对。

A∪B=A∪{1},因为B中的所有有序数对都不属于A,所以A∪B=A∪{1}={1,2,3,4,5,1}={1,2,3,4,5}。

2.已知集合A={2,3,4},B={x|2<x<7},求A∩B和A∪B。

职高中职数学基础模块上册试题库

职高中职数学基础模块上册试题库

职⾼中职数学基础模块上册试题库集合测试题班级座号姓名分数⼀选择题:本⼤题共12⼩题,每⼩题4分,共48分。

在每⼩题给出的四个选项中只有⼀项是符合题⽬要求,把正确选项写在表格中。

1.给出四个结论:①{1,2,3,1}是由4个元素组成的集合②集合{1}表⽰仅由⼀个“1”组成的集合③{2,4,6}与{6,4,2}是两个不同的集合④集合{⼤于3的⽆理数}是⼀个有限集其中正确的是 ( );A.只有③④B.只有②③④C.只有①②D.只有② 2.下列对象能组成集合的是( );A.最⼤的正数B.最⼩的整数C. 平⽅等于1的数D.最接近1的数3.I ={0,1,2,3,4},M ={0,1,2,3} ,N ={0,3,4},)(N C M I =( ); A.{2,4} B.{1,2} C.{0,1} D.{0,1,2,3}4.I ={a,b,c,d,e } ,M={a,b,d },N={b },则N M C I )(=( );A.{b }B.{a,d }C.{a,b,d }D.{b,c,e } 5.A ={0,3} ,B={0,3,4},C={1,2,3}则=A C B )(( ); A.{0,1,2,3,4} B.φ C.{0,3} D.{0} 6.设集合M ={-2,0,2},N ={0},则( );A.φ=NB.M N ∈C.M N ?D.N M ?7.设集合{}0),(>=xy y x A ,{},00),(>>=y x y x B 且则正确的是( ); A.B B A = B.φ=B A C.B A ? D.B A ? 8.设集合{}{},52,41<≤=≤<=x x N x x M 则=B A ( );A.{}51<B.{}42≤≤x xC.{}42<A.RB.{}64<≤-x xC.φD.{}64<<-x x 10.设集合{}{}==--=≥=B A x x x B x x A 则,02,22( ); A.φ B.A C.{}1- A D.B11.下列命题中的真命题共有( ); ① x =2是022=--x x 的充分条件② x≠2是022≠--x x 的必要条件③y x =是x=y 的必要条件④ x =1且y =2是0)2(12=-+-y x 的充要条件A.1个B.2个C.3个D.4个12.设{}{}共有则满⾜条件的集合M M ,4,3,2,12,1??( ). A.1个 B.2个 C.3个 D.4个⼆填空题:本⼤题共6⼩题,每⼩题4分,共24分. 把答案填在题中横线上. 1.⽤列举法表⽰集合{}=<<-∈42x Z x ; 2.⽤描述法表⽰集合{}=10,8,6,4,2 ; 3.{m,n }的真⼦集共3个,它们是 ;4.如果⼀个集合恰由5个元素组成,它的真⼦集中有两个分别是B ={a,b,c },C ={a,d,e },那么集合A = ;5.{}{},13),(,3),(=+==-=y x y x B y x y x A 那么=B A ;6.042=-x 是x +2=0的条件.三解答题:本⼤题共4⼩题,每⼩题7分,共28分. 解答应写出推理、演算步骤. 1.已知集合A={}{}B A B A x x B x x ,,71,40求<<=<<.2.已知全集I=R ,集合{}A C x x A I 求,31<≤-=.3.设全集I={}{}{},2,3,1,3,4,3224.设集合{}{},,02,0232A B A ax x B x x x A ==-==+-= 且求实数a 组成的集合M.不等式测试题班级座号姓名分数⼀.填空题:(32%)1. 设2x -3 <7,则x <;2. 5->0且+1≥0 解集的区间表⽰为___ ______ ;3. | x3 |>1解集的区间表⽰为________________;4.已知集合A = [2,4],集合B = (-3,3] ,则A ∩ B = ,A∪B = .5.不等式x2>2 x的解集为_______ _____;不等式2x2 -3x-2<0的解集为________________.6. 当X 时,代数式有意义.⼆.选择题:(20%)7.设、、均为实数,且<,下列结论正确的是( )。

