高中化学选修三几种典型晶体晶胞结构模型总结
人教版高中化学选修三课件:第三章 专题课 晶体堆积模型及晶胞相关计算ppt
例5 右图为NaCl晶胞结构,已知FexO晶体晶胞结构为 NaCl型,由于晶体缺陷,x值小于1。测知FexO晶体的
密度为ρ=5.71g/cm3,晶胞边长为4.28×10-10m。
探究1:已知铜晶胞是面心立方晶胞,其晶胞特征如右图所示。 若已知该晶体的密度为a g/cm3,NA代表阿伏加德罗常数,相对原子质量为64 , 请回答:
[来源:学科网]
①晶胞中铜原子的配位数为________ ,一个晶胞中原子的数目为________; ②该晶体的边长为_______________,铜原子半径为________(用字母表示)。 列式并计算Cu空间利用率________________
D.YBa2Cu4O7
题型4、 晶体密度、粒子间距离的计算
例4右图为NaCl晶胞结构示意图。 (1)用X射线衍射法测得晶胞的边长为a cm,求该温度下NaCl晶体的密度。
ρ=m/V=
(2)晶体的密度为ρg/cm3,则晶体中Na +与Na+之间的最短距离是多少?
[练习3]. 已知 NaCl 的摩尔质量为 M g·mol-1, 食盐晶体的密度为ρg·cm-3,若下图中Na+与最邻 近的Cl- 的核间距离为 a cm,那么阿伏加德罗常 数的值可表示为 D
【巩固练习】 1.Al2O3在一定条件下可制得AlN,其晶体结构如图2所示,该 晶体中Al的配位数是_________ .
2.六方氮化硼在高温高压下,可以转化为立方氮化硼,其结构与金刚石相似, 硬度与金刚石相当,晶胞边长为361.5pm,立方氮化硼晶胞中含有______个 氮原子、_______个硼原子,立方氮化硼的密度是____________g·cm-3(只 要求列算式,不必计算出数值,阿伏加德罗常数为NA)
高中化学第3章第2节几种简单的晶体结构模型第2课时共价晶体与分子晶体鲁科版选择性必修2
正四面体 空隙里,上层下层各 2 个。每个SiC晶胞中含有 4 个Si
原子和 4 个C原子。
4.共价晶体的物理性质 由于共价晶体中原子间以强的 共价键 相结合,且形成 立体网状 结 构,使得共价晶体的熔点一般很高,硬度一般很大,并且难以溶于任何溶剂。
往往脆性也较大 5.共价晶体的结构特征 (1)在共价晶体中,各原子均以共价键结合,因为共价键有方向性和饱和性, 所以中心原子周围的原子数目是有限的,原子不采取密堆积方式。 (2)共价晶体的构成微粒是原子,不存在单个分子,其化学式仅表示晶体中 所含原子的个数比。 (3)空间结构:空间网状结构。
A.n(Si)∶n(O)∶n(Si—O键)=1∶2∶4 B.CO2和SiO2是等电子体,晶体类型相同 C.晶体中Si原子杂化方式为sp3,O原子杂化方式为sp D原子连接4个O原子、每个O原子连接2个Si 原子,则Si、O原子个数之比为2∶4=1∶2,每个Si原子对应4个硅氧键,则 n(Si)∶n(O)∶n(Si—O键)=1∶2∶4,A正确;CO2晶体是由分子构成的,SiO2晶 体是由原子构成的,则前者为分子晶体、后者为共价晶体,晶体类型不同,B 错误;该晶体中每个Si原子形成4个共价键,每个O原子形成2个共价键且每 个O原子还含有2对孤电子对,则Si、O原子的价电子对数都是4,则Si、O原 子都采用sp3杂化,C错误;由二氧化硅晶体结构图可知,晶体中最小环上含 有6个硅原子和6个氧原子,所以最小环上的原子数为12,D错误。
SiO2晶体结构图 ①Si原子采取 sp3 杂化,正四面体内O—Si—O键角为 109°28' ; ②每个Si原子与 4 个O原子形成 4 个共价键,Si原子位于正四面体的 中心,O原子位于正四面体的顶点,同时每个O原子被 2 个硅氧正四面体 共用,晶体中Si原子与O原子个数比为 1∶2 ; ③最小环上有 12 个原子,包括 6 个O原子和 6 个Si原子; ④1 mol SiO2晶体中含Si—O键数目为 4NA 。
高中化学选修3之知识讲解_晶体的常识 分子晶体与原子晶体_基础-
晶体的常识分子晶体与原子晶体【学习目标】1、初步了解晶体的知识,知道晶体与非晶体的本质差异,学会识别晶体与非晶体的结构示意图;2、知道晶胞的概念,了解晶胞与晶体的关系,学会通过分析晶胞得出晶体的组成;3、了解分子晶体和原子晶体的特征,能以典型的物质为例描述分子晶体和原子晶体的结构与性质的关系;4、知道分子晶体与原子晶体的结构粒子、粒子间作用力的区别。
