高中数学解析几何中求参数取值范围的方法-
解析几何中求参数取值范围的5种常用方法
解析几何中求参数取值范围的5种常用方法解析几何中求参数取值范围的5种常用方法及经典例题详细解析:一、利用曲线方程中变量的范围构造不等式曲线上的点的坐标往往有一定的变化范围,如椭圆 x2a2 + y2b2 = 1上的点P(x,y)满足-a≤x≤a,-b≤y≤b,因而可利用这些范围来构造不等式求解,另外,也常出现题中有多个变量,变量之间有一定的关系,往往需要将要求的参数去表示已知的变量或建立起适当的不等式,再来求解.这是解决变量取值范围常见的策略和方法.例1 已知椭圆 x2a2 + y2b2 = 1 (a>b>0),A,B是椭圆上的两点,线段AB的垂直平分线与x轴相交于点P(x0,0)求证:-a2-b2a ≤ x0 ≤ a2-b2a分析:先求线段AB的垂直平分线方程,求出x0与A,B横坐标的关系,再利用椭圆上的点A,B满足的范围求解.(x1≠x2)代入椭圆方程,作差得: y2-y1x2-x1 解: 设A,B坐标分别为(x1,y1),(x2,y2),=-b2a2 •x2+x1 y2+y1又∵线段AB的垂直平分线方程为y- y1+y22 =- x2-x1 y2-y1 (x-x1+x22 )令y=0得 x0=x1+x22 •a2-b2a2又∵A,B是椭圆x2a2 + y2b2 = 1 上的点∴-a≤x1≤a,-a≤x2≤a,x1≠x2 以及-a≤x1+x22 ≤a∴ -a2-b2a ≤ x0 ≤ a2-b2a例2 如图,已知△OFQ的面积为S,且OF•FQ=1,若 12 < S <2 ,求向量OF与FQ的夹角θ的取值范围.分析:须通过题中条件建立夹角θ与变量S的关系,利用S的范围解题.解: 依题意有∴tanθ=2S∵12 < S <2 ∴1< tanθ<4又∵0≤θ≤π∴π4 <θ< p>例3对于抛物线y2=4x上任一点Q,点P(a,0)都满足|PQ|≥|a|,则a的取值范围是()A a<0B a≤2C 0≤a≤2D 0<2< p>分析:直接设Q点坐标,利用题中不等式|PQ|≥|a| 求解.解: 设Q( y024 ,y0)由|PQ| ≥a得y02+( y024 -a)2≥a2 即y02(y02+16-8a)≥0∵y02≥0 ∴(y02+16-8a)≥0即a≤2+ y028 恒成立又∵ y02≥0而 2+ y028 最小值为2 ∴a≤2 选( B )二、利用判别式构造不等式在解析几何中,直线与曲线之间的位置关系,可以转化为一元二次方程的解的问题,因此可利用判别式来构造不等式求解.例4设抛物线y2 = 8x的准线与x轴交于点Q,若过点Q的直线L与抛物线有公共点,则直线L的斜率取值范围是()A [-12 ,12 ]B [-2,2]C [-1,1]D [-4,4]分析:由于直线l与抛物线有公共点,等价于一元二次方程有解,则判别式△≥0解:依题意知Q坐标为(-2,0),则直线L的方程为y = k(x+2)由得 k2x2+(4k2-8)x+4k2 = 0∵直线L与抛物线有公共点∴△≥0 即k2≤1 解得-1≤k≤1 故选(C)例5 直线L: y = kx+1与双曲线C: 2x2-y2 = 1的右支交于不同的两点A、B,求实数k的取值范围.分析:利用直线方程和双曲线方程得到x的一元二次方程,由于直线与右支交于不同两点,则△>0,同时,还需考虑右支上点的横坐标的取值范围来建立关于k的不等式.解:由得(k2-2)x2 +2kx+2 = 0∵直线与双曲线的右支交于不同两点,则解得 -2<-2< p>三、利用点与圆锥曲线的位置关系构造不等式曲线把坐标平面分成三个区域,若点P(x0,y0)与曲线方程f(x,y)=0关系:若P 在曲线上,则f(x0,y0)=0;若P在曲线内,则f(x0,y0)<0;若P在曲线外,则f(x0,y0)>0;可见,平面内曲线与点均满足一定的关系。
浅谈解析几何中最值和参数范围问题的求解策略
浅谈解析几何中最值和参数范围问题的求解策略作者:陆爱莲来源:《教育教学科研》2013年第03期作者简介:陆爱莲,2002年毕业于广西师范大学数学教育专业,大学本科学历,理学学士,同年9月至今任教于马山中学,2008年12月获得中学一级教师资格。
积极参加教研教改活动,所撰写的论文多次在省、国家级论文评选中获二、三等奖。
【摘要】:解析几何中的最值和参数范围问题是高中数学的重要内容.其主要特点是综合性强,在解题中几乎处处涉及函数与方程、不等式、三角等内容.因此,在教学中应重视对数学思想、方法进行归纳提炼,如方程思想、函数思想、参数思想、数形结合的思想、对称思想、整体思想等思想方法,达到优化解题思维、简化解题过程的目的.本文通过对一些典型例题的分析和解答,归纳了解析几何中常见的解决最值和参数范围问题的思想方法,总结了解答典型例题的具体规律,并提供了一些常用的解题方法、技能与技巧。
【关键词】:解析几何最值问题参数范围求解策略解析几何中涉及最值和参数范围问题常有求面积、距离最值、参数范围问或与之相关的一些问题;求直线与圆锥曲线中几何元素的最值或与之相关的一些问题。
我们可以从两个方面来研究圆锥曲线的最值和参数范围问题,一方面用代数的方法研究几何,题中涉及较多数字计算与字母运算,对运算及变形的能力要求较高,用代数的方法解决几何;另一方面要善于从曲线的定义、性质等几何的角度思考,利用数形结合的思想解决问题。
一、代数法:借助代数函数求最值和参数取值范围的方法。
运用代数法时,先要建立“目标函数”,然后根据“目标函数”的特点灵活运用求最值。
常用的方法有: 1.配方法。
由于二次曲线的特点,所求“目标函数”的表达式常常和二次函数在某一个闭区间上的最值联系紧密,这时可对二次函数进行配方,并根据顶点的横坐标结合区间的端点确定所求函数的最值。
1、已知菱形ABCD的顶点A,C在椭圆x2+3y2=4上,对角线BD所在直线的斜率为1。
高中数学数形结合思想必考题型全梳理(附例题)
⾼中数学数形结合思想必考题型全梳理(附例题)数学好教师2020-07-17⼀数形结合的三个原则⼀等价性原则在数形结合时,代数性质和⼏何性质的转换必须是等价的,否则解题将会出现漏洞.⾸先,由代数式、⽅程、不等式构造函数时⼀要注意变量(包括⾃变量和因变量)的取值范围。
⼆双向性原则既要进⾏⼏何直观分析,⼜要进⾏相应的代数抽象探求,直观的⼏何说明不能代替严谨的代数推理.另⼀⽅⾯,仅⽤直观分析,有时反倒使问题变得复杂,⽐如在⼆次曲线中的最值问题,有时使⽤三⾓换元,反倒简单轻松.三简单性原则不要为了“数形结合”⽽数形结合.具体运⽤时,⼀要考虑是否可⾏和是否有利;⼆要选择好突破⼝,确定好主元;三要挖掘隐含条件,准确界定参变量的取值范围,特别是运⽤函数图象时应设法选择动直线(直线中含有参数)与定⼆次曲线.⼆数形结合的应⽤⼀利⽤数轴、韦恩图求集合利⽤数形结合的思想解决集合问题,常⽤的⽅法有数轴法、韦恩图法等。
当所给问题的数量关系⽐较复杂,不好找线索时,⽤韦恩图法能达到事半功倍的效果。
⼆数形结合在解析⼏何中的应⽤解析⼏何问题往往综合许多知识点,在知识⽹络的交汇处命题,备受出题者的青睐,求解中常常通过数形结合的思想从动态的⾓度把抽象的数学语⾔与直观的⼏何图形结合起来,达到研究、解决问题的⽬的.构建解析⼏何中的斜率、截距、距离等模型研究最值问题;如果等式、代数式的结构蕴含着明显的⼏何特征,就要考虑⽤数形结合的⽅法来解题,即所谓的⼏何法求解,⽐较常见的对应有:(⼀)与斜率有关的问题(⼆)与距离有关的问题三数形结合在函数中的应⽤(⼀)利⽤数形结合解决与⽅程的根有关的问题【点拨】数形结合可⽤于解决⽅程的根的问题,准确合理地作出满⾜题意的图象是解决这类问题的前提.(⼆)利⽤数形结合解决函数的单调性问题(三)利⽤数形结合解决⽐较数值⼤⼩的问题(四)函数的最值问题(五)利⽤数形结合解决抽象函数问题四运⽤数形结合思想解不等式(⼀) 解不等式(⼆)求参数的取值范围五运⽤数形结合思想解决三⾓函数问题纵观近三年的⾼考试题,巧妙地运⽤数形结合的思想⽅法来解决⼀些问题,可以简化计算,节省时间,提⾼考试效率,起到事半功倍的效果.六解决⼏何问题图象解决⼏何问题借助向量的借助向量的图象利⽤向量可以解决线段相等,直线垂直,⽴体⼏何中空间⾓(异⾯直线的⾓、线⾯⾓、⼆⾯⾓)和空间距离(点线距、线线距、线⾯距、⾯⾯距),利⽤空间向量解决⽴体⼏何问题,将抽象的逻辑论证转化为代数计算,以数助形,⼤⼤降低了空间想象能⼒,是数形结合的深化。
解析几何中参数取值范围问题(精)
解析⼏何中参数取值范围问题(精)解析⼏何中参数取值范围问题⼀.学习⽬标:1、掌握求参数取值范围的基本思路与⽅法,会解决⼀些简单的求参数取值问题;2、了解双参数问题的求解思路。
⼆.思想⽅法技巧1.利⽤数形结合思想求解:挖掘参数的⼏何意义,转化为直线斜率、距离等问题求解; 2.通过建⽴参数的不等式求解:(1)利⽤题设中已有的不等关系建⽴不等式;(2)利⽤判别式建⽴不等式(3)利⽤图形特征建⽴不等式 3.双参数问题求解策略:建⽴参数的不等式、⽅程的混合组,通过消元转化为⼀元不等式,或转化为求函数值域问题求解。
4、分类讨论思想的运⽤三.基础训练1.已知两点A (-3,4).B (3,2),过点P (2,-1)的直线l 与线段AB 有公共点,则直线l 的斜率k 的取值范围是()A .[1,3]-B .(1,3)-C .(,1][3,)-∞-?+∞D .(,1)(3,)-∞-?+∞2.直线y kx =与双曲线221169x y -=不相交,则k 的取值范围是 3.已知直线l 过点),(02-,当直线l 与圆x y x 222=+有两个交点时,其斜率k 的取值范围是()(A )),(2222-(B )),(22-(C )),(4242-(D )),(8181-⼆.典型例题1.若直线y=x+b 与曲线21y x -=恰有⼀个公共点,则有b 的取值范围是。
2.双曲线1422=+ky x 的离⼼率为e ,且e ∈(1,2)则k 的范围是________。
3.若直线y x b =+与曲线224(0)x y y +=≥有公共点,则b 的取值范围是()A . [2,2]-B . [0,2]C .D . [-4.直线y=kx -2与焦点在x 轴上的椭圆1522=+my x 恒有公共点,求m 的取值范围5.已知椭圆C :2214x y += 和直线:2l y x m =+,椭圆C 上存在两个不同的点A 、B 关于直线l 对称,求m 的取值范围三.巩固练习1.若平⾯上两点A (-4,1),B (3,-1),直线2+=kx y 与线段AB 恒有公共点,则k 的取值范围是。
高考数学《解析几何中的参数取值范围问题》
高考数学 解析几何中的参数取值范围问题
6. 已知椭圆ax22+by22=1(a>b>0)的离心率为 22,且过点(2, 2). (1) 求椭圆 C 的标准方程; (2) 设 A,B 为椭圆 C 的左、右顶点,过 C 的右焦点 F 作直线 l 交椭圆于 M, N 两 点,分别记△ABM,△ABN 的面积为 S1,S2,求|S1-S2|的最大值.
高考数学 解析几何中的参数取值范围问题
2. 已知 F1,F2 是椭圆的两个焦点,满足M→F1·M→F2=0 的点 M 总在椭圆内部,则椭
圆离心率的取值范围是________________.
0,
2 2
解析:满足M→F1·M→F2=0 的点 M 在圆 x2+y2=c2 上,由题意知方程组
x2+y2=c2, ax22+by22=1
高考数学 解析几何中的参数取值范围问题
解析:(1) 由题意知,e=ac=12,CD=7-2a,
所以 a2=4c2,b2=3c2.
7-4c2
因为点c,7-24c在椭圆上,即4cc22+
2 3c2
=1,
所以 c=1.
高考数学 解析几何中的参数取值范围问题
【思维变式题组训练】 1. 已知椭圆2x52 +1y62 =1,F 为椭圆的右焦点,点 A(1,2),P 为椭圆上任意一点,则 5PF+3PA 的最小值为________. 22 解析:过点 P 作右准线的垂线,垂足为 P1.根据统一定义PPPF1=35,5PF+3PA =3(PA+PP1)≥3235-1=22.
(2) 求△PCD 面积的最大值.
高考数学 解析几何中的参数取值范围问题
a32+41b2=1, 解析:(1) 由题意得ac= 23,
a2=b2+c2, 故椭圆 C 的标准方程为x42+y2=1.
解析几何中有关参数范围问题的求解策略
z= 1 +l + … 0 1 +2 0.
旦. 凡
或 J =4 s .
=丁 1
,
由 公 式 3 得 , =
… … 鲁:
一
S . = 1. 1
的通 项 公 式 .