(完整版)职高(中职)数学(基础模块)上册试题库

(完整版)职高(中职)数学(基础模块)上册试题库

中职数学 集合测试题一 选择题:本大题共12小题,每小题4分,共48分。

在每小题给出的四个选项中只有一项是符合题目要求,把正确选项写在表格中。

题号123456答案题号789101112答案1.给出 四个结论:①{1,2,3,1}是由4个元素组成的集合② 集合{1}表示仅由一个“1”组成的集合③{2,4,6}与{6,4,2}是两个不同的集合④ 集合{大于3的无理数}是一个有限集其中正确的是 ( );A.只有③④B.只有②③④C.只有①②D.只有②2.下列对象能组成集合的是( );A.最大的正数B.最小的整数C. 平方等于1的数D.最接近1的数3.I ={0,1,2,3,4},M ={0,1,2,3} ,N ={0,3,4},=( );)(N C M I A.{2,4}B.{1,2}C.{0,1}D.{0,1,2,3} 4.I ={a,b,c,d,e } ,M={a,b,d },N={b },则=();N M C I )(A.{b }B.{a,d }C.{a,b,d }D.{b,c,e } 5.A ={0,3} ,B={0,3,4},C={1,2,3}则( );=A C B )( A.{0,1,2,3,4}B.C.{0,3}D.{0}φ6.设集合M ={-2,0,2},N ={0},则( );A.B.C.D.φ=N M N ∈M N ⊂NM ⊂7.设集合,则正确的是( );{}0),(>=xy y x A {},00),(>>=y x y x B 且A. B. C. D.B B A = φ=B A B A ⊃B A ⊂8.设集合则( );{}{},52,41<≤=≤<=x x N x x M =B A A.B.C.D. {}51<<x x {}42≤≤x x {}42<<x x {}4,3,29.设集合则( );{}{},6,4<=-≥=x x N x x M =N M A.RB.C. D.{}64<≤-x x φ{}64<<-x x 10.设集合( );{}{}==--=≥=B A x x x B x x A 则,02,22A.B.C. D.φA {}1- A B11.下列命题中的真命题共有( );① x =2是的充分条件022=--x x ② x≠2是的必要条件022≠--x x ③是x=y 的必要条件y x =④ x =1且y =2是的充要条件0)2(12=-+-y x A.1个 B.2个 C.3个 D.4个12.设( ).{}{}共有则满足条件的集合M M ,4,3,2,12,1⊆⊂A.1个 B.2个 C.3个 D.4个二 填空题:本大题共6小题,每小题4分,共24分. 把答案填在题中横线上.1.用列举法表示集合 ;{}=<<-∈42x Z x 2.用描述法表示集合 ;{}=10,8,6,4,23.{m,n }的真子集共3个,它们是 ;4.如果一个集合恰由5个元素组成,它的真子集中有两个分别是B ={a,b,c },C ={a,d,e },那么集合A =;5.那么 ;{}{},13),(,3),(=+==-=y x y x B y x y x A =B A 6. 是x +2=0的 条件.042=-x 三 解答题:本大题共4小题,每小题7分,共28分. 解答应写出推理、演算步骤.1.已知集合A=.{}{}B A B A x x B x x ,,71,40求<<=<<2.已知全集I=R ,集合.{}A C x x A I 求,31<≤-=3.设全集I= 求a 值.{}{}{},2,3,1,3,4,322+-=-=-a a M C M a I 4.设集合求实数a 组成的集合{}{},,02,0232A B A ax x B x x x A ==-==+-= 且M.高职班数学 《不等式》测试题班级 座号 姓名 分数一.填空题: (32%)1. 设2x -3 <7,则 x < ;2. 5->0且+1≥0 解集的区间表示为___ ______ ;3. ||>1解集的区间表示为________________;x34.已知集合A = [2,4],集合B = (-3,3] ,则A ∩B = ,A∪B = .5.不等式x 2>2 x 的解集为_______ _____;不等式2x 2 -3x -2<0的解集为________________.6. 当X 时,代数式 有意义.r(3 + 2x + x 2)r(3 + 2x + x 2)二.选择题:(20%)7.设、、均为实数,且<,下列结论正确的是( )。

中职数学基础模块(上册)基础练习-第一章集合

中职数学基础模块(上册)基础练习-第一章集合

第一章 集合第一章 第一课时 集合及其表示【知识回顾】1.集合的基本概念:我们把研究对象统称为 ,把一些元素组成的总体叫做 .2.集合中元素的三个特性: , , . 3.常用数集的符号4.元素与集合的关系元素与集合之间存在两种关系:如果a 是集合A 中的元素,就说a 集合A ,记作 ;如果a 不是集合A 中的元素,就说a 集合A ,记作 . 5.集合的表示方法 描述法、列举法。