【要点梳理】要点一、晶体与非晶体【分子晶体与原子晶体#晶体与非晶体】1、概念:①晶体:质点(分子、离子、原子)在空间有规则地排列成的、具有整齐外型、以多面体出现的固体物质。
晶体具有的规则的几何外形源于组成晶体的微粒按一定规律周期性的重复排列。
②非晶体:非晶态物质内部结构没有周期性特点,而是杂乱无章地排列,如:玻璃、松香、明胶等。
非晶体不具有晶体物质的共性,某些非晶态物质具有优良的性质要点诠释:晶体与非晶体的区分:晶体是由原子或分子在空间按一定规律周期性地重复排列构成的固体物质。
周期性是晶体结构最基本的特征。
许多固体的粉末用肉眼是看不见晶体的,但我们可以借助于显微镜观察,这也证明固体粉末仍是晶体,只不过晶粒太小了。
晶体的熔点较固定,而非晶体则没有固定的熔点。
区分晶体和非晶体最可靠的科学方法是对固体,进行X—射线衍射实验,X射线透过晶体时发生衍射现象。
特别注意:一种物质是否晶体,是由其内部结构决定的,而非由外观判断。
2、分类:说明:①自范性:晶体能自发性地呈现多面体外形的性质。
所谓自范性即“自发”进行,但这里要注意,“自发”过程的实现仍需一定的条件。
例如:水能自发地从高处流向低处,但若不打开拦截水流的闸门,水库里的水不能下泻;②晶体自范性的条件之一:生长速率适当;③晶体自范性的本质:是晶体中粒子微观空间里呈现周期性的有序排列的宏观表象。
4、晶体形成的途径:①熔融态物质凝固,例:熔融态的二氧化硅,快速冷却得到玛瑙,而缓慢冷却得到水晶。
②气态物质冷却不经液态直接凝固(凝华);③溶质从溶液中析出。
【人教版】高中化学选修3知识点总结:第三章晶体结构与性质
【人教版】高中化学选修3知识点总结:第三章晶体结构与性质第一篇:【人教版】高中化学选修3知识点总结:第三章晶体结构与性质第三章晶体结构与性质课标要求1.了解化学键和分子间作用力的区别。
2.理解离子键的形成,能根据离子化合物的结构特征解释其物理性质。
3.了解原子晶体的特征,能描述金刚石、二氧化硅等原子晶体的结构与性质的关系。
4.理解金属键的含义,能用金属键理论解释金属的一些物理性质。
5.了解分子晶体与原子晶体、离子晶体、金属晶体的结构微粒、微粒间作用力的区别。
要点精讲一.晶体常识 1.晶体与非晶体比较2.获得晶体的三条途径①熔融态物质凝固。
②气态物质冷却不经液态直接凝固(凝华)。
③溶质从溶液中析出。
3.晶胞晶胞是描述晶体结构的基本单元。
晶胞在晶体中的排列呈“无隙并置”。
4.晶胞中微粒数的计算方法——均摊法如某个粒子为n个晶胞所共有,则该粒子有1/n属于这个晶胞。
中学中常见的晶胞为立方晶胞立方晶胞中微粒数的计算方法如下:注意:在使用“均摊法”计算晶胞中粒子个数时要注意晶胞的形状二.四种晶体的比较2.晶体熔、沸点高低的比较方法(1)不同类型晶体的熔、沸点高低一般规律:原子晶体>离子晶体>分子晶体。
金属晶体的熔、沸点差别很大,如钨、铂等熔、沸点很高,汞、铯等熔、沸点很低。
(2)原子晶体由共价键形成的原子晶体中,原子半径小的键长短,键能大,晶体的熔、沸点高.如熔点:金刚石>碳化硅>硅(3)离子晶体一般地说,阴阳离子的电荷数越多,离子半径越小,则离子间的作用力就越强,相应的晶格能大,其晶体的熔、沸点就越高。
(4)分子晶体①分子间作用力越大,物质的熔、沸点越高;具有氢键的分子晶体熔、沸点反常的高。
②组成和结构相似的分子晶体,相对分子质量越大,熔、沸点越高。
③组成和结构不相似的物质(相对分子质量接近),分子的极性越大,其熔、沸点越高。
④同分异构体,支链越多,熔、沸点越低。
(5)金属晶体金属离子半径越小,离子电荷数越多,其金属键越强,金属熔、沸点就越高。
人教版高中化学选修三3.1 晶体的常识—晶胞
第二课时 晶胞
二.晶胞
1.定义:描述晶体结构的基本单元 晶体与晶胞的关系正好比蜂巢与蜂室的关系
蜂巢与蜂室
铜晶体
铜晶胞
铜晶体
铜晶胞
晶体结构 晶胞示意图
晶胞形状:
无隙并 置
平行六面 体
说明:
⑴晶胞一般是平行六面体,整块晶体是数量巨大 的晶胞“无隙并置”而成。
⑵晶胞是8个顶角相同的最小正六面体;晶胞的 平行棱相同;晶胞的平行面相同。
Zn: 8× +1=2
I2:
(8×
+
6
×
1 2
)×2
=8
8×1/8+6×1/2+4=8
练习1:
石墨晶体的层状结构,层 内为平面正六边形结构(如 图),试回答下列问题:
图中平均每个正六边形占 有C原子数为____2个、占有的 碳碳键数为____个3 。
碳原子数目与碳碳化学键 数目之比为_____2_:_3.