综 上 ,口 t的 通 项 为 ( { I n= 1或 口 = T 3 2
一
解 条得 ・ = ) ① 由件 孚 了 ( S , 例 5 { }是等差数列 , +口 +口l 0, 4 口 6+… 5=1 0, 0+口l 0 孚孚 + ② 口j+口2 +… +口” =3 求 口l I +… +口2的值. 2 6 解 设 A =口 j+口 6+… +口5= 1 其 中 = I 0, 出式得 一. 公 2 ≥=4亍 33 一3 ③ 5+6+… +l ;4 =口2 +… +口 =3 , 中 5. +口 ” 0其
S = (n 4 )×了 S 3
,
其中 A=
A +A’ A
l+A
1. 5 故 l o+口I+… +口0= 1 I 2 5
运用 + )÷ 相 同. 公式 3要 注意公式 中互个式 子 中所 含项数 ( ×. (当 孚 ÷ ,=了26 1 J ^; 时 一 +n )s = s 6 丁, n2
解析几何中有关参数范 围问题的求解策略
王蓼 中
( 肃省案 泰县第二 中学 甘 解析几何 L 的参 数范 围问题 屉一 类 综 合性 强 、 f J ・
变 量 多 、 及 知 以 广 的 题 目 , 而 也 是 解 几 中 的 一 涉 因 .
高考数学解析几何解题技巧
配多少呢,我先配一次给大家看看
新手版:原式 ak 2 (3bk 2 4b)
1
1
( ak 2 3bk 2 4b )2
2
(4k 2 1)2 ab ab
(4k 2 1)2
1 4ab
[(a
3b)k 2 4b]2 (4k 2 1)2
只需系数对应成比例,a 3b 4b ,a 13b 41
• 方法:
• ①设参 ②联立+韦达(秒杀)
• 分类型:
• (i)单参问题:③△>0(秒杀)//解范围1
•
④由题干翻译出另一不等式(运用韦达定理)
•
//考察转换关系(秒杀),解范围2,取交集即可
• (ii)双参问题:
• ③△>0(秒杀)//一道含两个参数的不等式
• ④由题干翻译出一道等式,用于消参
• ⑤代回③得解
• 方法: • ①设参 ②联立+韦达(秒杀) • ③△>0得到一个不等式(秒杀) • //这一步通常没什么用,仅仅用于对消参后得到的式子进行
初步判断....但几乎每道题都会满足△>0,不过既然可以秒杀,浪 费不了多少时间 • ④消参(必定可以因式分解) • ⑤一般得到两个解.....一般利用题干(例如不过顶点等条件)舍去 一解,计算定点即可
套路三:证明直线过定点问题
祭出今年的解析几何大题
20.已知椭圆C:x a
2 2
y2 b2
1(a b 0),四点P1(1,1), P2 (0,1), P3(1,
3 2
),
P4
(1,
3) 2
中恰好有三点在椭圆C上
(1)求C的方程
求参数的取值范围的两种思路
伍伍伍伍伍伍伍伍伍伍伍伍伍伍伍伍伍伍伍伍伍伍伍伍伍伍伍伍伍伍伍伍伍伍伍伍伍伍伍伍伍伍伍伍伍伍伍伍伍伍伍伍伍伍伍伍伍伍伍伍伍伍伍伍伍伍伍伍伍伍伍伍伍伍伍伍伍伍伍伍伍伍伍伍伍伍伍伍伍伍伍伍伍伍伍伍伍伍伍伍伍伍伍伍伍伍伍伍伍伍伍伍伍伍伍伍伍伍伍伍伍伍伍伍伍伍伍伍伍伍伍伍伍伍伍伍伍伍伍伍伍伍伍伍伍伍伍伍伍伍伍伍伍伍伍伍伍伍伍伍伍伍伍伍伍伍伍伍伍伍伍伍伍伍伍伍伍伍伍伍伍伍伍伍伍伍伍伍伍伍伍伍伍伍伍伍伍伍伍伍伍伍伍伍伍伍伍伍伍伍伍伍伍伍伍伍伍伍伍伍伍伍伍伍伍伍伍伍伍伍伍伍伍伍伍伍伍伍伍伍伍伍伍伍伍伍伍伍伍伍伍伍伍伍伍伍伍伍伍伍伍伍伍伍伍伍伍伍伍伍伍伍伍伍伍伍伍伍伍伍伍伍伍伍伍伍伍伍伍伍伍伍伍伍伍伍伍伍伍伍伍伍伍伍伍伍伍伍伍伍伍伍伍伍伍伍伍伍伍伍伍伍伍伍伍伍伍伍伍伍伍伍伍伍伍伍伍伍伍伍伍伍伍伍伍伍伍伍伍伍伍伍伍伍伍伍伍伍伍伍伍伍伍伍伍伍伍伍伍伍伍伍伍伍伍伍伍伍伍伍伍伍伍伍伍伍伍伍伍伍伍伍伍伍伍伍伍伍伍伍伍伍伍伍伍伍伍伍伍伍伍伍伍伍伍伍伍伍伍伍伍伍伍方法集锦求参数的取值范围问题比较常见,常出现在函数、不等式、三角函数、解析几何、解三角形等试题中.解答这类问题的常用技巧有:分离参数和分类讨论.下面主要谈一谈如何运用这两种技巧来求参数的取值范围.一、分离参数分离参数是求参数的取值范围的常用技巧.运用该技巧解题,需先根据题意建立含有参数的关系式;然后对含有参数的关系式进行合理的变形,使参数位于等号或不等号的一侧;最后利用函数的性质、基本不等式、导数法等求得关系式另一侧式子的最值,即可求出参数的取值范围.例1.如果函数f ()x =x 3-b 2x 2+bx +c 在区间[-2,1]上为增函数,求实数b 的取值.解:因为函数f ()x =x 3-b 2x 2+bx +c 在[-2,1]上为增函数,所以对于∀x ∈[-2,1],都有f ′()x =3x 2-bx +b ≥0,当x =1时,3x 2-bx +b ≥0,当x ∈[-2,1)时,要使3x 2-bx +b ≥0,就需使b ≥3x 2x -1,即b ≥(3x 2x -1)max ,又因为(3x 2x -1)max =0,所以b ≥0,即实数b 的取值范围为[0,+∞).当遇到含参不等式问题时,运用分离参数法求解比较有效,只需将不等式中的参数与变量分离,把含参不等式变成形如a ≥h ()x 或a ≤h ()x 的式子,即可将问题转化为函数最值问题来求解.二、分类讨论由于问题中含有参数,所以往往需要运用分类讨论思想对参数进行分类讨论,以逐步确定参数的取值范围.在运用分类讨论法求参数的取值范围时,要先根据题意确定分类讨论的对象和标准,如根据抛物线的开口方向对二次函数的二次项的系数进行讨论,根据函数的单调性对指数函数的底数进行分类讨论;然后逐层逐级进行讨论;最后综合所得的结果.例2.已知函数f ()x =ln ()x +1-x x +1,若当x ≥0时,f ()x ≤ax 2恒成立,求实数a 的取值范围.解:要使当x ≥0时,ln ()x +1-x x +1≤ax 2恒成立,需使当x ≥0时,ln ()x +1-x x +1-ax 2≤0恒成立,令g ()x =ln ()x +1-x x +1-ax 2,x ≥0,可得g ′()x =x [1-2a (x +1)2](x +1)2.(i )当a ≤0时,1-2a (x +1)2>0,则g ′()x ≥0,则g ()x 在区间[0,+∞)上单调递增,所以当x >0时,g ()x >g ()0=0,与题意不相符.(ii )当a ≥12时,2a ≥1,可得(x +1)2≥1,则1-2a (x +1)2≤0,所以g ′()x ≤0,则g ()x 在区间[0,+∞)上单调递减,所以g ()x ≤g ()0=0,满足题意.(iii )当0<a <12时,1-2a (x +1)2>0,当x ∈(0,12a-1)时,g ′()x >0,所以g ()x 在区间(01)上单调递增,可得g ()x >g ()0=0,与题意不相符合.故实数a 的取值范围为[12,+∞).因为分离参数后的式子较为复杂,所以本题需采用分类讨论法求解.由于参数a 对函数的单调性和最值影响较大,于是将a 分为a ≤0、a ≥12、0<a <12三种情况,并在每一种情况下讨论函数的单调性;然后根据导函数与函数单调性之间的关系,判断出函数的单调性,求得其最值,就能确定不等式恒成立时a 的取值范围.相比较而言,分类讨论法的适用范围较广,而分离参数法的适用范围较窄,但较为简单.所以在解题时,要首先尝试将参数分离,运用分离参数法求解,若行不通,再考虑运用分类讨论法.(作者单位:江苏省如东县马塘中学)43。
解析几何题型方法归纳(配例题)
解析几何解题方法归纳一.求轨迹方程(常出现在小题或大题第一问): 1.【待定系数法】(1)已知焦点在x 轴上的椭圆两个顶点的坐标为(4,0±),离心率为12,其方程为 .2211612x y += 提示:2a c =,且24,2,12a c b =∴==.(2)已知椭圆中心在原点,焦距为2倍,则该椭圆的标准方程是 .提示:已知2222242,16b a b c a a b c⎧⎧===⎪⎪⇒⇒⇒⎨⎨=-=⎪⎪⎩⎩221164x y +=与221416x y +=为所求. (3)已知双曲线12222=-b y a x 的离心率332=e ,过),0(),0,(b B a A -的直线到原点的距离是.23求双曲线的方程; 解:∵(1),332=a c 原点到直线AB :1=-by a x 的距离.3,1.2322==∴==+=a b c ab b a ab d .故所求双曲线方程为 .1322=-y x2. 【定义法】由动点P 向圆221x y +=引两条切线PA 、PB ,切点分别为A 、B ,60APB ∠=︒,则动点P 的轨迹方程为 .解:设(,)P x y ,连结OP ,则90,30PAO APO ∠=︒∠=︒, 所以22OP OA ==. 3.【几何性质代数化】与圆2240x y x +-=外切,且与y 轴相切的动圆圆心的轨迹方程是____________.y 2=8x (x >0)或y =0(x <0) 提示:若动圆在y 轴右侧,则动圆圆心到定点(2,0)与到定直线x =-2的距离相等,其轨迹是抛物线;若动圆在y 轴左侧,则动圆圆心轨迹是x 负半轴.4.【相关点法】P 是抛物线2210x y -+=上的动点,点A 的坐标为(0,1-),点M 在直线PA 上,且2PM MA =,则点M 的轨迹方程为解:设点(,)M x y ,由2PM MA =,()3,32P x y ∴+,代入2210x y -+=得22(3)3210x y --+=即218310x y --=5.【参数法】一元二次函数22()(21)1()f x x m x m m R =+++-∈的图象的顶点的轨迹方程是提示:设22(21)1()y x m x m m R =+++-∈顶点坐标为(,)x y ,则22211224(1)(21)544m x m m m y m +⎧=-=--⎪⎪⎨--+⎪==--⎪⎩,消去m ,得顶点的轨迹方程34x y -= 二.常见几何关系转化与常见问题类型 (1)中点问题:韦达定理、点差法变式:A 、B 、C 、D 共线且AB =CD 问题,可以转化为共中点问题,或者弦长相等; 例1:已知双曲线中心在原点且一个焦点为F,0),直线1y x =-与其相交于M 、N 两点,MN 中点的横坐标为23-,则此双曲线的方程为 。
浅议解析几何中求参数范围的几种策略
浅议解析几何中求参数范围的几种策略
求参数范围的几种策略包括:
1.特殊点法:寻找几何图形的特殊点,如轴对称的点、对称轴、中心等,并利
用这些点的性质来确定参数的范围。
2.图形的性质法:利用几何图形的性质来确定参数的范围,如利用圆的对称性
可以知道圆心的横纵坐标范围。
3.定义域法:根据参数所在的定义域来确定参数的范围。
4.解不等式法:利用不等式的性质来确定参数的范围。
5.极值法:利用函数的极值来确定参数的范围。
以上策略都可以根据具体的题目来选择使用。
解析几何中参数范围的求法
i F l+ l F l 2 1 OI l ) 2 5 + P P = ( P + Ol < ( F
性 可 知 A C 为等 腰 梯 形 , C D关 于 轴 对 称 , BD 故 、 依 题 意设 : ~c o , ( ,)c , )E ,) A( ,)B C o , ( ^ , (
V
\ /
A。 /
・
。
。 E分
所 成 的 比为
仁 ( 2 A 一 + 2 1 ) C ’
黪 囊 绔
高 考 数 学
双 曲线方程 ~告 =1 a ,> 0 , ( >0 6 ) 则离 n D—
C n
C、 在 双 曲 线 上 , E
个 例 子 谈 谈 这 类 问 题 的 常 用 解决 方 法 .
一
、
建 立 函 数 关 系求 函数 值 域
利 用 这 种 方 法 求 范 围 时 , 键 是 寻 找 变 量 间 关 的等 量 关 系 , 以确 立 函数 解 析 式 、 义 域 , 而 求 定 进 值域.
