1(10分)用作图法确定下列组合光组的像方焦点位置F'
第7课【光组组合与透镜】.
四、光学系统的光焦度
例:一理想光组,
f1’= -f1 =100mm, l1 = -200mm
f2’= -f2 = 40mm l2 = -200mm,
物距相同,求上述两种情况下的像距
结论:物距相同而焦距不同时,焦距短 的光组对光束会聚的能力强些。
1、光焦度的概念
n n f f
Φ称为光学系统的光焦度。 空气中:
1、双光组组合图解分析
光组一
光组二
F
H
F1
H 1 H 1
F1
F2
H 2 H 2
F2
2、解析法组合分析中的参量
注意原点的定义
原点在前;从原点到参量点
牛顿参量(以焦点为原点)和高斯参量(以主点为原点) 物方参量以第一光组的物方基点为原点;像方参量以第二光组的像方基点为原点 1)等效焦点的位置 2)等效主点的位置 3)等效焦距:主点到焦点的距离,以相应主点为原点
1)公式特点 • 分母相同; • 像方公式有负号; • (前)后焦点只与(前)后光组有关; • 物(像)方焦距只与物(像)方焦距有关。
4、注意事项
2)注意比较等效法和逐面求解法(组合公式 与过渡公式) 3)明确相关参量的准确概念、坐标、符号规 则 4)结合图形理解相对位置关系
5、高斯公式
二、多光组组合计算
3、透镜分析方法
• 光学系统←多个透镜←单个透镜←两个单 独的光组←单个折射球面(一个光组)的 主平面和焦点位置是最基本的问题。其余 问题可以使用组合公式解决
二、单个折射球面的基点、基面
1、折射球面
1)主点重合于顶点 处,主面重合且与 球面相切,节点重 合于球心 2) 在物象位置公式 中,分别令l=-∞ 或l’=∞,利用焦点 的概念(共轭关系) 可以求出f和f’,从 而得到焦点的位置。
光现象--作图题100题(含答案解析)
第I卷(选择题)请点击修改第I卷的文字说明一、选择题(题型注释)二、双选题(题型注释)三、多选题(题型注释)第II 卷(非选择题)请点击修改第II 卷的文字说明 评卷人 得分 四、填空题(题型注释)评卷人得分 五、实验题(题型注释) 评卷人得分 六、作图题(题型注释)1.潭清疑水浅,安全记心间。
如图,A 是水池底某点,请作出光线AO 的折射光线以及人从岸上看到A 的像A′。
【答案】光路图如下图所示【解析】试题分析:根据光的折射规律作出光线AO 的折射光线,然后把两条折射光线反向延长,交于一点,这一点就是人眼所看到的A 的像A′。
【考点定位】光的折射规律2.如图所示,在水池里有一个点光源S ,SP 是它发出的一条光线,在SP 的传播方向上有一块平面镜,QM 是SP 经此平面镜反射后的反射光线。
请你画出平面镜的准确位置和光线QM 进入空气后的大致传播方向。
【答案】如下图所示S P QM【解析】试题分析:把反射光线反向延长与入射光线的延长线交于一点,这一点在平面镜上,过交点作出入射光线与反射光线所夹锐角的平分线就是法线,然后过该交点作法线的垂线就是平面镜的位置;光线由水斜射向空气时,折射角大于入射角。
【考点定位】光的反射和光的折射3.根据平面镜成像特点,在图甲中画出物体AB 在平面镜中所成的像A'B'。
【答案】如下图所示【解析】试题分析:分别作出物体AB 端点A 、B 关于平面镜的对称点A′、B′,用虚线连接A′、B′即为AB 在平面镜中的像.如上图所示。
考点:平面镜成像4.如图所示,人看到了水中的鱼,请用作图法确定哪条鱼是真正的鱼。
【答案】如图所示S P QM 空气水空气水【解析】光从水中射入空气中,发生光的折射,根据光的折射定律可知,空气中的角大,所以下面的鱼是真实的鱼。
