第15讲 分式恒等变形(教师版)

合集下载

奥数-分式恒等变形师

奥数-分式恒等变形师

分式恒等变形方法一、通分:直接通分;逐步通分;移项通分;分组通分;分母因式分解再通分。

例1. 若22004a m +=,22003b m +=,22002c m +=且24abc =,求111a b c bc ca ab a b c++---的值。

(1/8) 例2. 若0abc ≠,0a b c ++=,求222a b c bc ac ab++的值。

(3)例3. 求证:2220()()()()()()a bcb ac c baa b a c a b b c c b a c ---++=++++++例4. 设正数x ,y ,z 满足不等式2222x y z xy +-+2222y z x yz +-+2222z x y xz+->1,求证x ,y ,z 是某个三角形的三边长【分析与证明】原不等式可变形为z(x^2+y^2-z^2)+x(y^2+z^2-x^2)+y(x^2+z^2-y^2)-2xyz>0 因式分解得(x+y-z)(y+z-x)(z+x-y)>0所以三个括号内的数全正或者1正2负,因为x ,y ,z 全正,所以不可能1正2负(证明略)所以三个括号内均为正数,所以x ,y ,z 是某个三角形的三边长例5. 求分式248161124816111111a a a a a a +++++-+++++,当2a =时的值. 【解析】 先化简再求值.直接通分较复杂,注意到平方差公式:()()22a b a b a b -=+-,可将分式分步通分,每一步只通分左边两项.原式()()()()248161124816111111a a a a a a a a ++-=++++-+++++22481622481611111a a a a a =++++-++++ ()()()()224816222121481611111a a a a a a a +++=++++++-+44816448161111a a a a =+++-+++1616161611a a =+-+32323232112a ==--例6. 若实数a ,b ,c 满足1111a b c a b c++=++,求证: 7777771111a b c a b c++=++.【证明】:由已知得到()()bc ac ab a b c abc ++++=,有()()()0a b b c a c +++=,则a ,b ,c 中一定有两个数互为相反数。

分式恒等变形

分式恒等变形

分式恒等变形分式恒等变形是数学中的一种重要的概念,它通过对分式进行一系列的等式变形,从而得到与原分式等价的新的分式。

在进行分式恒等变形时,我们需要遵循一定的规则和方法,以确保变形过程的准确性和合理性。

首先,我们来了解一下分式的基本结构。

一个分式通常由一个分子和一个分母组成,分子表示分式的上部,而分母则表示分式的下部。

例如,分式"1/2"中,1是分子,2是分母。

分式恒等变形的目的是通过对分式的分子和分母进行等式变形,得到与原分式等价的新的分式。

在进行变形时,我们可以使用一系列的代数运算和性质,如乘法、除法、加法、减法、分配律等。

下面,我们将介绍一些常见的分式恒等变形方法。

1.乘法法则:对分式的分子和分母同时乘以同一个数,可以得到一个与原分式等价的新的分式。

例如,对于分式"1/2",我们可以将其乘以2,得到"2/4",这两个分式是等价的。

2.除法法则:对分式的分子和分母同时除以同一个数,可以得到一个与原分式等价的新的分式。

例如,对于分式"2/4",我们可以将其除以2,得到"1/2",这两个分式是等价的。

3.加法法则:对分式的分子和分母同时加上同一个数,可以得到一个与原分式等价的新的分式。

例如,对于分式"1/2",我们可以将其分子和分母都加上1,得到"2/3",这两个分式是等价的。

4.减法法则:对分式的分子和分母同时减去同一个数,可以得到一个与原分式等价的新的分式。

例如,对于分式"2/3",我们可以将其分子和分母都减去1,得到"1/2",这两个分式是等价的。

在进行分式恒等变形时,我们需要确保变形过程的准确性和合理性。

我们可以使用代数运算和性质来推导和验证变形结果,以确保其正确性。

总结起来,分式恒等变形是数学中一种重要的概念,通过对分式的分子和分母进行等式变形,可以得到与原分式等价的新的分式。

L15-S-整式与分的恒等变形

L15-S-整式与分的恒等变形

������ ± ������ = (������ ± ������)(������ ∓ ������������ + ������ ) ������ + ������ + ������ − 3������������������ = (������ + ������ + ������)(������ + ������ + ������ − ������������ − ������������ − ������������)
������ + ������ + ������ ± ������������ ± ������������ ± ������������ =
1 1 1 ������������ + ������������ + ������������ = [(������ + ������ + ������) − ������ − ������ − ������ ] = (������ + ������ + ������) − [(������ − ������) + (������ − ������) + (������ − ������) ] 2 3 6
解:(1)原式= ������ − 2 ∙ ������ ∙ 2 + 2 − 9 = (������ − 2) − 3 = (������ − 2 + 3)(������ − 2 − 3) = (������ + 1)(������ − 5) (2)原式= (������ − 4������ + 4) + (������ + 6������ + 9) + 5 = (������ − 2) + (������ + 3) + 5 ∴ 当������ = 2, ������ = −3 时,原式取最小值 5 (3)原式= ������ − 2(������ + 1)������ + (������ + 1) − (������ + 1) + 2������ − 4������ + 27 = (������ − ������ − 1) − ������ − 2������ − 1 + 2������ − 4������ + 27 = (������ − ������ − 1) + ������ − 6������ + 9 + 17 = (������ − ������ − 1) + (������ − 3) + 17 ∴当 ������ = 4 ������ − ������ − 1 = 0 即 时 ������ = 3 ������ − 3 = 0

人教版八年级数学上册《第15章分式恒等变形》讲义(含解析)

人教版八年级数学上册《第15章分式恒等变形》讲义(含解析)