4 8 倍 数外学习》08 6 20年 月号中 旬刊
( 第 3 期) 总 15
+ 一 0对 称 的 不 同两 点 , 实 数 a的 取 值 范 围 . 求
【 析 】 方 法 ( ) 设 两 点 为 P、 则 直 线 分 一 P, P 方程可设为 y P的 —z+6且 P 抛 物 线 有 两 , P与
【 1 已知 梯 形 AB D 中 ,ABl DI 例 】 C I 一2 l C ,
点 E分 有 向线 段
’
所 成 的 比为 , 曲线 过 点 c、 双
o 0
0
D、 且 以 A、 为 焦 点. 图 , ÷ ≤ o时 , E, B 如 当 ≤ 求 其离心率 e 的取 值 范 围 . 【 】 如 图建 系 , C / B及 双 曲线 的 对 称 解 由 D/A
在解析几何中求参数范围的9种方法
c ,h),E(x0,y0), 其 2
c x2 y2 - =1,则离心率 e = 。 2 2 a a b c 代入双曲线方程得 a
由点 C、E 在双曲线上,将点 C、E 的坐标和 e =
e2 h2 1 4 b2 e2 2 2 2 h2 ( ) ( ) 1 4 1 1 b2
-52
F 的直线 l 与 C 相交于 A、B 两点。 (1)设 l 的斜率为 1,求 OA与OB 的夹角的大小; (2)设 FB AF , 若 [ 4, 9] ,求 l 在 y 轴上截距 m 的变化范围。 解:(1)答案为 arccos
3 14 (解答略) 。 41
(2)F(1, 0), 设 A(x1, y1), B(x2, y2), 由题设 FB AF , 得
x2 y2 圆、椭圆、双曲线及抛物线都有自身的范围,如椭圆 2 2 a >b>0) a b
中,x [ a, a ], y [ b, b], 0 e 1, ,利用这些范围是确定参数范围的途径之一。 例 3: (2002 年全国高考题)设点 P 到点 M(-1,0)、N(1,0)距离之差为 2m,到 x 轴、y 轴距离之比为 2,求 m 的取值范围。 解:设点 P 的坐标为(x,y),由题设得
2
1
2 ,可知在 [ 4, 9] 上是递减的。 1
∵ [ 4, 9] ∴
3 4 4 3 m 或 m 。 4 3 3 4
故直线 l 在 y 轴上截距 m 的变化范围是 [
4 3 3 4 , ] [ , ]。 3 4 4 3
说明:例 7 和例 8 都是已知一个变量的范围求另一变量的范围,可先利用题设条件建立 变量的关系式,将所求变量和另一已知变量分离,得到函数关系,再由已知变量的范围求出 函数的值域,即为所求变量的范围。这类背景也可归结为背景一。 2、双参数中的范围均未知 例 9: (2004 年全国卷Ⅰ文 2 理 21) 设双曲线 C :
【高考数学】圆锥曲线中求参数范围的六种方法
【高考数学】圆锥曲线中求参数范围的六种方法解析几何中求参数范围或与参数有关的问题,往往是高考的热点之一。
本文总结出六种求解这类问题的思考途径与策略。
一、利用题设条件中的不等关系若题设条件中有不等关系,可直接利用该条件求参数的范围。
例1.双曲线的焦距为2c,直线l过点(a,0)和(0,b),且点(1,0)到直线l的距离与点(-1,0)到直线l的距离之和,求双曲线的离心率e的取值范围。
解析:直线l的方程为,即由点到直线的距离公式,且,得到点(1,0)到直线l的距离同理得到点(-1,0)到直线l的距离由,即于是得即解得由于,所以e的取值范围是[,]。
二、应用判别式建立不等式关系若题设中给出直线(或曲线)与曲线有公共点或无公共点时,可以把直线方程(或曲线方程)与曲线方程联立起来,消去某一个未知数,得到含另一个未知数的一元二次方程,就能利用判别式建立所含参数的不等式。
例2.设,两点在抛物线上,l是AB的垂直平分线。
当直线l的斜率为2时,求直线l在y轴上截距的取值范围。
解析:设直线l在y轴上的截距为b,依题意得l的方程为过点A、B的直线方程可写为由,消y得①即是方程①的两个不同的解,得,且设AB的中点N的坐标为(),则,。
由,于是。
即得直线l 在y 轴上截距的取值范围为。
点评:该题含有两个参数b ,m ,先由直线AB 与抛物线有两个不同的交点,应用判别式求出参数m 的范围,再由题意找出两个参数b ,m 之间的关系式,最后求出参数b 的取值范围。
例3已知中心在原点的双曲线C 的一个焦点是()0,31-F ,一条渐近线的方程是025=-y x . (Ⅰ)求双曲线C 的方程;(Ⅱ)若以()0≠k k 为斜率的直线l 与双曲线C 相交于两个不同的点M ,N ,且线段MN 的垂直平分线与两坐标轴围成的三角形的面积为281,求k 的取值范围. 解:(Ⅰ)设双曲线C 的方程为22221x y a b-=(0,0a b >>).由题设得22952a b b a⎧+=⎪⎨=⎪⎩,解得2245a b ⎧=⎪⎨=⎪⎩,所以双曲线方程为22145x y -=. (Ⅱ)解:设直线l 的方程为y kx m =+(0k ≠).点11(,)M x y ,22(,)N x y 的坐标满足方程组22145y kx mx y =+⎧⎪⎨-=⎪⎩将①式代入②式,得22()145x kx m +-=,整理得222(54)84200k x kmx m ----=. 此方程有两个一等实根,于是2504k -≠,且222(8)4(54)(420)0km k m ∆=-+-+>.整理得22540m k +->. ③由根与系数的关系可知线段MN 的中点坐标00(,)x y 满足12024254x x km x k +==-,002554my kx m k =+=-.从而线段MN 的垂直平分线方程为22514()5454m kmy x k k k-=----. 此直线与x 轴,y 轴的交点坐标分别为29(,0)54km k -,29(0,)54mk -.由题设可得2219981||||254542km m k k ⋅=--.整理得222(54)||k m k -=,0k ≠. 将上式代入③式得222(54)540||k k k -+->,整理得22(45)(4||5)0k k k --->,0k ≠. 解得50||k <<或5||4k >. 所以k 的取值范围是5555,)(,0)(0,)(,)44(∞-+--∞U U U . 三、根据曲线的范围建立不等关系由椭圆的简单几何性质知,椭圆上任一点的横、纵坐标是有界的,通过有界性就可能找到变量间的不等关系。
高考数学总复习(一轮)(人教A)教学课件第八章 平面解析几何第10节 圆锥曲线中的最值与范围问题
将点(-1, )的坐标代入椭圆方程 + =1,得 +
所以椭圆 E 的方程为 + =1.
=1,解得 b= ,
(2)设直线l与圆O:x2+y2=a2交于C,D两点,当
求△ABF2面积的取值范围.
2
2
|CD|∈[2 ,
] 时,
解:(2)由(1)知圆 O 的方程为 x +y =4,由题意,直线 l 的斜率不为 0,
=
+-
因为 t∈(1,+∞),所以 ∈(0,1),
所以|AB|+|DE|∈[ ,7).
,
-( - ) +
综上所述,|AB|+|DE|的取值范围为[ ,7].
解决圆锥曲线中的取值范围问题应考虑的五个方面
(1)利用圆锥曲线的几何性质或判别式构造不等关系,从而确定参
得最值的临界条件,得出最值.
(2)代数法:若题目的条件和结论能体现一种明确的函数,则首先建
立目标函数,再求这个函数的最值,求函数最值的常用方法有配方
法、判别式法、基本不等式法及函数的单调性法等.
[针对训练] (2024·河南襄城模拟)已知抛物线C的顶点在坐标
原点,焦点在y轴的正半轴上,圆x2+(y-1)2=1经过抛物线C的焦点.
提升·关键能力
类分考点,落实四翼
考点一
最值问题
[例1] (2024·安徽蚌埠模拟)在椭圆 C: + =1 (a>b>0)中,c=2,
高中数学必备知识点 解析几何中求参数取值范围的5种常用方法
一、利用曲线方程中变量的范围构造不等式曲线上的点的坐标往往有一定的变化范围,如椭圆 x2a2 + y2b2 = 1上的点P(x,y)满足-a≤x≤a,-b≤y≤b,因而可利用这些范围来构造不等式求解,另外,也常出现题中有多个变量,变量之间有一定的关系,往往需要将要求的参数去表示已知的变量或建立起适当的不等式,再来求解.这是解决变量取值范围常见的策略和方法.例1 已知椭圆 x2a2 + y2b2 = 1 (a>b>0),A,B是椭圆上的两点,线段AB的垂直平分线与x轴相交于点P(x0,0)求证:-a2-b2a ≤ x0 ≤ a2-b2a分析:先求线段AB的垂直平分线方程,求出x0与A,B横坐标的关系,再利用椭圆上的点A,B满足的范围求解.解: 设A,B坐标分别为(x1,y1),(x2,y2),(x1≠x2)代入椭圆方程,作差得: y2-y1x2-x1 =-b2a2 •x2+x1 y2+y1又∵线段AB的垂直平分线方程为y- y1+y22 =- x2-x1 y2-y1 (x-x1+x22 )令y=0得x0=x1+x22 •a2-b2a2又∵A,B是椭圆x2a2 + y2b2 = 1 上的点∴-a≤x1≤a,-a≤x2≤a,x1≠x2 以及-a≤x1+x22 ≤a∴ -a2-b2a ≤ x0 ≤ a2-b2a例2 如图,已知△OFQ的面积为S,且OF•FQ=1,若 12 < S <2 ,求向量OF与FQ的夹角θ的取值范围.分析:须通过题中条件建立夹角θ与变量S的关系,利用S的范围解题.解: 依题意有∴tanθ=2S∵12 < S <2 ∴1< tanθ<4又∵0≤θ≤π∴π4 <θ< p>例3对于抛物线y2=4x上任一点Q,点P(a,0)都满足|PQ|≥|a|,则a 的取值范围是()A a<0B a≤2C 0≤a≤2D 0<2< p>分析:直接设Q点坐标,利用题中不等式|PQ|≥|a| 求解.解: 设Q( y024 ,y0)由|PQ| ≥a得y02+( y024 -a)2≥a2 即y02(y02+16-8a)≥0∵y02≥0 ∴(y02+16-8a)≥0即a≤2+ y028 恒成立又∵ y02≥0而 2+ y028 最小值为2 ∴a≤2 选( B )二、利用判别式构造不等式在解析几何中,直线与曲线之间的位置关系,可以转化为一元二次方程的解的问题,因此可利用判别式来构造不等式求解.例4设抛物线y2 = 8x的准线与x轴交于点Q,若过点Q的直线L与抛物线有公共点,则直线L的斜率取值范围是()A [-12 ,12 ]B [-2,2]C [-1,1]D [-4,4]分析:由于直线l与抛物线有公共点,等价于一元二次方程有解,则判别式△≥0解:依题意知Q坐标为(-2,0),则直线L的方程为y = k(x+2)由得 k2x2+(4k2-8)x+4k2 = 0∵直线L与抛物线有公共点∴△≥0 即k2≤1 解得-1≤k≤1 故选(C)例5 直线L: y = kx+1与双曲线C: 2x2-y2 = 1的右支交于不同的两点A、B,求实数k的取值范围.分析:利用直线方程和双曲线方程得到x的一元二次方程,由于直线与右支交于不同两点,则△>0,同时,还需考虑右支上点的横坐标的取值范围来建立关于k的不等式.解:由得(k2-2)x2 +2kx+2 = 0∵直线与双曲线的右支交于不同两点,则解得 -2<-2< p>三、利用点与圆锥曲线的位置关系构造不等式曲线把坐标平面分成三个区域,若点P(x0,y0)与曲线方程f(x,y)=0关系:若P在曲线上,则f(x0,y0)=0;若P在曲线内,则f(x0,y0)<0;若P在曲线外,则f(x0,y0)>0;可见,平面内曲线与点均满足一定的关系。
高中数学解析几何题型
解析几何题型考点 1.求参数的值求参数的值是高考题中的常见题型之一,其解法为从曲线的性质入手 ,构造方程解之 .例 1.假设抛物线 y 22 px 的焦点与椭圆 x 2 y 2 p 的值为〔〕 6 1的右焦点重合,那么2A . 2B . 2C . 4D . 4考查意图 : 此题主要考查抛物线、椭圆的标准方程和抛物线、椭圆的根本几何性质 .解答过程:椭圆 x 2y 21的右焦点为 (2,0),所以抛物线 y 22 px 的焦点为 (2,0),那么 p 4,62考点 2. 求线段的长求线段的长也是高考题中的常见题型之一 ,其解法为从曲线的性质入手 ,找出点的坐标 ,利用距离公式解之 .例 2.抛物线 y-x 2+3 上存在关于直线x+y=0 对称的相异两点 A 、B ,那么 |AB| 等于22考查意图 : 此题主要考查直线与圆锥曲线的位置关系和距离公式的应用.解:设直线 AB 的方程为 yx b ,由 yx 2 3 x 2 x b 3 0x 1 x 2 1,yx b进而可求出 AB 的中点 M ( 1 ,1 b) ,又由 M ( 1 , 1 b) 在直线 x y 0 上可求出22 2 2b 1 ,∴ x 2x2 0 ,由弦长公式可求出 AB1 12 12 4 ( 2)3 2 .22例 3.如图,把椭圆x y1 的长轴25 16AB 分成 8 等份,过每个分点作x 轴的垂线交椭圆的上半部分于 1 23 45 67七个点, F 是椭圆的一个焦点,P ,P , P , P , P , P , P那么PF 1P 2 F P 3F P 4F P 5F P 6 F P 7 F ____________.考查意图 : 此题主要考查椭圆的性质和距离公式的灵活应用. 解答过程:由椭圆 x 2y 2 1 的方程知 a 2 25, a 5.25 16∴PF 1PF 2 P 3FP 4F P 5F P 6 F P 7 F 7 2a7 a 7 5 35.2考点 3. 曲线的离心率曲线的离心率是高考题中的热点题型之一,其解法为充分利用 :(1)椭圆的离心率 e=c∈(0,1) (e 越大那么椭圆越扁 );a (2) 双曲线的离心率 e=c∈(1, +∞ ) (e 越大那么双曲线开口越大). a例 4.双曲线的离心率为 2 ,焦点是 ( 4,0) , (4,0) ,那么双曲线方程为A. x2 y2 1 B. x2 y 2 1 C. x2 y2 1 D. x2 y 2 14 12 12 4 10 6 6 10考查意图 :此题主要考查双曲线的标准方程和双曲线的离心率以及焦点等根本概念.解答过程:Q e c 2,c 4, 所以a 2, b2 12. 应选(A).a例 5.