5.在图5中的画出该光线的反射光线使光路图完整.【答案】略【解析】分析:根据反射定律作图:反射角等于入射角.解答:解:点评:本题考查了光的反射定律的作图:反射光线、入射光线、法线在同一平面内,反射光线和入射光线分居法线的两侧,反射角等于入射角.6.(2分)在题15(l)图中画出反射光线并标出反射角。
部编物理八年级上册专题06透镜及透镜成像作图(解析版)含答案
专题06 透镜及其成像规律作图(解析版)类型一凸透镜、凹透镜三条特殊光线【方法技巧】1.凸透镜三条特殊光线:(1)过光心的光线,其传播方向不改变;(2)平行主光轴的光线折射后过焦点:(3)过焦点射向凸透镜的光线折射后将平行主光轴传播。
2.凹透镜三条特殊光线:(1)经过光心的光线传播方向不改变。
(2)与主光轴平行的光线折射后的反向延长线过虚焦点。
(3)射向虚焦点的光线折射后平行于主光轴。
【专项训练】1.在图1中完成凸透镜光路图,在图2中完成凹透镜光路图。
【答案】解:在图1中,平行于主光轴的光线经凸透镜折射后将过焦点;通过焦点的光线经凸透镜折射后将平行于主光轴;在图2中,平行于主光轴的光线经凹透镜折射后,其折射光线的反向延长线过焦点;过凹透镜光心的光线传播方向不改变;延长线过另一侧焦点的光线经凹透镜折射后将平行于主光轴;如图所示:【解析】在作凸(凹)透镜的光路图时,先确定所给的光线的特点再根据凸(凹)透镜的光学特点(三条特殊光线)来作图。
(1)凸透镜三条特殊光线:①通过焦点的光线经凸透镜折射后将平行于主光轴;②平行于主光轴的光线经凸透镜折射后将过焦点;③过凸透镜光心的光线传播方向不改变。
(2)凹透镜三条特殊光线:①延长线过另一侧焦点的光线经凹透镜折射后将平行于主光轴;②平行于主光轴的光线经凹透镜折射后,其折射光线的反向延长线过焦点;③过凹透镜光心的光线传播方向不改变。
2.平行光经过凸透镜后会聚在主光轴上的一点,这个点叫凸透镜的焦点;平行光经过凹透镜后,光线发散,发散光线的反向延长线交在主光轴上的一点,这个点叫凹透镜的虚焦点。
如图,F 点既是图示凸透镜的焦点,也是图示凹透镜的虚焦点,请画出图中两条平行于主光轴的光线经过两个透镜的光路图。
【答案】3.如图所示,在平面镜与凸透镜之间放一物体AB,F为凸透镜的焦点,从B点发出的一条光线经平面镜反射后恰好通过凸透镜的焦点F,并射向凸透镜,经凸透镜发生折射。
请画出:(1)物体AB在平面镜中的像A′B′。
工程光学第三章知识点
理想光学系统第三章 理想光学系统第一节 理想光学系统的共线理论● 理想光学系统:在任意大的空间内、以任意宽的光束都能成完善像的光学系统 ● 理想光学系统理论又称“高斯光学”,理想光学系统所成的完善像又称“高斯像” ●描述理想光学系统必须满足的物像关系的理论称为“共线理论”共线理论(1)物空间的每一点对应像空间的相应一点,且只对应一点(点对应点)(2)物空间的每一条直线对应像空间的相应直线,且只对应一条直线(直线对应直线) (3)物空间的每一平面对应像空间的相应平面,且只对应一个平面(平面对应平面)● 这种对应关系称为“共轭”,相应的点构成一对共轭点,直线构成一对共轭直线,平面构成一对共轭平面● 推论:物空间某点位于一条直线上,则像空间中该点的共轭点必定也位于这条直线的共轭直线上(点在线上对应点在线上)● 共轴球面系统用结构参数(r 、d 、n )描述系统 ● 理想光学系统用“基点”和“基面”来描述系统 ● 基点基面就是理想光学系统的特征参数第二节 无限远轴上物点与其对应像点F ’---像方焦点● 设有一理想光学系统● 有一条平行于光轴的光线A1E1入射到这个系统● 