一、选择题.1.下列各组对象可以组成集合的是( )A.数学课本中所有的难题 B.小于8的所有素数 C.直角坐标平面内第一象限的一些点 D.所有小的正数 2.给出下列关系: ①12∈R ;②2∉Q ;③|-3|∉N ;④|-3|∈Q ;⑤0∉N ,其中正确的个数为( ) A .1 B .2 C .3 D .4 3.已知集合A 由满足x <1的数x 构成,则有( ) A .3∈A B .1∈A C .0∈A D .-1∉A4.已知集合S 中三个元素a ,b ,c 是△ABC 的三边长,那么△ABC 一定不是( ) A .锐角三角形B .直角三角形C .钝角三角形D .等腰三角形5.已知集合 21,A a ,实数a 不能取的值的集合是( ) A. 1,1 B. 1C. 1,0,1D. 1二、填空题.6.下列所给关系正确的个数是 . ①π∈R ; ②3∉Q ; ③0∈N +; ④|-4|∉N +.7.在方程x 2-4x +4=0的解集中,有 个元素.8.设集合 **(,)|3,N ,N A x y x y x y ,则用列举法表示集合A 为 . 三、解答题.9.已知25{|50}x x ax ,用列举法表示集合2{|40}x x x a .10.数集A 满足条件:若a ∈A ,则11-a∈A (a ≠1),若2∈A ,试求出A 中其他所有元素.第一章 第二课时 集合及之间的关系知识回顾1.空集:不含有任何元素的集合称为空集,记作: .2.子集:一般地,对于两个集合A ,B ,如果集合A 中任意一个元素都是集合B 中的元素,我们就说这两个集合有包含关系,称集合A 为B 的子集.记作:()A B B A 或,读作:A 包含于B (或B 包含A ).图示:3.真子集:若集合A B ,存在元素x B x A 且,则称集合A 是集合B 的真子集.记作:A B(或B A )读作:A 真包含于B (或B 真包含A )4.相等集合:如果两个集合所含的元素完全相同(A B B A 且),那么我们称这两个集合相等.记作:A =B 读作:A 等于B .图示:相关结论: (1).A A(2)空集是任何集合的子集,是任何非空集合的真子集. (3)若,,A B B C 则.A C(4)一般地,集合{a 1,a 2,…,a n }的子集有___个,非空子集有___个,非空真子集有___个.一、选择题.1.已知集合 0,2A , 表示空集,则下列结论错误的是( ) A.AB.0AC. AD. 0A s s2.已知集合21M x x ,则M 的真子集个数是( ) A.3 B.4 C.5 D.6 3.满足 11,2,3,4A 的集合A 的个数为( ) A.5B.6C.7D.84.下列表示同一集合的是( ) A.{(3,2)}M ,{(2,3)}N B.{(,)}M x y y x ∣,{}N y y x ∣ C.{1,2}M ,{2,1}ND.{2,4}M ,{(2,4)}N5.若 2{,0,1},,0a a a ,则实数a 的值为( ) A.-1 B.0 C.1 D.-1或1二、填空题.6.21,1,,1a a ,则 a .7.设集合6|2A x N y N x,则集合A 的子集个数为 . 三、解答题.8.已知2{|430}A x x x (1)用列举法表示集合A ; (2)写出集合A 的所有子集.9.已知全集 N 16U x x ,集合 2680A x x x , 3,4,5,6B . (1)求A B ,A B ; (2)求 U A B .第一章 第三课时 集合的运算知识回顾1.并集一般地,由所有属于集合A 或属于集合B 的元素所组成的集合,称为集合A 与B 的并集,记作:A ∪B 读作:“A 并B ”,即:A ∪B ={x |x A ,或x B }Venn 图表示:2.交集一般地,由属于集合A 且属于集合B 的元素所组成的集合,叫做集合A 与B 的交集;记作:A∩B ,读作:“A 交B ”,即A ∩B ={x |x A ,且x B };交集的Venn 图表示:3.补集全集:一般地,如果一个集合含有我们所研究问题中所涉及的所有元素,那么就称这个集合为全集,通常记作U .补集:对于全集U 的一个子集A ,由全集U 中所有不属于集合A 的所有元素组成的集合称为集合A 相对于全集U 的补集,简称为集合A 的补集,记作:U C A ,即{|}U C A x x U x A 且补集的Venn 图表示:4.集合运算中常用的结论(1)①A ∩B ⊆A ; ②A ∩B ⊆B ; ③A ∩A =A ; (2)①A ∪B ⊇A; ②A ∪B ⊇B ; ③A ∪A =A ;(3)①A ∩B =A ⇔A ⊆B ⇔A ∪B =B ; ②A ∩B =A ∪B ⇔A =B . 一、选择题.1.已知集合 1,0,1,2A ,{03}B x x ∣,则A B ( ) A. 1,2 B. 1,2 C. 0,1 D. 0,1,22.若集合 24,|21M x x N x x ,则M N ( )A. 22x x B. 2x x C.12x xD. 2x x3.已知集合 2{20},320A x x B x x x ,则A B ( ) A. 1,2 B. 1, C. 2, D. 2,4.已知集合2,2A B x x ,则A B ( )A. 22x x B. 02x x C. 2x x D. 22x x 5.设集合 |115A x x , |2B x x ,则R ()A B ( )A. |24x x B. |02x xC. |04x xD. |4x x二、填空题.6.已知集合3A , 210B x x ,则A B .7.已知集合 52A x x , 33B x x ,则A B .8.已知全集 16U x x N ∣ ,集合 1,2,3,5,3,4,5A B ,则 U A B . 三、解答题.9.已知{|17},{|121}A x x B x m x m ,且B ,若A B A ,求实数m 的取值范围.10.设 2,{|43},|60U A x x B x x x R ,求:(1)A B ; (2)A B ; (3) U A B ∩ .11.设集合 2=|60,|43 P x x x Q x a x a . (1)若P Q Q ,求实数a 的取值范围; (2)若P Q ,求实数a 的取值范围.。