双曲线3x 2 y 2 9 ,那么双曲线右支上的点P到右焦点的距离与点P 到右准线的距离之比等于〔〕A. 2B. 2 3C. 2 3考查意图 : 此题主要考查双曲线的性质和离心率 e=c∈ (1, +∞ ) 的有关知识的应用能力 . a解答过程:依题意可知 a 3, c a2 b 2 3 9 2 3.考点 4.求最大 (小 )值求最大 (小 )值 , 是高考题中的热点题型之一.其解法为转化为二次函数问题或利用不等式求最大 (小 )值 :特别是 ,一些题目还需要应用曲线的几何意义来解答.例 6.抛物线 y2=4x,过点 P(4,0)的直线与抛物线相交于A(x1,y1),B(x2,y2)两点,那么 y12+y22的最小值是.考查意图 : 此题主要考查直线与抛物线的位置关系,以及利用不等式求最大(小 )值的方法 . 解: 设过点 P(4,0)的直线为y k x 4 , k 2 x2 8x 16 4x,k 2 x2 8k 2 4 x 16 k2 0,y 2 y 2 4 x1 x2 4 8k 2 4 16 2 1 32.1 2k2 k2故填 32.考点 5 圆锥曲线的根本概念和性质例 7.在平面直角坐标系xOy 中 ,圆心在第二象限、半径为 2 2的圆 C 与直线 y=x 相切于坐标原点 O.椭圆x2 y2 =1 与圆 C 的一个交点到椭圆两焦点的距离之和为10.a2 9〔1〕求圆 C 的方程;〔2〕试探究圆 C 上是否存在异于原点的点Q,使 Q 到椭圆右焦点 F 的距离等于线段OF 的长.假设存在,请求出点Q 的坐标;假设不存在,请说明理由.[解答过程 ] (1) 设圆 C 的圆心为(m, n)那么mn, 解得m2,n 2 2 2, n 2.所求的圆的方程为(x 2) 2 ( y 2) 2 8 (2) 由可得2a 10 , a 5 .椭圆的方程为x2 y2右焦点为F( 4, 0) ;251 ,9假设存在 Q 点 2 2 2 cos ,2 2 2 sin 使QF OF ,2 2 2 cos22 2 2 sin2.4 4整理得sin 3cos 2 2 ,代入 sin2 cos2 1 .212 2 cos 7 0 , cos 12 2 8 12 2 2 2得:10cos 10 10 1.因此不存在符合题意的Q 点 .例 8.如图 ,曲线 G 的方程为y2 2 x( y 0) .以原点为圆心,以t (t 0)为半径的圆分别与曲线G 和 y 轴的正半轴相交于 A 与点 B.直线 AB 与 x 轴相交于点 C.〔Ⅰ〕求点 A 的横坐标 a 与点 C 的横坐标 c 的关系式;〔Ⅱ〕设曲线G 上点 D 的横坐标为 a 2 ,求证:直线CD的斜率为定值. [ 解答过程 ] 〔 I〕由题意知,A(a, 2a).因为 | OA | t,所以 a 2 2a t 2 .由于t 0,故有t a 2 2a . 〔1〕由点 B〔0, t 〕, C〔 c,0〕的坐标知,直线BC的方程为xy 1.c t又因点 A 在直线 BC上,故有a2a 1, c t将〔 1〕代入上式,得 a 2a 1,解得c a 2 2( a 2) .c a(a 2)(I I〕因为D(a 2 2(a 2) ),所以直线 CD 的斜率为kCD 2( a 2)2(a2)2(a 2)a 2 ca 2 ( a 22(a2) )2(a1,2)所以直线 CD 的斜率为定值 .22例 9.椭圆 E :x2y 21(ab 0) ,AB 是它的一条弦,M(2,1) 是弦 AB 的中点,假设以ab点 M(2,1) 为焦点,椭圆 E 的右准线为相应准线的双曲线C 和直线 AB 交于点 N(4, 1) ,假设椭圆离心率e 和双曲线离心率 e 1 之间满足 ee 1 1 ,求:〔1〕椭圆 E 的离心率;〔 2〕双曲线 C 的方程 .解答过程:〔 1〕设 A 、 B 坐标分别为 A(x 1 , y 1 ), B(x 2 , y 2 ) , 那么x 12 y 121 ,x 22y 22 1 ,二式相减得:a2b2a 2b2ky 1 y 2 (x 1x 2 )b 2 2b 2 kMN1 ( 1)ABx 1 x 2(y 1y 2 )a 2a 21,2 4所以 a 22b 2 2(a 2 c 2 ) , a 2 2c 2 ,那么ec2 ;a2〔2〕椭圆 E 的右准线为 xa 2 ( 2c) 22c ,双曲线的离心率 e 11 2 ,cce设 P(x, y) 是双曲线上任一点,那么:| PM | (x 2)2 (y 1)22,| x 2c || x 2c |两端平方且将 N(4, 1) 代入得: c 1或 c 3 ,当 c 1时,双曲线方程为: (x 2) 2 (y 1)20 ,不合题意,舍去;当 c 3时,双曲线方程为:(x 10)2 (y1) 2 32 ,即为所求 .考点 6利用向量求曲线方程和解决相关问题例 10.双曲线 C 与椭圆x 2y 21有相同的焦点,直线 y=3x 为 C 的一条渐近线 .8 4(1)求双曲线 C 的方程;(2)过点 P(0,4)的直线 l ,交双曲线C 于 A,B 两点,交 x 轴于 Q 点〔 Q 点与 C 的顶点不重合〕 .uuuruuuruuur8时,求 Q 点的坐标 .当PQ1QA2 QB,且123考查意图 : 此题考查利用直线、椭圆、双曲线和平面向量等知识综合解题的能力 ,以及运用数形结合思想 ,方程和转化的思想解决问题的能力. 解答过程:〔Ⅰ〕设双曲线方程为x 2 y 2 1 ,a2b 2由椭圆 x2y 2 1,求得两焦点为 ( 2,0),(2,0) ,8 4对于双曲线 C : c 2 ,又 y3x 为双曲线 C 的一条渐近线b 3 解得 a 21,b 23 ,a双曲线 C 的方程为 x 2 y 2 13〔Ⅱ〕解法一:由题意知直线 l 的斜率 k 存在且不等于零 .设 l 的方程: y kx 4, A( x , y ) , B( x 2 , y 2 ) ,那么Q( 4,0) .11kuuuruuur 4 4Q PQ1 QA, ( 1( x 1, 4) , y 1).k k 44 )x 14 41 (x 1 k k1kk 44 1y 1 y 11Q A( x 1 , y 1) 在双曲线 C 上,162 (11 )216 10 .k1116 32 1 16 1216 k2k220.(16 k 2) 1232 11616k 2 0.33同理有: (16 k 2)2232 216 16 k 2 0.3假设16k 20, 那么直线l过顶点,不合题意 .16 k 20,1, 2 是二次方程(16k 2 )x 2 32x 16 16 k 2 0.的两根 .8 , 31232k 4 ,此时 0, k 2 .2k 2 163所求 Q 的坐标为 ( 2,0) .解法二:由题意知直线l 的斜率 k 存在且不等于零设 l 的方程, y kx 4, A( x , y ), B(x 2, y ) ,那么Q( 4,0) .112kuuuruuurQ uur1 . Q PQ1QA,分 PA 的比为由定比分点坐标公式得4 1x 1 x 14(1 1 ) k 1 1k 14 1y 14y 1111下同解法一解法三:由题意知直线l 的斜率 k 存在且不等于零设 l 的方程: y kx4, A( x 1, y 1 ), B( x 2 , y 2 ) ,那么Q(4,0) .kuuuruuuruuur( 4, 4)1( x 1 4, y 1)4, y 2 ) .Q PQ1 QA2QB ,2(x 2k kk41y1 2 y 2,14,24 ,y 1y 2又 128 , 1 1 2,即 3( y 1 y 2 ) 2 y 1 y 2 .3y 1 y 23将 y kx 4 代入 x2y 2 1得 (3 k 2 )y 224 y 48 3k 20 .3Q 3 k 20 ,否那么l与渐近线平行 .y 1 y 23 24 , y 1y 2 48 3k 2 .k 2 3 k 22448 3k 2 . k 2 3 3 k 2 23 k 2Q( 2,0) .解法四: 由题意知直线 l 得斜率 k 存在且不等于零, 设 l 的方程: y kx 4 , A( x 1 , y 1 ), B( x 2, y 2 ) ,那么Q(4 k ,0)uuuvuuuv(x 14, y 1 ) .Q PQ1 QA, ( 4, 4)1kk4 441k.同理1.4 kx 1 4kx 2 4x 1k12 44 8 .kx 1 4kx 2 43即2k 2 x x25k( xx ) 8.〔 * 〕1 1 2y kx 4又x2y 213消去 y 得 (3k 2 ) x 2 8kx 190 .当 3 k 20 时,那么直线 l 与双曲线得渐近线平行,不合题意,3 k 20 .x 1x 28kk 2由韦达定理有:319x 1 x 23 k 2代入〔 * 〕式得k 2 4, k2 .所求 Q 点的坐标为 ( 2,0) .例 11.设动点 P 到点 A(- l ,0)和 B(1, 0)的距离分别为 d 1 和 d 2,∠APB = 2θ,且存在常数λ (0<λ< 1= ,使得 d 1 d 2 sin 2θ=λ.( 1〕证明:动点 P 的轨迹 C 为双曲线,并求出 C 的方程;( 2〕过点 B 作直线交双曲线 C 的右支于 M 、 N 两点 ,试确定λ的范围 ,使 OM · ON = 0,其中点 O 为坐标原点.[解答过程 ] 解法 1:〔 1〕在 △PAB 中, AB2 ,即 22d 12 d 22 2d 1d 2 cos 2 ,4 (d 1 d 2 ) 2 4d 1d 2 sin 2,即d 1 d 244d 1d 2 sin 22 12 〔常数〕,点 P 的轨迹 C 是以 A ,B 为焦点,实轴长 2a2 1 的双曲线.方程为: x 2y 211.(2〕设M (x 1,y 1),N (x 2,y 2)①当 MN 垂直于 x 轴时, MN 的方程为 x 1 , M (11), , N (1, 1) 在双曲线上.即11 1115,因为 01 ,所以5 1 .2122②当 MN 不垂直于 x 轴时,设 MN 的方程为 y k( x1) .x 2 y 21 得:(1 )k 2 x22(1 )k 2x (1)( k2),由1yk( x 1)由题意知:(1)k 2,所以x 1x 2 2k 2 (1) ,x 1x 2(1 )( k 2) .(1 )k 2(1 )k 2于是:y 1 y 2k 2 (x 1 1)(x 2 1)k 2 2.(1) k 2因为 OM ON0,且 M ,N 在双曲线右支上,所以x 1x 2x 1x 1x 2y 1y 2 0 k 22(1 )(1 )5 1 2.x 2 012 1 12223k1 01由①②知,5 12 .2≤3解法 2:〔 1〕同解法 1(2〕M ( x1,y1),N( x2,y2),MN的中点E(x0,y0).①当 x1 x22121 0,1,MB 1因 0 1 ,所以 5 1 ;2x 2 y 21 1 1②当 x1 x2, 1 x0 .kMNx22 y22 1 y011又k MN kBE y0 .所以(1 ) y02 x02 x 0;x0 1MN 2MN2 2由∠ MON 得x02 y02 ,由第二定得e(x1 x2 ) 2a22 2 2121x0 1 x02 (1 ) 2x0.1 1所以 (1 ) y02 x02 2(1 ) x0 (1 ) 2.于是由(1 ) y02 x02 x0, 得x (1 ) 2 .(1 ) y02 x02 2(1 )x0 (1 ) 2, 0 2 3因 x0 1,所以(1)2 1,又0 1,2 3解得: 5 1 2.由①②知 5 1 ≤ 2 .2 3 2 3 考点 7 利用向量理曲中的最例 12. E 的中心在坐原点O,焦点在 x 上,离心率3,点 C( 1,0) 的直3uuur uuurAOB 的面到达最大直和 E 的方交 E 于 A、 B 两点,且 CA 2BC ,求当程.解答程:因的离心率3,故可方程2x 2 3y 2 t(t 0) ,直方程3my x 1,由2x2 3y2 t得: (2m 2 3)y 2 4my 2 t 0 ,A(x1, y1), B(x2, y2),my x 1y4my1 y2 ⋯⋯⋯⋯① A 2m 2 3CoxBuuur uuury 2) ,即 y 1 2y 2 ⋯⋯⋯⋯②又 CA2BC ,故 (x 1 1,y 1)2( 1 x 2,由①②得: y 18m,y 24m ,2m 22m 233S AOB1| y 1 y 2 | 6 | m 3 |=66 ,22m 2322| m || m |当 m 23,即m6,AOB 面 取最大 ,22此y 1y 22 t32m 2 ,即 t 10 ,2m 2 3(2m 2 3)2所以,直 方程 x6 y 1 0 , 方程 2x23y 210 .2uuur(xuuur(xuuuruuur6 ,求| 2x 3y 12 |的最大例 13. PA 5, y) , PB5, y) ,且 | PA | | PB |和最小 .解答 程:P(x, y) ,A( 5,0) , B( 5, 0) , uuur uuur6 ,且 | AB | 2 5 6 , 因 | PA | | PB |所以, 点 P 的 迹是以 A 、 B 焦点,6 的 ,方程 x 2y 2 1,令 x3cos , y 2sin,94| 2x3y 12 |= | 6 2 cos(4) 12 |,当cos() 1 , | 2x3y 12 |取最大4当cos() 1 , | 2x 3y 12 |取最小412 6 2 ,12 6 2 .考点 8 利用向量 理 曲 中的取 范例 14.〔 2006 年福建卷〕x 2y 21的左焦点 F ,2O 坐 原点 .y〔I 〕求 点 O 、 F ,并且与 的左准l 相切的 的方程;B〔II 〕 点 F 且不与坐 垂直的直 交 于 A 、 B 两点,FGOx段 AB 的垂直平分 与x 交于点 G ,求点 G 横坐 的取 范.lA考 意 :本小 主要考 直 、 、 和不等式等根本知 ,考平面解析几何的根本方法,考 运算能力和 合解 能力.解答 程:〔I 〕Q a 2 2,b 2 1, c 1,F ( 1,0), l : x2.Q 圆过点 O 、 F ,圆心 M 在直线 x1上 .2设M (1,t), 那么圆半径 r (1 ) ( 2)3 .222由OMr,得( 1 )2 t 2 3 ,2 2 解得 t2.所求圆的方程为 (x1)2 (y2) 2 9 .24 〔II 〕设直线 AB 的方程为 y k( x 1)(k 0),代入 x 2y 21,整理得(1 2k 2 )x 2 4k 2 x 2k 2 2 0.2Q 直线 AB 过椭圆的左焦点 F , 方程有两个不等实根 .