Cl- 顶点 ( 1/8 ) 8 = 1,
面中心 ( 1/2 ) 6 = 3 , 共 4 个
Na+ 棱上 ( 1/4 ) 12 = 3 ,
体中心
1 共4个
练习6、如图所示晶体中每个阳离子A或阴离子B,均可被 另一种离子以四面体形式包围着,则该晶体对应的化学式 为
A.AB C.AB3
B.A2B D.A2B3
练习2
2001年报道的硼和镁形成的化合物刷新了金属化合物超导温 度的最高记录。如图所示的是该化合物的晶体结构单元:镁 原子间形成正六棱柱,且棱柱的上下底面还各有1个镁原子, 6个硼原子位于棱柱内。则该化合物的化学式可表示为( B )
A、MgB C、Mg2B
高中化学 几种常见晶体结构分析论文 新人教版选修3
几种常见晶体结构分析一、氯化钠、氯化铯晶体——离子晶体由于离子键无饱和性与方向性,所以离子晶体中无单个分子存在。
阴阳离子在晶体中按一定的规则排列,使整个晶体不显电性且能量最低。
离子的配位数分析如下:离子数目的计算:在每一个结构单元(晶胞)中,处于不同位置的微粒在该单元中所占的份额也有所不同,一般的规律是:顶点上的微粒属于该单元中所占的份额为18,棱上的微粒属于该单元中所占的份额为14,面上的微粒属于该单元中所占的份额为12,中心位置上(嚷里边)的微粒才完全属于该单元,即所占的份额为1。
1.氯化钠晶体中每个Na +周围有6个C l -,每个Cl -周围有6个Na +,与一个Na +距离最近且相等的Cl -围成的空间构型为正八面体。
每个N a +周围与其最近且距离相等的Na +有12个。
见图1。
晶胞中平均Cl -个数:8×18 + 6×12 = 4;晶胞中平均Na +个数:1 + 12×14= 4 因此NaCl 的一个晶胞中含有4个NaCl (4个Na +和4个Cl -)。
2.氯化铯晶体中每个Cs +周围有8个Cl -,每个Cl -周围有8个Cs +,与一个Cs +距离最近且相等的Cs +有6个。
晶胞中平均Cs +个数:1;晶胞中平均Cl -个数:8×18= 1。
因此CsCl 的一个晶胞中含有1个CsCl (1个Cs +和1个Cl -)。
二、金刚石、二氧化硅——原子晶体1.金刚石是一种正四面体的空间网状结构。
每个C 原子以共价键与4个C 原子紧邻,因而整个晶体中无单个分子存在。
由共价键构成的最小环结构中有6个碳原子,不在同一个平面上,每个C 原子被12个六元环共用,每C —C 键共6个环,因此六元环中的平均C 原子数为6×112 = 12 ,平均C —C 键数为6×16 = 1。
C 原子数: C —C 键键数 = 1:2; C 原子数: 六元环数 = 1:2。
高中化学知识点总结:第三章晶体结构与性质
第三章晶体结构与性质课标要求1.了解化学键和分子间作用力的区别。
2.理解离子键的形成,能根据离子化合物的结构特征解释其物理性质。
3.了解原子晶体的特征,能描述金刚石、二氧化硅等原子晶体的结构与性质的关系。
4.理解金属键的含义,能用金属键理论解释金属的一些物理性质。
5.了解分子晶体与原子晶体、离子晶体、金属晶体的结构微粒、微粒间作用力的区别。
要点精讲一.晶体常识1.晶体与非晶体比较2.获得晶体的三条途径①熔融态物质凝固。
②气态物质冷却不经液态直接凝固(凝华)。
③溶质从溶液中析出。
3.晶胞晶胞是描述晶体结构的基本单元。
晶胞在晶体中的排列呈“无隙并置”。
4.晶胞中微粒数的计算方法——均摊法如某个粒子为n个晶胞所共有,则该粒子有1/n属于这个晶胞。
中学中常见的晶胞为立方晶胞立方晶胞中微粒数的计算方法如下:注意:在使用“均摊法”计算晶胞中粒子个数时要注意晶胞的形状二.四种晶体的比较2.晶体熔、沸点高低的比较方法(1)不同类型晶体的熔、沸点高低一般规律:原子晶体>离子晶体>分子晶体。
金属晶体的熔、沸点差别很大,如钨、铂等熔、沸点很高,汞、铯等熔、沸点很低。
(2)原子晶体由共价键形成的原子晶体中,原子半径小的键长短,键能大,晶体的熔、沸点高.如熔点:金刚石>碳化硅>硅(3)离子晶体一般地说,阴阳离子的电荷数越多,离子半径越小,则离子间的作用力就越强,相应的晶格能大,其晶体的熔、沸点就越高。
(4)分子晶体①分子间作用力越大,物质的熔、沸点越高;具有氢键的分子晶体熔、沸点反常的高。
②组成和结构相似的分子晶体,相对分子质量越大,熔、沸点越高。
③组成和结构不相似的物质(相对分子质量接近),分子的极性越大,其熔、沸点越高。
④同分异构体,支链越多,熔、沸点越低。
(5)金属晶体金属离子半径越小,离子电荷数越多,其金属键越强,金属熔、沸点就越高。
三.几种典型的晶体模型。
人教版高中化学选修3 物质结构与性质 第三章 第一节 晶体的常识(第2课时)
