解三角形正弦定理(参考模板)

合集下载

解三角形(1)---正弦定理

解三角形(1)---正弦定理

解三角形(1)---正弦定理【定理推导】如图1-1,固定∆ABC 的边CB 及∠B ,使边AC 绕着顶点C 转动。

思考: (1)∠C 的大小与它的对边AB 的长度之间有怎样的数量关系?(2)显然,边AB 的长度随着其对角∠C 的大小的增大而增大,能否用一个 等式把这种关系精确地表示出来?如图1-2,在Rt ∆ABC 中,设BC=a 、AC=b 、AB=c ,根据锐角三角函数中正弦函数的定义,有asinA c =,sin b B c =,又sin 1c C c==,则a b c c sinA sinB sinC ===,从而在直角三角形ABC 中,sin sin sin a b c A B C ==。

思考:那么对于任意的三角形,以上关系式是否仍然成立?(分为锐角三角形和钝角三角形两种情况)如图1-3,当∆ABC 是锐角三角形时,设边AB 上的高是CD ,根据任意角三角函数的定义,有CD=sin sin a B b A =,则:sin sin abAB=, 同理可得sin sin cbCB=,从而sin sin abAB=sin cC=思考:是否可以用其它方法证明这一等式?由于涉及边长问题,从而可以考虑用向量来研究这个问题。

证法二:(向量法)过点A 作j AC ⊥ ,由向量的加法可得AB AC CB =+则()j AB j AC CB ⋅=⋅+ ∴j AB j AC j CB ⋅=⋅+⋅()()00cos 900cos 90-=+- j AB A j CB C ∴sin sin =c A a C ,即sin sin =a cA C证明三:(外接圆法)如图所示,∠A =∠D ,∴2sin sin a aCD R A D===, 同理:sin b B =2R ,sin cC=2R同理,过点C 作⊥ j BC ,可得sin sin =b c B C ,从而a b c sinA sinB sinC==类推:当∆ABC 是钝角三角形时,以上关系式仍然成立。

解三角形 正弦及余弦定理

解三角形 正弦及余弦定理

解三角形(正弦定理、余弦定理)1、正弦定理:在C ∆AB 中,a 、b 、c 分别为角A 、B 、C 的对边,R 为C ∆AB 的外接圆的半径,则有 = = =2R .2、正弦定理的变形公式:①a = ,b = ,c = ; ②sin A = ,sin B = ,sin C = ;③::a b c = ;④sin sin sin a b c C++=A +B + ; 3、三角形面积公式:C S ∆AB = = = .4、余弦定理:在C ∆AB 中有:2a = ;2b = ;2c = ;5、余弦定理的推论:cos A = ;cos B = ;cos C = ;6、设a 、b 、c 是C ∆AB 的角A 、B 、C 的对边,则:=+)sin(B A ,=+)cos(C B ,=+)2sin(B A ,=+)2cos(C B 题型1:正、余弦定理例1.在∆ABC 中,已知o A 30=,oB 135=,2=a cm ,解三角形;题型2:三角形面积例2.在∆ABC 中,sin cos A A +=22,AC =2,3=AB ,求A tan 的值和∆ABC 的面积。

题型3:三角形中的三角恒等变换问题例3.在△ABC 中,a 、b 、c 分别是∠A 、∠B 、∠C 的对边长,已知ac b =2,且a 2-c 2=ac -bc ,求∠A 的大小及cB b sin 的值。

题型4:正、余弦定理判断三角形形状例4.在ABC ∆中,三个内角C B A ,,的对应边分别为c b a ,,,若B b A a cos cos =,则ABC ∆的形状为 例5.在△ABC 中,若2cos B sin A =sinC ,则△ABC 的形状一定是( )例6.若△ABC 的三个内角满足sin :sin :sin 5:11:13A B C =,则△ABC ( )(A )锐角三角形.(B )直角三角形.(C )钝角三角形.(D)可能是锐角三角形,也可能是钝角三角形. 题型5:三角形解的个数问题例7. 在△ABC 中,a =12,b =13,C =60°,此三角形的解的情况是()A .无解B .一解C .二解D .不能确定题型6:三角形中求值问题例8.ABC ∆的三个内角为A B C 、、,求当A 为何值时,cos 2cos2B C A ++取得最大值,并求出这个最大值。

解三角形正弦定理余弦定理三角形面积公式

解三角形正弦定理余弦定理三角形面积公式

解三角形正弦定理余弦定理三角形面积公式三角形是平面几何中的一个基本图形,研究三角形的性质与定理在数学中具有重要地位。

本文将介绍三角形中的三个重要定理,正弦定理、余弦定理和三角形的面积公式。

一、正弦定理:正弦定理是研究三角形中角度和边长之间关系的重要定理。

给定一个三角形,设其三个内角分别为A、B、C,对应的边长为a、b、c。

那么,正弦定理可以表述为:sin(A) / a = sin(B) / b = sin(C) / c其中,sin(A)表示A角的正弦值,a表示边a的长度。

正弦定理可以从三角形的面积公式推导得出。

二、余弦定理:余弦定理是研究三角形中角度和边长之间关系的另一个重要定理。

给定一个三角形,设其三个内角分别为A、B、C,对应的边长为a、b、c。

那么,余弦定理可以表述为:c^2 = a^2 + b^2 - 2ab * cos(C)其中,cos(C)表示C角的余弦值,c表示边c的长度。

余弦定理可以用来求解三角形的边长或角度,进而计算三角形的面积。

三、三角形的面积公式:给定一个三角形,设其底边长度为b,对应的高为h。

那么,三角形的面积可以通过以下公式来计算:S=1/2*b*h其中,S表示三角形的面积。

在计算三角形的面积时,还可以使用海伦公式。

海伦公式可以通过三角形的三边长来计算三角形的面积,其公式如下:S=√(p*(p-a)*(p-b)*(p-c))其中,p表示三角形的半周长,计算公式为:p=(a+b+c)/2在使用海伦公式计算三角形面积时,需确保三条边长满足三角不等式,即任意两边之和大于第三边的长度。

总结:通过正弦定理、余弦定理和三角形的面积公式,可以解决三角形相关的问题。

正弦定理和余弦定理给出了通过角度和边长计算三角形的方法,而三角形的面积公式提供了计算三角形面积的途径。

这些定理在三角形等应用中具有重要的价值,对于解题和扩展应用都非常有帮助。

解三角形(正、余弦定理)

解三角形(正、余弦定理)

解三角形1.正弦定理a sin A =b sin B =c sin C=2R ,其中R 是三角形外接圆的半径.由正弦定理可以变形: (1)a ∶b ∶c =sin A ∶sin_B ∶sin C ;(2)a =2R sin A ,b =2R sin B ,c =2R sin C .2.余弦定理a 2=b 2+c 2-2bc cos A ,b 2=a 2+c 2-2ac cos B ,c 2=a 2+b 2-2ab cos C .余弦定理可以变形:cos A =b 2+c 2-a 22bc ,cos B =a 2+c 2-b 22ac ,cos C =a 2+b 2-c 22ab. 3.三角形中常用的面积公式(1)S =12ah (h 表示边a 上的高); (2)S =12bc sin A =12ac sin B =12ab sin C ; (3)S =12r (a +b +c )(r 为三角形的内切圆半径).利用正弦、余弦定理解三角形例1 在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,已知a cos C -b cos C =c cos B -c cos A ,且C =120°.(1)求角A ;(2)若a =2,求c .例2在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c .(1)若cos ⎝⎛⎭⎫A +π6 =sin A ,求A 的值; (2)若cos A =14,4b =c ,求sin B 的值.利用正弦、余弦定理判定三角形的形状例3 在△ABC 中,a ,b ,c 分别为内角A ,B ,C 的对边,且2a sin A =(2b -c )sin B +(2c -b )sin C .(1)求角A 的大小;(2)若sin B +sin C =3,试判断△ABC 的形状.例4在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,满足b cos C +12c =a . (1)求角B ;(2)若a ,b ,c 成等比数列,判断△ABC 的形状.与三角形面积有关的问题例5在△ABC中,角A,B,C的对边分别为a,b,c,若B=60°且cos(B+C)=-1114.(1)求cos C的值;(2)若a=5,求△ABC的面积.例6在△ABC中,A,B,C所对的边分别是a,b,c,且b cos B是a cos C,c cos A的等差中项.(1)求B的大小;(2)若a+c=10,b=2,求△ABC的面积.。

解三角形公式汇总

解三角形公式汇总

解三角形解三角形公式汇总一、正弦定理正弦定理:公式推论1:(边化角)推论2:(角化边)题(1)已知sinB 求B:一题多解型判断依据:大角对大边,三角形两边之和大于第三边,两边之差小于第三边。

型(2)asin B=2b:方法:边化角,推论1,a:b=sinA :sinB(3)3sin A=5sinB 或sinA:sinB:sinC=1:2:3方法:角化边,推论2,sinA :sinB=a:b二、余弦定理公余弦定理:(已知两边及夹角,求第三边)推论1:(已知三边,求角)推论2:(三边的平方关系)式2+b2-c2=2abcosC2+c2-a2=2bccosA2+c2-b2=2accosBaba题(1)已知a,b,角C,求c 2=a2+b2-2abcosC方法:已知两边及夹角,求第三边,余弦定理 c型(2)已知a:b:c=1:2:,求cosB方法:已知三边求角,余弦定理推论1,(3)已知,求cosA方法:已知三边平方关系,余弦定理推论2, b2+c2-a2=2bccosA1解三角形三、求三角形面积公式:题型1:已知a,b,c,A 求△ABC 的面积.方法:带公式题型2:已知A,a,b+c,求△ABC 的面积.方法:四、判断三角形形状题型: b cosC c cosB asin A ,判断三角形形状方法1:角化边公式:sinA:sinB:sinC=a:b:c 或结论:方法2:边化角公式:a:b:c = sinA:sinB:sinC将原式转化为sinBcosC+sinCcosB=sin 2A,用三角恒等变换公式求解。