记A( x 1, y 1), B( x 2, y 2), AB 中点 N (x 0, y 0),那么x 1x 24 k 2,2k 21AB 的垂直平分线 NG 的方程为 y y 01(x x 0 ).k令 y 0,得x G x 0ky 02k 2 k 2k 2 1 1.1 2k 212k 212 4k22k 22Q k 0,1 0,x G2点 G 横坐标的取值范围为 (1,0).222例 15.双曲线 C : x2y 21(a 0,b0) , B 是右顶点, F 是右焦点,点A 在 x 轴正半abuuuruuur uuur轴上, 且满足 | OA |,| OB |,| OF | 成等比数列, 过 F 作双曲线 C 在第一、 三象限的渐近线的垂线l ,垂足为 P ,uuur uuuruuur uur〔1〕求证: PA OP PA FP ;〔2〕假设 l 与双曲线 C 的左、右两支分别相交于点D,E ,求双曲线 C 的离心率 e 的取值范围 .uuur uuuruuuruuur uuura2a2解答过程:〔 1〕因| OB |2,0) ,| OA |,| OB |,| OF |成等比数列,故| OA |uuur,即 A(|OF |cc直线 l : ya(x c) ,ybDO PE FBx A由y a(x c) a2 abbP(,b x, )y c cauuur(0,ab uuur a2,ab uur b2 ab,故:PAc),OP ( ), FP (c, )c c c uuur uuur a2 b2 uuur uur uuur uuur uuur uur那么: PA OP c2 PA FP ,即PA OP PA FP ;uuur uuur uur uuur uur uuur uuur uuur uuur uuur uuur uur 〔或 PA (OP FP) PA (PF PO) PA OF 0 ,即PA OP PA FP 〕y a c) 4 4 4 2(x (b 2 a )x 2 2 a cx (a c a2 b2 ) 0 ,〔2〕由 bb2x 2 a2 y 2 a2 b2 b2 b2 b2( a4 c2 a2b2 )b2由 x1 x 22 a4bb2〔或由k DF k DO a br r 例 16.a (x,0) , b0 得: b4 a4 b2 c2 a2 a2 e2 2 e 2.b b2 c2 a2 a2 e2 2 e 2 〕ar r r r(1,y) , (a 3b) (a 3b) ,〔 1〕求点P(x, y) 的轨迹C的方程;〔 2〕假设直线y kx m(m 0) 与曲线 C 交于 A、 B 两点,D(0, 1) ,且 | AD | | BD | ,试求 m 的取值范围 .r r ,解答过程:〔〕 a 3b =(x,0) 3(1,y) (x 3, 3y)1r r(x,0) 3(1, y) (x 3, 3y)a 3b =,r r r r r r r r0 ,因 (a 3b) (a 3b) ,故 (a 3b) (a 3b)即 (x 3, 3y) (x 3, 3y) x 2 3y 2 3 0 ,故 P 点的轨迹方程为x2 y 2 1.3y kx m得: (1 3k 2 )x 2 6kmx 3m2 3 0 ,〔2〕由3y2 3x 2设 A(x 1 , y 1), B(x 2 , y 2 ) , A 、 B 的中点为 M(x 0 , y 0 )那么 (6km)24(1 3k 2 )( 3m 2 3) 12(m 2 1 3k 2 ) 0 ,x 1 x 26km , x 0 x 1 x 2 3km , y 0 kx 0 mm ,1 3k 22 1 3k 21 3k 2即 A 、 B 的中点为 (3km2 ,m 2 ) ,1 3k 1 3k m1)(x3km2 ) ,那么线段 AB 的垂直平分线为: y1 2(3kk 1 3k将 D(0, 1) 的坐标代入,化简得: 4m 3k 2 1 ,那么由m 2 1 3k 2得:m24m 0 ,解之得 m0 或 m 4 ,4m 3k 2 1又 4m3k 21 1,所以 m1 ,14 故 m 的取值范围是 () .,0) U (4,4考点 9 利用向量处理圆锥曲线中的存在性问题例 17. A,B,C 是长轴长为4 的椭圆上的三点,点A 是长轴的一个顶点, BC 过椭圆的中uuur uuur uuur uuur心 O ,且 AC BC 0 , | BC | 2 | AC |,〔1〕求椭圆的方程;〔 2 〕如果椭圆上的两点P,Q 使PCQ 的平分线垂直于 OA ,是否总存在实数,使得λuuur uuurPQ λAB ?请说明理由;yC解答过程:〔 1〕以 O 为原点, OA 所在直线为 x 轴建立平面直角坐标系,那么A(2,0) ,OAxx 2 y 2 BQ设椭圆方程为1,不妨设 C 在 x 轴上方,P4b2uuur uuur uuur uuur uuur由椭圆的对称性, | BC | 2 | AC | 2 | OC | | AC | | OC | ,uuur uuur AC OC ,即 OCA 为等腰直角三角形,又 AC BC 0由 A(2,0) 得: C(1,1) ,代入椭圆方程得:b 24,3即,椭圆方程为x 23y 241;42λuuuruuurAB// PQ〕假设总存在实数λAB ,即 ,〔 ,使得 PQ由 C(1,1) 得 B( 1, 1) ,那么 kAB0 ( 1) 1 ,2 ( 1) 3假设设 CP : y k(x 1) 1,那么 CQ :yk(x 1) 1 ,x 23y 21(1 3k 2 )x 2 3k 2 由 44 6k(k 1)x 6k 10 ,y k(x 1) 1由 C(1,1)得 x1 是方程 (1 3k2 )x 2 6k(k 1)x 3k 2 6k 1 0 的一个根,由韦达定理得: x Px P 1 3k 2 6k 1 ,以 k 代 k 得 x Q 3k26k 1 ,1 3k2 1 3k 2故k PQ y P y Qk(x Px Q ) 2k1,故 AB// PQ ,x P x Qx Px Q3uuur uuur即总存在实数 λ,使得 PQ λAB .考点 10 利用向量处理直线与圆锥曲线的关系问题例 18.设 G 、M 分别是 ABC 的重心和外心, A(0, a) , B(0,a)(auuuur uuur0) ,且 GM AB ,〔 1〕求点 C 的轨迹方程;uuur uuur?〔 2〕是否存在直线 m ,使 m 过点 (a,0) 并且与点 C 的轨迹交于 P 、Q 两点,且 OP OQ 假设存在,求出直线 m 的方程;假设不存在,请说明理由. 解答过程:〔 1〕设 C(x, y) ,那么 G( x,y) ,uuuuruuur3 3因为 GMAB ,所以 GM// AB ,那么 M( x,0) ,3由 M 为 ABC 的外心,那么 |MA| | MC | ,即( x )2a2(xx) 2 y 2 ,33整理得:x 2 y 2 1(x0) ;3a2a2〔2〕假设直线 m 存在,设方程为y k(x a) ,y k(x a)由 x 2y 2 1(x得: (1 3k 2 )x 2 6k 2 ax 3a 2 (k 2 1)0 ,3a 2 a 20)设 P(x 1, y 1 ),Q(x 2 , y 2 ) ,那么x 1x 26k 2 a ,x 1x 23a 2 (k 2 1) ,1 3k2 1 3k 2y 1 y 2 k 2 (x 1 a)(x 2 a) k 2[x 1 x 2a(x 1 x 2 ) a 2] =2k 2a 2,1 3k 2uuur uuur0 得: x 1x 2 y 1y 2 0 ,由 OP OQ3a 2 (k 2 1)2k 2a 2 0 ,解之得 k3 , 即1 3k21 3k2又点 (a,0) 在椭圆的内部,直线 m 过点 (a,0) ,故存在直线 m ,其方程为 y 3(xa) . 【专题训练与高考预测】 一、选择题1.如果双曲线经过点 (6, 3) ,且它的两条渐近线方程是y1x ,那么双曲线方程是〔〕3A . x 2y 2 1B . x 2y 21C . x 2y 2 1D . x 2y 2 136 981 9918 32.椭圆x 2y 2 1 和双曲线 x 2 y 21 有公共的焦点,那么双曲线的的渐近线方 5n 22m 2 3n 23m 2程为〔 〕A. x15 yB. y15 x C. x3 yD. y3 x42243.F, F为椭圆x 2 y 2的焦点, M 为椭圆上一点,MF12 a 2 b 2 1(a b 0)1 垂直于 x 轴,且 FMF 1 2 60 ,那么椭圆的离心率为〔 〕A.1B.2 C. 3D. 322324.二次曲线x 2y 2 1,当 m [ 2, 1] 时,该曲线的离心率 e 的取值范围是〔〕4mA. [ 2 , 3]B. [ 3 , 5]C.[ 5 , 6]D. [ 3 , 6 ]2 222 2 2 2 25.直线 m 的方程为 y kx1 ,双曲线 C 的方程为2 y 2 1,假设直线 m 与双曲线 C 的右支 x相交于不重合的两点,那么实数 k 的取值范围是〔 〕A. ( 2, 2)B. (1, 2)C.[ 2, 2)D.[1, 2)6.圆的方程为x 2 y 2 4 ,假设抛物线过点 A( 1,0) , B(1,0) ,且以圆的切线为准线,那么抛物线的焦点的轨迹方程为〔 〕A. x 2 y 21(y0)B. x 2y 2 1(y 0)3 44 3C. x 2 y 2 1(x0)D. x 2y 2 1(x 0)344 3二、填空题7 . 已 知 P 是 以 F 1 、 F 2 为 焦 点 的 椭 圆x 2y 21(a b 0) 上 一 点 , 假设 PF 1 PF 2a 2b 2tan PF 1 F 21,那么椭圆的离心率为______________ .28. 椭圆 x 2 +2y 2=12,A 是 x 轴正方向上的一定点,假设过点 A ,斜率为 1 的直线被椭圆截得的弦长为4 13,点 A 的坐标是 ______________ .39.P 是椭圆x 2y 21 上的点, F 1, F2 是椭圆的左右焦点,设 | PF | | PF | k ,那么 k 的最大值4 3 1 2与最小值之差是 ______________ . 10.给出以下命题:①圆 (x2) 2 (y 1)2 1关于点 M(1,2) 对称的圆的方程是 (x 3) 2(y3)2 1 ;②双曲线 x2y 2 1 右支上一点 P 到左准线的距离为 18,那么该点到右焦点的距离为29 ;16 92③顶点在原点,对称轴是坐标轴,且经过点( 4, 3) 的抛物线方程只能是y29x ;4④ P 、 Q 是椭圆 x 2 4y 216 上的两个动点, O 为原点,直线 OP,OQ 的斜率之积为1,那么4|OP |2 | OQ|2 等于定值 20 .把你认为正确的命题的序号填在横线上 _________________ .三、解答题11.两点 A( 2,0), B(2, 0) ,动点 P 在 y 轴上的射影为uuur uuur uuuur,Q , PA PB2PQ 2〔 1〕求动点 P 的轨迹 E 的方程;〔 2〕设直线 m 过点 A ,斜率为 k ,当 0 k 1时,曲线 E 的上支上有且仅有一点 C 到直线 m 的距离为2 ,试求 k 的值及此时点 C 的坐标 .12.如图, F ( 3,0) ,F2 (3,0) 是双曲线 C 的两焦点,直线x 4是双曲线 C的右准线,A1, A21 3是双曲线 C 的两个顶点,点P 是双曲线 C 右支上异于A2 的一动点,直线 A 1 P 、 A 2P 交双曲线 C 的右准线分别于 M,N 两点,y〔1〕求双曲线 C 的方程;MP〔2〕求证:uuuur uuuur是定值 .F1 F 2 FM F N A 1 o A 2x1 2N13.uuur uuurOFQ 的面积为 S,且OF FQ 1 ,建立如下图坐标系,y〔1〕假设S 1 ,uuur2 ,求直线FQ的方程;Q | OF |2uuur,S 3c,假设以 O 为中心, F 为焦点的椭圆过点uuurF〔2〕设| OF | c(c 2) Q,求当| OQ |取ox4得最小值时的椭圆方程 .14.点H( 3,0) ,点P在y轴上,点Q在x轴的正半轴上,点M 在直线 PQ 上,且满足uuur uuur uuur 3 uuuurHP PM 0 , PM MQ ,2〔1〕当点 P 在 y 轴上移动时,求点M 的轨迹 C;y〔2〕过点T( 1,0)作直线 m 与轨迹 C 交于 A、 B 两点,假设在 x 轴上存在一点PE(x 0 ,0) ,使得ABE 为等边三角形,求x0的值.o Q EHT M xAB15.椭圆x2 y 21(a b 0)的长、短轴端点分别为A、B,从此椭圆上一点M 向 x 轴a 2 b2作垂线,恰好通过椭圆的左焦点F1,向量AB与OM是共线向量.〔 1〕求椭圆的离心率e;〔 2〕设 Q 是椭圆上任意一点,F1、 F2分别是左、右焦点,求∠F1 QF2的取值范围;16.两点M〔 -1,0〕, N〔 1, 0〕且点 P 使MP MN , PM PN , NM NP 成公差小于零的等差数列,〔Ⅰ〕点 P 的轨迹是什么曲线?〔Ⅱ〕假设点P 坐标为 ( x 0 , y 0 ) ,为 PM 与 PN 的夹角,求tan θ .【参考答案】一. 1. C .提示,设双曲线方程为 ( 1 1x y),将点 (6, 3) 代入求出 即可 .x y)( 3 32 . D . 因 为双 曲线的 焦点 在 x 轴上 , 故椭 圆焦 点 为 ( 3m 22, 双 曲 线焦点 为5n ,0) ( 2m 23n 2 ,0) , 由 3m 25n 2 2m 2 3n 2 得 | m | 2 2 | n | , 所 以 , 双 曲 线 的 渐 近 线 为y6 | n | 3x .2 | m |43.C .设 | MF 1 | d ,那么 | MF 2 |2d ,1 2|3d ,| FFe c 2c| FF 12 | d 3d 3 .a 2a |MF 1 | | MF 2 |2d3曲线为双曲线,且 51,应选 C ;或用 a 2 4 , b 2m 来计算.4.C .25.B .将两方程组成方程组,利用判别式及根与系数的关系建立不等式组.6.B .