晶胞
3. 1987年2月,未经武(Paul Chu)教授等 发现钛钡铜氧化合物在90K温度下即具有超 导性。若该化合物的结构如右图所示,则 该化合物的化学式可能是 ( C ) A. YBa2CuO7-x B. YBa2Cu2O7-x C. YBa2Cu3O7-x D. YBa2Cu4O7-x
2014年7月26日星期六
33
晶胞
6.如右图石墨晶体结构的每一层里平均每个最 小的正六边形占有碳原子数目为( A ) A、 2 B、3 C、4 D、6
2014年7月26日星期六
34
晶胞
7. 许多物质在通常条件下是以晶体的形式存 在,而一种晶体又可视作若干相同的基本结 构单元构成,这些基本结构单元在结构化学 中被称作晶胞。已知某化合物是由钙、钛、 氧三种元素组成的晶体,其晶胞结构如图所 示,则该物质的化学式为 ( C ) A.Ca4TiO3 B.Ca4TiO6 C.CaTiO3 D.Ca8TiO120
1.在CsCl晶体中,每个Cs+周围最近距离的Cs+ 有几个?每个Cl-周围最近距离的Cl-有几个? 2.分析“CsCl” 化学式的由来。 6个
2014年7月26日星期六 26
晶胞
2014年7月26日星期六
27
晶胞
二氧化碳及其晶胞
2014年7月26日星期六
28
晶胞
每8个CO2构成立方 体,且在6个面的 中心又各占据1个 CO2。每个晶胞中 有4个CO2分子, 12个原子。 在每个CO2周围等距 离的最近的CO2有 12个(同层4个, 上层4个、下层4 个)
58.5 ×4 6.02×1023
解法2:晶体中最小正方体中所含的Na+和Cl-的个数均为:
高中化学选修三知识点总结原子结构与性质
高中化学选修三知识点总结:原子结构与性质一.原子结构1.能级与能层2.原子轨道3.原子核外电子排布规律⑴构造原理:随着核电荷数递增,大多数元素的电中性基态原子的电子按右图顺序填入核外电子运动轨道(能级),叫做构造原理。
能级交错:由构造原理可知,电子先进入4s轨道,后进入3d轨道,这种现象叫能级交错。
说明:构造原理并不是说4s能级比3d能级能量低(实际上4s能级比3d能级能量高),而是指这样顺序填充电子可以使整个原子的能量最低。
也就是说,整个原子的能量不能机械地看做是各电子所处轨道的能量之和。
(2)能量最低原理现代物质结构理论证实,原子的电子排布遵循构造原理能使整个原子的能量处于最低状态,简称能量最低原理。
构造原理和能量最低原理是从整体角度考虑原子的能量高低,而不局限于某个能级。
(3)泡利(不相容)原理:基态多电子原子中,不可能同时存在4个量子数完全相同的电子。
换言之,一个轨道里最多只能容纳两个电子,且电旋方向相反(用“↑↓”表示),这个原理称为泡利(Pauli)原理。
(4)洪特规则:当电子排布在同一能级的不同轨道(能量相同)时,总是优先单独占据一个轨道,而且自旋方向相同,这个规则叫洪特(Hund)规则。
洪特规则特例:当p、d、f轨道填充的电子数为全空、半充满或全充满时,原子处于较稳定的状态。
即p0、d0、f0、p3、d5、f7、p6、d10、f14时,是较稳定状态。
前36号元素中,全空状态的有4Be2s22p0、12Mg3s23p0、20Ca4s23d0;半充满状态的有:7N2s22p3、15P3s23p3、24Cr3d54s1、25Mn3d54s2、33As4s24p3;全充满状态的有10Ne2s22p6、18Ar3s23p6、29Cu3d104s1、30Zn3d104s2、36Kr4s24p6。
4.基态原子核外电子排布的表示方法(1)电子排布式①用数字在能级符号的右上角表明该能级上排布的电子数,这就是电子排布式,例如K:1s22s22p63s23p64s1。
高中化学选修3:物质结构与性质-知识点总结
选修三物质结构与性质总结一. 原子结构与性质.1. 认识原子核外电子运动状态,了解电子云、电子层(能层)、原子轨道(能级)的含义•电子云:用小黑点的疏密来描述电子在原子核外空间出现的机会大小所得的图形叫电子云图.离核越近,电子出现的机会大,电子云密度越大;离核越远,电子出现的机会小,电子云密度越小_ _ _ _ •电子层(能层):根据电子的能量差异和主要运动区域的不核外电子分别处于不同的电子同,层•原子由里向外对应的电子层符号分别为K、L、M N、O P、Q.原子轨道(能级即亚层):处于同一电子层的原子核外电子,也可以在不同类型的原子轨道上运动,分别用s、p、d、f表示不同形状的轨道,s轨道呈球形、p轨道呈纺锤形,d轨道和f 轨道较复杂.各轨道的伸展方向个数依次为1、3、5、7.2. (构造原理)了解多电子原子中核外电子分层排布遵循的原理,能用电子排布式表示1〜36号元素原子核外电子的排布.