8分式恒等变形满分晋级代数式10级二次根式的概念及运算代数式11级分式恒等变形代数式12级二次根式的综合化简漫画释义对于分式的混合运算和化简求值来说,最为重要的就是细心运算,不要跳步.个别的题目要注意是否有简便方法.【引例】 计算2233x y x yx y x x y x x ⎡⎤+-⎛⎫---÷⎪⎢⎥+⎝⎭⎣⎦ 【解析】 原式()2233x y x yx y x x y xx ⎧⎫+-⎡⎤=--+÷⎨⎬⎢⎥+⎣⎦⎩⎭ ()22233x y x y x y x x y x x y x ⎡⎤+-=-⋅++÷⎢⎥++⎣⎦ 2x x y=⋅-2x x y =-【点评】 此题还可以先将小括号里的式子通分,再打开括号,但是运算量会加大,所以在运算的 时候需要思考一下简单方法.例题精讲思路导航知识互联网题型一:分式的混合运算与化简求值【例1】 计算:⑴2322()x y x x y xy x y ⎛⎫⎛⎫-÷+⋅ ⎪ ⎪-⎝⎭⎝⎭⑵2212239a a a a a a -+÷--- 【解析】 ⑴2()()x x y y x y +-;⑵原式()()()331232a a a a a a a+-=+⋅--- 1322a a a +=+--1322a a a --=+-- 2222a a a a --+==---【探究对象】条件分式求值的方法与技巧 【探究一】将条件式变形后代入求值【变式一】已知234x y z==,求22x y z x y z +--+的值. 【解析】 设234x y zk ===,则x =2k ,y =3k ,z =4k ∴原式=223444223455k k k k k k k k +⨯-==⨯-+.【备注】已知连比,常设比值k 为参数,这种解题方法叫见比设参法.【变式二】已知2260a ab b +-=,求a ba b-+的值. 【解析】 由2260a ab b +-=,有()()320a b a b +-=,∴30a b +=或20a b -=, 解得3a b =-或2a b =.当3a b =-时,原式=323b bb b --=-+;当2a b =时,原式=2123b b b b -=-+.典题精练【探究二】将所求式变形代入求值.【变式三】已知0a b c ++=,求111111()()()c b a a b c a b c+++++的值.【解析】 原式111111111()1()1()1c b a a b c c a b b c a=++-+++-+++-111()()3c b a a b c=++++- ∵0a b c ++=, ∴原式3=-.【变式四】已知0abc ≠,且0a b c ++=,求代数式222a b c bc ca ab++的值.【解析】 原式()333333b c b ca b c abc abc--++++==()3322333333b c b c bc b c abcbc b c abc ----++=-+==【探究三】将条件式和求值式分别变形后代入求值.【变式五】已知2210a a +-=,求分式22214()2442a a a a a a a a ----÷++++的值. 【解析】 原式2212[](2)(2)4a a a a a a a --+=-⋅++- 2(2)(2)(1)2(2)4a a a a a a a a -+--+=⋅+- 242(2)4a a a a a -+=⋅+- 211(2)2a a a a==++ ∵2210a a +-=, ∴221a a +=, ∴原式=1.【备注】本例是将条件式化为“221a a +=”代入化简后的求值式再求值,这种代入的技巧叫做整体代入.【变式六】若4360x y z --=,()2700x y z xyz +-=≠,求222222522310x y z x y z +---的值.【解析】 由于0xyz ≠,∴4()3()60x y z z --=,2()70x y z z +-=,解得x z =3,yz=2∴222222522310x y z x y z +---=22222222(52)(2310)x y z z x y z z +-÷--÷ =22225()2()12()3()10x yz z x y z z+---=222253221233210⨯+⨯-⨯-⨯- =524-=13-.【例2】 将下列式子先化简,再求值⑴已知:2380x x +-=,求代数式21441212x x x x x x -+-⋅--++的值; ⑵已知:31=+xx ,求1242++x x x 的值; ⑶已知:2410a a ++=,且42321533a ma a ma a++=++,求m 的值;⑷已知113x y -=,求2322x xy yx xy y+---的值.【解析】 ⑴原式2332x x -=++ 当2380x x +-=时,238x x += 原式382-=+310=-⑵22224111x x x x x ++=++21()218x x =+-+=,故811242=++x x x ⑶∵2410a a ++=,∴14a a +=-,22114a a+=又∵24223211145333123a m a ma m a a ma a ma m a+++++===++-+++ ∴372m =⑷解法一:将分子、分母同除以xy ,得:原式11222332333113251122x y y xy x x y ⎛⎫--++-⎪-⨯+⎝⎭====⎛⎫------- ⎪⎝⎭.解法二:由113x y -=,得3y x xy-=,即3y x xy -=,代入所求分式得: ()232326333223255x y xy x xy y xy xy xy x xy y x y xy xy xy xy -++--+-====-------.恒等概念是对两个代数式而言,如果两个代数式里的字母换成任意的数值,这两个代数式的值都相等,就说这两个代数式恒等.表示两个代数式恒等的等式叫做恒等式.将一个代数式换成另一个和它恒等的代数式,叫做恒等变形(或恒等变换). 以恒等变形的意义来看,它不过是将一个代数式从一种形式变为另一种形式,但有一个条件,要求变形前和变形后的两个代数式是恒等的,就是“形”变“值”不变.【引例】 已知有理数a 、b 、c 满足1111a b c a b c++=++,求证:a b =-,或b c =-,或c a =-.【解析】 1111a b c a b c ++=++1111a b a b c c+=-++ ()()()a b a b c a b cab c a b c c a b c -++---==++++ ① 若0a b +≠ 则()11ab c a b c -=++ ∴2ac bc c ab ++=- 20ab ac bc c +++= ∴()()0a b c c b c +++=()()0a c b c ++=∴0a c +=或0b c +=②当0a b +=时,即a b =-综上所述c a =-,或a b =-,或b c =-.【点评】 此结论十分有用,利用它,一些题可以迎刃而解.例题精讲思路导航题型二:分式的恒等变形【例3】 若n 为自然数,且1111a b c a b c ++=++,求证:2121212121211111n n n n n n a b c a b c++++++++=++. 【分析】 若1111a b c a b c++=++,则a b =-或b c =-或c a =-,用以解决本题就容易多了.