职高(中职)数学(基础模块)上册题库精编版

职高(中职)数学(基础模块)上册题库精编版

中职数学 集合测试题一 选择题:本大题共12小题,每小题4分,共48分。

在每小题给出的四个选项中只有一项是符合题目要求,把正确选项写在表格中。

1.给出 四个结论:①{1,2,3,1}是由4个元素组成的集合 ② 集合{1}表示仅由一个“1”组成的集合 ③{2,4,6}与{6,4,2}是两个不同的集合 ④ 集合{大于3的无理数}是一个有限集 其中正确的是 ( );A.只有③④B.只有②③④C.只有①②D.只有② 2.下列对象能组成集合的是( );A.最大的正数B.最小的整数C. 平方等于1的数D.最接近1的数3.I ={0,1,2,3,4},M ={0,1,2,3} ,N ={0,3,4},)(N C M I =( ); A.{2,4} B.{1,2} C.{0,1} D.{0,1,2,3}4.I ={a,b,c,d,e } ,M={a,b,d },N={b },则N M C I )(=( );A.{b }B.{a,d }C.{a,b,d }D.{b,c,e } 5.A ={0,3} ,B={0,3,4},C={1,2,3}则=A C B )(( ); A.{0,1,2,3,4} B.φ C.{0,3} D.{0} 6.设集合M ={-2,0,2},N ={0},则( );A.φ=NB.M N ∈C.M N ⊂D.N M ⊂7.设集合{}0),(>=xy y x A ,{},00),(>>=y x y x B 且则正确的是( );A.B B A =B.φ=B AC.B A ⊃D.B A ⊂ 8.设集合{}{},52,41<≤=≤<=x x N x x M 则=B A ( );A.{}51<<x xB.{}42≤≤x xC.{}42<<x x D.{}4,3,2 9.设集合{}{},6,4<=-≥=x x N x x M 则=N M ( );A.RB.{}64<≤-x xC.φD.{}64<<-x x 10.设集合{}{}==--=≥=B A x x x B x x A 则,02,22( ); A.φ B.A C.{}1- A D.B11.下列命题中的真命题共有( ); ① x =2是022=--x x 的充分条件 ② x≠2是022≠--x x 的必要条件 ③y x =是x=y 的必要条件④ x =1且y =2是0)2(12=-+-y x 的充要条件A.1个B.2个C.3个D.4个12.设{}{}共有则满足条件的集合M M ,4,3,2,12,1⊆⊂( ). A.1个 B.2个 C.3个 D.4个二 填空题:本大题共6小题,每小题4分,共24分. 把答案填在题中横线上. 1.用列举法表示集合{}=<<-∈42x Z x ; 2.用描述法表示集合{}=10,8,6,4,2 ; 3.{m,n }的真子集共3个,它们是 ;4.如果一个集合恰由5个元素组成,它的真子集中有两个分别是B ={a,b,c },C ={a,d,e },那么集合A = ;5.{}{},13),(,3),(=+==-=y x y x B y x y x A 那么=B A ; 6.042=-x 是x +2=0的 条件.三 解答题:本大题共4小题,每小题7分,共28分. 解答应写出推理、演算步骤. 1.已知集合A={}{}B A B A x x B x x ,,71,40求<<=<<.2.已知全集I=R ,集合{}A C x x A I 求,31<≤-=.3.设全集I={}{}{},2,3,1,3,4,322+-=-=-a a M C M a I 求a 值.4.设集合{}{},,02,0232A B A ax x B x x x A ==-==+-= 且求实数a 组成的集合M.高职班数学 《不等式》测试题班级 座号 姓名 分数一.填空题: (32%)1. 设2x -3 <7,则 x < ;2. 5->0且+1≥0 解集的区间表示为___ ______ ;3. | x3|>1解集的区间表示为________________;4.已知集合A = [2,4],集合B = (-3,3] ,则A ∩ B = ,A ∪B = .5.不等式x 2>2 x 的解集为_______ _____;不等式2x 2-3x -2<0的解集为________________.6. 当X 时,代数式 有意义.二.选择题:(20%)7.设、、均为实数,且<,下列结论正确的是( )。

中职数学基础模块上阶段考试试题

中职数学基础模块上阶段考试试题

中职数学基础模块(上)阶段考试试卷 班级 姓名 一、选择题(每小题7分,共84分) 1、下列各式中,正确的是( )555.1)2.(.)(.233234432121515=⋅=+=+=D C b a b a B ab ab A),21.[)21,.(),21()21,.(),.()21(log 22+∞-∞+∞-∞+∞-∞-D C B A x )(的定义域是、函数 54434354)(sin ,53cos 3、、、、是第三象限的角,则且、已知D C B A --=-=ααα 43212)8,(4、、、、)(的值是上,则在指数函数、已知点D C B A a y a x=214421421log 5421214=====x D x C x B A x x 、、、、)(化成指数式可表示为、将 94lg23lg 32lg 6、商为、乘积为零、互为相反数、互为倒数)(的关系是与、D C B A212201,1log 72>><<><x D x C x B x A x x 、、、、)(的取值范围是则、xx y x y D xy a y C x y x y B a y x y A a x a a x a 22log log 2log log )(8========与、与、与、与、同一函数的是、以下各组函数中表示515515)(cos sin cos sin 2,2tan 9--=-+=、、、、则、若D C B A ααααα },432{},432{},42{},42{42510Z k k D Z k k C Z k k B Z k k A ∈-=∈+=∈-=∈+=ππααππααππααππααπ、、、、)(相同角的集合表示为、终边与角197971)(cos sin ,31sin 1144、、、、则、已知D C B A --=-=ααα件、既不充分也不必要条、充要条件、必要条件、充分条件)(的是、D C B A 321cos 12παα==二、填空题(每小题6分,共36分)的定义域是、函数2731-=xy 。

(完整版)中职数学(基础模块)第一册单元检测题

(完整版)中职数学(基础模块)第一册单元检测题

2.已知 a 0 且 a 1 ,下列式子中,错误的是
3
A. 3 a 2 a2
B. a 2
1 a2
3
C. a 5
1 5 a3
D. ax y
1 ay x
3.下列各指数函数中,在区间
, 内为减函数的是
A. y 3 x
x
B. y 4
C. y 10x
D. y 5 x
4.已知 y a x , a o 且 a 1 的图像过定点P,点P的坐标可能是