(1)____________________________________________ .原子核外电子的运动特征可以用电子层」子(亚层)和自旋方向来进行描述.在含有多个核外电子的原子中,不存在运动状态完全相同的两个电子(2) .原子核外电子排布原理.①.能量最低原理:电子先占据能量低的轨道,再依次进入能量高的轨道②.泡利不相容原理:每个轨道最多容纳两个自旋状态不同的电子③.洪特规则:在能量相同的轨道上排布时,电子尽可能分占不同的轨道,且自旋状态相同一.洪特规则的特例:在等价轨道的全充满(p6、d10、f14)、半充满(p3、d5、f7)、全空时(p0、d0、f0)的状态,具有较低的能量和较大的稳定性.如24C r[Ar]3d 54sl 29C U —(3) .掌握能级交错1-36号元素的核外电子排布式ns<(n-2)fv(n-1)d<np3. 元素电离能和元素电负性第一电离能:气态电中性基态原子失去1个电子,转化为气态基态正离子所需要的能量叫做第一电离能。
高中化学选修三几种典型晶体晶胞结构模型总结
学生版:典型晶体模型晶体晶体结构晶体详解原子晶体金刚石(1)每个碳与相邻个碳以共价键结合,形成体结构(2)键角均为(3)最小碳环由个C组成且六个原子不在同一个平面内(4)每个C参与条C—C键的形成,C原子数与C—C键数之比为SiO2(1)每个Si与个O以共价键结合,形成正四面体结构(2)每个正四面体占有1个Si,4个“12O”,n(Si)∶n(O)=(3)最小环上有个原子,即个O,个Si分子晶体干冰(1)8个CO2分子构成立方体且在6个面心又各占据1个CO2分子(2)每个CO2分子周围等距紧邻的CO2分子有个冰每个水分子与相邻的个水分子,以相连接,含1 mol H2O的冰中,最多可形成mol“氢键”。
NaCl(型)离子晶体(1)每个Na+(Cl-)周围等距且紧邻的Cl-(Na+)有个。
每个Na+周围等距且紧邻的Na+有个(2)每个晶胞中含个Na+和个Cl-CsCl (型)(1)每个Cs+周围等距且紧邻的Cl-有个,每个Cs+(Cl-)周围等距且紧邻的Cs+(Cl-)有个(2)如图为个晶胞,每个晶胞中含个Cs+、个Cl-金属晶体简单六方堆积典型代表Po,配位数为,空间利用率52%面心立方最密堆积又称为A1型或铜型,典型代表,配位数为,空间利用率74%体心立方堆积又称为A2型或钾型,典型代表,配位数为,空间利用率68%六方最密堆积又称为A3型或镁型,典型代表,配位数为,空间利用率74%混合晶体石墨(1)石墨层状晶体中,层与层之间的作用是(2)平均每个正六边形拥有的碳原子个数是,C原子采取的杂化方式是(3)每层中存在σ键和π键,还有金属键(4)C—C的键长比金刚石的C—C键长,熔点比金刚石的(5)硬度不大、有滑腻感、能导电教师版典型晶体模型晶体晶体结构晶体详解原子晶体金刚石(1)每个碳与相邻4个碳以共价键结合,形成正四面体结构(2)键角均为109°28′(3)最小碳环由6个C组成且六个原子不在同一个平面内(4)每个C参与4条C—C键的形成,C原子数与C—C键数之比为1∶2SiO2(1)每个Si与4个O以共价键结合,形成正四面体结构(2)每个正四面体占有1个Si,4个“12O”,n(Si)∶n(O)=1∶2(3)最小环上有12个原子,即6个O,6个Si分子晶体干冰(1)8个CO2分子构成立方体且在6个面心又各占据1个CO2分子(2)每个CO2分子周围等距紧邻的CO2分子有12个冰每个水分子与相邻的4个水分子,以氢键相连接,含1 mol H2O的冰中,最多可形成2 mol“氢键”。
高中化学选修三-晶体结构与性质
晶体结构与性质一、晶体得常识1、晶体与非晶体晶体与非晶体得本质差异得到晶体得途径:熔融态物质凝固;凝华;溶质从溶液中析出特性:①自范性;②各向异性(强度、导热性、光学性质等)③固定得熔点;④能使X-射线产生衍射(区分晶体与非晶体最可靠得科学方法)2、晶胞--描述晶体结构得基本单元、即晶体中无限重复得部分一个晶胞平均占有得原子数=×晶胞顶角上得原子数+×晶胞棱上得原子+×晶胞面上得粒子数+1×晶胞体心内得原子数思考:下图依次就是金属钠(Na)、金属锌(Zn)、碘(I2)、金刚石(C)晶胞得示意图、它们分别平均含几个原子?eg:1、晶体具有各向异性。
如蓝晶(Al2O3·SiO2)在不同方向上得硬度不同;又如石墨与层垂直方向上得电导率与与层平行方向上得电导率之比为1:1000。