【解析】 证明:由1111a b c a b c ++=++得a b =-或b c =-或c a =-,不妨设a b =-,代入左边左边()212121111n n n b c b +++=++- 212121111n n n bbc+++=-++211n c +=,而右边()21212121212111n n n n n n b b cb bc ++++++==-++-++ 211n c +=,∴左边=右边,原式成立.【例4】 若1abc =,求证:1111a b cab a bc b ca c ++=++++++【解析】 证法1:∵1abc =,∴1c ab=代入到等式左边左边1111111a b ab ab a b b a ab ab ab=++++⨯++⨯++ 1111a ab ab a ab a ab a =++++++++ 1==右边证法2:左边1a ab abcab a abc ab a ab ca abc ab=++++++⨯++ 1111a ab ab a ab a ab a =++++++++ 1==右边典题精练题型三:部分分式与分离常数此类题型常见于解决整除问题,特别常见于一元二次方程整数根问题.【引例】 已知2a x +与2b x -的和等于244xx -,求a 、b 的值. 【解析】 22()2()42244a b a b x a b xx x x x +--+==+--- 所以40a b a b +=⎧⎨-=⎩,解得22a b =⎧⎨=⎩【例5】 已知()()237231111x x A Bx x x x -+=++-+-+,其中A 、B 为常数,求42A B -的值.【解析】 1A =-,6B =-,原式8=【例6】 ⑴若整数m 使61mm-+为正整数,则m 的值为 .⑵若x 取整数,则使分式6321x x +-的值为整数的x 的值有( ).A .3个B .4个C .6个D .8个【解析】 ⑴ 0m =;⑵ B ,∵63632121x x x +=+--,又()21|6x -,216x -=±,3±,2±,1± ∴x 的整数值有4个.【例7】 已知a b ck b c a c a b===+++,求k 的值. 典题精练例题精讲思路导航【解析】因为a b ck b c a c a b ===+++. 所以()a k b c =+,① ()b k a c =+,② ()c k a b =+,③由①+②+③得()()()a b c k b c k a c k a b ++=+++++, 即2()a b c k a b c ++=++.当0a b c ++≠时,21k =,所以12k =.当0a b c ++=时,b c a +=-,所以1a a k b c a ===-+-,所以k 的值是12或1-.训练1. ⑴若不论x 为何值,分式212x x c++总有意义,则c .⑵已知分式22153x x x +--的值为零,那么x 的值是 .⑶当x 时,分式215x x -+的值为正数.⑷当x 满足 时,102x x +<-.【解析】 ⑴1c >;⑵5- ;⑶1x > ;⑷12x -<<;训练2. ⑴2322()x y x x y xy x y ⎛⎫⎛⎫-÷-⋅ ⎪ ⎪-⎝⎭⎝⎭⑵2225241244a a a a a a ⎛⎫-+-+÷ ⎪+++⎝⎭,其中23a =+【解析】 ⑴()()222x x y y x y +-⑵2225224424a a a a a a a ⎛⎫-+++++=⋅ ⎪+-⎝⎭()()()()22222222a a a a a a -+=⋅=-++- 当23a =+时,原式2323=+-=训练3. 已知13x x -=,求1242++x x x 的值.【解析】 22224111x x x x x ++=++21()2112x x =-++=,故2421112x x x =++.训练4. 已知()22221111x x A B Cx x x x x +-=++--,其中A 、B 、C 为常数,求A B C ++的值.【解析】 原式右边()()()()()()()22222211211111Ax x B x Cx A C x B A x B x x x x x x x x -+-+++--+-===---,得2A C +=,1B A -=,11B -=-,解得10A =,11B =,8C =-,从而13A B C ++=.思维拓展训练(选讲)题型一 分式的混合运算与化简求值 巩固练习【练习1】 计算: 22222112326246x x x x x x x x ⎛⎫++⎛⎫-÷- ⎪ ⎪-+--⎝⎭⎝⎭ 【解析】 原式=1x x+-【练习2】 若4x y +=-,3xy =-,则式子1111x y +++的值为 . 【解析】 13题型二 分式的恒等变形 巩固练习【练习3】 已知x 、y 、z 为三个不相等的实数,且111x y z y z x+=+=+,求证:2221x y z =. 【解析】 由11x y y z +=+,得11y z x y z y yz --=-=,故y z yz x y -=-,同理可得z x zx y z -=-,x y xy z x-=-, 故2221y z z x x y x y z x y y z z x ---=⋅⋅=---.题型三 部分分式与分离常数 巩固练习【练习4】 若28224M N x x x x --=+--恒成立,求M 、N 的值. 【解析】 ∵28224M N x x x x --=+--, ∴822(2)(2)M N x x x x x --=+-+- ∴ (2)(2)8M x N x x --+=-则228Mx M Nx N x ---=-,即228Mx Nx N M x ---=-故()2()8M N x N M x --+=-, ∴14M N N M -=⎧⎨+=⎩ 解得:5232M N ⎧⎪⎨⎪=⎩= 复习巩固【练习5】 当x 为何值时,分式22365112x x x x ++++有最小值?最小值是多少? 【解析】 22223652266122(1)112x x x x x x x ++=-=-++++++ ∴当1x =-时,原分式有最小值4.测试1. ⑴计算:22266(3)443x x x x x x x -+-÷+⋅-+- ⑵先化简,再求值:22121124x x x x ++⎛⎫-÷ ⎪+-⎝⎭,其中3x =-. 【解析】 ⑴22266(3)443x x x x x x x-+-÷+⋅-+-22(3)1(3)(2)2(2)3(3)2x x x x x x x -+-=⋅=--+---. ⑵原式()()()2121222x x x x x ++-=÷++- ()()()222121x x x x x +-+=⋅++21x x -=+. 当3x =-时,原式325312--==-+测试2. ⑴已知:2232a b ab -=,求2a b a b+-的值. ⑵已知113a b+=,则32a ab b a ab b -+++的值是 . 【解析】 ⑴变形可得:()(3)0a b a b +-=,所以a b =-或3a b =,所以212a b a b +=--或52. ⑵∵113a b+=,∴0a ≠,0b ≠,0ab ≠ 1133(3)330112(2)322a ab b a ab b ab b a a ab b a ab b ab b a -+-+-+÷-====++++÷+++课后测第十五种品格:创新微生物之父列文胡克是是一位没有受到正式高等教育的英国皇家学会成员。