A.
, 1 1,
B.
1 ,1 C.
3
3
, 1 1, 3
D. 1 ,1 3
⑷ 一元二次方程 x 2 mx 4 0 有实数解的条件是 m∈(

A. , 4 4,
B.
4,4 C.
, 4 4,
D. 4,4
二、填空题( 本题共 10 小题,每题 5分,共 50 分 ) ⑴ 不等式 2 x 5 3的解集为
⑵ 当x
A. 2,3,4,5,6,8,9 B. 2,4,5 C.
D. 2,3,4,5,6
⑷ 集合 A= x 1 x 3 ,集合 B= x1 x 5 , 则 A∪ B=( )
A. x 1 x 5
B.
x3 x 5
C. x 1 x 1
D.
x1 x 3
⑸ 设集合为 R, 集合 A= x 1 x 5 ,则 CU A =( )
2.已知函数 f (x) x 1 ,则 f ( x) = x1
1
A.
f (x)
B. f (x)
1
C.
f ( x)
D. f ( x)
3.函数 f ( x) x2 4x 3

中职数学基础模块上册期末试卷(附答案)

中职数学基础模块上册期末试卷(附答案)

.第 1 页 共 2 页中职数学基础模块上册期末考试试题(附答案)一、选择题(每小题3分,共30分)1.设集合A={x |x <4} ,B={x |x ≥1},则A ∪B = ( ). A.R B.{x |1<x <4} C.∅ D.{x |1≤x <4}2.下列结论正确的是( )A.若am 2>cm 2,则a >c B.若a >b ,则1a<1bC.若a >b 且c <d ,则a+c >b+dD.若a 2>a ,则a >1 3.一元二次不等式-x 2-3x+4<0的解集是( )A.(-∞,-4)∪(1,+∞)B.(-∞,-4)C.(-∞,-4)D.(-4,1) 4.不等式|x-2|>-2 的解集是( ) A.(-∞,0)∪(3,+∞) B.(0,+∞) C.(-∞,+∞) D.∅ 5.函数f (x )=√x+2A.(-∞,-2)B.(-2,+∞)C.(-∞,-2)∪(-2,+∞)D.(-∞,0)∪(0,+∞)6.下列函数是奇函数的是( )A.y=-2x 2B.y=x+4C.y=3xD.y=x 3+x 27.若sinx=35,且cosx=-45,则角x 是( )A .第一象限角B.第二象限角C .第三象限角 D.第四象限角 8.sin30°+sin150°-tan45°的值为( ) A.0 B.√3-1 C.2-√22 D.√3-√229. 如果α+β=π,那么下列等式正确的是( )A.sin α=sin βB.sin α=-cos βC.cos α=cos β D .tan α=tan β 10.函数y=3+2sinx 的最小值是( ) A.3 B.2 C.5D.1 二、填空题(每空2分,共20分)1.f (x )=x 3+1 ,则f (-1)= 。

2. 函数f (x )=-x+1在(-∞,+∞)上是 函数。

(填“增”或“减”)3.把下列各角由角度转换为弧度。

(1)-120°= 。

中职数学基础模块(上册)1~5章基础知识测试卷及参考答案

中职数学基础模块(上册)1~5章基础知识测试卷及参考答案

中职数学基础模块(上册)1~5章基础知识测试卷及参考答案一、选择题:1.答案表格中的格式错误已被删除。

2.设集合$M=\{-2,0,2\},N=\{\}$,则$D$的正确选项为B。

3.下列不等式中正确的是$x>-5$。

4.不等式$x\geq6$的解集是$D$。

5.不等式$x^2+4x-21\leq0$的解集为$D$。

6.函数$y=\dfrac{2-3x}{2}$的定义域是$\left(-\infty,\dfrac{2}{3}\right]$。

7.关于函数$f(x)=x^2-4x+3$的单调性正确的是$(0,2]$上减函数。

8.不等式$\log x>2$的解集是$(e,+\infty)$。

9.角的终边在第三象限。

10.$\sin\dfrac{4\pi}{3}=-\dfrac{\sqrt{3}}{2}$。

二、填空题:1.$1\in\mathbb{N}\cap\mathbb{Z}\cap[0,1]$。

2.$A=\{x|x\leq1\},B=\{x|x\in\mathbb{N}\}$,则$A\cap B=\{1\}$。

3.不等式组$\begin{cases}x+\dfrac{3}{5}>5\\x-\dfrac{4}{5}<4\end{cases}$的解集为$\left(\dfrac{16}{5},+\infty\right)$。

4.函数$y=\log(-x-6)$的定义域为$(-\infty,-6)$。

5.$5a^6=2^1\cdot5^1\cdot a^6$。

6.$f(2)=20$。

7.与终边为-1050°相同的最小正角是多少?求解f(x+1)=的值。

改写:求与-1050°终边相同的最小正角是多少?解出f(x+1)=的值。

8.函数y=2cos(3x+π)的周期T=多少?改写:求函数y=2cos(3x+π)的周期T。

三、解答题:1.已知集合A={x|x<4},B={x|1<x<7},求A∩B,A∪B。

中职数学基础模块上阶段考试试题 (一)

中职数学基础模块上阶段考试试题 (一)

中职数学基础模块上阶段考试试题 (一)中职数学基础模块上阶段考试试题是对学生数学学习成绩进行考核的重要方式,也是学生进行自我检验和提高的舞台。

以下是本次考试的试题及解析。

一、选择题部分1.已知函数f(x)=2x-1,那么f(3)的值是()A.2B.5C.4D.6答案:B解析:将3代入2x-1中,得f(3)=2×3-1=52.根据勾股定理,边长为5、12的直角三角形斜边长是()A.13B.60C.17D.7答案:A解析:根据勾股定理,斜边长的平方等于两直角边的平方和,即13²=5²+12²,解得斜边长为13。