注:三角形内常见角度转化:五、解三角形应用举例仰角:俯角:坡度:2。

三角函数与解三角形:正弦定理和余弦定理

三角函数与解三角形:正弦定理和余弦定理

正弦定理和余弦定理【考点梳理】1.正弦定理和余弦定理(1)S=12a·h a(h a表示边a上的高);(2)S=12ab sin C=12ac sin B=12bc sin A.(3)S=12r(a+b+c)(r为内切圆半径).【考点突破】考点一、利用正、余弦定理解三角形【例1】在△ABC中,∠BAC=3π4,AB=6,AC=32,点D在BC边上,AD=BD,求AD的长.[解析] 设△ABC的内角∠BAC,B,C所对边的长分别是a,b,c,由余弦定理得a2=b2+c2-2bc cos∠BAC=(32)2+62-2×32×6×cos 3π4=18+36-(-36)=90,所以a=310.又由正弦定理得sin B=b sin∠BACa=3310=1010,由题设知0<B<π4,所以cos B=1-sin 2B=1-110=31010.在△ABD中,因为AD=BD,所以∠ABD=∠BAD,所以∠ADB=π-2B,故由正弦定理得AD=AB·sin Bsin(π-2B)=6sin B2sin B cos B=3cos B=10.【类题通法】1.正弦定理是一个连比等式,只要知道其比值或等量关系就可以运用正弦定理通过约分达到解决问题的目的.2.(1)运用余弦定理时,要注意整体思想的运用.(2)在已知三角形两边及其中一边的对角,求该三角形的其它边角的问题时,首先必须判断是否有解,如果有解,是一解还是两解,注意“大边对大角”在判定中的应用.【对点训练】1.已知a,b,c分别为△ABC三个内角A,B,C的对边,且(b-c)(sin B +sin C)=(a-3c)sin A,则角B的大小为()A.30°B.45°C.60°D.120°[答案]A[解析] 由正弦定理a sin A =b sin B =csin C 及(b -c )·(sin B +sin C )=(a -3c )sin A 得(b -c )(b +c )=(a -3c )a ,即b 2-c 2=a 2-3ac ,∴a 2+c 2-b 2=3ac .又∵cos B =a 2+c 2-b 22ac ,∴cos B =32,∴B =30°.2.△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,若cos A =45,cos C =513,a =1,则b =________.[答案] 2113[解析] 在△ABC 中,∵cos A =45,cos C =513,∴sin A =35,sin C =1213,∴sin B =sin(A +C )=sin A cos C +cos A sin C =35×513+45×1213=6365.又∵a sin A =b sin B ,∴b =a sin B sin A =1×636535=2113.考点二、判断三角形的形状【例2】(1)在△ABC 中,a ,b ,c 分别为角A ,B ,C 的对边,满足a cos A =b cos B ,则△ABC 的形状为( )A .等腰三角形B .直角三角形C .等腰直角三角形D .等腰三角形或直角三角形(2)设角A ,B ,C 是△ABC 的三个内角,则“A +B <C ”是“△ABC 是钝角三角形”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件[答案] (1)D (2)A[解析] (1)因为a cos A =b cos B ,由正弦定理得sin A cos A =sin B cos B ,即sin 2A =sin 2B ,所以2A =2B 或2A +2B =π,即A =B 或A +B =π2,所以△ABC 为等腰三角形或直角三角形,故选D.(2)由A +B +C =π,A +B <C ,可得C >π2,故三角形ABC 为钝角三角形,反之不成立.故选A. 【类题通法】1.判定三角形形状的途径:(1)化边为角,通过三角变换找出角之间的关系.(2)化角为边,通过代数变形找出边之间的关系,正(余)弦定理是转化的桥梁.2.无论使用哪种方法,都不要随意约掉公因式;要移项提取公因式,否则会有漏掉一种形状的可能. 【对点训练】1.设△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,若2sin A cos B =sin C ,那么△ABC 一定是( )A .直角三角形B .等腰三角形C .等腰直角三角形D .等边三角形[答案] B[解析] 法一:由已知得2sin A cos B =sin C =sin(A +B )=sin A cos B +cos A sin B ,即sin(A -B )=0,因为-π<A -B <π,所以A =B .法二:由正弦定理得2a cos B =c ,再由余弦定理得2a ·a 2+c 2-b 22ac =c ⇒a 2=b 2⇒a =b .2.在△ABC 中,c =3,b =1,∠B =π6,则△ABC 的形状为( )A.等腰直角三角形B.直角三角形C.等边三角形D.等腰三角形或直角三角形[答案] D[解析]根据余弦定理有1=a2+3-3a,解得a=1或a=2,当a=1时,三角形ABC为等腰三角形,当a=2时,三角形ABC为直角三角形,故选D.考点三、与三角形面积有关的问题【例3】已知a,b,c分别为△ABC内角A,B,C的对边,sin2B=2sin A sinC.(1)若a=b,求cos B;(2)设B=90°,且a=2,求△ABC的面积.[解析] (1)由题设及正弦定理可得b2=2ac.又a=b,可得b=2c,a=2c.由余弦定理可得cos B=a2+c2-b22ac=14.(2)由(1)知b2=2ac.因为B=90°,由勾股定理得a2+c2=b2,故a2+c2=2ac,进而可得c=a= 2.所以△ABC的面积为12×2×2=1.【类题通法】三角形面积公式的应用方法:(1)对于面积公式S=12ab sin C=12ac sin B=12bc sin A,一般是已知哪一个角就使用哪一个公式.(2)与面积有关的问题,一般要用到正弦定理或余弦定理进行边和角的转化.【对点训练】△ABC的内角A,B,C的对边分别为a,b,c,已知2cos C(a cos B+b cos A)=c.(1)求C;(2)若c=7,△ABC的面积为332,求△ABC的周长.[解析] (1)由已知及正弦定理得2cos C(sin A cos B+sin B cos A)=sin C,即2cos C sin(A+B)=sin C,故2sin C cos C=sin C.可得cos C=12,所以C=π3.(2)由已知得12ab sin C=332.又C=π3,所以ab=6.由已知及余弦定理得a2+b2-2ab cos C=7,故a2+b2=13,从而(a+b)2=25.所以△ABC的周长为5+7.。

(完整版)解三角形之正弦定理与余弦定理

(完整版)解三角形之正弦定理与余弦定理

正弦定理与余弦定理教学目标掌握正弦定理和余弦定理的推导,并能用它们解三角形正余弦定理及三角形面积公式.教学重难点掌握正弦定理和余弦定理的推导,并能用它们解三角形.知识点清单一. 正弦定理:1. 正弦定理:在一个三角形中,各边和它所对角的正弦的比相等,并且都等于外接圆的直径,即a b c2R( 其中R 是三角形外接圆的半径)sin A sinB sinC2. 变形:1)a b c a b csin sin sinC sin sin sinC 2)化边为角:a:b:c sin A:sin B:sinC;a sin A;b sin B a sin Ab sinBc sinC c sin C3)化边为角:a 2Rsin A, b 2Rsin B, c 2RsinC4)化角为边:sin A a;sin B b ; sin A asin B b sinC c sinC c5)化角为边:sin A a sinB b,sinC c2R2R2R3. 利用正弦定理可以解决下列两类三角形的问题:①已知两个角及任意—边,求其他两边和另一角;例:已知角B,C,a ,解法:由A+B+C=18o0 ,求角A,由正弦定理 a sinA; b sinB; b sin B c sin C a sin A; 求出 b 与cc sinC ②已知两边和其中—边的对角,求其他两个角及另一边。

例:已知边a,b,A,解法:由正弦定理 a sin A求出角B,由A+B+C=18o0 求出角C,再使用正 b sin B 弦定理 a sin A求出c边c sinC4. △ABC中,已知锐角A,边b,则① a bsin A 时,B 无解;② a bsin A 或 a b 时, B 有一个解;③ bsinA a b 时, B 有两个解。

如:①已知 A 60 ,a 2,b 2 3,求 B (有一个解 )②已知 A 60 ,b 2,a 2 3,求 B (有两个解 ) 注意:由正弦定理求角时,注意解的个数。

高中数学知识点总结(第四章 三角函数、解三角形 第七节 正弦定理和余弦定理)

高中数学知识点总结(第四章 三角函数、解三角形 第七节 正弦定理和余弦定理)