人教版八年级上册 第15章 第2节 分式的化简求值与恒等变形 讲义

人教版八年级上册 第15章 第2节 分式的化简求值与恒等变形 讲义

第二节分式的化简求值与恒等变形分式的求值:给出一定的条件,在此条件下求分式的值称为有条件的分式求值。

注:①分式的化简与求值是紧密相连的,求值之前必须先化简,化简的目的是为了求值,先化简后求值是解有条件的分式求值的基本策略。

①解有条件的分式化简与求值问题时,既要瞄准目标,又要抓住条件,既要根据目标变换条件,又要依据条件来调整目标。

1.分式的化简求值先把分式化简后,再把分式中未知数对应的值代入求出分式的值。

注:在化简的过程中要注意运算顺序和分式的化简,化简的最后结果分子、分母要进行约分,注意运算的结果要化成最简分式或整式。

2.分式化简求值时需注意的问题(1)化简求值,一般是先化简为最简分式或整式,再代入求值,化简时不能跨度太大,而缺少必要的步骤,代入求值的模式一般为“当…时,原式=…”。

(2)代入求值时,有直接代入法,整体代入法等常用方法。

解题时可根据题目的具体条件选择合适的方法。

当未知数的值没有明确给出时,所选取的未知数的值必须使原式中的各分式都有意义,且除数不能为0.(注意负数和分数加括号的问题)3.分式化简求值需要用到下面的一些技巧①适当引入参数;①取倒数或利用倒数关系;①拆项变形或拆分变形;①整体代入;①利用比例的性质。

1、已知4z 3y 2x==,则222x x z 2-yz x y z y +++=________。

2、化简:1221421x 222+-+÷-+-+x x x x x x ,然后在不等式x ≤2的非负整数解中选择一个适当的数代入求值。

3、如果k fe d c b ===a(b+d+f ≠0),且a+c+e=3(b+d+f ),那么k=________。

4、先化简,再求值:1211x 222++-÷⎪⎭⎫ ⎝⎛-+x x x x x ,其中x 的值从不等式组⎩⎨⎧≤41-x 21x - 的整数解中选取。

5、先化简,再求值:24444x 2-122++--+-÷⎪⎭⎫ ⎝⎛x x x x x ,其中x ²+2x-15=06、已知()2y -x 21-2x +=0,求代数式⎪⎪⎭⎫ ⎝⎛+++++⎪⎪⎭⎫ ⎝⎛y x 2y xy 2x y -x 2y xy -2x 2y 1-2x 1的值。

分式的基本性质恒等变形28页PPT

分式的基本性质恒等变形28页PPT

分式的基本性质恒等变形
6

露Hale Waihona Puke 凝无游氛







7、翩翩新 来燕,双双入我庐 ,先巢故尚在,相 将还旧居。
8













9、 陶渊 明( 约 365年 —427年 ),字 元亮, (又 一说名 潜,字 渊明 )号五 柳先生 ,私 谥“靖 节”, 东晋 末期南 朝宋初 期诗 人、文 学家、 辞赋 家、散
1
0















46、我们若已接受最坏的,就再没有什么损失。——卡耐基 47、书到用时方恨少、事非经过不知难。——陆游 48、书籍把我们引入最美好的社会,使我们认识各个时代的伟大智者。——史美尔斯 49、熟读唐诗三百首,不会作诗也会吟。——孙洙 50、谁和我一样用功,谁就会和我一样成功。——莫扎特
文 家 。汉 族 ,东 晋 浔阳 柴桑 人 (今 江西 九江 ) 。曾 做过 几 年小 官, 后辞 官 回家 ,从 此 隐居 ,田 园生 活 是陶 渊明 诗 的主 要题 材, 相 关作 品有 《饮 酒 》 、 《 归 园 田 居 》 、 《 桃花 源 记 》 、 《 五 柳先 生 传 》 、 《 归 去来 兮 辞 》 等 。