在像空间必有一条直线与之共轭,即PkF’,交光轴于F’点●在物空间中平行于光轴入射的光线都将汇聚在F’点上,F’点称为“像方焦点”共轴球面系统焦点、焦平面、主平面示意图焦点、焦平面、主平面示意图● 过F’点作垂直于光轴的平面,称为“像方焦平面” ● 像方焦平面与物方无限远处垂直于光轴的物平面共轭● 物方的任何平行光线若不与光轴平行,表示无限远处的轴外点,将汇聚在像方焦平面上的一点2,无限远的轴上像点和它所对应的物方共轭点F ——物方焦点● 像方平行于光轴的光线,表示像方光轴上的无限远点● 在物方光轴上必定有一点F 与之共轭,F 点称为物方焦点,过F 点的垂轴平面称为物方焦平面 ● 物方焦点F 与像方焦点F’不是一对共轭点3,垂轴放大率β=+1的一对共轭面——主平面● 在光学系统中存在着垂轴放大率β=+1的一对共轭平面,这一对共轭面称为“主平面”即物方主平面和像方主平面● 共轭垂轴平面QH 和Q’H’满足β=+1(因为高度h 相等) ● QH 为物方主平面,Q’ H’为像方主平面 ● H 为物方主点,H’为像方主点 ● 物方主平面QH 与像方主平面Q’H’共轭 ● 物方主点H 与像方主点H’共轭● 对于理想光学系统,不论其实际结构如何,只要知道了主点和焦点的位置,其特性就完全被决定了 4,光学系统焦距● 像方焦距:像方主点H ’到像方焦点F ’的距离f ’ ● 物方焦距:物方主点H 到物方焦点F 的距离f●焦距均以各自的主点为原点,与光线传播方向一致为正,相反为负 光学系统的焦距计算式tan tan h f U h f U '='=焦距包含了光学系统主点和焦点的相对位置,是描述光学系统性质的重要参数 像方焦距f ’>0的光组称为正光组,f ’<0的光组称为负光组无限远轴外物点的共轭像点焦点、焦平面、主平面示意图当光学系统的物方与像方处于同一介质中时,物方焦距与像方焦距数值相等,符号相反f = -f ’单折射球面的主平面和焦点共轴球面系统的成像性质可以用一对主平面和两焦点表示,为此目的,先研究单个折射球面的主平面和焦点位置。
光学试卷打印
一、填空1、光的折射定律(1) (2)2、发生全反射的条件为(1) (2)3、费马原理4、用垂轴放大率判断物、像虚实关系方法:当β>0时 β<0时5、物、像位置相对于光学系统的 来确定的称为牛顿公式,相对于光学系统的 来确定的称为高斯公式,如已知光学系统的物、像方的介质折射率分别为n 及n`,则理想光学系统中两焦距间的关系为6、光学系统的垂轴放大率β、轴向放大率α及角放大率γ之间的关系为7、一光学系统由焦距分别为:`,`,2211f f f f 和的两光组组成,两光组间光学间隔为∆=21`F F ,则组合系统的物、像方焦距分别为8、平面反射镜成像的垂轴放大率为 ,物像位置关系为 ,如果反射镜转过α角,则反射光线方向改变9、限制进入光学系统的成像光束口径的光阑称为 ,限制成像范围的光阑称为 , 经前面光组在光学系统物空间所成像称为 ,经后面光组在光学系统的像空间所成的像称为 ,主光线是指过 中心的光线10、单色光成像会产生性质不同的五种像差,分别为 ,白光产生的色差有两种,即1、厦门大学《工程光学》课程试卷物理与机电学院机电系三年级测控/机电专业主考教师:张建寰 试卷类型:(试卷)二、计算题1、 一厚度为200mm 的平行平板玻璃,n=1.5,其下面放一直径为1mm 的金属片,若在玻璃板上盖一圆形纸片,要求在玻璃上方任何方向上都看不到该金属片,问纸片最小直径为多少?2、 一束平行光束入射到一半径为r=30mm ,折射率n=1.5的玻璃球上,球的一半镀反射层,光从未镀侧入射,求平行光束的会聚点位置,并判断像的虚实。