第七节 正弦定理和余弦定理一、基础知识 1.正弦定理a sin A =b sin B =c sin C=2R (R 为△ABC 外接圆的半径).正弦定理的常见变形(1)a =2R sin A ,b =2R sin B ,c =2R sin C ; (2)sin A =a 2R ,sin B =b 2R ,sin C =c 2R; (3)a ∶b ∶c =sin A ∶sin B ∶sin C ; (4)a +b +c sin A +sin B +sin C =a sin A. 2.余弦定理a 2=b 2+c 2-2bc cos A ; b 2=c 2+a 2-2ca cos B ; c 2=a 2+b 2-2ab cos C . 3.三角形的面积公式(1)S △ABC =12ah a (h a 为边a 上的高);(2)S △ABC =12ab sin C =12bc sin A =12ac sin B ;(3)S =12r (a +b +c )(r 为三角形的内切圆半径).二、常用结论汇总——规律多一点 1.三角形内角和定理在△ABC 中,A +B +C =π;变形:A +B 2=π2-C2.2.三角形中的三角函数关系(1)sin(A +B )=sin C ;(2)cos(A +B )=-cos C ; (3)sin A +B 2=cos C 2;(4)cos A +B 2=sin C2.3.三角形中的射影定理在△ABC 中,a =b cos C +c cos B ;b =a cos C +c cos A ;c =b cos A +a cos B . 4.用余弦定理判断三角形的形状在△ABC 中,a ,b ,c 分别为角A ,B ,C 的对边,当b 2+c 2-a 2>0时,可知A 为锐角;当b 2+c 2-a 2=0时,可知A 为直角;当b 2+c 2-a 2<0时,可知A 为钝角.第一课时 正弦定理和余弦定理(一) 考点一 利用正、余弦定理解三角形考法(一) 正弦定理解三角形[典例] (1)(2019·江西重点中学联考)在△ABC 中,a =3,b =2,A =30°,则cos B =________.(2)设△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .若a =3,sin B =12,C =π6,则b =________.[解析] (1)由正弦定理可得sin B =b sin A a =2×sin 30°3=13,∵a =3>b =2,∴B <A ,即B为锐角,∴cos B =1-sin 2B =223. (2)∵sin B =12且B ∈(0,π),∴B =π6或B =5π6,又∵C =π6,∴B =π6,A =π-B -C =2π3.又a =3,由正弦定理得a sin A =bsin B ,即3sin 2π3=b sinπ6,解得b =1. [答案] (1)223 (2)1考法(二) 余弦定理解三角形[典例] (1)(2019·山西五校联考)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若b cos A +a cos B =c 2,a =b =2,则△ABC 的周长为( )A .7.5B .7C .6D .5(2)(2018·泰安二模)在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,且c -b2c -a=sin Asin B +sin C,则角B =________.[解析](1)∵b cos A +a cos B =c 2,∴由余弦定理可得b ·b 2+c 2-a 22bc +a ·a 2+c 2-b 22ac=c 2,整理可得2c 2=2c 3,解得c =1,则△ABC 的周长为a +b +c =2+2+1=5.(2)由正弦定理可得c -b 2c -a =sin A sin B +sin C =ab +c, ∴c 2-b 2=2ac -a 2,∴c 2+a 2-b 2=2ac ,∴cos B =a 2+c 2-b 22ac =22,∵0<B <π,∴B =π4.[答案] (1)D (2)π4[题组训练]1.△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,若b 2=ac ,c =2a ,则cos C =( ) A.24B .-24C.34D .-34解析:选B 由题意得,b 2=ac =2a 2,即b =2a ,∴cos C =a 2+b 2-c 22ab =a 2+2a 2-4a 22a ×2a=-24.2.△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .已知sin B +sin A (sin C -cos C )=0,a =2,c =2,则C =( )A.π12 B.π6C.π4D.π3解析:选B 因为sin B +sin A (sin C -cos C )=0, 所以sin(A +C )+sin A sin C -sin A cos C =0,所以sin A cos C +cos A sin C +sin A sin C -sin A cos C =0,整理得sin C (sin A +cos A )=0.因为sin C ≠0,所以sin A +cos A =0,所以t a n A =-1, 因为A ∈(0,π),所以A =3π4,由正弦定理得sin C =c ·sin Aa =2×222=12, 又0<C <π4,所以C =π6.3.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,已知sin 2B +sin 2C =sin 2A +sin B sin C .(1)求角A 的大小;(2)若cos B =13,a =3,求c 的值.解:(1)由正弦定理可得b 2+c 2=a 2+bc ,由余弦定理得cos A =b 2+c 2-a 22bc =12,因为A ∈(0,π),所以A =π3.(2)由(1)可知sin A =32, 因为cos B =13,B 为△ABC 的内角,所以sin B =223,故sin C =sin(A +B )=sin A cos B +cos A sin B =32×13+12×223=3+226. 由正弦定理a sin A =c sin C 得c =a sin C sin A=3×3+2232×6=1+263.考点二 判定三角形的形状[典例] (1)设△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,若b cos C +c cos B =a sin A ,则△ABC 的形状为( )A .锐角三角形B .直角三角形C .钝角三角形D .不确定(2)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若sin A sin B =ac ,(b +c +a )(b +c -a )=3bc ,则△ABC 的形状为( )A .直角三角形B .等腰非等边三角形C .等边三角形D .钝角三角形[解析] (1)法一:因为b cos C +c cos B =a sin A , 由正弦定理知sin B cos C +sin C cos B =sin A sin A , 得sin(B +C )=sin A sin A .又sin(B +C )=sin A ,得sin A =1, 即A =π2,因此△ABC 是直角三角形.法二:因为b cos C +c cos B =b ·a 2+b 2-c 22ab +c ·a 2+c 2-b 22ac =2a 22a =a ,所以a sin A =a ,即sin A =1,故A =π2,因此△ABC 是直角三角形.(2)因为sin A sin B =a c ,所以a b =ac,所以b =c .又(b +c +a )(b +c -a )=3bc ,所以b 2+c 2-a 2=bc , 所以cos A =b 2+c 2-a 22bc =bc 2bc =12.因为A ∈(0,π),所以A =π3,所以△ABC 是等边三角形.[答案] (1)B (2)C[变透练清] 1.变条件若本例(1)条件改为“a sin A +b sin B <c sin C ”,那么△ABC 的形状为________.解析:根据正弦定理可得a 2+b 2<c 2,由余弦定理得cos C =a 2+b 2-c 22ab <0,故C 是钝角,所以△ABC 是钝角三角形. 答案:钝角三角形 2.变条件若本例(1)条件改为“c -a cos B =(2a -b )cos A ”,那么△ABC 的形状为________.解析:因为c -a cos B =(2a -b )cos A , C =π-(A +B ),所以由正弦定理得sin C -sin A cos B =2sin A cos A -sin B ·cos A , 所以sin A cos B +cos A sin B -sin A cos B =2sin A cos A -sin B cos A , 所以cos A (sin B -sin A )=0, 所以cos A =0或sin B =sin A , 所以A =π2或B =A 或B =π-A (舍去),所以△ABC 为等腰或直角三角形. 答案:等腰或直角三角形 3.变条件若本例(2)条件改为“cos A cos B =ba=2”,那么△ABC 的形状为________.解析:因为cos A cos B =b a ,由正弦定理得cos A cos B =sin B sin A ,所以sin 2A =sin 2B .由ba =2,可知a ≠b ,所以A ≠B .又因为A ,B ∈(0,π),所以2A =π-2B ,即A +B =π2,所以C =π2,于是△ABC是直角三角形.答案:直角三角形[课时跟踪检测]A 级1.在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c .若sin A a =cos Bb ,则B 的大小为( )A .30°B .45°C .60°D .90°解析:选B 由正弦定理知,sin A sin A =cos Bsin B ,∴sin B =cos B ,∴B =45°.2.在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c .已知b =40,c =20,C =60°,则此三角形的解的情况是( )A .有一解B .有两解C .无解D .有解但解的个数不确定解析:选C 由正弦定理得b sin B =c sin C, ∴sin B =b sin Cc =40×3220=3>1.∴角B 不存在,即满足条件的三角形不存在.3.(2018·重庆六校联考)在△ABC 中,cos B =ac (a ,b ,c 分别为角A ,B ,C 的对边),则△ABC 的形状为( )A .直角三角形B .等边三角形C .等腰三角形D .等腰三角形或直角三角形解析:选A 因为cos B =ac ,由余弦定理得a 2+c 2-b 22ac =a c ,整理得b 2+a 2=c 2,即C 为直角,则△ABC 为直角三角形.4.在△ABC 中,a ,b ,c 分别是内角A ,B ,C 的对边.若b sin A =3c sin B ,a =3, cos B =23,则b =( )A .14B .6 C.14D.6解析:选D ∵b sin A =3c sin B ⇒ab =3bc ⇒a =3c ⇒c =1,∴b 2=a 2+c 2-2ac cos B =9+1-2×3×1×23=6,∴b = 6.5.(2019·莆田调研)在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,若a sin B cos C+c sin B cos A =12b ,且a >b ,则B =( )A.π6B.π3C.2π3D.5π6解析:选A ∵a sin B cos C +c sin B cos A =12b ,∴根据正弦定理可得sin A sin B cos C +sin C sin B cos A =12sin B ,即sin B (sin A cos C +sin C cos A )=12sin B .∵sin B ≠0,∴sin(A +C )=12,即sin B =12.∵a >b ,∴A >B ,即B 为锐角,∴B =π6. 6.(2019·山西大同联考)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若2(b cos A +a cos B )=c 2,b =3,3cos A =1,则a =( )A.5 B .3 C.10D .4解析:选B 由正弦定理可得2(sin B cos A +sin A cos B )=c sin C , ∵2(sin B cos A +sin A cos B )=2sin(A +B )=2sin C ,∴2sin C =c sin C ,∵sin C >0,∴c =2,由余弦定理得a 2=b 2+c 2-2bc cos A =32+22-2×3×2×13=9,∴a =3.7.在△ABC 中,AB =6,A =75°,B =45°,则AC =________. 解析:C =180°-75°-45°=60°, 由正弦定理得AB sin C =ACsin B ,即6sin 60°=AC sin 45°,解得AC =2. 答案:28.设△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,且a =2,cos C =-14,3sin A =2sinB ,则c =________.解析:∵3sin A =2sin B ,∴3a =2b . 又∵a =2,∴b =3.由余弦定理可知c 2=a 2+b 2-2ab cos C , ∴c 2=22+32-2×2×3×⎝⎛⎭⎫-14=16,∴c =4. 答案:49.(2018·浙江高考)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c .若a =7,b =2,A =60°,则sinB =________,c =________.解析:由正弦定理a sin A =bsin B ,得sin B =b a ·sin A =27×32=217.由余弦定理a 2=b 2+c 2-2bc cos A , 得7=4+c 2-4c ×cos 60°,即c 2-2c -3=0,解得c =3或c =-1(舍去). 答案:2173 10.在△ABC 中,a ,b ,c 分别为角A ,B ,C 所对的边,sin A ,sin B ,sin C 成等差数列,且a =2c ,则cos A =________.解析:因为sin A ,sin B ,sin C 成等差数列,所以2sin B =sin A +sin C .由正弦定理得a +c =2b ,又因为a =2c ,可得b =32c ,所以cos A =b 2+c 2-a 22bc=94c 2+c 2-4c 22×32c 2=-14.答案:-1411.在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,且A =2B . (1)求证:a =2b cos B ; (2)若b =2,c =4,求B 的值.解:(1)证明:因为A =2B ,所以由正弦定理a sin A =b sin B ,得a sin 2B =bsin B ,所以a =2b cos B .(2)由余弦定理,a 2=b 2+c 2-2bc cos A , 因为b =2,c =4,A =2B ,所以16c os 2B =4+16-16cos 2B ,所以c os 2B =34,因为A +B =2B +B <π,所以B <π3,所以cos B =32,所以B =π6.12.(2019·绵阳模拟)在△ABC 中,a ,b ,c 分别为内角A ,B ,C 的对边,且2a sin A =(2b +c )sin B +(2c +b )sin C .(1)求A 的大小;(2)若sin B +sin C =1,试判断△ABC 的形状.解:(1)由已知,结合正弦定理,得2a 2=(2b +c )b +(2c +b )c ,即a 2=b 2+c 2+bc . 又由余弦定理,得a 2=b 2+c 2-2bc cos A , 所以bc =-2bc cos A ,即cos A =-12.由于A 为△ABC 的内角,所以A =2π3.(2)由已知2a sin A =(2b +c )sin B +(2c +b )sin C ,结合正弦定理,得2sin 2A =(2sin B +sin C )sin B +(2sin C +sin B )sin C , 即sin 2A =sin 2B +sin 2C +sin B sin C =sin 22π3=34.又由sin B +sin C =1,得sin 2B +sin 2C +2sin B sin C =1,所以sin B sin C =14,结合sin B +sin C =1,解得sin B =sin C =12.因为B +C =π-A =π3,所以B =C =π6,所以△ABC 是等腰三角形.B 级1.(2019·郑州质量预测)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c .若2c os 2A +B2-cos 2C =1,4sin B =3sin A ,a -b =1,则c 的值为( )A.13B.7C.37D .6解析:选A 由2c os 2A +B2-cos 2C =1,得1+c os(A +B )-(2c os 2C -1)=2-2c os 2C -cos C =1,即2c os 2C +cos C -1=0,解得cos C =12或cos C =-1(舍去).由4sin B =3sin A及正弦定理,得4b =3a ,结合a -b =1,得a =4,b =3.由余弦定理,知c 2=a 2+b 2-2ab cos C =42+32-2×4×3×12=13,所以c =13.2.(2019·长春模拟)在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,且c =3,2sin A a =t a n Cc,若sin(A -B )+sin C =2sin 2B ,则a +b =________. 解析:∵2sin A a =t a n C c =sin C c cos C ,且由正弦定理可得a =2R sin A ,c =2R sin C (R 为△ABC的外接圆的半径),∴cos C =12.∵C ∈(0,π),∴C =π3.∵sin(A -B )+sin C =2sin 2B ,sin C =sin(A +B ),∴2sin A cos B =4sin B cos B .当cos B =0时,B =π2,则A =π6,∵c =3, ∴a =1,b =2,则a +b =3.当cos B ≠0时,sin A =2sin B ,即a =2b .∵cos C =a 2+b 2-c 22ab =12,∴b 2=1,即b =1,∴a =2,则a +b =3.综上,a +b =3.答案:33.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,且2a cos C -c =2b . (1)求角A 的大小;(2)若c =2,角B 的平分线BD =3,求a .解:(1)2a cos C -c =2b ⇒2sin A cos C -sin C =2sin B ⇒2sin A cos C -sin C =2sin(A +C )=2sin A cos C +2cos A sin C ,∴-sin C =2cos A sin C , ∵sin C ≠0,∴cos A =-12,又A ∈(0,π),∴A =2π3.(2)在△ABD 中,由正弦定理得,AB sin ∠ADB =BDsin A ,∴sin ∠ADB =AB sin A BD =22.又∠ADB ∈(0,π),A =2π3,∴∠ADB =π4,∴∠ABC =π6,∠ACB =π6,b =c =2,由余弦定理,得a 2=c 2+b 2-2c ·b ·cos A =(2)2+(2)2-2×2×2c os 2π3=6,∴a = 6.第二课时 正弦定理和余弦定理(二) 考点一 有关三角形面积的计算[典例] (1)(2019·广州调研)△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,已知b =7,c =4,cos B =34,则△ABC 的面积等于( )A .37 B.372C .9D.92(2)在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c .若△ABC 的面积为34(a 2+c 2-b 2),则B =________.[解析] (1)法一:由余弦定理b 2=a 2+c 2-2ac cos B ,代入数据,得a =3,又cos B =34,B ∈(0,π),所以sin B =74,所以S △ABC =12ac sin B =372. 法二:由cos B =34,B ∈(0,π),得sin B =74,由正弦定理b sin B =csin C 及b =7,c =4,可得sin C =1,所以C =π2,所以sin A =cos B =34,所以S △ABC =12bc sin A =372.(2)由余弦定理得cos B =a 2+c 2-b 22ac ,∴a 2+c 2-b 2=2ac cos B . 又∵S =34(a 2+c 2-b 2),∴12ac sin B =34×2ac cos B , ∴t a n B =3,∵B ∈()0,π,∴B =π3.[答案] (1)B (2)π3[变透练清] 1.变条件本例(1)的条件变为:若c =4,sin C =2sin A ,sin B =154,则S △ABC =________. 解析:因为sin C =2sin A ,所以c =2a ,所以a =2,所以S △ABC =12ac sin B =12×2×4×154=15.答案:15 2.变结论本例(2)的条件不变,则C 为钝角时,ca的取值范围是________.解析:∵B =π3且C 为钝角,∴C =2π3-A >π2,∴0<A <π6 .由正弦定理得ca =sin ⎝⎛⎭⎫2π3-A sin A=32cos A +12sin A sin A =12+32·1t a n A.∵0<t a n A <33,∴1t a n A>3, ∴c a >12+32×3=2,即ca >2. 答案:(2,+∞)3.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,(2b -a )cos C =c cos A . (1)求角C 的大小;(2)若c =3,△ABC 的面积S =433,求△ABC 的周长.解:(1)由已知及正弦定理得(2sin B -sin A )cos C =sin C cos A , 即2sin B cos C =sin A cos C +sin C cos A =sin(A +C )=sin B , ∵B ∈(0,π),∴sin B >0,∴cos C =12,∵C ∈(0,π),∴C =π3.(2)由(1)知,C =π3,故S =12ab sin C =12ab sin π3=433,解得ab =163.由余弦定理可得c 2=a 2+b 2-2ab cos C =a 2+b 2-ab =(a +b )2-3ab , 又c =3,∴(a +b )2=c 2+3ab =32+3×163=25,得a +b =5.∴△ABC 的周长为a +b +c =5+3=8.[解题技法]1.求三角形面积的方法(1)若三角形中已知一个角(角的大小或该角的正、余弦值),结合题意求解这个角的两边或该角的两边之积,代入公式求面积.(2)若已知三角形的三边,可先求其一个角的余弦值,再求其正弦值,代入公式求面积.总之,结合图形恰当选择面积公式是解题的关键.2.