人教版八年级数学上册第十五章分式分式方程及其解法ppt教学课件

人教版八年级数学上册第十五章分式分式方程及其解法ppt教学课件
人教版 八年级数学上册
第十五章 分 式
15.3 分式方程
分式方程及其解法
导入新课
问题引入
一艘轮船在静水中的最大航速为30千米/时,它沿
江以最大航速顺流航行90千米所用时间,与以最
大航速逆流航行60千米所用时间相等.设江水的流
速为x千米/时,根据题意可列方程
90 30+x
60 30
x.
这个程是我们以前学过的方程吗?它与一元一次 方程有什么区别?
2.
课堂小结
定 义 分母中含有未知数的方程叫做分式方程
分式 方程
步骤
(去分母法)
一化(分式方程转化为整式方程); 二解(整式方程); 三检验(代入最简公分母看是否为零)
注意
(1)去分母时,原方程的整式部分漏乘.
(2)约去分母后,分子是多项式时,没有 添括号.(因分数线有括号的作用)
(3)忘记检验
简记为:“一化二解三检验”.
典例精析
例1
解方程
2 3. x3 x
解: 方程两边乘x(x-3),得
2x=3x-9.
解得 x=9.
检验:当x=9时,x(x-3) ≠0.
所以,原分式方程的解为x=9.
例2
解方程
x
x 1
1
(x
3 1)( x
2)
.
解: 方程两边乘(x-1)(x+2),得
x(x+2)-(x-1)(x+2)=3.
3
x
x(6)2x 2
x 1 5
10
)x 1方分x 法式2总方结 程,:2判xx主断1要一是3个x看方1分程母是中否是为
否含有未知数(注意:π不是未 知数).

八年级数学人教版上册第15章分式15.1.2分式的基本性质(图文详解)第1课时

八年级数学人教版上册第15章分式15.1.2分式的基本性质(图文详解)第1课时

相等.
类比分数的基本性质,你能得到分式的基本性质吗?说
说看!
八年级上册第15章分式
如何用语言和式子表示分式的基本性质?
分式的基本性质
A AgC (C 0) A A C (C 0) 其中A,B,C是整式.
B BgC
B BC
用语言表示 分式的分子与分母同乘以(或除以)一个不等于0的 整式 ,分式的值不变.
a
(1) 与
ab
a(a b) a2 b2
(2) x 与 x(x2 1)
3y
3y(x2 1)
当a+b≠0时,可由第一式变形为 第二式

八年级上册第15章分式
5. 不改变分式的值,使下列分子与分母都不含“-”号
(1) 5b (2) x
6a
3y
【解析】 (1) 5b 5b 6a 6a
2b 2b c 2bc
(2) 由 x 0,
知 x3 x3 x x2 . xy xy x y
为什么给出c 0?
C=0时分式无意义.
为什么本题未给 x 0 ?
x=0时分式无意义.
八年级上册第15章分式
若把分式 y
x y
的 x 和 y都扩大两倍,则分式的值(
)
A.扩大两倍
八年级上册第15章分式
3.下列各式中与分式
a a b
的值相等的是(

(A) a
a b
(B) a
ab
(C) a
ab
(D) a
ab
【解析】选B. a a a
a b (a b) a b
八年级上册第15章分式
4.下列各组中分式,能否由第一式变形为第二式?

(精品)第15章分式教案

(精品)第15章分式教案

第十五章分式教材分析本章的主要内容包括:分式的概念,分式的基本性质,分式的约分与通分,分式的加、减、乘、除运算,整数指数幂的概念及运算性质,分式方程的概念及可化为一元一次方程的分式方程的解法。

全章共包括三节:15.1 分式15.2 分式的运算15.3 分式方程其中,16.1 节引进分式的概念,讨论分式的基本性质及约分、通分等分式变形,是全章的理论基础部分。

11.2节讨论分式的四则运算法则,这是全章的一个重点内容,分式的四则混合运算也是本章教学中的一个难点,克服这一难点的关键是通过必要的练习掌握分式的各种运算法则及运算顺序。

在这一节中对指数概念的限制从正整数扩大到全体整数,这给运算带来便利。

11.3节讨论分式方程的概念,主要涉及可以化为一元一次方程的分式方程。

解方程中要应用分式的基本性质,并且出现了必须检验(验根)的环节,这是不同于解以前学习的方程的新问题。

根据实际问题列出分式方程,是本章教学中的另一个难点,克服它的关键是提高分析问题中数量关系的能力。

分式是不同于整式的另一类有理式,是代数式中重要的基本概念;相应地,分式方程是一类有理方程,解分式方程的过程比解整式方程更复杂些。

然而,分式或分式方程更适合作为某些类型的问题的数学模型,它们具有整式或整式方程不可替代的特殊作用。

借助对分数的认识学习分式的内容,是一种类比的认识方法,这在本章学习中经常使用。

解分式方程时,化归思想很有用,分式方程一般要先化为整式方程再求解,并且要注意检验是必不可少的步骤。

(二)本章知识结构框图(三)课程学习目标本章教科书的设计与编写以下列目标为出发点:1.以描述实际问题中的数量关系为背景,抽象出分式的概念,体会分式是刻画现实世界中数量关系的一类代数式。

2.类比分数的基本性质,了解分式的基本性质,掌握分式的约分和通分法则。

3.类比分数的四则运算法则,探究分式的四则运算,掌握这些法则。

4.结合分式的运算,将指数的讨论范围从正整数扩大到全体整数,构建和发展相互联系的知识体系。

【人教版】数学八年级上册15.分式基本性质 课件

【人教版】数学八年级上册15.分式基本性质 课件

人教版数学八年级上册15.分式基本性 质 课件-精品课件ppt(实用版)
思考?
在化简分式 5 xy 时,小颖和小明的做法 出现了分歧: 20 x 2 y
小颖: 5xy 20x2 y
5x 20x2
小明:250xx2yy4x5x5xyy41x
人教版数学八年级上册15.分式基本性 质 课件-精品课件ppt(实用版)
人教版数学八年级上册15.分式基本性 质 课件-精品课件ppt(实用版)
例3 约分
25a 2bc 3 (1) 15ab2c
分式约分的基本步骤:
(1)找出分式的分子与分母的公因式
x2 9 (2)约去公因式,化为最简分式或整式
(2) x2 6x 9
如果分式的分子或
6x2 12xy6y2 (3)
3x3y
人教版数学八年级上册15.分式基本性 质 课件-精品课件ppt(实用版)
1m 6m 6((33mmnn33))(31m 8m2nn33)
2 x 1 2y(x (2 xy )2xy()2y)xx 2 2 4y y2
3x2y5
y8
x2y5( y8( y
y5)5 )(xy23)
人教版数学八年级上册15.分式基本性 质 课件-精品课件ppt(实用版)
人教版数学八年级上册15.分式基本性 质 课件-精品课件ppt(实用版)
分数是如何约分的?
▪ 约去分子与分母的最大公约数,化为最简分数。
15 3 5 5 21 3 7 7
类比分数 的约分, 分式如何 约分呢?
人教版数学八年级上册15.分式基本性 质 课件-精品课件ppt(实用版)
人教版数学八年级上册15.分式基本性 质 课件-精品课件ppt(实用版)