3、 一光学系统由两薄透镜组组成,焦距分别为mm d mm f mm f 350,50,10021===,一物位于离第一透镜250mm 处,求光学系统所成像位置及垂轴放大率。
4、 如图所示的光学测微系统,光学透镜的焦距为`f ,当聚焦光斑在标尺上刻度为y 时,试推导其测量微小角位移原理。
(应用光学)2.8-2.16 理想光学系统的物像关系
2 共轴球面系统的物像关系 根据单个折射球面近轴范围内的放大率公式
y' nl'
y n' l
当光线位在近轴范围内时:
u h l
由以上二式得
由此得到
u h l
u' h l'
u l' u' l
nuy n' u' y'
应用光学(第四版)
2 共轴球面系统的物像关系
以上是单个折射球面物像空间存在的关系。对于由多个球面组成的共轴 系统来说有
B’
实物成等大倒立实像,位于二倍像方焦点上。分立两侧
应用光学(第四版)
2 共轴球面系统的物像关系
(c)物在二倍焦距之内,一倍焦距之外
B 2F A F
H H’ F ’
A’ 2F ’
B’
• 成放大倒立实像,像在二倍焦距外两侧
应用光学(第四版)
2 共轴球面系统的物像关系
(d)物在焦平面上
B
A
2F
F
H H’ F ’
应用光学(第四版)
2 共轴球面系统的物像关系
节点性质: 凡过物方节点J的光线, 其出射光线必过像方节点J’, 并且和入射光线相平行。
应用光学(第四版)
2 共轴球面系统的物像关系
节点位置 根据角放大率公式, x f
f ' x'
将γ=1代入,即可找到节点位置 x f 1
f ' x'
因此对节点J、J'有:
角放大率等于:
tgU' u'
tgU u
得 n tgU y n'tgU'y'
这就是理想光学系统的物像关系不变式。
应用光学习题”、“物理光学习题”、“工程光学-练习题
“应用光学习题”、“物理光学习题”、“工程光学+练习题”一、选择题1、几何光学有三大基本定律,它们是是:( D )A、折射与反射定律,费马原理,马吕斯定律;B、直线传播定律,折射与反射定律,费马原理;C、独立传播定律,折射与反射定律,马吕斯定律;D、直线传播定律,独立传播定律,折射与反射定律。
2、对理想光学系统,下列表述正确的是:( C )A、位于光轴上的物点的共轭像点不在光轴上;B、物方焦点与像方焦点共轭;C、基点与基面为:焦点、主点、节点,焦平面、主平面、节平面;D、牛顿物像位置关系,它是以主点为坐标原点。
3、关于光阑,下列表述正确的是:( B )A、孔径光阑经其前面的光学系统所成的像称为入窗;B、若孔径光阑在光学系统的最前面,则孔径光阑本身就是入瞳;C、孔径光阑、入窗、出窗三者是物像关系;D、视场光阑是限制轴上物点孔径角的大小,或者说限制轴上物点成像光束宽度、并有选择轴外物点成像光束位置作用的光阑。
4、关于人眼,下列描述正确的是:( A )A、眼睛自动改变焦距的过程称为眼睛的视度调节;B、近视眼是将其近点矫正到明视距离,可以用负透镜进行校正;C、眼睛可视为由水晶体、视网膜和视神经构成的照相系统。
;D、人眼分辨率与极限分辨角成正比关系。
5、关于典型光学系统,下列表述正确的是:( B )A、增大波长可以提高光学系统的分辨率;B、显微镜的有效放大率,放大率高于1000NA时,称作无效放大率,不能使被观察的物体细节更清晰;C、目视光学仪器,其放大作用可以由横向放大率来表示;D、减小孔径可以提高光学系统的分辨率。
6、关于光的电磁理论,下列表述正确的是:( D )A、两列光波相遇后又分开,每列光波不再保持原有的特性;B、两列光波叠加后其光强为两列光波的强度之和;C、等振幅面传播的速度称为相速度;D、两个振幅相同、振动方向相同、传播方向相同,但频率接近的单色光波叠加形成拍现象。