晶体得各向异性主要表现在()①硬度 ②导热性 ③导电性 ④光学性质A、①③B、②④C、①②③D、①②③④2、下列关于晶体与非晶体得说法正确得就是()A、晶体一定比非晶体得熔点高B、晶体一定就是无色透明得固体C、非晶体无自范性而且排列无序D、固体SiO2一定就是晶体3、下图就是CO2分子晶体得晶胞结构示意图、其中有多少个原子?二、分子晶体与原子晶体1、分子晶体--分子间以分子间作用力(范德华力、氢键)相结合得晶体注意:a、构成分子晶体得粒子就是分子b、分子晶体中、分子内得原子间以共价键结合、相邻分子间以分子间作用力结合①物理性质a、较低得熔、沸点b、较小得硬度c、一般都就是绝缘体、熔融状态也不导电d、“相似相溶原理”:非极性分子一般能溶于非极性溶剂、极性分子一般能溶于极性溶剂②典型得分子晶体a、非金属氢化物:H2O、H2S、NH3、CH4、HX等b、酸:H2SO4 、HNO3、H3PO4等c、部分非金属单质::X2、O2、H2、S8、P4、C60d、部分非金属氧化物:CO2、SO2、NO2、N2O4、P4O6、P4O10等f、大多数有机物:乙醇、冰醋酸、蔗糖等③结构特征a、只有范德华力--分子密堆积(每个分子周围有12个紧邻得分子)CO2晶体结构图b、有分子间氢键--分子得非密堆积以冰得结构为例、可说明氢键具有方向性④笼状化合物--天然气水合物2、原子晶体--相邻原子间以共价键相结合而形成空间立体网状结构得晶体注意:a、构成原子晶体得粒子就是原子 b、原子间以较强得共价键相结合①物理性质a、熔点与沸点高b、硬度大c、一般不导电d、且难溶于一些常见得溶剂②常见得原子晶体a、某些非金属单质:金刚石(C)、晶体硅(Si)、晶体硼(B)、晶体锗(Ge)等b、某些非金属化合物:碳化硅(SiC)晶体、氮化硼(BN)晶体c、某些氧化物:二氧化硅( SiO2)晶体、Al2O3金刚石得晶体结构示意图二氧化硅得晶体结构示意图思考:1、怎样从原子结构角度理解金刚石、硅与锗得熔点与硬度依次下降2、“具有共价键得晶体叫做原子晶体”、这种说法对吗?eg:1、在解释下列物质性质得变化规律与物质结构间得因果关系时、与键能无关得变化规律就是()A、HF、HCI、HBr、HI得热稳定性依次减弱B、金刚石、硅与锗得熔点与硬度依次下降C、F2、C12、Br2、I2得熔、沸点逐渐升高D、N2可用做保护气2、氮化硼就是一种新合成得无机材料、它就是一种超硬耐磨、耐高温、抗腐蚀得物质。
高中化学 常见晶胞模型
离子晶体氯化钠晶体(1)NaCl 晶胞每个Na +等距离且最近的Cl -(即Na +配位数)为6个 NaCl 晶胞每个Cl -等距离且最近的Na +(即Cl -配位数)为6个 (2)一个晶胞内由均摊法计算出一个晶胞内占有的Na +4_个;占有的Cl -4个。
(3)在该晶体中每个Na + 周围与之最接近且距离相等的Na +共有12个;与每个Na +等距离且最近的Cl -所围成的空间几何构型为 正八面体CsCl 晶体(注意:右侧小立方体为CsCl 晶胞;左侧为8个晶胞) (1) CsCl 晶胞中每个Cs +等距离且最近的Cl -(即Cs +配位数) 为8个CsCl 晶胞中每个Cl -等距离且最近的Cs +(即Cl -配位数) 为8个 ,这几个Cs +在空间构成的几何构型为正方体 。
(2)在每个Cs +周围与它最近的且距离相等的Cs +有6个 这几个Cs +在空间构成的几何构型为正八面体 。
(3)一个晶胞内由均摊法计算出一个晶胞内占有的Cs + 1个;占有的Cl - 1个。
CaF 2晶体(1)) Ca 2+立方最密堆积,F -填充在全部 四面体空隙中。
(2)CaF 2晶胞中每个Ca 2+等距离且最近的F -(即Ca 2+配位数)为8个CaF 2晶胞中每个F -等距离且最近的Ca 2+(即F -配位数)为4个 (3)一个晶胞内由均摊法计算出一个晶胞内占有的Ca 2+4个;占有的F -8个。
ZnS 晶体:(1)1个ZnS 晶胞中,有4个S 2-,有4个Zn 2+。
(2)Zn 2+的配位数为4个,S 2-的配位数为 4个。
原子晶体金刚石 金刚石晶胞 金刚石晶胞(1)金刚石晶体a 、每个金刚石晶胞中含有8个碳原子,最小的碳环为6元环,并且不在同一平面(实际为椅式结构),碳原子为sp 3杂化,每个C 以共价键跟相邻的_4_个C 结合,形成正四面体。
键角109°28’b 、每个碳原子被12个六元环共用,每个共价键被6个六元环共用c 、12g 金刚石中有2mol 共价键,碳原子与共价键之比为 1:2Si O(2)Si 晶体由于Si 与碳同主族,晶体Si 的结构同金刚石的结构。
几种典型晶体结构的特点分析
几种典型晶体结构得特点分析徐寿坤有关晶体结构得知识就是高中化学中得一个难点,它能很好地考查同学们得观察能力与三维想像能力,而且又很简易与数学、物理特别就是立体几何知识相结合,就是近年高考得热点之一。