人教版数学八年级上册第十五章《分式》复习教案

人教版数学八年级上册第十五章《分式》复习教案

第15章分式单元要点分析教材内容本单元教学的主要内容:本单元主要内容是分式的概念、根本性质、分式运算以及分式方程的应用.本单元知识构造图.本单元教材分析:本单元是继整式之后对代数式的进一步研究,主要从三个方面展开讨论:1.密切分式与现实生活的联系,突出分式、分式方程的模型作用,•分式也是表示具体问题情境中数量关系的工具;分式方程那么是将具体问题“数学化〞的重要模型.本单元首先通过从分数到分式,以适移的手法引入分式概念,在分式的运算中安排了丰富的实际问题,让学生在这些实际问题中,学习法那么、应用法那么,感受分式运算的意义,理解算理.在学习分式方程时,教材设置了现实中的速度问题、工程问题等,让学生经历“建立分式方程模型〞这一数学化的过程,体会分式方程的意义与使用,培养抽象、概括能力.在分式方程应用方面,力求使应用问题贴近学生生活实际,增强学生解决问题的能力,激发学生的学习兴趣.2.注意数学思想方法的应用,突出培养学生的合情推理能力.•教材十分重视观察、类比、归纳、猜测等思维方法的应用.在分式根本性质的探索过程中,采用观察、类比的方法,让学生在讨论、交流中获得结论,在分式加减乘除运算法那么的探索中,与分数进展类比,得到有关结论;分式方程的概念也是通过抽象、概括获得的.这样,既渗透了常用的数学思维方法,又培养了学生的合情推理能力.3.适当降低分式运算的难度,注重对算理的理解、分式的化简、求值、•运算,是代数运算的根底,但它与分数非常类似.因此,适当控制难度、注意对算理的理解是本单元的特点.在分式运算方面,教材的例、习题难度都不大,运算步骤不多,注意一题多解,对分式方程,注重对解的合理性的讨论.三维目标1.知识与技能〔1〕熟练掌握分式的根本性质,会进展分式的约分、•通分和加减乘除混合运算,会解可化为一元一次方程的分式方程〔方程中分式不超过两个〕,会检验分式方程的根.〔2〕能解决一些与分式、分式方程有关的实际问题,具有一定的分析问题、•解决问题的能力和应用意识.2.过程与方法〔1〕经历用字母表示现实情境数量关系〔分式、分式方程〕的过程,•了解分式、分式方程的概念,体会分式、分式方程的模型思想,进一步开展符号感.〔2〕经历通过观察、归纳、类比、猜测,获得分式的根本性质、•分式乘除运算法那么、分式加减运算法那么的过程;开展学生的合情推理能力与代数恒等变形能力.3.情感、态度与价值观通过学习,获取代数知识的常用方法,感受代数学习的实际应用价值.重难点、关键1.重点:分式的混合运算以及分式方程的应用.2.难点:异分母的分式的通分,特别是分母是多项式的分式的通分,另一个是分式方程的“建模〞问题.3.关键:把握分式的根本性质,在通分中的充分应用.抓住最简公分母的寻找方法是解决通分这一难点的关键.复习与交流教学内容本节课主要内容是对本单元进展回忆.教学目标1.知识与技能会进展分式的根本运算〔加、减、乘、除、乘方〕,熟练掌握分式方程的解法,能应用“建模〞思想解决实际问题.2.过程与方法经历回忆分式概念、计算、应用的过程,提高观察、类比归纳、猜测等能力,.领会其算理.3.情感、态度与价值观培养学生的自主、合作、交流的意识,和严谨的学习态度,让学生体会知识的内在价值.重难点、关键1.重点:通过理解分式的根本性质,掌握分式的运算、应用.2.难点:分式的通分以及分式方程的“建模〞.3.关键:把握分式的根本性质,领会算理.教学准备教师准备:投影仪,制作与本节课有关的投影片,图片等.学生准备:做一份本单元知识小结.学法解析1.认知起点:在学习了不等式根本性质、约分、通分、混合运算,•以及分式方程、应用内容后进展反思.2.知识线索:3.学习方式:采用知识体系梳理,•合作交流的学习方式到达稳固提高本单元知识的目的.教学过程一、回忆交流,稳固反应【组织交流】教师活动:翻开投影机,先将学生分成四人小组,交流各自准备的单元小结,然后开展小组汇报.学生活动:小组合作交流,交流内容是〔1〕单元知识构造图;〔2〕课本P41“回忆与思考〞的5个问题;〔3〕自己的单元小结.活动形式:先小组合作交流,再小组汇报,师生互动.媒体使用:学生汇报中,可借用投影仪,辅助讲解.教师归纳:本章主要内容是分式的概念;分式的根本性质;分式混合运算和可化为一元一次方程的分式方程及其应用,这些内容在今后进一步学习方程、函数等知识时占有重要地位和作用.〔投影显示本单元知识体系,见课本P157〕1.分式的根本性质是分式恒等变形的依据,•正确理解和熟练掌握这一性质是学好分式的关键,因此学习中要注意以下三点:〔1〕根本性质中的字母表示整数,〔,A A M A A M B B M B B M⨯÷==⨯÷,M≠0〕 〔2〕要特别强调M≠0,且是一个整式,由于字母的取值可以是任意的,所以M•就有等于零的可能性,因此,应用根本性质时,重点要考察M 的值是否为零.2.约分,约分的目的是化简,关键是找分子和分母的最高公因式,•即系数的最大公约数、一样因式的最低次幂.3.通分,通分关键是确定n 个分式的公分母,•通常取各分母所有因式的最高次幂的积作公分母,这样的公分母叫最简公分母.4.