7、关于光的干涉,下列表述正确的是:( A )A、平行平板的多光束干涉中,随平板反射率的增加,透射光的干涉条纹变得越明锐;B、楔形平板形成的干涉为等倾干涉;C、等倾干涉条纹为同心圆环状条纹,中央条纹级次最低;D、迈克耳逊干涉仪只能产生等厚干涉条纹。
《应用光学》第3章 理想光学模型第6节
1.牛顿形式的两光组组合公式
图 (3-16)
设一个光组的主面为H1、H1',焦点为F1,F1';另一 个光组的主面为H1、H1',焦点为F1,F1'。如图3- 16所示,该两光组之间的相对位置用第一光组像方焦 点F1'到第二光组物方焦点F2的距离表示, 的符号 规定如下:以F1'为起点,计算到F2,由左向右为正, 反之为负。由该两光组组成的组合光组主点为H、H', 焦点为F、F',焦距为f、f '。
(3-5)
各光组对总光焦度的贡献
利用(3-5)式计算组合焦距时,需令u1=0, 这样第 一式变成n2u2=h11,将它带入n3u3=n2u2+h22有 n3u3=h11 +h22, 再带入n4u4=n3u3+h33就可以得到 n4u4=h11 +h22+ h33 ,依次代换可得:
k
nk 'uk ' h11 h22 hkk hii i 1 (3-6)
• 对于光学模型之间的间隔在这里有新的规定。高斯 公式是以前一系统的像方主点到后一系统的物方主 点的距离规定为间隔 d。牛顿公式是以前一系统的 像方焦点到后一系统的物方焦点的距离定义为光学 间隔△。二者的符号规则都是以顺着规定的光线正 方向为正,反之为负,其余类推。
图 (3-16)
按照焦点的性质,平行于光轴入射的光线,通过
f2
n(r2
r1) (n n 1
1)d
透镜的焦距为
f ' f1' f2 '
nr1r2
f
(n 1)[n(r2 r1) (n 1)d ]
光学教程(叶玉堂)第2章 理想光学系
3、焦距公式
f1f 2 1 2 d12 f 2 f1 f f
4、主点位置公式:
f 2 f1 f 2 l f d xH H f1 d f1 f1 f 2 lH f xH f2
由于有: r1<0,r2 =∞,所以:
r1 f n 1 d lH , lH 0 n
弯月形凸透镜
恒有fˊ>0,两个主平面 位于远离曲率中心处,如 右图所示
弯月形凸透镜
弯月形凹透镜
它与双凸透镜相似。其如 右图所示,两半径值差别 较小时,能获得给定正光焦度 弯月形凹透镜
三、薄透镜和薄透镜组 1、薄透镜(透镜厚度为零的透镜称为薄透镜) (1)主平面和球面顶点重合 lH lH 0 (2)焦距: (3)光焦度: 2、薄透镜组 (1)光焦度: (2)主点位置:
三、用平行光管测定焦距的原理
测量公式:
y f tan
无限远物体的理想像高
测量装置右图所示
y f 2 f1 y
焦距测量原理
§2.4 理想光学系统的组合
一、双光组组合 1、组合示意图
双光组组合图
2、焦点位置公式
f lF f 2 1 2 f1 lF f1 1
y f x y x f
f nl x nl
(2)以主点为坐标原点的公式: (3)若fˊ=-f 时:
f x f l x f x l
放大率随物体的位置而异,某一放大率只对应 一个物体位置,不同共轭面上,放大率是不 同的。
2、轴向放大率 (1)定义:
《应用光学》第2章课后答案 (2)全文
B
B′
F′
A′
F
HA H′
像平面为: 像方主平面
5 试用作图法对位于空气中的负透镜组( f 0)分别求 下列不同物距的像平面位置.
l f'
2
B′
B
A
F′
H H′
F A′
像平面为
A’B’所在平 面,如图示.