3.计算0.4÷0.2的值()A.0.2B.2C.20D.200答案:B解析:0.4÷0.2=24.方程3x-5=4x+1的解是()A.2B.-2C.3D.-3答案:B解析:将方程简化得到3x-4x=1+5,即-x=6,因此,x=-6÷-1=25.双曲线y=2/x的图像在一、四象限中的形状是()A.左开口B.右开口C.上开口D.下开口答案:B解析:双曲线y=2/x的分母为x,故在第四象限时x>0,y<0,第一象限时x>0,y>0。

因此,它的图像在一、四象限中的形状是右开口。

二、填空题部分1.已知直接比例式y=kx中,当x=3时,y=9,则k=()答案:3解析:因为y=kx,所以k=y÷x。

将x=3,y=9代入公式,得到k=9÷3=3。

2.利用配方法解方程x²-3x-28=0,得到x的值是()答案:7,-4解析:根据配方法,将x²-3x-28拆分为(x-7)(x+4)=0,得到x=7或x=-4。

3.平行四边形对角线交点的坐标为(2,4)和(7,9),则该平行四边形的面积为()答案:15解析:该平行四边形的一条对角线为线段L1,端点为(2,4)和(7,9),另一条对角线为线段L2。

中职数学基础模块上册试卷+答案

中职数学基础模块上册试卷+答案

《 中职数学基础模块上册 》试卷类型: C 卷共 4 页 考试形式: 闭卷 命题教师: : 适用范围: 级 专业 题号 一 二 三 四 总分 分值 20 10 36 34 100 B = 含有一个未知数,并且未知数的最高次数为二次的不等式,叫做 4b -。

∅ {1,2,3…………二、判断题。

(共 5 小题,每小题 2 分,共 10 分)1. 如果a b >,0c >,那么ac bc >; ( )2.中国著名的歌唱家能组成集合; ( )3. 1=a 是1=a 的充要条件 ( )4. 空集是任何非空集合的真子集 ( )5. 19≥x 的解集为[]1919-,( )三、选择题。

(共 12 小题,每小题 3 分,共 36 分)1. p :x =1,q :x 2=1;p 是q 的( )条件。

A. 充分而不必要B. 充分C.必要D.充要条件2. 所有有理数组成的集合叫做有理数集,记作( )。

A.ZB.NC.QD.R3. 已知集合A ={a ,b }B ={c,d,e,f }求A ∩B = ( )。

A. {a ,b }B. ∅C. {c,d,e,f }D. {a,b,c,d,e,f }4. 观察二次函数243y x x =-+的图像, 自变量x 取( )范围内的值时,函数值0y <。

A. 1x =B. 13x <<C. 13x x <>或D. 3x =5. 如果},1{N x x x A ∈≤=,则( )。

A.A ⊆0B.A ∈{0}C.A ∉0D.A ⊆{0}6.92=x 是3=x 的( ).A.充分条件B.必要条件C.充分必要条件D.既不充分也不必要7. 已知集合(2,6)A =,集合()1,7B =-,求A B =( )。

A.(2,6)B.(-1,7)C.(-1,2,6,7)D. ∅8. 不等式7<x 的解集是( )。

A.[]77-,B. ()77-,C.(]77-,D.[)77-, 9. 方程02-2=+x x ( )实数根。

中职数学基础模块(上)数学期末试卷

中职数学基础模块(上)数学期末试卷

中职数学基础模块(上)数学期末试卷数学期末试卷一、选择题(12×5=60分)1、已知集合A={3,4,5}。

B={1,3,5,7},则A∩B=()A: {3}。

B: {3,5}。

C: {3,4,5}。

D: ∅2、集合A={0,1,2,3}的非空真子集的个数为()A: 7.B: 8.C: 14.D: 153、不等式x-1/x3-2+4/2.-2的解集是()A: (0,+∞)。

B: (-∞,-2)。

C: (-∞,2)。

D: ∅4、m(m-3) = 0是m2+(n-3)2=的()条件。

A: 充分。

B: 必要。

C: 充要。

D: 既非充分又非必要5、函数f(x)=log(x-1)/(x-2)的定义域为()A: {x|x1且x≠2}。

D: ∅6、若f(1/2x-1)=1-2x,则f(x)=()A: 4x+3.B: -4x-3.C: 2x-1.D: 2x+17、化简(3a6)4•(6a3)2的结果是()A: a3.B: a6.C: a9.D: a128、已知函数y=logax的图像过点(4,2),则a=()A: 3.B: 2.C: -3.D: -29、方程32x+6=1的解为()A: ∅。

B: -1.C: -3.D: 110、弧度为3的角为()A: 第一象限角。

B: 第二象限角。

C: 第三象限角。

D: 第四象限角11、已知sinα=4π/5,α∈(π/2,π),则tanα=()A: 4/3.B: -3.C: 4.D: -412、2sinπ/3+2cosπ/4-3tanπ/6=()A: 1.B: 2.C: -2.D: -1二、填空题(4×4=16分)1、不等式ax2+bx+c<0 (a≠0)的解集为空集的条件是b2-4ac<______2、设U=R,A={x|x≤3或x>3},则CuA=____________3、写一个在R上既是奇函数又是增函数的函数关系式y=_________4、已知sinα+cosα=m,则sinαcosα=____________三、解答题(74分)1、设集合A={1,3,a},B={1.a2-a+1},且B⊆A,求a的值。