已知三角形面积求边、角的方法(1)若求角,就寻求夹这个角的两边的关系,利用面积公式列方程求解. (2)若求边,就寻求与该边(或两边)有关联的角,利用面积公式列方程求解. 考点二 平面图形中的计算问题[典例] (2018·广东佛山质检)如图,在平面四边形ABCD 中,∠ABC =3π4,AB ⊥AD ,AB =1. (1)若AC =5,求△ABC 的面积; (2)若∠ADC =π6,CD =4,求sin ∠CAD .[解] (1)在△ABC 中,由余弦定理得,AC 2=AB 2+BC 2-2AB ·BC ·c os ∠ABC , 即5=1+BC 2+2BC ,解得BC =2,所以△ABC 的面积S △ABC =12AB ·BC ·sin ∠ABC =12×1×2×22=12.(2)设∠CAD =θ,在△ACD 中,由正弦定理得AC sin ∠ADC =CDsin ∠CAD ,即AC sin π6=4sin θ, ① 在△ABC 中,∠BAC =π2-θ,∠BCA =π-3π4-⎝⎛⎭⎫π2-θ=θ-π4, 由正弦定理得AC sin ∠ABC =ABsin ∠BCA ,即AC sin 3π4=1sin ⎝⎛⎭⎫θ-π4,② ①②两式相除,得sin 3π4sin π6=4sin ⎝⎛⎭⎫θ-π4sin θ,即4⎝⎛⎭⎫22sin θ-22cos θ=2sin θ,整理得sin θ=2cos θ. 又因为sin 2θ+c os 2θ=1,所以sin θ=255,即sin ∠CAD =255.[解题技法]与平面图形有关的解三角形问题的关键及思路求解平面图形中的计算问题,关键是梳理条件和所求问题的类型,然后将数据化归到三角形中,利用正弦定理或余弦定理建立已知和所求的关系.具体解题思路如下:(1)把所提供的平面图形拆分成若干个三角形,然后在各个三角形内利用正弦、余弦定理求解;(2)寻找各个三角形之间的联系,交叉使用公共条件,求出结果.[提醒] 做题过程中,要用到平面几何中的一些知识点,如相似三角形的边角关系、平行四边形的一些性质,要把这些性质与正弦、余弦定理有机结合,才能顺利解决问题.[题组训练]1.如图,在△ABC 中,D 是边AC 上的点,且AB =AD,2AB =3BD ,BC =2BD ,则sin C 的值为________.解析:设AB =a ,∵AB =AD,2AB =3BD ,BC =2BD ,∴AD =a ,BD =2a 3,BC =4a 3. 在△ABD 中,c os ∠ADB =a 2+4a 23-a22a ×2a 3=33,∴sin ∠ADB =63,∴sin ∠BDC =63. 在△BDC 中,BD sin C =BCsin ∠BDC, ∴sin C =BD ·sin ∠BDC BC =66.答案:662.如图,在平面四边形ABCD 中,DA ⊥AB ,DE =1,EC =7,EA =2,∠ADC =2π3,且∠CBE ,∠BEC ,∠BCE 成等差数列.(1)求sin ∠CED ; (2)求BE 的长. 解:设∠CED =α.因为∠CBE ,∠BEC ,∠BCE 成等差数列, 所以2∠BEC =∠CBE +∠BCE ,又∠CBE +∠BEC +∠BCE =π,所以∠BEC =π3.(1)在△CDE 中,由余弦定理得EC 2=CD 2+DE 2-2CD ·DE ·c os ∠EDC , 即7=CD 2+1+CD ,即CD 2+CD -6=0, 解得CD =2(CD =-3舍去). 在△CDE 中,由正弦定理得EC sin ∠EDC =CDsin α,于是sin α=CD ·sin 2π3EC =2×327=217,即sin ∠CED =217.(2)由题设知0<α<π3,由(1)知cos α=1-sin 2α=1-2149=277,又∠AEB =π-∠BEC -α=2π3-α,所以c os ∠AEB =c os ⎝⎛⎭⎫2π3-α=c os 2π3cos α+sin 2π3sin α=-12×277+32×217=714. 在Rt △EAB 中,c os ∠AEB =EA BE =2BE =714,所以BE =47.考点三 三角形中的最值、范围问题[典例] (1)在△ABC 中,内角A ,B ,C 对应的边分别为a ,b ,c ,A ≠π2,sin C +sin(B -A )=2sin 2A ,则角A 的取值范围为( )A.⎝⎛⎦⎤0,π6 B.⎝⎛⎦⎤0,π4 C.⎣⎡⎦⎤π6,π4D.⎣⎡⎦⎤π6,π3(2)已知△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,且cos 2A +cos 2B =2cos 2C ,则cos C 的最小值为( )A.32B.22C.12D .-12[解析] (1)在△ABC 中,C =π-(A +B ),所以sin(A +B )+sin(B -A )=2sin 2A ,即2sin B cos A =22sin A cos A ,因为A ≠π2,所以cos A ≠0,所以sin B =2sin A ,由正弦定理得,b=2a ,所以A 为锐角.又因为sin B =2sin A ∈(0,1],所以sin A ∈⎝⎛⎦⎤0,22,所以A ∈⎝⎛⎦⎤0,π4. (2)因为cos 2A +cos 2B =2cos 2C ,所以1-2sin 2A +1-2sin 2B =2-4sin 2C ,得a 2+b 2=2c 2,cos C =a 2+b 2-c 22ab =a 2+b 24ab ≥2ab 4ab =12,当且仅当a =b 时等号成立,故选C. [答案] (1)B (2)C[解题技法]1.三角形中的最值、范围问题的解题策略解与三角形中边角有关的量的取值范围时,主要是利用已知条件和有关定理,将所求的量用三角形的某个内角或某条边表示出来,结合三角形边角取值范围等求解即可.2.求解三角形中的最值、范围问题的注意点(1)涉及求范围的问题,一定要搞清已知变量的范围,利用已知的范围进行求解, 已知边的范围求角的范围时可以利用余弦定理进行转化.(2)注意题目中的隐含条件,如A +B +C =π,0<A <π,b -c <a <b +c ,三角形中大边对大角等.[题组训练]1.在钝角△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,B 为钝角,若a cos A = b sin A ,则sin A +sin C 的最大值为( )A.2B.98C .1D.78解析:选B ∵a cos A =b sin A ,由正弦定理可得,sin A cos A =sin B sin A ,∵sin A ≠0,∴cos A =sin B ,又B 为钝角,∴B =A +π2,sin A +sin C =sin A +sin(A +B )=sin A +cos 2A =sin A +1-2sin 2A =-2⎝⎛⎭⎫sin A -142+98,∴sin A +sin C 的最大值为98. 2.(2018·哈尔滨三中二模)在△ABC 中,已知c =2,若sin 2A +sin 2B -sin A sin B =sin 2C ,则a +b 的取值范围为________.解析:∵sin 2A +sin 2B -sin A sin B =sin 2C ,∴a 2+b 2-ab =c 2,∴cos C =a 2+b 2-c 22ab =12,又∵C ∈(0,π),∴C =π3.由正弦定理可得a sin A =b sin B =2sin π3=433,∴a =433sin A ,b =433sin B .又∵B =2π3-A ,∴a +b =433sin A +433sin B =433sin A +433sin ⎝⎛⎭⎫2π3-A =4sin ⎝⎛⎭⎫A +π6.又∵A ∈⎝⎛⎭⎫0,2π3,∴A +π6∈⎝⎛⎭⎫π6,5π6,∴sin ⎝⎛⎭⎫A +π6∈⎝⎛⎦⎤12,1,∴a +b ∈(2,4]. 答案:(2,4]3.已知在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且cos B b +cos C c =sin A 3sin C .(1)求b 的值;(2)若cos B +3sin B =2,求△ABC 面积的最大值.解:(1)由题意及正、余弦定理得a 2+c 2-b 22abc +a 2+b 2-c 22abc =3a 3c ,整理得2a 22abc =3a3c ,所以b = 3.(2)由题意得cos B +3sin B =2sin ⎝⎛⎭⎫B +π6=2, 所以sin ⎝⎛⎭⎫B +π6=1, 因为B ∈(0,π),所以B +π6=π2,所以B =π3.由余弦定理得b 2=a 2+c 2-2ac cos B , 所以3=a 2+c 2-ac ≥2ac -ac =ac , 即ac ≤3,当且仅当a =c =3时等号成立. 所以△ABC 的面积S △ABC =12ac sin B =34ac ≤334,当且仅当a =c =3时等号成立.故△ABC 面积的最大值为334.考点四 解三角形与三角函数的综合应用考法(一) 正、余弦定理与三角恒等变换[典例] (2018·天津高考)在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c .已知 b sin A =ac os ⎝⎛⎭⎫B -π6. (1)求角B 的大小;(2)设a =2,c =3,求b 和sin(2A -B )的值. [解] (1)在△ABC 中,由正弦定理a sin A =b sin B ,可得b sin A =a sin B .又因为b sin A =ac os ⎝⎛⎭⎫B -π6, 所以a sin B =ac os ⎝⎛⎭⎫B -π6, 即sin B =32cos B +12sin B , 所以t a n B = 3.因为B ∈(0,π),所以B =π3.(2)在△ABC 中,由余弦定理及a =2,c =3,B =π3,得b 2=a 2+c 2-2ac cos B =7,故b =7. 由b sin A =ac os ⎝⎛⎭⎫B -π6,可得sin A =37. 因为a <c ,所以cos A =27. 所以sin 2A =2sin A cos A =437,cos 2A =2c os 2A -1=17.所以sin(2A -B )=sin 2A cos B -cos 2A sin B =437×12-17×32=3314. 考法(二) 正、余弦定理与三角函数的性质[典例] (2018·辽宁五校联考)已知函数f (x )=c os 2x +3sin(π-x )c os(π+x )-12.(1)求函数f (x )在[0,π]上的单调递减区间;(2)在锐角△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,已知f (A )=-1,a =2,b sin C =a sin A ,求△ABC 的面积.[解] (1)f (x )=c os 2x -3sin x cos x -12=1+cos 2x 2-32sin 2x -12=-sin ⎝⎛⎭⎫2x -π6, 令2k π-π2≤2x -π6≤2k π+π2,k ∈Z ,得k π-π6≤x ≤k π+π3,k ∈Z ,又∵x ∈[0,π],∴函数f (x )在[0,π]上的单调递减区间为⎣⎡⎦⎤0,π3和⎣⎡⎦⎤5π6,π. (2)由(1)知f (x )=-sin ⎝⎛⎭⎫2x -π6, ∴f (A )=-sin ⎝⎛⎭⎫2A -π6=-1, ∵△ABC 为锐角三角形,∴0<A <π2,∴-π6<2A -π6<5π6,∴2A -π6=π2,即A =π3.又∵b sin C =a sin A ,∴bc =a 2=4, ∴S △ABC =12bc sin A = 3.[对点训练]在△ABC 中,a ,b ,c 分别是角A ,B ,C 的对边,(2a -c )cos B -b cos C =0. (1)求角B 的大小;(2)设函数f (x )=2sin x cos x cos B -32cos 2x ,求函数f (x )的最大值及当f (x )取得最大值时x 的值.解:(1)因为(2a -c )cos B -b cos C =0, 所以2a cos B -c cos B -b cos C =0, 由正弦定理得2sin A cos B -sin C cos B -cos C sin B =0, 即2sin A cos B -sin(C +B )=0,又因为C +B =π-A ,所以sin(C +B )=sin A . 所以sin A (2cos B -1)=0.在△ABC 中,sin A ≠0,所以cos B =12,又因为B ∈(0,π),所以B =π3.(2)因为B =π3,所以f (x )=12sin 2x -32cos 2x =sin ⎝⎛⎭⎫2x -π3, 令2x -π3=2k π+π2(k ∈Z),得x =k π+5π12(k ∈Z),即当x =k π+5π12(k ∈Z)时,f (x )取得最大值1.[课时跟踪检测]A 级1.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,cos 2A =sin A ,bc =2,则 △ABC 的面积为( )A.12 B.14C .1D .2解析:选A 由cos 2A =sin A ,得1-2sin 2A =sin A ,解得sin A =12(负值舍去),由bc =2,可得△ABC 的面积S =12bc sin A =12×2×12=12.2.在△ABC 中,a ,b ,c 分别是角A ,B ,C 所对的边,若(2a +c )cos B +b cos C =0,则角B 的大小为( )A.π6 B.π3C.2π3D.5π6解析:选C 由已知条件和正弦定理,得(2sin A +sin C )cos B +sin B cos C =0.化简,得2sin A cos B +sin A =0.因为角A 为三角形的内角,所以sin A ≠0,所以cos B =-12,所以B =2π3. 3.在锐角△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若sin A =223,a =3,S △ABC =22,则b 的值为( )A .6B .3C .2D .2或3解析:选D 因为S △ABC =12bc sin A =22,所以bc =6,又因为sin A =223,A ∈⎝⎛⎭⎫0,π2, 所以cos A =13,因为a =3,所以由余弦定理得9=b 2+c 2-2bc cos A =b 2+c 2-4,b 2+c 2=13,可得b =2或b =3. 4.(2018·昆明检测)在△ABC 中,已知AB =2,AC =5,t a n ∠BAC =-3,则BC 边上的高等于( )A .1 B.2 C.3D .2解析:选A 法一:因为t a n ∠BAC =-3,所以sin ∠BAC =310,c os ∠BAC =-110.由余弦定理,得BC 2=AC 2+AB 2-2AC ·ABc os ∠BAC =5+2-2×5×2×⎝⎛⎭⎫-110=9,所以BC =3,所以S △ABC =12AB ·AC sin ∠BAC =12×2×5×310=32,所以BC 边上的高h =2S △ABCBC =2×323=1.法二:在△ABC 中,因为t a n ∠BAC =-3<0,所以∠BAC 为钝角,因此BC 边上的高小于2,结合选项可知选A.5.(2018·重庆九校联考)已知a ,b ,c 分别是△ABC 的内角A ,B ,C 的对边,且a sin B =3b cos A ,当b +c =4时,△ABC 面积的最大值为( )A.33B.32C.3D .23解析:选C 由a sin B =3b cos A ,得sin A sin B =3sin B cos A ,∴t a n A =3,∵0<A <π,∴A =π3,故S △ABC =12bc sin A =34bc ≤34⎝⎛⎭⎫b +c 22=3(当且仅当b =c =2时取等号),故选C.6.(2019·安徽名校联盟联考)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若bc =1,b +2c cos A =0,则当角B 取得最大值时,△ABC 的周长为( )A .2+3B .2+2C .3D .3+2解析:选A 由b +2c cos A =0,得b +2c ·b 2+c 2-a 22bc =0,整理得2b 2=a 2-c 2.由余弦定理,得cos B =a 2+c 2-b 22ac =a 2+3c 24ac ≥23ac 4ac =32,当且仅当a =3c 时等号成立,此时角B 取得最大值,将a =3c 代入2b 2=a 2-c 2可得b =c .又因为bc =1,所以b =c =1,a =3,故△ABC 的周长为2+ 3.7.在△ABC 中,B =120°,AC =7,AB =5,则△ABC 的面积为________. 解析:由余弦定理知72=52+BC 2-2×5×BC ×cos 120°, 即49=25+BC 2+5BC ,解得BC =3(负值舍去). 故S △ABC =12AB ·BC sin B =12×5×3×32=1534.答案:15348.(2019·长春质量检测)在△ABC 中,三个内角A ,B ,C 的对边分别为a ,b ,c ,若 12b cos A =sin B ,且a =23,b +c =6,则△ABC 的面积为________.解析:由题意可知cos A 2=sin B b =sin Aa ,因为a =23,所以t a n A =3,因为0<A <π,所以A =π3,由余弦定理得12=b 2+c 2-bc =(b +c )2-3bc ,又因为b +c =6,所以bc =8,从而△ABC 的面积为12bc sin A =12×8×sin π3=2 3.答案:239.已知在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,∠BAC =π2,点D 在边BC上,AD =1,且BD =2DC ,∠BAD =2∠DAC ,则sin Bsin C=________.解析:由∠BAC =π2及∠BAD =2∠DAC ,可得∠BAD =π3,∠DAC =π6.由BD =2DC ,令DC =x ,则BD =2x .因为AD =1,在△ADC 中,由正弦定理得1sin C =x sin π6,所以sin C =12x,在△ABD 中,sin B =sin π32x =34x ,所以sin B sin C =34x 12x=32.答案:3210.(2018·河南新乡二模)如图所示,在△ABC 中,C =π3,BC =4,点D 在边AC 上,AD =DB ,DE ⊥AB ,E 为垂足,若DE =22,则cos A =________.解析:∵AD =DB ,∴∠A =∠ABD ,∠BDC =2∠A .设AD =DB =x , ∴在△BCD 中,BC sin ∠BDC =DB sin C,可得4sin 2A =xsin π3. ①在△AED 中,DE sin A =AD sin ∠AED ,可得22sin A =x1. ② 联立①②可得42sin A cos A =22sin A 32,解得cos A =64.答案:6411.(2019·南宁摸底联考)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,已知 c (1+cos B )=b (2-cos C ).(1)求证:2b =a +c ;(2)若B =π3,△ABC 的面积为43,求b .解:(1)证明:∵c (1+cos B )=b (2-cos C ),∴由正弦定理可得sin C +sin C cos B =2sin B -sin B cos C , 即sin C cos B +sin B cos C +sin C =sin(B +C )+sin C =2sin B , ∴sin A +sin C =2sin B ,∴a +c =2b .(2)∵B =π3,∴△ABC 的面积S =12ac sin B =34ac =43,∴ac =16.由余弦定理可得b 2=a 2+c 2-2ac cos B =a 2+c 2-ac =(a +c )2-3ac . ∵a +c =2b ,∴b 2=4b 2-3×16,解得b =4. 12.在△ABC 中,AC =6,cos B =45,C =π4.(1)求AB 的长; (2)求c os ⎝⎛⎭⎫A -π6的值. 解:(1)因为cos B =45,0<B <π,所以sin B =35.由正弦定理得AC sin B =AB sin C ,所以AB =AC ·sin Csin B =6×2235=5 2.(2)在△ABC 中,因为A +B +C =π,所以A =π-(B +C ), 又因为cos B =45,sin B =35,所以cos A =-c os(B +C )=-c os ⎝⎛⎭⎫B +π4=-cos Bc os π4+sin B sin π4=-45×22+35×22=-210.因为0<A <π,所以sin A =1-c os 2A =7210. 因此,c os ⎝⎛⎭⎫A -π6=cos Ac os π6+sin A sin π6=-210×32+7210×12=72-620. B 级1.在锐角三角形ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若B =2A ,则2ba的取值范围是( )A .(2,2)B .(2,6)C .(2,3)D .(6,4)解析:选B ∵B =2A ,∴sin B =sin 2A =2sin A cos A ,∴ba =2cos A .又C =π-3A ,C为锐角,∴0<π-3A <π2⇒π6<A <π3,又B =2A ,B 为锐角,∴0<2A <π2⇒0<A <π4,∴π6<A <π4,22<cosA <32,∴2<b a <3,∴2<2ba< 6. 2.△ABC 的三个内角A ,B ,C 所对的边分别为a ,b ,c ,a sin A sin B +bc os 2A =2a ,则角A 的取值范围是________.解析:由已知及正弦定理得sin 2A sin B +sin Bc os 2A =2sin A ,即sin B (sin 2A +c os 2A )=2sin A ,∴sin B =2sin A ,∴b =2a ,由余弦定理得cos A =b 2+c 2-a 22bc =4a 2+c 2-a 24ac =3a 2+c 24ac ≥23ac 4ac =32,当且仅当c =3a 时取等号.∵A 为三角形的内角,且y =cos x 在(0,π)上是减函数,∴0<A ≤π6,则角A 的取值范围是⎝⎛⎦⎤0,π6. 答案:⎝⎛⎦⎤0,π6 3.(2018·昆明质检)如图,在平面四边形ABCD 中,AB ⊥BC ,AB =2,BD =5,∠BCD =2∠ABD ,△ABD 的面积为2.(1)求AD 的长; (2)求△CBD 的面积.解:(1)由已知S △ABD =12AB ·BD ·sin ∠ABD =12×2×5×sin ∠ABD =2,可得sin ∠ABD =255,又∠BCD =2∠ABD ,所以∠ABD ∈⎝⎛⎭⎫0,π2,所以c os ∠ABD =55. 在△ABD 中,由余弦定理AD 2=AB 2+BD 2-2·AB ·BD ·c os ∠ABD ,可得AD 2=5,所以AD = 5.(2)由AB ⊥BC ,得∠ABD +∠CBD =π2,所以sin ∠CBD =c os ∠ABD =55. 又∠BCD =2∠ABD ,所以sin ∠BCD =2sin ∠ABD ·c os ∠ABD =45,∠BDC =π-∠CBD -∠BCD =π-⎝⎛⎭⎫π2-∠ABD -2∠ABD =π2-∠ABD =∠CBD , 所以△CBD 为等腰三角形,即CB =CD .在△CBD 中,由正弦定理BD sin ∠BCD =CDsin ∠CBD ,得CD =BD ·sin ∠CBDsin ∠BCD=5×5545=54, 所以S △CBD =12CB ·CD ·sin ∠BCD =12×54×54×45=58.。