数形结合,利用梯形中位线和椭圆的定义 .二.7. 解: 设 c 为为椭圆半焦距,∵PFPF 0 ,∴ PFPF.12122PF 2221 PF 1(2c) ∴又tan PF 1 F 2PF 2 2a2PF 1PF 2 1PF 12c 2 5c 5解得: ( a)9 ,ea3 .选 D .8. 解: 设 A 〔x , 0〕〔 x > 0〕,那么直线 l 的方程为 y=x-x ,设直线l 与椭圆相交于 P 〔 x ,1y 〕, Q 〔 x 、y 〕,由 y=x-x可得 3x 2 -4x x+2x2,1220 0 0x 2+2y 2=12x 1x 24x 0,x 1x 22x 02 12 ,那么33| x 1 x 2 | ( x 1 x 2 ) 24x 1 x 2 16x 0 2 8x 0 2 48 22.9336 2 x 03∴ 4 141 x2 | x 1x 2 |,即4 142236 2 x 02 .333∴ x 02=4,又 x 0 > 0,∴ x 0=2,∴ A 〔2, 0〕.9.1; k | PF 1 | | PF 2 | (a ex)(a ex) a 2 e 2x 2.10.②④ .uuuruuur( 2 x,y) ,三. 11.解〔 1〕 点 P 的坐 (x, y) , 点 Q(0, y) , PQ (x,0) ,PAuuur (2 x,uuur uuurx 2 2y 2 , PB y) , PA PBuuur uuuruuuur2 y 22x 2 ,因 PA PB2PQ2,所以 x 2即 点 P 的 迹方程 : y 2 x 22 ;〔 2〕 直 m : yk(x2)(0 k 1) ,依 意,点 C 在与直 m 平行,且与m 之 的距离2 的直 上,此直 m : y kxb ,由|2k b | 2 ,即 b 22 2kb 2 ,⋯⋯①1k21把 ykx b 代入 y 2 x 22 ,整理得: (k 2 1)x 2 2kbx (b 22) 0 ,4k 2b 24(k 2 1)(b 2 2) 0 ,即 b 2 2k 22 ,⋯⋯⋯⋯②由①②得: k25, b10 , 55此 ,由方程y2 5 x1010).5 5C(2 2,y 2 x 2 212.解:〔 1〕依 意得: ca 24a 225 ,3 ,,所以, bc 3所求双曲C 的方程x 2 y 21 ;45〔2〕 P(x 0 , y 0 ) , M(x 1 , y 1 ) , N(x 2 , y 2 ) , A 1 (2,0) , A 2 (2,0) ,uuuur2,y uuuur(x2, y), uuuur 10, uuuur2 ,A P (x) ,A P0 A 1M ( , y 1)A 2N ( , y 2 )1233uuuur uuuur(x 02)y 110y 0 ,y 110y 0,同理: y 22y 0 因 A 1P 与 A 1M 共 ,故3(x 03(x 0 ,32)2)uuuur 13 uuuur ( 5 2 )FM 1 ( , y 1 ) ,F 2 N , y ,3 3uuuuruuuur 656520y 0265 205(x 02 4)y 1y 2 ==410.所以 FM 1F 2 N =9924) 99(x 0 9(x 024)uuuruuuruuur13.解:〔 1〕因 | OF | 2, F(2,0) , OF (2,0), Q(x 0 , y 0 ) , FQ(x 0 2,y 0 ) ,uuur uuur 5 , OF FQ 2(x 0 2) 1,解得 x 01 uuur12 151由 S|,得 y 0| OF | | y 0 | | y 02,故 Q( , ) ,22 2 2所以, PQ 所在直 方程y x 2 或 yx2 ;uuuruuur〔 2〕 Q(x 0 , y 0 ) ,因 | OF |c(c2), FQ(x 0 c,y 0 ),uuur uuur 1由 OF FQ c(x 0 c) 1 得: x 0 c ,c又 S1c | y 0 |3c , y 03 ,242Q(c1 3 uuur2 (c1 2 9,,) ,| OQ |)4c2uuurc3) ,易知,当 c2, | OQ | 最小,此 Q( 5,22方程x22a 2b 2 4210 ,y 1,(a b 0) ,259 ,解得 aa2b 21 b 264a 24b 2所以, 方程x 2y 2 1 .10614.解:〔 1〕 M(x,uuur3 uuuuryx,y) ,由 PMMQ 得: P(0,) , Q(,0)uuur uuur223得: (3, y )(x, 3y ) 0 ,即 y 2 4x由 HP PM ,22由点 Q 在 x 的正半 上,故 x 0 ,即 点 M 的 迹 C 是以 (0,0) 点,以 (1,0)焦点的抛物 ,除去原点;〔2〕 m : yk(x 1)(k0) ,代入 y 2 4x 得:k 2x 2 2(k 2 2)x k 20 ⋯⋯⋯⋯①A(x 1 , y 1) , B(x 2 , y 2 ) , x 1 , x 2 是方程①的两个 根,x 1 x 22(k 22) , x 1x 21,所以 段AB 的中点 (2 k2 , 2) , k 2k 2k线段 AB 的垂直平分线方程为y21 2 k 2k(xk 2),k令 y0 ,x 02 1,得E( 2 1,0),k 2k 2因为 ABE 为正三角形,那么点E 到直线 AB 的距离等于3| AB | ,2又| AB|(x 1 x 2 )2(y 1 y2 )2=41 k 2k 2,k 21所以,23 1 k 421 k 2,解得: k3, x 011 .k 2| k |2315.解:〔 1〕∵ F ( c,0), 那么 xMc, yMb 2 ,∴ k OMb 2 .1a ac∵ k ABb,OM 与 AB 是共线向量,∴b 2b,∴ b=c,故 e2 .aaca2〔 2〕设 FQr 1, F 2Q r 2 , F 1 QF 2,1r 1 r 2 2a, F 1 F 2 2c,cosr 12 r 22 4c 2(r 1 r 2 )2 2r 1r 2 4c 2a 2 1a 21 02r 1r 22r 1r 2r 1r 2( r 1 r 2 ) 22当且仅当 r 1r 2 时, cos θ =0,∴θ [ 0, ] .216. 解:〔Ⅰ〕记 P 〔 x,y 〕,由 M 〔 -1, 0〕N 〔1 ,0〕得uuuuruuur( 1 x, y), PN NP ( 1 x, y) , MNNM (2,0) .PMMP 所以 MP MN2(1 x) . PM PN x 2 y 21, NM NP 2(1 x) .于是, MP MN , PM PN , NMNP 是公差小于零的等差数列等价于x 2 y 2 1 1 [2(1 x) 2(1 x)]即x 2y 23.2x 02(1 x) 2(1 x) 0所以,点 P 的轨迹是以原点为圆心,3 为半径的右半圆 .〔Ⅱ〕点 P 的坐标为 ( x , y ) 。
高考数学一轮总复习第8章平面解析几何第8节直线与圆锥曲线的位置关系第2课时范围最值问题教师用书
第2课时 范围、最值问题考点1 范围问题——综合性(2021·梅州二模)在平面直角坐标系xOy 中,椭圆C :x 2a 2+y 2b2=1(a >b >0)的两焦点与短轴的一个端点的连线构成等边三角形,直线x +y +22-1=0与以椭圆C 的右焦点为圆心,椭圆C 的长半轴长为半径的圆相切.(1)求椭圆C 的方程;(2)△BMN 是椭圆C 的内接三角形,若坐标原点O 为△BMN 的重心,求点B 到直线MN 距离的取值范围.解:(1)设椭圆C :x 2a 2+y 2b2=1(a >b >0)的右焦点F 2(c,0),则以椭圆C 的右焦点为圆心,椭圆C 的长半轴长为半径的圆:(x -c )2+y 2=a 2,所以圆心到直线x +y +22-1=0的距离d =|c +22-1|12+12=a . 又椭圆的两焦点与短轴的一个端点的连线构成等边三角形,所以a =2c ,b =3c , 解得a =2,b =3,c =1, 所以椭圆C 的标准方程为x 24+y 23=1.(2)设B (m ,n ),设M ,N 的中点为D ,直线OD 与椭圆交于A ,B 两点. 因为O 为△BMN 的重心,则BO =2OD =OA ,所以D ⎝ ⎛⎭⎪⎫-m 2,-n 2,即B 到直线MN 的距离是原点O 到直线MN 距离的3倍.当MN 的斜率不存在时,点D 在x 轴上,所以此时B 在长轴的端点处. 由|OB |=2,得|OD |=1,则O 到直线MN 的距离为1,B 到直线MN 的距离为3.当MN 的斜率存在时,设M (x 1,y 1),N (x 2,y 2),则有⎩⎪⎨⎪⎧x 214+y 213=1,x 224+y223=1,两式相减,得(x 1+x 2)(x 1-x 2)4+(y 1+y 2)(y 1-y 2)3=0.因为D 为M ,N 的中点,所以x 1+x 2=-m ,y 1+y 2=-n ,所以k =y 1-y 2x 1-x 2=-3m4n, 所以直线MN 的方程为y +n 2=-3m 4n ⎝ ⎛⎭⎪⎫x +m 2,即6mx +8ny +4n 2+3m 2=0,所以原点O 到直线MN 的距离d =4n 2+3m264n 2+36m2.因为m 24+n 23=1,所以3m 2=12-4n 2, 所以d =4n 2+3m264n 2+36m2=12144+16n2=39+n2.因为0<n 2≤3,所以3<9+n 2≤23, 所以123≤19+n 2<13,所以332≤3d <3. 综上所述,332≤3d ≤3,即点B 到直线MN 距离的取值范围为⎣⎢⎡⎦⎥⎤332,3.圆锥曲线中的取值范围问题的解题策略(1)利用圆锥曲线的几何性质或联立方程后的判别式构造不等关系,从而确定参数的取值范围.(2)利用已知参数的范围,求新参数的范围,解这类问题的核心是建立两个参数之间的等量关系.(3)利用隐含的不等关系建立不等式,从而求出参数的取值范围. (4)利用已知的不等关系构造不等式,从而求出参数的取值范围.(5)利用求函数的值域的方法将待求量表示为其他变量的函数,求其值域,从而确定参数的取值范围.已知椭圆x 2a 2+y 2b2=1(a >b >0)上的点到右焦点F (c,0)的最大距离是2+1,且1,2a,4c成等比数列.(1)求椭圆的方程;(2)过点F 且与x 轴不垂直的直线l 与椭圆交于A ,B 两点,线段AB 的垂直平分线交x 轴于点M (m,0),求实数m 的取值范围.解:(1)由已知可得⎩⎨⎧a +c =2+1,1×4c =2a 2,a 2=b 2+c 2,解得⎩⎨⎧a =2,b =1,c =1,所以椭圆的方程为x 22+y 2=1.(2)由题意得F (1,0),设直线AB 的方程为y =k (x -1).与椭圆方程联立得⎩⎪⎨⎪⎧x 2+2y 2-2=0,y =k (x -1),消去y 可得(1+2k 2)x 2-4k 2x +2k 2-2=0,Δ=(-4k 2)2-4(2k 2-2)(1+2k 2)=8k 2+8>0.设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=4k21+2k2,y 1+y 2=k (x 1+x 2)-2k =-2k1+2k2. 可得线段AB 的中点为N ⎝ ⎛⎭⎪⎫2k 21+2k 2,-k 1+2k 2.当k =0时,直线MN 为x 轴,此时m =0;当k ≠0时,直线MN 的方程为y +k1+2k 2=-1k ⎝ ⎛⎭⎪⎫x -2k 21+2k 2, 化简得ky +x -k 21+2k2=0.令y =0,得x =k 21+2k2,所以m =k 21+2k 2=11k2+2∈⎝ ⎛⎭⎪⎫0,12. 综上所述,实数m 的取值范围为⎣⎢⎡⎭⎪⎫0,12.考点2 最值问题——应用性考向1 利用几何性质求最值在平面直角坐标系xOy 中,P 为双曲线x 2-y 2=1右支上的一个动点.若点P 到直线x -y +1=0的距离大于c 恒成立,则实数c 的最大值为___________.22解析:双曲线x 2-y 2=1的渐近线为x ±y =0,直线x -y +1=0与渐近线x -y =0平行,故两平行线间的距离d =|1-0|12+(-1)2=22,由点P 到直线x -y +1=0的距离大于c恒成立,得c ≤22,故c 的最大值为22. 考向2 利用函数、导数求最值(2022·江门市高三一模)如图,抛物线C :y 2=8x 与动圆M :(x -8)2+y 2=r 2(r >0)相交于A ,B ,C ,D 四个不同点.(1)求r 的取值范围;(2)求四边形ABCD 面积S 的最大值及相应r 的值.解:(1)联立抛物线与圆方程⎩⎪⎨⎪⎧y 2=8x ,(x -8)2+y 2=r 2,消去y ,得x 2-8x +64-r 2=0.若圆与抛物线有四个不同交点,则方程有两个不等正根.所以⎩⎪⎨⎪⎧64-r 2>0,64-4(64-r 2)>0,解得43<r <8,所以r 的取值范围为(43,8).(2)设A (x 1,22x 1),B (x 2,22x 2),其中x 2>x 1>0,则x 1+x 2=8,x 1x 2=64-r 2,S =12(42x 1+42x 2)(x 2-x 1)=(22x 1+22x 2)(x 2-x 1), S 2=8(x 1+x 2+2x 1x 2)[(x 2+x 1)2-4x 1x 2], S 2=64(4+64-r 2)[16-(64-r 2)].令x =64-r 2(0<x <4),令f (x )=(4+x )(16-x 2)(0<x <4),f ′(x )=16-8x -3x 2=(4-3x )(x +4).当0<x <43时,f ′(x )>0,f (x )单调递增;当43<x <4时,f ′(x )<0,f (x )单调递减. f (x )≤f ⎝ ⎛⎭⎪⎫43=2 04827,S =8f (x )≤25669.当x =43时,S 取得最大值,取64-r 2=43,r =4353.考向3 利用基本不等式求最值(2022·唐山三模)在直角坐标系xOy 中,A (-1,0),B (1,0),C 为动点,设△ABC的内切圆分别与边AC ,BC ,AB 相切于P ,Q ,R ,且|CP |=1,记点C 的轨迹为曲线E .(1)求曲线E 的方程;(2)不过原点O 的直线l 与曲线E 交于M ,N ,且直线y =-12x 经过MN 的中点T ,求△OMN的面积的最大值.