中职高一期末模拟卷(高教版基础模块(上册))数学试卷

中职高一期末模拟卷(高教版基础模块(上册))数学试卷

D. 12 5
D. 3π 2
A.0
B.5
C.7
D.9
17.若函数 y = f (x) 在 R 上是增函数,且 f (2m) f (−m + 9) ,则实数 m 的取值范围是( )
A. (1, +)
B. (0, +)
C. (3, +)
D. (−,−3) (3,+)
18.下列选项中表示同一函数的是( )
2 三、解答题(本大题共 6 小题,共 46 分)解答题应写出文字说明及演算步骤.
24.设U = R, A = {x | −5 x 3}, B = x | x2 − 5x − 6 0 ,
(1)求集合 B;
(2)求 A B .
25.已知 −1 x 4 , 2 y 3. (1)求 x − y 的取值范围;
A.3
B.4
C.8
6.如图所示,函数 y = f (x) 在下列哪个区间上是增函数( )
A.[−4, 4]
B.[−4, −3] [1,4]
C. [−3,1]
D.[−3, 4]
7.与 −2023 终边相同的最小正角是( )
A.137
B. 223
C. 43
8.函数 y = 1− x2 + 1 的定义域是( ) x
A.−1, 2,3
B.−1, 2, −2
C.−2, −1
D.1, −1, 2
4.已知 a = ( x − 2)( x − 3) , b =( x −1)( x − 4) ,则 a,b 的大小关系是( )
A. a b
B. a b
C. a = b
D.无法比较
5.已知集合 A = x N −1 x 3 ,则 A 的子集个数为( )
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

集合测试题班级 座号 姓名 分数一 选择题:本大题共12小题,每小题4分,共48分。

在每小题给出的四个选项中只有一项是符合题目要求,把正确选项写在表格中。

1.给出 四个结论:①{1,2,3,1}是由4个元素组成的集合 ② 集合{1}表示仅由一个“1”组成的集合 ③{2,4,6}与{6,4,2}是两个不同的集合 ④ 集合{大于3的无理数}是一个有限集 其中正确的是 ( );A.只有③④B.只有②③④C.只有①②D.只有② 2.下列对象能组成集合的是( );A.最大的正数B.最小的整数C. 平方等于1的数D.最接近1的数3.I ={0,1,2,3,4},M ={0,1,2,3} ,N ={0,3,4},)(N C M I =( ); A.{2,4} B.{1,2} C.{0,1} D.{0,1,2,3}4.I ={a,b,c,d,e } ,M={a,b,d },N={b },则N M C I )(=( );A.{b }B.{a,d }C.{a,b,d }D.{b,c,e } 5.A ={0,3} ,B={0,3,4},C={1,2,3}则=A C B )(( ); A.{0,1,2,3,4} B.φ C.{0,3} D.{0} 6.设集合M ={-2,0,2},N ={0},则( );A.φ=NB.M N ∈C.M N ⊂D.N M ⊂7.设集合{}0),(>=xy y x A ,{},00),(>>=y x y x B 且则正确的是( ); A.B B A = B.φ=B A C.B A ⊃ D.B A ⊂ 8.设集合{}{},52,41<≤=≤<=x x N x x M 则=B A ( );A.{}51<<x xB.{}42≤≤x xC.{}42<<x x D.{}4,3,2 9.设集合{}{},6,4<=-≥=x x N x x M 则=N M ( );A.RB.{}64<≤-x xC.φD.{}64<<-x x 10.设集合{}{}==--=≥=B A x x x B x x A 则,02,22( ); A.φ B.A C.{}1- A D.B11.下列命题中的真命题共有( ); ① x =2是022=--x x 的充分条件② x≠2是022≠--x x 的必要条件③y x =是x=y 的必要条件④ x =1且y =2是0)2(12=-+-y x 的充要条件A.1个B.2个C.3个D.4个12.设{}{}共有则满足条件的集合M M ,4,3,2,12,1⊆⊂( ). A.1个 B.2个 C.3个 D.4个二 填空题:本大题共6小题,每小题4分,共24分. 把答案填在题中横线上. 1.用列举法表示集合{}=<<-∈42x Z x ; 2.用描述法表示集合{}=10,8,6,4,2 ; 3.{m,n }的真子集共3个,它们是 ;4.如果一个集合恰由5个元素组成,它的真子集中有两个分别是B ={a,b,c },C ={a,d,e },那么集合A = ;5.{}{},13),(,3),(=+==-=y x y x B y x y x A 那么=B A ;6.042=-x 是x +2=0的 条件.三 解答题:本大题共4小题,每小题7分,共28分. 解答应写出推理、演算步骤. 1.已知集合A={}{}B A B A x x B x x ,,71,40求<<=<<.2.已知全集I=R ,集合{}A C x x A I 求,31<≤-=.3.设全集I={}{}{},2,3,1,3,4,322+-=-=-a a M C M a I 求a 值.4.设集合{}{},,02,0232A B A ax x B x x x A ==-==+-= 且求实数a 组成的集合M.不等式测试题班级座号姓名分数一.填空题:(32%)1. 设2x -3 <7,则x <;2. 5->0且+1≥0 解集的区间表示为___ ______ ;3. | x3 |>1解集的区间表示为________________;4.已知集合A = [2,4],集合B = (-3,3] ,则A ∩ B = ,A∪B = .5.不等式x2>2 x的解集为_______ _____;不等式2x2 -3x-2<0的解集为________________.6. 当X 时,代数式有意义.二.选择题:(20%)7.设、、均为实数,且<,下列结论正确的是( )。