分式的乘除法本质就是〔1〕因式分解,〔2〕约分.5.分式的加减法本质就是〔1〕通分,〔2〕分解因式,〔3〕约分.6.解分式方程的本质就是将分式方程化成整式方程,但要注意验根.【设计意图】让学生掌握课堂的主动权,以自主、合作、交流的手法调动学生的主观能动性.二、寓思与练,讨论交流【显示投影片1】演练题1:当x 取什么数时,以下分式有意义?〔1〕22461;(2);(3)512x x x x m-++. 思路点拨:〔1〕令5x+1=0,相应求出x 的值,然后x 不取这个值时分式必有意义.〔 x≠-15〕;〔2〕由于无论x 取何值x 2+2的值均大于零,因此,x 取任何实数,此分式都有意义;〔3〕因为任何数的平方均为非负数,那么m 2≥0,所以m≠0即可.演练题2:当x 取什么数,以下分式的值为零?〔1〕23||2;(2)47(2)(5)x x x x x +-++-. 思路点拨:令分子等于零,由此求出x 的值,此时应考虑分母是否等于零,•假设等于零,那么分式无意义,应舍去.〔1〕x=-32;〔2〕x=2. 【活动方略】教师活动:操作投影仪,引导学生训练,并请学生上台板演.学生活动:独立完成演练题1,2,以练促思.三、随堂练习,稳固深化1.x 为何值时,2||5x x-的值为零;〔x±5〕 2.x 为何值时,259x x +-没有意义;〔x=9〕 3.x 为何值时,6721a a -+的值等于1.〔a=2〕 4.课本P158复习题15第6题.四、范例学习,提高认知例1 计算.2244222815(1);(2)()(66).583()[:(1),(2)]6x y a b xy x y x y ab xy x y ax xy x y b -÷-++答案 思路点拨:按法那么进展分式乘除法运算,应注意,如果运算结果不是最简分式,一定要约分,对于分式的乘除混合运算,按乘除的顺序依次进展;当分子、分母是多项式时,一般先分解因式,并在运算过程中约分,使运算简化. 例2 计算.222222222(1);11112(2)()().4444224xy y x x y y x x y b a ab b a ab b a b a b a b -+--+-÷+-+++-+- 思路点拨:〔1〕•分式的加减运算就是把异分母的加减化成同分母的分式的加减,因此,在通分过程中找出最简公分母是关键.〔2〕对于分式的混合运算,•应注意运算顺序.【活动方略】教师活动:通过分析例1、例2的算理,增强学生的运算能力,提高运算的准确性.学生活动:参与例1、例2的分析,同教师一道领会算理,掌握正确的学习方法.五、随堂练习,稳固深化1.计算.22225(1)221(2)1111(3)1();()121x xx x x x a a a a a a a a +----+-+--÷-+--+ 2.先化简,再求值:()(2)(1)x y x y y y x y x x -÷+-÷+,其中x=115,.[]253y = 六、联系实际,实践应用【显示投影片2】例3 解分式方程:1-6351x x x+=-+ [x=2] 思路点拨:解分式方程根本思路是方程两边都乘以各分母的最简公分母,使方程化为整式方程,但解后必须验根.例4 某水泵厂在一定天数内生产4 000台水泵,工人为了支援祖国现代化建立,每天比原方案增加25%,可提前10天完成任务,问原方案每天生产多少台?〔80台〕思路点拨:工程问题常用的关系式是时间=总工作量日产量,设原方案每天生产x台,•列式4000400014x x x-+=10.【活动方略】教师活动:操作投影仪,启发引导学生弄清题意,正确解答.学生活动:利用例3、例4,复习分式方程解法,以及应用题“建模〞方法,并归纳小结.七、继续演练,反复认识【显示投影片3】1.解方程:8177xx x----=8〔无解〕2.一列火车从车站开出,预计行程450千米,当它开出3小时后,因出现特殊情况多停一些,耽误30分钟,后来把速度提高了倍,结果准时到达目的地,•求这列火车原来的速度.[提示:设火车原速为x千米/小时,列车450314531.22xx x-+=,x=75]3.课本P159“复习题15〞第9,10题.八、布置作业,专题突破1.课本P158“复习题15〞第1,2〔3〕〔4〕〔6〕,3〔2〕〔4〕〔6〕〔8〕,4,5,8题.2.选用课时作业设计.九、课后反思。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

对称式,所以该代数式一定可以表示为三元基本对称式的组合.
原式

标注 式 > 分式 > 分式化简求值 > 题型:整体代入求值
思维拓展
拓展1


,则
( ).
A.
B.
C.
D.
答案 D
解析 以 , 为主元,
由题设得





标注 式 > 整式的乘除 > 整式的乘除运算 > 整式乘除的运算及化简求值
拓展2
化简分式:
已知
,求
答案 ; .
解析 由已知得 ⑴如果分子
⑵如果分子 此时,

,则由分母推得
.此时,

,则



标注 式 > 分式 > 分式化简求值 > 题型:分式化简求值综合
巩固4
的值.
已知 , , 满足

值为多少?.
答案

解析 由
所以 即 所以 如果
,可得: .