三角形正弦余弦公式大全

三角形正弦余弦公式大全

三角形正弦余弦公式大全高中数学的三角形正弦与余弦的公式同学们还记得吗?如果没有总结过,没记住的话,请往下看。

下面是由小编为大家整理的“三角形正弦余弦公式大全”,仅供参考,欢迎大家阅读。

三角形正弦余弦公式大全Sin(A+B)=SinA*CosB+SinB*CosASin(A-B)=SinA*CosB-SinB*CosACos(A+B)=CosA*CosB-SinA*SinBCos(A-B)=CosA*CosB+SinA*SinBTan(A+B)=(TanA+T anB)/(1-TanA*TanB)Tan(A-B)=(TanA-TanB)/(1+TanA*TanBsin(2α)=2sinα·cosα=2/(tanα+cotα)cos(2α)=cos^2(α)-sin^2(α)=2cos^2(α)-1=1-2sin^2(α)tan(2α)=2tanα/[1-tan^2(α)]拓展阅读:求三角形边长公式三角形边长公式:1、根据余弦定理,有公式:a^2=b^2+c^2-2bc×cosA。

2、根据正弦定理,有公式:a=b*sinA/sinB。

3、根据勾股定理,有公式:a^2+b^2=c^2。

三角形边长的计算方法对于任意一个三角形,已知两角一对边,可以根据正弦定理计算:a=b*sinA/sinB。

正弦定理的公式为a/sinA = b/sinB =c/sinC,根据正弦定理的公式可以解三角形。

对于任意一个三角形,已知两条边与夹角,可以根据余弦定理求出第三条边,有公式:c^2=a^2+b^2-2abcosC、a^2=b^2+c^2-2bccosA、b^2=a^2+c^2-2accosB。

余弦定理是描述三角形中三边长度与一个角的余弦值关系的数学定理,是勾股定理在一般三角形情形下的推广,勾股定理是余弦定理的特例。

对于直角三角形,可以根据勾股定理求变成,有公式:a^2+b^2=c^2。

如何计算三角形的斜边已知两个直角边,求第三边的方法有已知一个锐角和两直角边,如图所示已知直角三角形一锐角度数,求斜边的方法有正弦定理直接求出还有通过正弦定理算出直角边,再用勾股定理求出。