5 试用作图法对位于空气中的负透镜组( f 0 )分别求 下列不同物距的像平面位置.
l=∞
F′FLeabharlann HH′像平面为: 像方焦平面. l ′ = f′
6. 已知照相物镜的焦距f′=75mm,被摄景物位于距离x=∞,-10,-8,-6,-4,-2m处,试求照相底片应分别放在离物镜 的像方焦面多远的地方?
解:
7. 设一物体对正透镜成像,其垂轴放大率等于-1, 试求物平面与像平面的位置,并用作图法验证。
l = 2f′
B
B′
F
F′
H
H′ A′
A
像平面为
A’B’所在平
面,如图示.
l ′ = 2f′/3
4 试用作图法对位于空气中的正透镜组( f 0)分别求 下列不同物距的像平面位置.
l=∞
F
F′
H H′
像平面为: 像方焦平面. l ′ = f′
5 试用作图法对位于空气中的负透镜组( f 0 )分别求 下列不同物距的像平面位置.
r1 无穷远物点
r2
r1/2
最终像点
11 2
l2 l2 r2
l2
l2
2 r2
(l2l2 )
14. 假定显微镜物镜由相隔20mm的两个薄透镜组构成,物平 面和像平面之间的距离为180mm,放大率β=-10×,要求近 轴光线通过二透镜组时的偏角Δu1和Δu2相等,求二透镜 组的焦距。
组合透镜成像
§、透镜成像1.薄透镜成像公式是:f u 111=+υ式中f 、u 、v 的正负仍遵循“实正、虚负”的法则。
2.组合透镜成像如果由焦距分别为1f 和2f 的A 、B 两片薄透镜构成一个透镜组(共主轴)将一个点光源S 放在主轴上距透镜u 处,在透镜另一侧距透镜v 处成一像S '(图1-5-4)所示。
对这一成像结果,可以从以下两个不同的角度来考虑。
因为A 、B 都是薄透镜,所以互相靠拢地放在一起仍可看成一个薄透镜。
设这个组合透镜的焦距是f ,则应有f u 111=+υ ①另一个考虑角度可认为S '是S 经A 、B 两个透镜依次成像的结果。
如S 经A 后成像1S ,设1S 位于A 右侧距A 为1υ处,应有11111f u =+υ ②因为1S 位于透镜B 右侧1υ处,对B 为一虚物,物距为1υ,再经B 成像 ,所以11111f u =+υ ③图1-5-4由②、③可解得21111f =+-υυ ④比较①、④两式可知211111f f u +=+υ如果A 、B 中有凹透镜,只要取负的1f 或2f 代入即可。
3.光学仪器的放大率实像光学仪器的放大率 幻灯下、照相机都是常见的实像光学仪器。
由于此类仪器获得的是物体的实像,因而放大率m 一般是指所有成实像的长度放大率,即v=mu 。
如果有一幻灯机,当幻灯片与银幕相距时,可在银幕上得到放大率为24的像;若想得到放大率为40的像,那么,假设幻灯片不动,镜头和银幕应分别移动多少根据第一次放映可知⎪⎩⎪⎨⎧===+111111245.2u u m u υυ可解得 m u 1.01=,m 4.21=υm u u f 096.01111=+=υυ第二次放映⎪⎪⎩⎪⎪⎨⎧===+22222240111u u m f u υυ 可解得 m u 0984.02=,m 94.32=υ比较1u 和2u ,可知镜头缩回;比较1υ和2υ,可知银幕应移远。
虚像光学仪器的放大率 望远镜和显微镜是常见的虚像光学仪器。
1(10分)用作图法确定下列组合光组的像方焦点位置F'
5.(10分)解释何谓渐晕?用图示方法确定下列系统中渐晕系数分别为1、0.5、0时的成像范围?
物面
6.(10分)一个正透镜将一实物成一实像,其共轭距为500mm,现将透镜右移100mm,这时物像仍保持原来位置不变,试求:
(1)移动前后的物距、像距及其横向放大率。
(2)透镜的焦距为多少?