,或

,那么
,即

,那么


则 即 综上
,所以 或
拓展5
若 答案 证明见解析. 解析 方法一:
,求证

即 方法二: 即 故 则 故

, .
等式两边同时除以 ,可得
, ,

进而




,从而



展开并化简,可得


,从而



标注 式 > 分式 > 分式的基础 > 题型:分式基本性质的运用
三、巩固加油站
巩固1
解答下列问题:
(1) 设
,求

(2) 已知
例题4
(等比性质),
已知
,且
,则


答案
解析 设 故 又
,又



标注 式 > 分式 > 分式化简求值 > 题型:分式条件化简求值
例题5
解答下列问题: (1) 若
(2) 已知实数 、 、 满足
的值是

,则 与
答案 (1) (2)
解析 (1) 由
可知,
=

,则
展开有 故 (2) 因为 所以, 故
. ,
,求代数式
的值.
答案
(1) . (2) .
解析 (1) 标注 式 > 分式 > 分式化简求值 > 题型:分式条件化简求值 巩固2
实数 、 满足 A.
,记 B.
答案 B
解析 将 分别代入 和 ,则
, C.
,则 与 的关系是:( ) D. 不确定

.所以

标注 式 > 分式 > 分式的运算 > 分式的混合运算 巩固3
, ,

. 标注 式 > 分式 > 分式化简求值 > 题型:整体代入求值
二、分式的证明
经典例题
例题6
设 、 、 满足
,求证:

答案 证明见解析 解析 由式子
可得到
,即

所以如果
.那么
.即

所以
,或

所以 、 、 三个数中必有两个数互为相反数.
不妨设 和 互为相反数.那么.所以式子左边
,即 式子右边.
又当 时,

所以,得到的所有代数式的值的和等于

标注 式 > 分式 > 分式化简求值 > 题型:整体代入求值
例题3
若 答案 或 .
,求
的值.
解析 方法一:法一:叠加法.

,则


,原式


,则

此时


,原式

法二:轮换法.


,分解即

同理可得



,则


,原式


,则
,即
,原式

法三:硬解法.
标注 式 > 分式 > 分式的运算 > 题型:分式乘除、乘方混合运算
例题7
设 , , 为互不相等的非零实数,且
,求证:

答案 证明见解析
解析 由已知 同理 所以
.可得到



,所以

标注 式 > 分式 > 分式的基础 > 分式的基本性质
铺垫

,求证:

答案 见解析
解析 解法 :因为 则
,故 , , .
答案

解析 方法一:换元:令 原式
,则
方法二:原式中只出现了 和 元法.
的形式,而且
,因此可用换

,则

原式

故答案为:

标注 式 > 分式 > 分式的运算 > 题型:分式加减、乘除混合运算
拓展3
已知 值.
,求代数式
答案
解析 方法一:法一:∵


∴原式左边
法二:∵


∴原式左边 法三:换元法,有条件
. .
标注 式 > 分式 > 分式的运算 > 题型:分式加减、乘除混合运算
巩固5
已知
,求关于 的方程
的解.
答案
解析 原方程可化为
因为
,所以




标注 方程与不等式 > 分式方程 > 分式方程的解与解分式方程
巩固6
已知


,则
答案
.
解析 由题意,

则原式

第15讲 分式恒等变形
一、分式求值
知识导航
分式的恒等变形是代数式恒等变形的一种。它以整式恒等变形为基础,并结合分式自身的特点,具 有很强的技巧性。
在给定的条件下,对分式进行求值计算,是常见的分式恒等变形的一种题型。
经典例题
例题1
解答下列问题:
(1) 若

,则式子
(2) 已知
,则
的值为


答案 (1) (2)

,…, , , ,…, , , 时,代数式
答案
(1) C (2)
解析 (1)
因为

即当 分别取值 , 为正整数)时,
计算所得的代数式的值之和为 ;而当 时,
因此,计算所得各代数式的值之和为 .
故选 .
(2) 当 为实数时,把 与
分别代入代数式
. 中,
得到的两个值的和是

所以,若将 代入代数式
,, , , , , , , , 中求值,得到的所有值的和是 ,
解析
(1) 略. (2) 略.
标注 式 > 分式 > 分式化简求值 > 题型:整体代入求值
例题2
请回答下列各题: (1) 当 分别取值 , , ,…, , , ,…, , , 时,计算代数式 的值,将所得的结果相加,其和等于( ).
A. .
B. .
C. .
D. .
(2) 当 依次取 , ,
的值的和等于






相加得


,则


,原式


, ,此时


,原式

法四:



,则


,原式


,则

此时
,故原式

法五:令

则 ① ② ③有
①,
②,

,即

故有 或

当 时,

时 方法二:若
,则

,
,
,故


,则
故有
,从而可知

故答案为: .
标注 式 > 分式 > 分式的运算 > 题型:分式加减、乘除混合运算

注意到
,故上式

解法 :因为
,故 , , .

. 标注 式 > 分式 > 分式的基础 > 题型:分式基本性质的运用
例题8
已知


答案

解析 方法一:代换法一. 由题知 考虑到 ∴原式
,求代数式
, ,
的值.

方法二:代换法二. 由题知 考虑到 ∴原式
, ,

方法三:基本对称式法.
观察到


是三元基本对称式,且待求代数式也是三元
时的非齐次转齐次式的方法.

, , ,

, , , .

,,
,,


∴原式左边

方法二:
同理

∴原式

故答案为: .
方法三:原式

故答案为: .
标注 式 > 分式 > 分式化简求值 > 题型:分式条件化简求值
拓展4

,且
,求
的值.
答案 .
解析 设

由已知可得
因此

相关文档
最新文档