(完整版)正余弦定理及解三角形整理(有答案)

(完整版)正余弦定理及解三角形整理(有答案)

正余弦定理考点梳理:1.直角三角形中各元素间的关系:如图,在△ABC 中,C =90°,AB =c ,AC =b ,BC =a 。

(1)三边之间的关系:a 2+b 2=c 2。

(勾股定理) A(2)锐角之间的关系:A +B =90°; c (3)边角之间的关系:(锐角三角函数定义) b sin A =cos B =,cos A =sin B =,tan A =。

C B c a c b ba2.2.斜三角形中各元素间的关系: a如图6-29,在△ABC 中,A 、B 、C 为其内角,a 、b 、c 分别表示A 、B 、C 的对边。

(1)三角形内角和:A +B +C =_____(2)正弦定理:在一个三角形中,各边和它所对角的正弦的比相等。

(R 为外接圆半径)R CcB b A a 2sin sin sin ===3.正弦定理:===2R 的常见变形:asin A b sin B csin C (1)sin A ∶sin B ∶sin C =a ∶b ∶c ;(2)====2R ;a sin Ab sin B csin C a +b +csin A +sin B +sin C (3)a =2R sin_A ,b =2R sin_B ,c =2R sin_C ;(4)sin A =,sin B =,sin C =.a 2Rb 2R c2R 4.三角形面积公式:S =ab sin C =bc sin A =ca sin B .1212125.余弦定理:三角形任何一边的平方等于其他两边平方的和减去这两边与它们夹角的余弦的积的两倍。

余弦定理的公式: 或.2222222222cos 2cos 2cos a b c bc A b a c ac B c b a ba C ⎧=+-⎪=+-⎨⎪=+-⎩222222222cos 2cos 2cos 2b c a A bc a c b B ac b a c C ab ⎧+-=⎪⎪+-⎪=⎨⎪⎪+-=⎪⎩6.(1)两类正弦定理解三角形的问题:1、已知两角和任意一边,求其他的两边及一角. 2、已知两边和其中一边的对角,求其他边角. (2)两类余弦定理解三角形的问题:1、已知三边求三角.2、已知两边和他们的夹角,求第三边和其他两角.7.判定三角形形状时,可利用正余弦定理实现边角转化,统一成边的形式或角的形式.8.解题中利用中,以及由此推得的一些基本关系式进行三角变换ABC ∆A B C π++=的运算,如:sin()sin ,A B C +=cos()cos ,A B C +=-tan()tan ,A B C +=-.sincos ,cos sin ,tan cot222222A B C A B C AB C+++===9. 解斜三角形的主要依据是:设△ABC 的三边为a 、b 、c ,对应的三个角为A 、B 、C 。

解三角形的答题模板

解三角形的答题模板

解三角形的答题模板正弦定理、余弦定理及其在现实生活中的应用是高考的热点.主要考查利用正弦定理、余弦定理解决一些简单的三角形的度量问题以及测量、几何计算有关的实际问题.正、余弦定理的考查常与同角三角函数的关系、诱导公式、和差倍角公式甚至三角函数的图象和性质等交汇命题,多以解答题的形式出现,属解答题中的低档题.[典例] (满分12分)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c .已知A =π4,b sin ⎝ ⎛⎭⎪⎫π4+C -c sin ⎝ ⎛⎭⎪⎫π4+B =a .(1)求证:B -C =π2;(2)若a =2,求△ABC 的面积.规范审题模板1.审条件,挖解题信息观察条件―→A =π4,b sin ⎝ ⎛⎭⎪⎫π4+C -c sin ⎝ ⎛⎭⎪⎫π4+B =a ――――――――――→等式中既有边又有角,应统一 sin B sin ⎝ ⎛⎭⎪⎫π4+C -sin C sin ⎝ ⎛⎭⎪⎫π4+B =sin A2.审结论,明解题方向观察所求结论―→求证:B -C =π2――――――――――――――――→应求角B -C 的某一个三角函数值 sinB -C =1或cos B -C =0.3.建联系,找解题突破口考虑到所求的结论只含有B ,C ,因此应消掉sin B sin⎝ ⎛⎭⎪⎫π4+C -sin C sin ⎝ ⎛⎭⎪⎫π4+B =sin A 中的角A4A −−−−→代入=sin B sin ⎝ ⎛⎭⎪⎫π4+C -sin C sin ⎝ ⎛⎭⎪⎫π4+B =22―――――――――――――→利用两角和与差的三角函数公式sin B -C =1――――――――――――――→要求角的值,还应确定角的取值范围由0<B ,C <3π4,解得B -C =π2教你快速规范审题1.审条件,挖解题信息观察条件―→a =2,A =π4,B -C =π2―――――――→可求B ,C 的值 B =5π8,C =π8 2.审结论,明解题方向观察所求结论―→求△ABC 的面积―――――→应具有两边及其夹角 由asin A =b sin B =c sin C ,得b =2sin 5π8,c =2sin π83.建联系,找解题突破口 △ABC 的边角都具备――――――――――→利用面积公式求结论S =12bc sin A =2sin5π8sin π8=2cos π8sin π8=12教你准确规范解题(1)证明:由b sin ⎝ ⎛⎭⎪⎫π4+C -c sin ⎝ ⎛⎭⎪⎫π4+B =a ,应用正弦定理,得 sin B sin ⎝ ⎛⎭⎪⎫π4+C -sin C sin ⎝ ⎛⎭⎪⎫π4+B =sin A ,(2分)sin B ⎝⎛⎭⎪⎫22sin C +22cos C -sin C ⎝ ⎛⎭⎪⎫22sin B +22cos B =22,整理得sin B cos C -cos B sin C =1,(5分)即sin(B -C )=1,由于0<B ,C <34π,从而B -C =π2.(6分)(2)B +C =π-A =3π4,因此B =5π8,C =π8.(8分)由a =2,A =π4,得b =a sin B sin A =2sin 5π8,c =a sin C sin A =2sin π8,(10分)所以△ABC 的面积S =12bc sin A =2sin 5π8sin π8=2cos π8sin π8=12.(12分)常见失分探因易忽视角B -C 的范围,直接由sin B -C =1,求得结论.教你一个万能模板解三角形问题一般可用以下几步解答:第一步利用正弦定理或余弦定理实现边角互化(本题为边化角)―→第二步三角变换、化简、消元,从而向已知角(或边)转化―→第三步 代入求值―→第四步反思回顾,查看关键点,易错点,如本题中公式应用是否正确。

(完整版)解三角形之正弦定理与余弦定理

(完整版)解三角形之正弦定理与余弦定理

正弦定理与余弦定理教学目标掌握正弦定理和余弦定理的推导,并能用它们解三角形.正余弦定理及三角形面积公式.教学重难点掌握正弦定理和余弦定理的推导,并能用它们解三角形.知识点清单一.正弦定理:1.正弦定理:在一个三角形中,各边和它所对角的正弦的比相等,并且都等于外接圆的直径,即 R Cc B b A a 2sin sin sin ===(其中R 是三角形外接圆的半径) 2.变形:1)sin sin sin sin sin sin a b c a b c C C++===A +B +A B . 2)化边为角:C B A c b a sin :sin :sin ::=; ;sin sin B A b a = ;sin sin C B c b = ;sin sin CA c a = 3)化边为角:C R cB R b A R a sin 2,sin 2,sin 2===4)化角为边:;sin sin b a B A = ;sin sin c b C B =;sin sin ca C A = 5)化角为边: Rc C R b B R a A 2sin ,2sin ,2sin === 3. 利用正弦定理可以解决下列两类三角形的问题:①已知两个角及任意—边,求其他两边和另一角;例:已知角B,C,a ,解法:由A+B+C=180o ,求角A,由正弦定理;sin sin B A b a = ;sin sin CB c b = ;sin sin CA c a =求出b 与c ②已知两边和其中—边的对角,求其他两个角及另一边。

例:已知边a,b,A,解法:由正弦定理BA b a sin sin =求出角B,由A+B+C=180o 求出角C ,再使用正弦定理CA c a sin sin =求出c 边4.△ABC 中,已知锐角A ,边b ,则①A b a sin <时,B 无解; ②A b a sin =或b a ≥时,B 有一个解;③b a A b <<sin 时,B 有两个解。

完整版解三角形公式汇总

完整版解三角形公式汇总

完整版解三角形公式汇总解三角形公式是解决三角形相关问题的基本工具之一。

它通过已知的一些角度或边长,可以计算出其他未知角度或边长的值。

本文将完整地汇总和解释常见的三角形公式,包括正弦定理、余弦定理和正切定理。

一、正弦定理正弦定理是用于计算三角形任意一边与其对应角度之间关系的公式。

对于三角形ABC,已知边长a、边长b和它们夹角C,可以使用正弦定理计算第三边c的长度。

正弦定理的表达式如下:sin(C) = c / a = c / b根据上述表达式,可以用一侧边的正弦比例计算另一边的长度。

同样地,可以通过已知边长和对应角度的正弦比例计算出其他任意一边的长度。

二、余弦定理余弦定理是计算三角形任意一边与两个邻边之间关系的公式。

对于三角形ABC,已知边长a、边长b和夹角C,可以使用余弦定理计算第三边c的长度。

余弦定理的表达式如下:c² = a² + b² - 2abcos(C)通过这个公式,我们可以计算出未知边长c的值。

同时,余弦定理也可用于计算三角形中的角度。

例如,已知边长a、边长b和边长c,可以通过余弦定理计算出夹角C的大小。

三、正切定理正切定理也是解三角形问题中常用的公式。

对于三角形ABC,已知两个邻边的长度a和b,可以使用正切定理计算夹角C的大小。

正切定理的表达式如下:tan(C) = a / b通过这个公式,可以计算出夹角C的大小。

同样地,正切定理也适用于计算其他未知角度。

四、应用举例下面,我们通过几个具体的例子来演示这些公式的应用。

例子1:已知一个三角形的两个角A、B和其中一边a的长度,求另外两边的长度。

解:根据已知条件,我们可以使用正弦定理来计算出边长b和边长c的值。

sin(A) = b / asin(B) = c / a通过这两个等式,我们可以解出未知边长b和c的值。

例子2:已知一个三角形ABC的三个边长a、b、c,求其中的角度。

解:根据已知条件,我们可以使用余弦定理来计算出角A、角B和角C的大小。

正弦定理

正弦定理
得到
b c 同理, 作AE BC .有 sin B sin C a b c sin A sin B sin C
sin A

sin B
若三角形是钝角三角形,且角C是钝角如图2,
过点A作AD⊥BC, 交BC延长线于D, 此时也有 sin B
AD c
A c b
( C) 且 sin
sin A sin B
b sin A 16 3 sin 30 3 得 sin B a 16 2
16 3
300
16
16
所以B=60°,或B=120° 当 B=60°时
C=90°
A
B
B
c 32 .
a sin C c 16 . sin A
当B=120°时 C=30°
小结:已知两边和其中一边的对角,可以求出 三角形的其他的边和角。(注意解的情况)
2.1.1 正弦定理
四.课堂练习
(1)在ABC中,已知 A 450 , a 2, b 2, 求B
B=300
10 3 (2)在ABC中,已知A 60 , a 4, b , 求B 3
0
无解
2.1.1 正弦定理
五.孙刘联盟炸曹操问题的解决方法
B
c
A

b

C
bsinβ AB = sin(α + β)
思考: 对一般的三角形,这个结论还能成立吗?
2.1.1 正弦定理
(1)当 ABC 是锐角三角形时,结论是否还成立呢? C 如图:作AB边上的高CD,根椐 E 正弦的定义,得到 b a CD a sin B, CD b sin A A 所以 a sin B b sin A B D a b c