熟练掌握NaCl、CsCl、CO2、SiO2、金刚石、石墨、C60等晶体结构特点,理解与掌握一些严重得分析方法与原则,就能顺利地解答此类问题。
通常采用均摊法来分析这些晶体得结构特点。
均摊法得根源原则就是:晶胞任意位置上得原子如果就是被n个晶胞所共有,则每个晶胞只能分得这个原子得1/n。
1、氯化钠晶体由下图氯化钠晶体结构模型可得:每个Na+紧邻6个,每个紧邻6个(上、下、左、右、前、后),这6个离子构成一个正八面体。
设紧邻得Na+与Cl-间得距离为a,每个Na+与12个Na+等距离紧邻(同层4个、上层4个、下层4个),距离为。
由均摊法可得:该晶胞中所拥有得Na+数为,数为,晶体中Na+数与Cl-数之比为1:1,则此晶胞中含有4个NaCl结构单元。
2、氯化铯晶体每个Cs+紧邻8个Cl-,每个Cl-紧邻8个Cs+,这8个离子构成一个正立方体。
设紧邻得Cs+与Cs+间得距离为,则每个Cs+与6个Cs+等距离紧邻(上、下、左、右、前、+后)。
在如下图得晶胞中Cs数为,在晶胞内其数目为8,晶体中得数与数之比为1:1,则此晶胞中含有8个CsCl结构单元。
3、干冰每个CO2分子紧邻12个CO2分子(同层4个、上层4个、下层4个),则此晶胞中得CO2分子数为。
4、金刚石晶体每个C原子与4个C原子紧邻成键,由5个C原子形成正四面体结构单元,C-C键得夹角为。
晶体中得最小环为六元环,每个C原子被12个六元环共有,每个C-C键被6个六元环共有,每个环所拥有得C原子数为,拥有得C-C键数为,则C原子数与C-C键数之比为。
5、二氧化硅晶体每个Si原子与4个O原子紧邻成键,每个O原子与2个Si原子紧邻成键。
晶体中得最小环为十二元环,其中有6个Si原子与6个O原子,含有12个Si-O键;每个Si原子被12个十二元环共有,每个O原子被6个十二元环共有,每个Si-O键被6个十二元环共有;每个十二元环所拥有得Si原子数为,拥有得O原子数为,拥有得Si-O键数为,则Si原子数与O原子数之比为1:2。
高三选修3晶胞知识点
高三选修3晶胞知识点晶胞是晶体中最小重复单元,它的形状和结构对于晶体性质的理解具有重要的作用。
在高三选修3中学习晶胞的知识点对于理解晶体结构和材料科学具有重要意义。
本文将从三个方面介绍高三选修3中的晶胞知识点。
第一部分:晶胞的定义和分类晶胞是晶体中最小重复单元,由原子或分子组成。
根据晶体的对称性,我们可以将晶胞分为7个晶系和14个晶格。
1. 立方晶系:晶胞为立方体,边长相等,相互垂直。
2. 正交晶系:晶胞为长方体,边长相互垂直,但不相等。
3. 单斜晶系:晶胞为斜方体,边长不相等,存在一个直角。
4. 斜方晶系:晶胞为斜方体,边长不相等,所有角均不为直角。
5. 三斜晶系:晶胞为斜四面体,边长不相等,所有角均不为直角。
6. 菱面晶系:晶胞为菱形面体,边长不相等,存在4个相邻的直角。
7. 六方晶系:晶胞为六面体,边长不相等,存在6个角为直角。
以上是根据晶体对称性所确定的晶胞分类,不同晶胞的形状和结构决定了晶体的不同性质和应用。
第二部分:晶胞参数及其计算方法晶体的晶胞参数是描述晶体结构的重要参数,包括晶胞长度、晶胞角度等。
1. 晶胞长度:晶胞的长度由晶格常数确定,晶格常数是指晶体沿不同方向上的原子、离子或分子排列的周期性重复距离。
2. 晶胞角度:晶胞的角度也由晶格常数决定,不同晶体的晶胞角度不同。
计算晶胞参数的方法包括使用X射线衍射、粉末衍射和电子衍射等实验方法,以及分子动力学模拟和第一性原理计算等理论方法。
这些方法可以精确确定晶体的晶胞结构,为材料科学的研究提供重要的依据。
第三部分:晶胞的应用和意义晶胞的形状和结构对晶体的性质和应用具有重要的影响。
1. 晶胞的形状决定了晶体的外观和结构,不同晶体的晶胞形状各异。
2. 晶胞的结构决定了晶体的物理和化学性质,如硬度、电导率、光学性质等。
3. 晶胞的研究为材料科学和固体物理学等领域提供了重要的基础,促进了材料的开发和应用。
总结:本文介绍了高三选修3中的晶胞知识点,包括晶胞的定义和分类、晶胞参数及其计算方法,以及晶胞的应用和意义。
高中化学常见晶体模型及晶胞计算
小结:高考常见题型 (一) 晶胞中微粒个数的计算, 求化学式
(二) 确定配位数
(三) 晶体的密度及微粒间距离 的计算
练习
-的距离为 a cm,该晶体密度为
(1)设NaCl晶胞的边长为acm,则
示晶为胞中Na+和Cl-的最近距离(( 即小)立
方体的边长)为 a/2 cm,则晶胞中 同种离子的最近距离为 a/2 cm。
思考:NaCl、CsCl同属AB型离子晶体, NaCl晶体中 Na+的配位数与CsCl晶体中Cs+的配位数是否相等?