(A)<(B)<(C)-<-(D)<8.设a>>0且>>0,则下列结论不正确的是( )。

(A)+>+(B)->-(C)->-(D)>9.下列不等式中,解集是空集的是( )。

(A)x 2 - 3 x–4 >0 (B) x 2 - 3 x + 4≥0 (C) x 2 - 3 x + 4<0 (D) x 2 - 4x + 4≥010.一元二次方程x2– mx + 4 = 0 有实数解的条件是m ∈()(A)(-4,4)(B)[-4,4](C)(-∞,-4)∪(4, +∞)(D)(-∞,-4]∪[4, +∞)三.解答题(48%)11.比较大小:2x2 -7x +2与x2-5x (8%) 12 .解不等式组(8%) 2 x - 1 ≥3x - 4≤712.解下列不等式,并将结果用集合和区间两种形式表示:(20%)(1) | 2 x – 3 |≥5 (2)- x 2 + 2 x – 3 >013.某商品商品售价为10元时,销售量为1000件,每件价格每提高0.2元,会少卖出10件,如果要使销售收入不低于10000元,求这种图书的最高定价.(12%)指数函数与对数函数集合测试题班级 座号 姓名 分数一、选择题(本大题共15小题,每小题3分,共45分。

在每小题所给出的四个选项中,只有一个符合题目要求,不选、多选、错选均不得分)1.下列函数,在其定义域内,既是奇函数又是增函数的是( )A. 12y x = B. 2x y = C. 3y x = D. 2log y x =2.下列函数在其定义域内,既是减函数又是奇函数的是( )A. 12xy ⎛⎫= ⎪⎝⎭B. 2log 2x y =C. 2xy = D. 2log 2x y -=3.下列关系式正确的是( )A .013212log 32-⎛⎫<< ⎪⎝⎭ B 。

013212log 32-⎛⎫<< ⎪⎝⎭ C. 013212log 32-⎛⎫<< ⎪⎝⎭ D 。

01321log 322-⎛⎫<< ⎪⎝⎭4.三个数30.7、3log 0.7、0.73的大小关系是( )A. 30.730.73log 0.7<<B. 30.730.7log 0.73<< C. 30.73log 0.70.73<< D. 0.733log 0.730.7<<5.若a b >,则( )A. 22a b > B. lg lg a b > C. 22a b> D.>6.下列各组函数中,表示同一函数的是( )A. 2x y x=与y x = B. y x =与y =C. y x =与2log 2xy = D. 0y x =与1y =7. y x a =-与log a y x =在同一坐标系下的图象可能是-------------------------------------------( )8. 0a >且1a ≠时,在同一坐标系中,函数xy a -=与函数log ()a y x =-的图象只可( )9.a x1x⎛⎫(10.设函数()log a f x x = (0a >且1a ≠),(4)2f =,则(8)f =( )A. 2B.12 C. 3 D. 1311.已知22log ,(0,)()9,(,0)x x f x x x ∈+∞⎧=⎨+∈-∞⎩,则[(f f =( )A. 16B. 8C. 4D. 2 12计算22log 1.25log 0.2+=( )A. 2-B. 1-C. 2D. 1 13.已知212332yx +⎛⎫⎛⎫=⎪ ⎪⎝⎭⎝⎭,则y 的最大值是( )A. 2-B. 1-C. 0D. 114.已知1()31x f x m =++是奇函数,则(1)f -的值为( ) A. 12- B. 54 C. 14- D. 1415.若函数22log (3)y ax x a =++的定义域为R ,则a 的取值范围是( )A. 1(,)2-∞-B. 3(,)2+∞C. 1(,)2-+∞D. 3(,)2-∞ 二、填空题(本大题有11个小空,每空3分,共33分。

请将正确答案填在答题卡中对应题号后面的横线上,不填,填错,不得分) 16.计算:11lg 22310(π)80.5+-+--+=_____________________.17.计算:10.2533311log 2log ()625627-+-=__________________. 18.若2lg 3lg 20x x -+=(0x >),则x =________________________________________。

19.若32log (log )0x >,则x 的取值范围为_______________________________。

20.若2127240x x +-⋅-=,则x =_____________________________。

21.方程222280x x -⋅-=的解x =_______________________________________________________。

22.设0.32a =,0.3log 2b =,20.3c =,则a ,b ,c 从大到小的排列顺序为___________________。

23.设5413a -⎛⎫= ⎪⎝⎭,1354b -⎛⎫=⎪⎝⎭,135log 4c =,则a ,b ,c 按由小到大的顺序为___________________。

24.函数y =____________________________________________________。

25.函数y =____________________________________________________。

26.函数log (5)a y x =+ (01)a <<的图象不过第_________________象限。

三、解答题(本大题共7个小题,共45分。

请在答题卡中对应题号下面指定位置作答,要写出必要的文字说明、证明过程和演算步骤) 1.计算:1221lg 25lg 2lg 252(lg 2)9-⎛⎫+⋅+- ⎪⎝⎭2.求下列各式中x 的值(1)2316x =(2)3log 272x =-3.已知6log 20.3869=,求6log 34.已知3log 2x =,求33x的值5.求下列函数的定义域(1)13y x=-。

相关文档
最新文档