正弦定理的公式是什么

正弦定理的公式是什么

正弦定理的公式是什么正弦定理的公式是什么sin^2(α/2)=(1-cosα)/2。

在直角三角形中,∠A(非直角)的对边与斜边的比叫做∠A的正弦,故记作sinA,即sinA=∠A的对边/∠A的斜边古代说法,正弦是股与弦的比例。

古代说的“勾三股,四弦五”中的“弦”,就是直角三角形中的斜边。

股就是人的大腿,长长的,古人称直角三角形中长的那个直角边为“股”;正方的直角三角形,应是大腿站直。

正弦是∠α(非直角)的对边与斜边的比值,余弦是∠A(非直角)的邻边与斜边的比值。

勾股弦放到圆里。

弦是圆周上两点连线。

最大的弦是直径。

把直角三角形的弦放在直径上,股就是长的弦,即正弦,而勾就是短的弦,即余弦。

按现代说法,正弦是直角三角形某个角(非直角)的对边与斜边之比,即:对边/斜边。

余弦定理是什么余弦定理是描述三角形中三边长度与一个角的余弦值关系的数学定理,是勾股定理在一般三角形情形下的推广,勾股定理是余弦定理的特例。

余弦定理是揭示三角形边角关系的重要定理,直接运用它可解决一类已知三角形两边及夹角求第三边或者是已知三个边求三角的问题,若对余弦定理加以变形并适当移于其它知识,则使用起来更为方便、灵活。

高中数学正弦定理公式数学正弦定理公式:a/sinA=b/sinB=c/sinC=2R;余弦定理公式:cosA=(b?+c?-a?)/2bc。

正余弦定理指正弦定理和余弦定理,是揭示三角形边角关系的重要定理,直接运用它可解决三角形的问题,若对余弦定理加以变形并适当移于其它知识,则使用起来更为方便、灵活。

一、正弦定理推论公式1、a=2RsinA;b=2RsinB;c=2RsinC。

2、a:b=sinA:sinB;a:c=sinA:sinC;b:c=sinB:sinC;a:b:c=sinA:sinB:sinC。

二、余弦定理推论公式1、cosA=(b^2+c^2-a^2)/2bc;2、cosB=(a^2+c^2-b^2)/2ac;3、cosC=(a^2+b^2-c^2)/2ab。

(完整版)解三角形之正弦定理与余弦定理

(完整版)解三角形之正弦定理与余弦定理

正弦定理与余弦定理教学目标掌握正弦定理和余弦定理的推导,并能用它们解三角形正余弦定理及三角形面积公式.教学重难点掌握正弦定理和余弦定理的推导,并能用它们解三角形知识点清单一.正弦定理:1. 正弦定理:在一个三角形中,各边和它所对角的正弦的比相等,并且都等于外接圆的直径,即a b c2R(其中R是三角形外接圆的半径)sin A sin B si2.变形:1) a b c a b csin sin si nC sin sin si nC2)化边为角:a :b: c sin A: sin B :s in C -a si nA.b sin B a sin AJb sin Bc sin C c sin C '3)化边为角:a 2Rsin A, b 2Rsi nB, c 2Rs inC4)化角为边:sin A a ;J sin B b ; si nA aJ7sin B b sin C c sin C c5)化角为边:sin A a sin B b si nC c2R‘2R'2R3.利用正弦定理可以解决下列两类三角形的问题:①已知两个角及任意一边,求其他两边和另一角; 例:已知角B,C,a,解法:由A+B+C=18°0,求角A,由正弦定理-Sn) - Sn^; b sin B c sin C a sin A;求出b与cc sin C②已知两边和其中一边的对角,求其他两个角及另一边。

例:已知边a,b,A,解法:由正弦定理旦血求出角B,由A+B+C=180求出角C,再使用正b sin B弦定理旦泄求出c边c sin C4. △ ABC中,已知锐角A,边b,贝U①a bsin A时,B无解;②a bsinA或a b时,B有一个解;③ bsin A a b 时,B 有两个解。

如:①已知A 60 ,a 2,b2, 3 ,求B (有一个解) ②已知A 60 ,b 2,a23,求B (有两个解)注意:由正弦定理求角时,注意解的个数。

直角三角形的正弦定理

直角三角形的正弦定理

直角三角形的正弦定理直角三角形的正弦定理是三角学中的一个重要定理,描述了直角三角形中的角度和边长之间的关系。

本文将详细介绍直角三角形的正弦定理,并对其应用进行探讨。

直角三角形是一种特殊的三角形,其中一个角度为90度,周边两个角度为锐角。

在直角三角形中,我们通常将90度的角称为直角,对于其他两个角,可以将其中一个角记为θ。

假设在一个直角三角形ABC中,角A为直角,边a位于角A对面,边b与角A相邻,边c为斜边。

根据直角三角形的正弦定理,我们可以得出以下公式:sin(θ) = b / c 或 b = c * sin(θ)其中,sin(θ)代表角A的正弦值,b代表边b的长度,c代表斜边的长度。

通过直角三角形的正弦定理,我们可以使用已知的两个角度和一个边长,来求解直角三角形中的其他边长。

具体应用如下:1. 已知一个锐角和斜边,求解直角三角形其他边长当已知一个锐角和斜边时,可以使用正弦定理求解其他两个边长。

假设已知角A为锐角,斜边c的长度为x,要求解边长a和边长b。

由于sin(θ) = b / c,我们可以得到b = c * sin(θ)。

代入已知条件,有b = x * sin(A)。

同理,我们可以得到a = c * cos(θ) 或 a = x * cos(A)。

其中,cos(θ)代表角A的余弦值。

因此,已知一个锐角和斜边,可以通过正弦定理求解直角三角形的另外两边长。

2. 已知两个边长,求解直角三角形的角度当已知两个边长时,可以通过正弦定理求解其中一个角度。

假设已知边长a和边长c,要求解角A。

根据正弦定理,sin(θ) = b / c。

代入已知条件,我们有sin(A) = a / c。

可以通过反正弦函数求解角A的值,即 A = arcsin(a / c)。

注意,求解出来的是弧度制的角度,如需转换成度数,可以使用角度制的单位进行转换。

直角三角形的正弦定理在实际生活中有着广泛的应用。

比如,在建筑行业中,我们经常需要测量高楼建筑的高度,但由于无法直接测量,可以借助正弦定理来求解。

解三角形正弦定理

解三角形正弦定理

. .解三角形学校:___________:___________班级:___________考号:___________一.正弦定理:1.正弦定理:在一个三角形中,各边和它所对角的正弦的比相等,并且都等于外接圆的直径,即 a b c 2R〔其中 R 是三角形外接圆的半 sin A sin B sin C径〕2.变形:1〕abc a b c.sin sin sin C sin sin sin C2〕化边为角: a : b : c sin A: sin B : sin C ;a sin A ; b sin B ; a sin A ; b sin B c sin C c sin C3〕化边为角: a 2R sin A, b 2R sin B, c 2R sin C4〕化角为边: sin A a ; sin B b ; sin A a ; sin B b sin C c sin C c5〕化角为边: sin A a , sin B b , sin C c2R2R2R二.三角形面积S ABC1 2absin C1 bcsin 2A1 acsin 2B三.余弦定理1.余弦定理:三角形中任何一边的平方等于其他两边平方的和减去这两边与它们夹角的余弦的积的 2 倍,即a2 b2 c2 2bc cos Ab2 a2 c2 2ac cosBc2 a2 b2 2ab cosC2.变形: cos A b 2 c 2 a 2 2bccos B a 2 c 2 b 2 2ac..word..--cos C a 2 b 2 c 2 2ab注意整体代入,如: a2 c2 b2 ac cosB 1 2一、选择题〔题型注释〕1.设 ABC 的三角 A、B、C 成等差数列, sin A 、 sin B 、 sin C 成等比数列,那么这个三角形的形状是〔〕A.直角三角形B.钝角三角形C.等边三角形D.等腰直角三角形2. ABC 的三个角 A, B, C 的对边分别是 a,b, c ,且 a2 c2 b2 ab ,那么角 C 等于〔〕A. 3C. 2 3B. 或 3 44D. 63.在 ABC 中, A 60o, a 4 3,b 4 2 ,那么 B A. 30oB. 45o C.120D.135 4.△ABC 中,a=4,b=4 3 ,∠A=30°,那么∠B 等于()A.30°B.30°或 150°C.60°D.60°或 120°5.在 ABC 中, a2 tan B b2 tan A ,那么 ABC 的形状是〔〕A.等腰三角形 C.等腰直角三角形B.直角三角形 D.等腰三角形或直角三角形6.设的角 , , 的对边分别为 , , .假设,,,且 ,那么 〔〕A.B.C.D.7.假设 (a b c)(b c a) 3bc ,且 sin A 2sin B cos C ,那么△ABC 是A.直角三角形 C.等腰三角形B.等边三角形 D.等腰直角三角形8.在 ABC 中, a 2 , b 2 3 , A 30 , 那么 B =〔〕总结. .A. 60B. 60 或120C. 30D. 30 或1509.在 ABC 中, B 60 , b2 ac ,那么此三角形一定是〔〕A.直角三角形B.钝角三角形C.等腰直角三角形D.等边三角形10.在△ABC 中,角 A, B,C 所对的边分别是 a,b, c ,a=7, c 5 ,那么 sin A 的值是 sin CA. 7 5B. 5 7C. 7 12D. 5 1211.在△ ABC 中, a 2 , A 30 , C 135 ,那么边 c A.1 B. 2 C. 2 2 D. 2 312.在△ABC 中, a2 b2 c2 bc ,那么 A 等于〔〕 A.60° B.120° C.30° D. 150°13.△ABC 的角 A、B、C 所对的边分别为 a、b、c.假设 B=2A,a=1,b= 3 ,那么 c 等于()(A)2 3(B)2(C) 2(D)114.在△ABC 中,a=3,b=5,sinA= 1 ,那么 sinB 等于() 3(A) 1(B) 5(C) 5(D)159315.在 ABC 中, a 2 3,b 2 2, B 45 ,那么 A 等于A.30°B.60°C.60°或 120°D.30°或 15016.在锐角△ABC 中,BC=1,B=2A,那么 AC 的取值围是().A.[-2,2] B.[0,2] C.(0,2] D.( 2 , 3 )17.假设△ABC 的角 A,B,C 所对的边分别为 a,b,c,且 a2 c2 b2 2ba ,那么∠C=( )A. π 6B. 5π 6C. π 4D. 3π 418.在△ABC 中,假设 cos A cos B sin C ,那么△ABC 是〔〕abcA.有一角为 30°的直角三角形 B.等腰直角三角形C.有一角为 30°的等腰三角形 D.等边三角形19.在 ABC 中,假设 c 2a cos B ,那么 ABC 的形状为〔〕A.直角三角形 B.等腰三角形 C.等边三角形 D.锐角三角形 20.在△ABC 中,如果 sin A : sin B : sin C 2 : 3 : 4 ,那么 cosC 等于〔〕..word..--A. 2B. - 233C. - 1 3D. - 1 4二、填空题〔题型注释〕21.方程 x2 (b cos A)x a cos B 0 的两根之积等于两根之和,且 a,b 为 ABC 的两 边, A, B 为两角,那么 ABC 的形状为______22. ABC 中,角 A 、 B 、C 的对边分别是 a、b、c , a 1 ,c 3 ,A 30 ,那 么 b 等于__________. 23.在△ABC 中,假设 b 1, c 3, C 2 ,那么 a .324.如图,一辆汽车在一条水平的公路上向正西行驶,到 处时测得公路北侧一山顶 D在西偏北 的方向上,行驶 600m 后到达 处,测得此山顶在西偏北 的方向上,仰角为 ,那么此山的高度 ________m.25.△ ABC 中 , a 2 , b 2 , c 1,那么 cos B .26. ABC 的角 A 、 B 、C 所对的边分别是 a ,b , c .假设 a2 ab b2 c2 0 ,那么角 C 的大小是. 27.假设海上有 A、B、C 三个小岛,测得 A,B 两岛相距 10 海里,∠BAC=60°,∠ ABC=75°,那么 B、C 间的距离是________海里.28.在锐角△ABC 中,角 A、B 所对的边长分别为 a 、 b ,假设 2asinB= 3 b,那么角A 等于________.29.△ABC 的角 A、B、C 的对边长分别为 a、b、c,假设 a2 c2 b,且b 3c cos A ,那么 b= .30.在 ABC 中,假设 b 5, B ,sin A 1 , 那么 a 4331.在 ABC 中, B 60 , AC 3 ,那么 AB 2BC 的大值为.32.在钝角 ABC 中角 A,B,C 的对边分别是 a , b , c ,假设 a 2 , b 3 ,那么最大边 c 的取值围是_________.总结. .33.ABC 的角 A, B,C 所对的边分别为 a,b, c ,假设 sin A, sin B, sin C 成等比数列,且 c 2a ,那么 cos B _____________________ 34.在 △ ABC 中, b 3 , c 5 , cos A 1 ,那么 a .2 35.假设 ABC 的面积为 S a 2 b2 c2 ,那么角 C =__________.43三、解答题〔题型注释〕 36.在△ABC 中,角 A,B,C 的对边分别为 a,b,c,A= ,cosB= . 〔Ⅰ〕求 cosC 的值; 〔Ⅱ〕假设 c= ,求△ABC 的面积.37.在△ABC 中,角 A,B,C 的对边分别为 a,b,C.3cos〔B-C〕-1=6cosBcosC. 〔1〕求 cosA;〔2〕假设 a=3,△ABC 的面积为 2 2 ,求边 b 和 c.38. a,b, c 分别为 ABC 三个角 A, B,C 的对边, a cos C 3a sin C b c 0 (Ⅰ)求 A ; (Ⅱ)假设 a 2 , ABC 的面积为 3 ;求 b, c 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