解:(1)依题意可知,|CA |+|CB |=|CP |+|CQ |+|AP |+|BQ |=2|CP |+|AB |=4>|AB |, 所以曲线E 是以A ,B 为焦点,长轴长为4的椭圆(除去与x 轴的交点), 因此曲线E 的方程为x 24+y 23=1(y ≠0).(2)设M (x 1,y 1),N (x 2,y 2),直线l 的方程为y =kx +m (m ≠0),代入x 24+y 23=1整理,得(4k 2+3)x 2+8kmx +4m 2-12=0,(*)Δ=64k 2m 2-4(4k 2+3)(4m 2-12)>0.则x 1+x 2=-8km 4k 2+3,x 1x 2=4m 2-124k 2+3,所以y 1+y 2=k (x 1+x 2)+2m =6m4k 2+3,故MN 的中点T ⎝⎛⎭⎪⎫-4km 4k 2+3,3m 4k 2+3.而直线y =-12x 经过MN 的中点T ,得3m 4k 2+3=-12×-4km4k 2+3, 又m ≠0,所以直线l 的斜率k =32.故(*)式可化简为3x 2+3mx +m 2-3=0,故x 1+x 2=-m ,x 1x 2=m 2-33.由Δ=36-3m 2>0且m ≠0,得-23<m <23且m ≠0. 又|MN |=1+k 2|x 1-x 2|=132×36-3m 23=1323×12-m 2,而点O 到直线l 的距离d =2|m |13, 则△OMN 的面积为S =12×2|m |13×1323×12-m 2=123|m |×12-m 2≤123×m 2+12-m 22=3, 当且仅当m =±6时,等号成立,此时满足-23<m <23且m ≠0,所以△OMN 的面积的最大值为3.最值问题的2种基本解法几何法根据已知的几何量之间的相互关系,利用平面几何和解析几何知识加以解决(如抛物线上的点到某个定点和焦点的距离之和、光线反射问题等在选择题、填空题中经常考查)代数法建立求解目标关于某个(或两个)变量的函数,通过求解函数的最值解决(一般方法、基本不等式法、导数法等)已知抛物线C :x 2=2py (p >0),过点T (0,p )作两条互相垂直的直线l 1和l 2,l 1交抛物线C 于A ,B 两点,l 2交抛物线C 于E ,F 两点,当点A 的横坐标为1时,抛物线C 在点A 处的切线斜率为12.(1)求抛物线C 的标准方程;(2)已知O 为坐标原点,线段AB 的中点为M ,线段EF 的中点为N ,求△OMN 面积的最小值.解:(1)因为x 2=2py 可化为y =x 22p ,所以y ′=xp.因为当点A 的横坐标为1时,抛物线C 在点A 处的切线斜率为12,所以1p =12,所以p =2,所以,抛物线C 的标准方程为x 2=4y . (2)由(1)知点T 坐标为(0,2),由题意可知,直线l 1和l 2斜率都存在且均不为0. 设直线l 1方程为y =kx +2,由⎩⎪⎨⎪⎧y =kx +2,x 2=4y ,联立消去y 并整理,得x 2-4kx -8=0,Δ=(-4k )2+32=16k 2+32>0.设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=4k ,x 1·x 2=-8, 所以,y 1+y 2=k (x 1+x 2)+4=4k 2+4. 因为M 为AB 中点,所以M (2k,2k 2+2).因为l 1⊥l 2,N 为EF 中点,所以N ⎝ ⎛⎭⎪⎫-2k ,2k2+2,所以直线MN 的方程为y -(2k 2+2)=2k 2+2-⎝ ⎛⎭⎪⎫2k 2+22k +2k·(x -2k )=⎝ ⎛⎭⎪⎫k -1k ·(x -2k ), 整理得y =⎝⎛⎭⎪⎫k -1k x +4,所以,直线MN 恒过定点(0,4).所以△OMN 面积S =12×4×⎪⎪⎪⎪⎪⎪2k -⎝ ⎛⎭⎪⎫-2k =4⎪⎪⎪⎪⎪⎪k +1k =4⎝ ⎛⎭⎪⎫|k |+⎪⎪⎪⎪⎪⎪1k ≥4·2|k |·⎪⎪⎪⎪⎪⎪1k=8,当且仅当|k |=⎪⎪⎪⎪⎪⎪1k即k =±1时,△OMN 面积取得最小值为8.在平面直角坐标系xOy 中,已知圆O :x 2+y 2=4,椭圆C :x 24+y 2=1,A 为椭圆C 的右顶点,过原点且异于x 轴的直线与椭圆C 交于M ,N 两点,M 在x 轴的上方,直线AM 与圆O 的另一交点为P ,直线AN 与圆O 的另一交点为Q .(1)若AP →=3AM →,求直线AM 的斜率;(2)设△AMN 与△APQ 的面积分别为S 1,S 2,求S 1S 2的最大值.[四字程序]读想算思已知圆的方程和椭圆的方程,直线与圆、椭圆都相交 1.向量AP →=3AM →如何转化?2.如何表示三角形的面积把S 1S 2用直线AM 的斜率k 来表示 转化与化归求直线AM 的斜率,求△AMN 与△APQ 的面1.用A ,P ,M 的坐标表示.S 1S 2=|AM |·|AN ||AP |·|AQ |,进把面积之比的最大值转化为一个变量的不积之比2.利用公式S =12ab ·sin C 表示并转化而用基本不等式求其最大值等式思路参考:设直线AM 的方程为y =k (x -2),k <0,利用y P =3y M 求解.解:(1)设直线AM 的方程为y =k (x -2),k <0,将y =k (x -2)与椭圆方程x 24+y 2=1联立,(1+4k 2)x 2-16k 2x +16k 2-4=0,得x A +x M =16k21+4k2,求得点M 的横坐标为x M =8k 2-24k 2+1,纵坐标为y M =-4k4k 2+1.将y =k (x -2)与圆方程x 2+y 2=4联立,得(1+k 2)·x 2-4k 2x +4k 2-4=0,得x A +x P =4k21+k2, 求得点P 的横坐标为x P =2k 2-2k 2+1,纵坐标为y P =-4kk 2+1. 由AP →=3AM →得y P =3y M , 即-4k k 2+1=-12k4k 2+1. 又k <0,解得k =-2.(2)由M ,N 关于原点对称,得点N 的坐标为x N =-8k 2+24k 2+1,y N =4k4k 2+1,所以直线AN 的斜率为k AN =4k4k 2+1-8k 2+24k 2+1-2=-14k. 于是|AM ||AP |=y M y P =k 2+14k 2+1,同理|AN ||AQ |=⎝ ⎛⎭⎪⎫-14k 2+14⎝ ⎛⎭⎪⎫-14k 2+1=16k 2+116k 2+4.所以S 1S 2=|AM |·|AN ||AP |·|AQ |=k 2+14k 2+1·16k 2+116k 2+4=16k 4+17k 2+14(16k 4+8k 2+1) =14⎝ ⎛⎭⎪⎫1+9k 216k 4+8k 2+1=14⎝⎛⎭⎪⎪⎫1+916k 2+1k2+8 ≤14⎝⎛⎭⎪⎪⎫1+9216k 2·1k 2+8=2564, 当且仅当16k 2=1k 2,即k =-12时等号成立,所以S 1S 2的最大值为2564.思路参考:设直线AM 的方程为y =k (x -2),k <0,由AP →=3AM →转化为x P -x A =3(x M -x A )求解.解:(1)设直线AM 的方程为y =k (x -2),k <0,代入椭圆方程,整理得(4k 2+1)x 2-16k 2x +4(4k 2-1)=0.由根与系数的关系得x A x M =4(4k 2-1)4k 2+1,而x A =2,所以x M =2(4k 2-1)4k 2+1. 将y =k (x -2)代入圆的方程,整理得(k 2+1)x 2-4k 2x +4(k 2-1)=0.由根与系数的关系得x A x P =4(k 2-1)k 2+1,而x A =2,所以x P =2(k 2-1)k 2+1.由AP →=3AM →,得x P -x A =3(x M -x A ),即2(k 2-1)k 2+1-2=3⎣⎢⎡⎦⎥⎤2(4k 2-1)4k 2+1-2,解得k 2=2. 又k <0,所以k =-2.(2)因为MN 是椭圆的直径,直线AM ,AN 斜率均存在,所以k AM k AN =-14,即kk AN =-14,所以k AN =-14k.下同解法1(略).思路参考:设直线AM 的方程为x =my +2,利用y P =3y M 求解.解:(1)设直线AM 的方程为x =my +2(m ≠0),将其代入椭圆方程,整理得(m 2+4)y 2+4my =0,得点M 的纵坐标为y M =-4mm 2+4. 将x =my +2代入圆的方程,整理得(m 2+1)y 2+4my =0,得点P 的纵坐标为y P =-4mm 2+1. 由AP →=3AM →,得y P =3y M ,即m m 2+1=3m m 2+4.因为m ≠0,解得m 2=12,即m =±12.又直线AM 的斜率k =1m<0,所以k =-2.(2)因为MN 是椭圆的直径,直线AM ,AN 斜率均存在,又k AM k AN =-14,由(1)知k AM =1m ,所以有1m k AN =-14,则k AN =-m4.又y M =-4m m 2+4,y P =-4mm 2+1, 所以|AM ||AP |=y M y P =m 2+1m 2+4.同理|AN ||AQ |=⎝ ⎛⎭⎪⎫-m 42+14⎝ ⎛⎭⎪⎫-m 42+1=m 2+164(m 2+4).所以S 1S 2=|AM |·|AN ||AP |·|AQ |=m 2+1m 2+4·m 2+164(m 2+4).下同解法1(略).1.本题考查三角形面积之比的最大值,解法较为灵活,其基本策略是把面积的比值表示为斜率k 的函数,从而求其最大值.2.基于新课程标准,解答本题一般需要具备良好的数学阅读技能、运算求解能力.本题的解答体现了数学运算的核心素养.已知点A (0,-2),椭圆E :x 2a 2+y 2b 2=1(a >b >0)的离心率为32,F 是椭圆的右焦点,直线AF 的斜率为233,O 为坐标原点.(1)求椭圆E 的方程;(2)设过点A 的直线l 与E 相交于P ,Q 两点,当△OPQ 的面积最大时,求l 的方程.解:(1)设F (c,0),由题意知2c =233,解得c =3.因为e =ca =32, 所以a =2,b 2=a 2-c 2=1. 所以椭圆E 的方程为x 24+y 2=1.(2)(方法一)显然直线l 的斜率存在.设直线l :y =kx -2,P (x 1,y 1),Q (x 2,y 2),且P 在线段AQ 上.由⎩⎪⎨⎪⎧y =kx -2,x 2+4y 2-4=0得(4k 2+1)x 2-16kx +12=0,所以x 1+x 2=16k 4k 2+1,x 1x 2=124k 2+1.由Δ=(16k )2-48(4k 2+1)>0,得k 2>34.则S △OPQ =S △AOQ -S △AOP=12×2×|x 2-x 1|=(x 1+x 2)2-4x 1x 2=44k 2-34k 2+1. 令4k 2-3=t (t >0),则4k 2=t 2+3,于是S △OPQ =4t t 2+4=4t +4t≤1,当且仅当t =2,即k =±72时等号成立,所以l 的方程为y =72x -2或y =-72x -2. (方法二)依题意直线l 的斜率存在,设直线l 的方程为y =kx -2,P (x 1,y 1),Q (x 2,y 2).将直线l 的方程代入椭圆方程,整理得(4k 2+1)x 2-16kx +12=0,则Δ=(16k )2-48(4k 2+1)=16(4k 2-3)>0,即k 2>34.x 1+x 2=16k 4k 2+1,x 1x 2=124k 2+1.由弦长公式得|PQ |=1+k 2|x 1-x 2|=1+k 2·(x 1+x 2)2-4x 1x 2=1+k 2·44k 2-34k 2+1.由点到直线的距离公式得点O 到直线l 的距离d =21+k2,所以S △OPQ =12|PQ |×d =121+k 2×44k 2-34k 2+1×21+k 2=44k 2-34k 2+1. 设4k 2-3=t (t >0),则4k 2=t 2+3,所以S △OPQ =4t t 2+4=4t +4t≤1,当且仅当t =2,即k =±72时等号成立.7 2x-2或y=-72x-2.故所求直线l的方程为y=。
谈谈解答解析几何问题的三个办法