7.(10分)用焦距为50、-10的两个透镜组成一伽利略望远镜。已知lH1=1mm,lH1’=-2mm,lH2=-1.5mm, lH2’=2mm。求
1.用图标出各透镜的基点位置。
2.求出两透镜之间的距离
8.(20分)填空
1.写出下列术语的常用数学表示:
相对孔径;数值孔径;光圈数;
(1)物镜的通光口径;
(2)视场光阑的口径;
(3)目镜的通光口径;
(4)如果为了正像的需要加入棱镜系统,请问物镜的焦距f1’、望远镜的放大率Γ,系统展开后的筒长L、出瞳距l’Z将如何变化?
3.(10分)设已知物点A(B),判断下图中象点A’(B’)有否错误,若有则改正之。
B’A’
B A
F A A’F’F’F
光焦度;棱镜结构常数;视放大率。
2.解释下列定义
景深:
焦深:
有效放大率:
主光线:
子午面:
孔径光阑:
视场光阑:
分辨率:
110分用作图法确定下列组合光组的像方焦点位置f?所有资料文档均为本人悉心收集全部Байду номын сангаас文档中的精品绝对值得下载收藏
D卷
1.(10分)用作图法确定下列组合光组的像方焦点位置F’、像方主点位置H’、焦距f’。
2.(20分)已知开普勒望远镜的视放大率 ;视场角 ;出瞳直径 ;出瞳距 ;设物镜为孔径光阑,请计算:
应用光学测试题目及答案汇总
《应用光学》课程测验01学院:物电学院 班级:_____________ 姓名:________ 学号:________1. 人类对光的研究,可以分为两个方面:一方面是_____________________,称为物理光学,另一方面是 _________________________________,称为几何光学。
2. 几何光学基本定律包括________________、_______________、__________________。
3. 用绝对折射率表示的折射定律可用公式_______________表示。
4. 一厚度为200mm 的平行平板玻璃(设n=1.5),下面放一直径为1mm 的金属片。
若在玻璃板上盖一圆形纸片,要求在玻璃板上方任何方向上都看不到该金属片,问纸片最小直径应为多少?5. 为了从坦克内部观察外部目标,需要在坦克壁上开一个孔。
假定坦克壁厚200mm ,孔宽为120mm ,在孔内安装一块折射率5163.1 n 的玻璃,厚度与装甲厚度相同,问在允许观察者眼睛左右移动的条件下,能看到外界多大的角度范围?1、研究光的本性,并根据光的本性来研究各种光学现象 研究光的传播规律和传播现象2、直线传播定律、反射定律、折射定律3、2121n sin sin n I I = 4、解:7.3581516012580tan 200552tan 35321cos 3290sin sin 2222212=+=+=∴====⎪⎭⎫⎝⎛-==︒=x L mmI x I I n n I5、解:78.0arcsin 278.0arcsin 7801.034343*5163.1sin 34343200120120sin sin sin *122角度范围为∴===∴=+==ααββαn《应用光学》课程测验02学院:物电学院 班级:___________ 姓名:________ 学号:________1. 共轴理想光学系统有哪些性质?2.什么叫理想光学系统?理想光学系统有那些性质?3.什么叫理想像?理想像有何实际意义?4. 一个等边三角棱镜,若入射光线和出射光线对棱镜对称,出射光线对入射光线的偏转角为40°,求该棱镜材料的折射率。
部编物理八年级上册专题04光现象作图(解析版)含答案
专题04 光现象作图(解析版)类型一光的反射作图【方法技巧】准确作图要求:(1)反射角等于入射角,像物到镜面等距。
(相等)(2)法线与反射面垂直,像物连线与镜面垂直。
(垂直)(3)实际光线、实像、反射面用实线;光线的反向延长线、法线、虚像用虚线。