解三角形学校:___________姓名:___________班级:___________考号:___________一.正弦定理:1.正弦定理:在一个三角形中,各边和它所对角的正弦的比相等,并且都等于外接圆的直径,即 R Cc B b A a 2sin sin sin ===(其中R 是三角形外接圆的半径)2.变形:1)sin sin sin sin sin sin a b c a b c C C++===A +B +A B . 2)化边为角:C B A c b a sin :sin :sin ::=; ;sin sin B A b a = ;sin sin C B c b = ;sin sin CA c a = 3)化边为角:C R cB R b A R a sin 2,sin 2,sin 2===4)化角为边:;sin sin b a B A = ;sin sin c b C B =;sin sin ca C A = 5)化角为边: Rc C R b B R a A 2sin ,2sin ,2sin === 二.三角形面积B ac A bcC ab S ABC sin 21sin 21sin 21===∆ 三.余弦定理1.余弦定理:三角形中任何一边的平方等于其他两边平方的和减去这两边与它们夹角的余弦的积的2倍,即 A bc c b a cos 2222-+=B ac c a b cos 2222-+=C ab b a c cos 2222-+=2.变形:bca cb A 2cos 222-+= acb c a B 2cos 222-+= abc b a C 2cos 222-+= 注意整体代入,如:21cos 222=⇒=-+B ac b c a一、选择题(题型注释) 1.设ABC ∆的三内角A 、B 、C 成等差数列,sin A 、sin B 、sin C 成等比数列,则这个三角形的形状是 ( )A.直角三角形B.钝角三角形C.等边三角形D.等腰直角三角形2.已知ABC ∆的三个内角,,A B C 的对边分别是,,a b c ,且222a c b ab -+=,则角C 等于 ( )A.3π B.4π或34π C.23π D.6π 3.在ABC ∆中,60,43,42o A a b ===,则B = A.30o B.45o C. 120 D. 1354.已知△ABC 中,a =4,b =43,∠A =30°,则∠B 等于( )A .30°B .30°或150°C .60°D .60°或120°5.在ABC ∆中,已知22tan tan a B b A =,则ABC ∆的形状是( )A.等腰三角形B.直角三角形C.等腰直角三角形D.等腰三角形或直角三角形6.设的内角,,的对边分别为,,.若,,,且,则( ) A . B . C .D . 7.若()()3a b c b c a bc +++-=,且sin 2sin cos A B C =,那么ABC △是A .直角三角形B .等边三角形C .等腰三角形D .等腰直角三角形8.在ABC ∆ 中,2a = ,23b =,30A = , 则B =( )A .60B .60或 120C .30D .30或1509.在ABC ∆中,60B ︒=,2b ac =,则此三角形一定是( )A .直角三角形B .钝角三角形C .等腰直角三角形D .等边三角形10.在△ABC 中,内角C B A ,,所对的边分别是c b a ,,,已知a=7,5=c ,则CA sin sin 的值是A .75 B .75 C .127± D .125 11.在△ABC 中,2a =,30A =︒, 135C =︒,则边c =A .1B .2C ..12.在△ABC 中,222a b c bc =++ ,则A 等于 ( )A .60°B .120°C .30°D . 150°13.△ABC 的内角A 、B 、C 所对的边分别为a 、b 、c.若则c 等于( )14.在△ABC 中,a=3,b=5,sinA=13,则sinB 等于( )(A) 15 (B) 5915.在ABC ∆中,45a b B ===︒,则A 等于A .30°B .60°C .60°或120°D .30°或15016.在锐角△ABC 中,BC =1,B =2A ,则AC 的取值范围是( ).A .[-2,2]B .[0,2]C .(0,2]D .)17.若△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,且222a c b =-,则∠C=( )A .π6B .5π6C .π4 D .3π418.在△ABC 中,若cC b B a A sin cos cos ==,则△ABC 是( ) A .有一内角为30°的直角三角形 B .等腰直角三角形C .有一内角为30°的等腰三角形D .等边三角形 19.在ABC ∆中,若B a c cos 2=,则ABC ∆的形状为( )A .直角三角形B .等腰三角形C .等边三角形D .锐角三角形20.在△ABC 中,如果sin :sin :sin 2:3:4A B C =,那么cosC 等于( ) A.23 B.2-3 C.1-3 D.1-4二、填空题(题型注释)21.已知方程2(cos )cos 0x b A x a B -+=的两根之积等于两根之和,且,a b 为ABC ∆的两边,,A B 为两内角,则ABC ∆的形状为______22.已知ABC ∆中,内角A 、B 、C 的对边分别是a b c 、、,1a =,c =30A ∠=,则b 等于__________.23.在△ABC 中,若32,3,1π=∠==C c b ,则=a . 24.如图,一辆汽车在一条水平的公路上向正西行驶,到处时测得公路北侧一山顶D在西偏北的方向上,行驶600m 后到达处,测得此山顶在西偏北的方向上,仰角为,则此山的高度________m .25.已知△ABC 中,2a =,2=b ,1c =,则cos B = .26.已知ABC ∆的内角A 、B 、C 所对的边分别是a ,b ,c .若2220a ab b c ++-=,则角C 的大小是 .27.若海上有A 、B 、C 三个小岛,测得A ,B 两岛相距10海里,∠BAC =60°,∠ABC =75°,则B 、C 间的距离是________海里.28.在锐角△ABC 中,角A 、B 所对的边长分别为a 、b ,若2asinB 3,则角A 等于________.29.△ABC 的内角A 、B 、C 的对边长分别为a 、b 、c ,若22,3cos a c b b c A -==且,则b= .30.在ABC ∆中,若15,,sin ,43b B A π=== 则 a = 31.在ABC ∆中, 60=B ,3=AC ,则BC AB 2+的大值为 . 32.在钝角ABC ∆中角A ,B ,C 的对边分别是c b a,,, 若2=a ,3=b ,则最大边c 的取值范围是_________. 33.ABC ∆的内角C B A ,,所对的边分别为c b a ,,,若C B A sin ,sin ,sin 成等比数列,且a c 2=,则_____________________cos =B34.在△ABC 中,3b =,5c =,1cos 2A =,则= . 35.若ABC ∆的面积为34222c b a S -+=,则角C =__________.三、解答题(题型注释)36.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,A=,cosB=. (Ⅰ)求cosC 的值;(Ⅱ)若c=,求△ABC 的面积.37.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,C .已知3cos (B -C )-1=6cosBcosC .(1)求cosA ;(2)若a =3,△ABC 的面积为22b 和c .38.已知,,a b c 分别为ABC ∆三个内角,,A B C 的对边,cos 3sin 0a C a C b c +--= (Ⅰ)求A ;(Ⅱ)若2a =,ABC ∆的面积为3;求,b c 。

39.在△ABC 中,角A B C ,,的对边分别为,,a b c ,且cos cos 2B b C a c=-+. (Ⅰ)求角B 的大小; (Ⅱ)若13,4b a c =+=,求△ABC 的面积.参考答案1.C【解析】试题分析:C A B +=2,060=B ,根据正弦定理,ac b C A B ===22sin sin sin ,所以再根据余弦定理()00260cos 2222220222=-⇔=-+⇔-+=⇔-+=c a ac c a ac c a ac ac c a b ,即c a =,又060=B ,所以这个三角形是等边三角形,故选C.考点:正余弦定理2.A【解析】 试题分析:2122cos 222==-+=ab ab ab c b a C ,则角C 等于060,故选A. 考点:余弦定理3.B【解析】试题分析:由sin sin a b A B =4sin 4560sin 2B B B=∴== 考点:正弦定理解三角形4.D【解析】试题分析:根据正弦定理sin sin a b A B =有44sin 30=,解得sin B =,所以60B =或120,因为b a >,所以B A >,因此都符合题意,故选D.考点:正弦定理.5.D【解析】 试题分析:由22tan tan a B b A =变形为22sin sin sin sin sin sin cos cos cos cos B A A B A B B A B A=∴=sin2sin2A B ∴= 22A B ∴=或22180A B A B ∴+=∴=或90A B +=,三角形为等腰三角形或直角三角形 考点:正弦定理,三角函数公式6.B 【解析】试题分析:由222cos2b c a A bc +-=得222b ==考点:余弦定理7.B【解析】∵()()3a b c b c a bc +++-=,即[()][()]3b c a b c a bc +++-=,∴22()3b c a bc +-=,222a c bc b =+-,根据余弦定理有A bc c b a cos 2222-+=,∴222222cos b bc c a b c bc A -+==+-,即A bc bc cos 2=,即21cos =A ,∵0180A <<,∴ 60=A ,又由C B A cos sin 2sin =,得sin 2cos sin A C B =,即22222a a b c b ab +-=⋅,化简可得2222a a b c =+-,即b c =,∴ABC △是等边三角形,故选B .8.B【解析】 试题分析:由正弦定理sin sin a b A B =得22sin 30=sin 60BB ==或120 考点:正弦定理解三角形9.D【解析】试题分析:由余弦定理得:b 2=a 2+c 2-2accosB=a 2+c 2-ac ,又b 2=ac ,∴a 2+c 2-ac=ac ,∴(a-c )2=0,∴a=c ,∴A=B=C=60°,∴△ABC 的形状是等边三角形考点:余弦定理 10.A【解析】试题分析:由正弦定理sin sin a c A C =可得sin 7sin 5A a C c == 考点:正弦定理 11.C【解析】 试题分析:由正弦定理,22135sin 30sin 2sin sin =⇒=⇒=c c C c A a 考点:正弦定理12.B【解析】试题分析:根据A bc c b a cos 2222-+=,有21cos -=A ,所以︒=120A . 考点:余弦定理. 13.B【解析】由正弦定理,得sin a A =sin b B, ∵,∴1sin A=sin 2A=2sin cos A A, ∵sinA ≠0, ∴A=π6,B=π3,C=π2. ∴故选B. 14.B【解析】由正弦定理得sin a A =sin b B ,sinB=1533⨯=59.故选B. 15.C【解析】试题分析:由正弦定理得:sin sin A B =,∴sin 2A =,∴A =60°或120°. 考点:正弦定理. 16.D【解析】由题意得032022A A πππ⎧<-<⎪⎪⎨⎪<<⎪⎩,⇒6π<A <4π,由正弦定理sin sin AC BCB A=得AC =2cos A . ∵A ∈(,)64ππ,∴AC ∈). 17.C 【解析】试题分析:因为222a cb =-+,所以222a b c +-=,所以222cos 222a b c C ab ab +-∠===,因为0C π<∠<,所以4C π∠=。

相关文档
最新文档