解析几何是高中数学中的重要模块,解析几何问题的分值在高考试卷中占比较大.解析几何问题的常见命题形式有:求曲线的方程、求曲线中线段的最值、求参数的取值范围、判断点的存在性等.解析几何问题对同学们的逻辑思维和运算能力有较高的要求.下面介绍三个解答解析几何问题的技巧,以帮助同学们简化问题,提高解题的效率.一、巧用参数法有些解析几何问题较为复杂,涉及了较多的变量,为了便于解题,我们可引入合适的参数,设出相关点的坐标、直线的斜率、方程、曲线的方程等,然后将其代入题设中进行运算、推理,再通过恒等变换,消去参数或求得参数的值,便可求得问题的答案.例1.已知过椭圆C :x 29+y 2=1左焦点F 1的直线交椭圆于M ,N 两点,设∠F 2F 1M =α(0≤α≤π).当α的值为何时,|MN |为椭圆C 的半长轴、半短轴长的等差中项?解:设过F 1的直线参数方程为:{x =-22+t cos α,y =t sin α,将其代入椭圆方程中可得()1+8sin 2αt 2-()42cos αt-1=0.则t 1+t 2=,t 1t 2=-11+8sin 2α,所以||MN =||t 1-t 2=()t 1+t 22-4t 1t 2=61+8sin 2α=2,可得sin 2α=14,解得α=π6或5π6.要求得|MN |,需知晓直线的方程,于是引入参数t 、α,设出直线MN 的参数方程,然后将其与椭圆的方程联立,构建一元二次方程,根据韦达定理和弦长公式求得|MN |,再根据等差中项的性质建立关系,求得α的值.运用参数法解题,只需引入参数,根据题意建立关系式,这样能有效地降低解题的难度.二、妙用射影性质射影性质是图形经过任何射影对应(变换)都不变的性质.若遇到涉及多条共线线段或平行线段的解析几何问题,我们可以巧妙利用射影性质来解题.首先根据题意画出相应的图形,然后在x 轴或y 轴上画出各条线段的射影,如此便可将问题中线段的长度、数量问题转化为x 轴或y 轴上的点或线段问题,进而简化运算.例2.已知椭圆的方程为x 224+y 216=1,点P 是直线l :x 12+y 8=1上的任意一点,OP 的延长线交椭圆于点R ,点Q 在OP 上,且||OQ ∙||OP =|OR |2,求点Q 的轨迹方程.解:设P (x p ,y p ),Q (x ,y ),R (x R ,y R )在x 轴上的射影分别为P 0,Q 0,R 0,由||OQ ∙||OP =|OR |2可得x ∙x P =x 2R ,①当点P 不在y 轴上时,设OP :y =kx ,由ìíîïïy =kx ,x 224+y 216=1,可得x 2R =483k 2+2,②由ìíîïïy =kx ,x 12+y 8=1,可得x P =243k +2,③由①②③可得:(x -1)252+(y -1)253=1(y ≠0).当点P 在y 轴上时,Q 点的坐标为(0,2),满足上式.所以点Q 的轨迹方程为(x -1)252+(y -1)253=1(y ≠0),该方程表示的是中心为(1,1),长轴长为10,短轴长为的椭圆(去除原点).找到P 、Q 、R 在x 轴上的射影,利用射影性质得到x ∙x P =x 2R ,然后通过联立方程求得x 、x P 、x 2R ,建立关系式,即可通过消元求得点Q 的轨迹方程.巧妙利用射影性质来解题,能有效简化运算,提升解题的效率.高双云图1思路探寻47探索探索与与研研究究三、建立极坐标系对于一些与线段长度有关的问题,我们可以结合图形的特征,建立极坐标系,通过极坐标运算来求得问题的答案.一般地,可将直角坐标系的原点看作极坐标系的原点,将直角坐标系的x 轴看作极坐标系的极轴,把线段用极坐标表示出来,这样便可将问题简化.以例2为例.图2解:以原点O 为极点,以Ox 轴的正半轴为极轴,建立如图2所示的极坐标系.则椭圆的极坐标方程为:ρ2=482+sin 2θ,直线l 的极坐标方程为:ρ=242cos θ+3sin θ,设P (ρP ,θ),Q (ρ,θ),R (ρR ,θ),因为||OQ ∙||OP =|OR |2,所以ρ∙ρP =ρ2R .即24ρ2cos θ+3sin θ=482+sin 2θ,可得ρ2()2+sin 2θ=4ρcos θ+6ρsin θ,而x =ρcos θ,y =ρsin θ,可得2x 2+3y 2-4x -6y =0(其中x ,y 不同为零),所以点Q 的轨迹是中心为(1,1),长轴长为10,短轴长为的椭圆(去除原点).建立极坐标系后,分别求出椭圆的极坐标方程和直线的极坐标方程,再根据极坐标方程表示出点P 、Q 、R 的坐标,并根据几何关系||OQ ∙||OP =|OR |2建立关系式,最后将其转化为标准方程即可.运用极坐标法解题,需熟练地将极坐标方程与普通方程进行互化.可见,利用参数法、射影性质、极坐标系法,都能巧妙地简化运算,提升解题的效率.相比较而言,参数法的适用范围较广,另外两个技巧具有一定的限制.同学们在解题时,可根据解题需求,引入参数、画出射影、建立极坐标系,这样便可让解题变得更加高效.本文系江苏省教育科学“十三五”规划2020年度重点自筹课题“新课标下提升高中生数学学习力的实践研究”(课题编号:B-b/2020/02/158)阶段研究成果.(作者单位:江苏省泰兴中学)在教学中,细心的教师会发现,教材中的很多习题具有一定的代表性和探究性,且其解法非常巧妙.对于此类习题,教师可以将其作为重要的教学资源,在课堂教学中引导学生对其进行深入的探究、挖掘,以便学生掌握同一类题目的通性通法,帮助他们提升学习的效率.本文主要对人教A 版选择性必修第二册《一元函数的导数及其应用》的一道课后习题进行了探究.一、对习题及其解法的探究人教A 版选择性必修第二册第99页的第12题:利用函数的单调性,证明下列不等式,并通过函数图象直观验证:(1)e x >1+x ,x ≠0;(2)ln x <x <e x ,x >0.证明:(1)设f (x )=e x -1-x ,∴f ′(x )=e x-1,∴f ′(x )=e x -1=0,∴x =0,∵f ′(x )>0,∴x >0,f ′(x )<0,∴x <0,∴函数f (x )在(0,+∞)为单调递增,在(-∞,0)为单调递减,∴函数在x =0处取得最小值,∴f (x )>f (0)=0,∴f (x )=e x -1-x >0,即e x >1+x .事实上,这个结论经常出现在很多试题中,不少教师在教学中也将该结论列为常用结论,并要求学生加以记忆.于是,笔者引导学生对该结论的背景和几何意义进行推导和探究.引理:(泰勒公式)若函数f (x )在包含x 0的某个区间[a ,b ]上具有n 阶导数,且在开区间(a ,b )上具有n +1阶导数,则对于闭区间[a ,b ]上的任意一点x =x 0,有f (x )=f (x 0)+f '(x 0)1!(x -x 0)+f ''(x 0)2!(x -x 0)2+f '''(x 0)3!(x -x 0)3+⋯+f n (x 0)n !(x -x 0)n +R n (x ).其中,f n (x 0)表示函数f (x )在x 0处的n 阶导数,上式称为函数f (x )在x =x 0处的泰勒公式,R n (x )称为泰勒公式的余项.特别地,当x 0=0时,若f (x )在x =0处n 阶连续可导,则称f (x )=周建韩丹娜48。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中数学解析几何中求参数取值范围的方法近几年来,与解析几何有关的参数取值范围的问题经常出现在高考考试中,这类问题不仅涉及知识面广,综合性大,应用性强,而且情景新颖,能很好地考查学生的创新能力和潜在的数学素质,是历年来高考命题的热点和重点。
学生在处理这类问题时,往往抓不住问题关键,无法有效地解答,这类问题求解的关键在于根据题意,构造相关的不等式,然后求出不等式的解。
那么,如何构造不等式呢?本文介绍几种常见的方法:一、利用曲线方程中变量的范围构造不等式曲线上的点的坐标往往有一定的变化范围,如椭圆x2a2 + y2b2 = 1上的点P(x,y)满足-a≤x≤a,-b≤y≤b,因而可利用这些范围来构造不等式求解,另外,也常出现题中有多个变量,变量之间有一定的关系,往往需要将要求的参数去表示已知的变量或建立起适当的不等式,再来求解.这是解决变量取值范围常见的策略和方法.例1 已知椭圆x2a2 + y2b2 = 1 (a>b>0), A,B是椭圆上的两点,线段AB的垂直平分线与x 轴相交于点P(x0 , 0)求证:-a2-b2a ≤x0 ≤a2-b2a分析:先求线段AB的垂直平分线方程,求出x0与A,B横坐标的关系,再利用椭圆上的点A,B 满足的范围求解.解: 设A,B坐标分别为(x1,y1) ,(x2,y2),(x1≠x2)代入椭圆方程,作差得: y2-y1x2-x1 =-b2a2 •x2+x1 y2+y1又∵线段AB的垂直平分线方程为y- y1+y22 =- x2-x1 y2-y1 (x-x1+x22 )令y=0得x0=x1+x22 •a2-b2a2又∵A,B是椭圆x2a2 + y2b2 = 1 上的点∴-a≤x1≤a, -a≤x2≤a, x1≠x2 以及-a≤x1+x22 ≤a∴-a2-b2a ≤x0 ≤a2-b2a例2 如图,已知△OFQ的面积为S,且OF•FQ=1,若12 < S <2 ,求向量OF与FQ的夹角θ的取值范围.分析:须通过题中条件建立夹角θ与变量S的关系,利用S的范围解题.解: 依题意有∴tanθ=2S∵12 < S <2 ∴1< tanθ<4又∵0≤θ≤π∴π4 <θ< p>例3对于抛物线y2=4x上任一点Q,点P(a,0)都满足|PQ|≥|a|,则a的取值范围是( )A a<0B a≤2C 0≤a≤2D 0<2< p>分析:直接设Q点坐标,利用题中不等式|PQ|≥|a| 求解.解: 设Q( y024 ,y0) 由|PQ| ≥a得y02+( y024 -a)2≥a2 即y02(y02+16-8a) ≥0∵y02≥0 ∴(y02+16-8a) ≥0即a≤2+ y028 恒成立又∵y02≥0而2+ y028 最小值为2 ∴a≤2 选( B )二、利用判别式构造不等式在解析几何中,直线与曲线之间的位置关系,可以转化为一元二次方程的解的问题,因此可利用判别式来构造不等式求解.例4设抛物线y2 = 8x的准线与x轴交于点Q,若过点Q的直线L与抛物线有公共点,则直线L的斜率取值范围是( )A [-12 ,12 ]B [-2,2]C [-1,1]D [-4,4]分析:由于直线l与抛物线有公共点,等价于一元二次方程有解,则判别式△≥0解:依题意知Q坐标为(-2,0) , 则直线L的方程为y = k(x+2)由得k2x2+(4k2-8)x+4k2 = 0∵直线L与抛物线有公共点∴△≥0 即k2≤1 解得-1≤k≤1 故选(C)例5 直线L: y = kx+1与双曲线C: 2x2-y2 = 1的右支交于不同的两点A、B,求实数k的取值范围.分析:利用直线方程和双曲线方程得到x的一元二次方程,由于直线与右支交于不同两点,则△>0,同时,还需考虑右支上点的横坐标的取值范围来建立关于k的不等式.解:由得(k2-2)x2 +2kx+2 = 0∵直线与双曲线的右支交于不同两点,则解得-2<-2< p>三、利用点与圆锥曲线的位置关系构造不等式曲线把坐标平面分成三个区域,若点P(x0,y0)与曲线方程f(x,y)=0关系:若P在曲线上,则f(x0,y0)=0;若P在曲线内,则f(x0,y0)<0;若P在曲线外,则f(x0,y0)>0;可见,平面内曲线与点均满足一定的关系。
故可用这些关系来构造不等式解题.例6已知椭圆2x2 + y2 = a2 (a>0)与连结两点A(1,2)、B(2,3)的线段没有公共点,求实数a 的取值范围.分析:结合点A,B及椭圆位置,可得当AB两点同时在椭圆内或同时在椭圆外时符合条件.解:依题意可知,当A、B同时在椭圆内或椭圆外时满足条件。
当A、B同时在椭圆内,则解得a >17当A、B同时在椭圆外,则解得0<6< p>综上所述,解得0<6 或a>17例7若抛物线y2=4mx (m≠0)的焦点在圆(x-2m)2+(y-1)2=4的内部,求实数m的取值范围.分析:由于焦点(m,0)在圆内部,则把(m,0)代入可得.解:∵抛物线的焦点F(m,0)在圆的内部,∴(m-2m)2+(0-1)2<4 即m2<3又∵m≠0∴-3 <0或0<3< p>四、利用三角函数的有界性构造不等式曲线的参数方程与三角函数有关,因而可利用把曲线方程转化为含有三角函数的方程,后利用三角函数的有界性构造不等式求解。
例8 若椭圆x2+4(y-a)2 = 4与抛物线x2=2y有公共点,求实数a的取值范围.分析: 利用椭圆的参数方程及抛物线方程,得到实数a与参数θ的关系,再利用三角函数的有界性确定a的取值情况.解:设椭圆的参数方程为(θ为参数)代入x2=2y 得4cos2θ= 2(a+sinθ)∴a = 2cos2θ-sinθ=-2(sinθ+ 14 )2+ 178又∵-1≤sinθ≤1,∴-1≤a≤178例9 已知圆C:x2 +(y-1)2= 1上的点P(m,n),使得不等式m+n+c≥0恒成立,求实数c 的取值范围分析:把圆方程变为参数方程,利用三角函数的有界性,确定m+n的取值情况,再确定c的取值范围.解:∵点P在圆上,∴m = cosβ,n = 1+sinβ(β为参数)∵m+n = cosβ+1+sinβ= 2 sin(β+ π4 )+1∴m+n最小值为1-2 ,∴-(m+n)最大值为2 -1又∵要使得不等式c≥-(m+n) 恒成立∴c≥2 -1五、利用离心率构造不等式我们知道,椭圆离心率e∈(0,1),抛物线离心率e = 1,双曲线离心率e>1,因而可利用这些特点来构造相关不等式求解.例10已知双曲线x2-3y2 = 3的右焦点为F,右准线为L,直线y=kx+3通过以F为焦点,L 为相应准线的椭圆中心,求实数k的取值范围.分析:由于椭圆中心不在原点,故先设椭圆中心,再找出椭圆中各量的关系,再利用椭圆离心率0<1,建立相关不等式关系求解.< p>解:依题意得F的坐标为(2,0),L:x = 32设椭圆中心为(m,0),则m-2 =c和m-32 = a2c两式相除得: m-2m-32 = c2a2 = e2∵0<1,∴0<1,解得m>2,又∵当椭圆中心(m,0)在直线y=kx+3上,∴0 = km+3 ,即m = - 3k ,∴- 3k >2,解得-32 <0< p>上面是处理解析几何中求参数取值范围问题的几种思路和求法,希望通过以上的介绍,能让同学们了解这类问题的常用求法,并能认真体会、理解掌握,在以后的学习过程中能够灵活运用。
华罗庚的退步解题方法我国已故著名的数学家华罗庚爷爷出生在一个摆杂货店的家庭,从小体弱多病,但他凭借自己一股坚强的毅力和崇高的追求,终于成为一代数学宗师。
少年时期的华罗庚就特别爱好数学,但数学成绩并不突出。
19岁那年,一篇出色的文章惊动了当时著名的数学家熊庆来。
从此在熊庆来先生的引导下,走上了研究数学的道路。
晚年为了国家经济建设,把纯粹数学推广应用到工农业生产中,为祖国建设事业奋斗终生!华爷爷悉心栽培年轻一代,让青年数学家茁壮成儿使他们脱颖而出,工作之余还不忘给青多年朋友写一些科普读物。
下面就是华罗庚爷爷曾经介绍给同学们的一个有趣的数学游戏:有位老师,想辨别他的3个学生谁更聪明。
他采用如下的方法:事先准备好3顶白帽子,2顶黑帽子,让他们看到,然后,叫他们闭上眼睛,分别给戴上帽子,藏起剩下的2顶帽子,最后,叫他们睁开眼,看着别人的帽子,说出自己所戴帽子的颜色。
3个学生互相看了看,都踌躇了一会,并异口同声地说出自己戴的是白帽子。
聪明的小读者,想想看,他们是怎么知道帽子颜色的呢?“为了解决上面的伺题,我们先考虑“2人1顶黑帽,2顶白帽”问题。
因为,黑帽只有1顶,我戴了,对方立刻会说自己戴的是白帽。
但他踌躇了一会,可见我戴的是白帽。
这样,“3人2顶黑帽,3顶白帽”的问题也就容易解决了。
假设我戴的是黑帽子,则他们2人就变成“2人1顶黑帽,2顶白帽”问题,他们可以立刻回答出来,但他们都踌躇了一会,这就说明,我戴的是白帽子,3人经过同样的思考,于是,都推出自己戴的是白帽子。
看到这里。
同学们可能会拍手称妙吧。
后来,华爷爷还将原来的问题复杂化,“n个人,n-1顶黑帽子,若干(不少于n)顶白帽子”的问题怎样解决呢?运用同样的方法,便可迎刃而解。
他并告诫我们:复杂的问题要善于“退”,足够地“退”,“退”到最原始而不失去重要性的地方,是学好数学的一个诀窃。