CaF2的晶体结构
(1)每个Ca2+周围等距且 紧邻的F-有 8 个, Ca2+配 位数为 8 。
(2)每个F-周围等距且紧 邻的Ca2+有 4 个, F-配位 数为 4 。
FCa2+
金属晶体的四种堆积模型对比
堆积模型
采纳这种堆积 的典型代表
空间利用率
配位数
简单立方
Po(钋)
52%
6
体心立方 (钾型)
K、Na、Fe
68%
8
六方最密 (镁型)
Mg、Zn、Ti
74%
12
面心立方最密 (铜型)
Cu, Ag, Au
74%
12
晶胞
原子晶体
金刚石
该晶胞实际分摊到的碳原子数为 (4 + 6 ×1/2 + 8 ×1/8) = 8个。
(3)每个晶胞中含 4 个Ca2+、含 8 个F-, Ca2+和 F-的个数比是 1︰2 。
3、金属晶体:
①简单立方堆积 唯一金属——钋 简单立方堆积的配位数 =6
每个晶胞含 1 个原子
球半径为r 正方体边长为a r=a/2
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
学生版:典型晶体模型
晶体晶体结构晶体详解
原子晶体
金
刚石
(1)每个碳与相邻个碳以共价键
结合,
形成体结构
(2)键角均为
(3)最小碳环由个C组成且六个原子不
在同一个平面内
(4)每个C参与条C—C键的形成,C
原子数与C—C键数之比为
S
iO
2
(1)每个Si与个O以共价键结合,形成正
四面体结构
(2)每个正四面体占有1个Si,4个“
1
2
O”,n(Si)∶n(O)=
(3)最小环上有个原子,即个O,个
Si
分子晶体
干
冰
(1)8个CO
2
分子构成立方体且在6个面心
又各占据1个CO
2
分子
(2)每个CO
2
分子周围等距紧邻的
CO
2
分子
有个
冰
每个水分子与相邻的个水分子,以
相连接,含1 mol H
2
O的冰中,最多可形成
mol“氢键”。
N
aCl(型)
离
子晶
体
(1)每个Na+(Cl-)周围等距且紧邻的
Cl-(Na+)有个。
每个Na+周围等距且紧邻
的
Na+有个
(2)每个晶胞中含个Na+和个Cl-
C sCl
(型)
(1)每个Cs+周围等距且紧邻的Cl-有个,每个Cs+(Cl-)周围等距且紧邻的Cs+(Cl-)
有个
(2)如图为个晶胞,每个晶胞中含
个Cs+、个Cl-
金属晶体
简
单六
方堆
积
典型代表Po,配位数为,空间利用率
52%
面
心立
方
最
密堆
积
又称为A
1
型或铜型,典型代表,
配位数为,空间利用率74%
体
心立
方
堆
积
又称为A
2
型或钾型,典型代表,
配位数为,空间利用率68%
六
方最
密
堆
积
又称为A
3
型或镁型,典型代表,
配位数为,空间利用率74%
混合晶体石墨
(1)石墨层状晶体中,
层与层之间的作用是
(2)平均每个正六边形
拥有的碳原子个数是,C
原子采取的杂化方式是
(3)每层中存在σ键
和π键,还有金属键
(4)C—C的键长比金
刚石的C—C键长,熔
点比金刚石的
(5)硬度不大、有滑腻
感、能导电
教师版典型晶体模型
晶体晶体结构晶体详解
原子晶体
金
刚石
(1)每个碳与相邻4个碳以共价键结合,
形成正四面体结构
(2)键角均为109°28′
(3)最小碳环由6个C组成且六个原子不
在同一个平面内
(4)每个C参与4条C—C键的形成,C原
子数与C—C键数之比为1∶2
S
iO
2
(1)每个Si与4个O以共价键结合,形成
正四面体结构
(2)每个正四面体占有1个Si,4个“
1
2
O”,n(Si)∶n(O)=1∶2
(3)最小环上有12个原子,即6个O,6
个Si
分子晶体
干
冰
(1)8个CO
2
分子构成立方体且在6个面心
又各占据1个CO
2
分子
(2)每个CO
2
分子周围等距紧邻的CO
2
分子
有12个
冰
每个水分子与相邻的4个水分子,以氢键
相连接,含1 mol H
2
O的冰中,最多可形成2
mol“氢键”。
N aCl(型)
离
子晶
体
(1)每个Na+(Cl-)周围等距且紧邻的Cl-
(Na+)有6个。
每个Na+周围等距且紧邻的Na+
有12个
(2)每个晶胞中含4个Na+和4个Cl-
C
sCl
(
型)
(1)每个Cs+周围等距且紧邻的Cl-有8
个,每个Cs+(Cl-)周围等距且紧邻的Cs+(Cl-)
有8个
(2)如图为8个晶胞,每个晶胞中含1个
Cs+、1个Cl-
金属晶体
简
单六
方堆
积
典型代表Po,配位数为6,空间利用率52%
面
心立
方
最
密堆
积
又称为A
1
型或铜型,典型代表Cu、Ag、
Au,配位数为12,空间利用率74%
体
心立方
堆积又称为A
2
型或钾型,典型代表Na、K、Fe,配位数为8,空间利用率68%
六
方最密
堆积又称为A
3
型或镁型,典型代表Mg、Zn、Ti,配位数为12,空间利用率74%
混合晶体石墨
(1)石墨层状晶体中,
层与层之间的作用是范德
华力
(2)平均每个正六边形
拥有的碳原子个数是2,C
原子采取的杂化方式是sp2
(3)每层中存在σ键
和π键,还有金属键
(4)C—C的键长比金
刚石的C—C键长短,熔点
比金刚石的高
(5)硬度不大、有滑腻
感、能导电。