(虚实)【专项训练】1.一束光照射到平面镜上,如图所示.请在图中画出反射光线并标出反射角的度数.【答案】如图所示【解析】本题考查光的反射作图.先过入射点作法线,根据反射角等于入射角画出反射光线,反射角的度数为90°−60°=30°.2.用一平面镜将与水平面成30°角的阳光竖直照射到深井内,请你在图中画出平面镜的位置,并标出反射角的大小。
【答案】解:因为太阳光竖直射入深井内,所以反射光线竖直向下,由此画出法线,过入射点画出法线的垂线,即平面镜的位置,因入射光线与水平面成30°,而反射光线是竖直向下的,所以入射光线与反射光线的夹角为30°+90°=120°,则入射角、反射角为60°.如图所示:【解析】首先根据反射光线的方向(竖直向下)作出反射光线,反射光线和入射光线夹角的角平分线就是法线的位置,画出法线,然后根据法线是与平面镜是垂直的关系画出平面镜,标明反射角的度数。
首先知道反射定律的内容,然后根据反射定律完成反射光路,最后根据图中角之间的关系计算反射角的大小。
3如图所示,一小球放在桌子的右侧,请画出人通过平面镜看到球的光路图。
【答案】解:作出球点S关于平面镜的对称点,即为像点S′,连接S′P交平面镜于点O,沿OP画出反射光线,连接SO画出入射光线,如图所示:【解析】利用平面镜成像的特点:像与物关于平面镜对称,作出球的像点,根据反射光线反向延长通过像点,可以由像点和眼睛点确定反射光线所在的直线,从而画出反射光线,并确定反射点,最后由发光点和反射点画出入射光线,从而完成光路。
【课堂笔记】理想光学系统
对高斯公式微分,可得高斯公式的轴向放大率
f' f 2 dl ' 2 dl 0 l' l
dl' l '2 f 2 dl l f'
f' 2 f
由式(2-44)与式(2-41)比较,可得
角放大率
• 定义
tgU ' tgU
计算
l l'
f 1 f'
f l' f x' f 'l x f'
垂轴放大 率β 轴向放大 率α
nl ' n' l
nl ' 2 n' l 2
物像方处于 相同介质 l l'
l '2 2 l
l '2 f x' 2 x l f'
角放大率γ
拉赫不变 量J
l l'
主面和主点
垂轴放大率等于+1的一对共轭平面称为主 面 主面与光轴的交点为主点 在物方的称为物方主面和物方主点 在像方的称为像方主面和像方主点 图
返回
光学系统的焦距
主面和主点
在一对主面上,只要知道其中一个面上的点, 就可以找到共轭点----等高度.
作图时,一般将物方光线延长交于物方主面, 根据共轭关系找到像方主面上的共轭点,然 后再确定光线经像方主面后的出射方向.
理想光学系统
理想光学系统
理想光学系统和共线成像
理想光学系统的基点、基面
理想光学系统的物象关系
理想光学系Байду номын сангаас的放大率
实验二 光具组基点的测定
❖ (2)回转轴未通过光具组像方节点,轴OQ在N’ 之后,N’随R端同向移动,入射平行光束中另 一根光线c2正好入射在N上,其出射光线c2’ 由N’发出,保持原方向,落在像屏上P2’处, 与像屏中心P0’相比,P2’随R端做了同向移 动.而轴OQ在N’之左,N’实际上与R端做了 相反的移动,这时落在N上的是光线c3,其出 射光线c3’移向像屏上P3’, P3’与P0’相比做了 与R端相反的移动.总起来讲,会聚点离开(lí kāi)P0’的距离就是N’点离开(lí kāi)正入射时主 轴的距离,见图2—4(b)、(c).
精品资料
❖
(2—3)
❖
(2—4)
❖ 物距p、像距p’分别从H、H’起算,x、x’分别从 F、F’起算,各线段与光线方向相同(xiānɡ tónɡ) 时为正,相反时为负.
精品资料
练习(liànxí)一 用测节器测定光具组的 基点
❖ 测节器原理(yuánlǐ):测节器R是可绕铅直 轴OQ转动的水平V形槽,透镜组Ls可在槽中 左右移动,见图2—2、图2—3.
精品资料
❖ 6.把光具组转180。,测定其物方节点N的 位置.
❖ 7.绘简图表示光具组,在其主轴上标出各 基点位置,算出焦距(jiāojù)f、f’,并与按式(2 一1)、式(2—2)计算的结果作比较,d即两透 镜的距离
精品资料
❖再见(zàijiàn)
精品资料
❖ 目的 ❖ 1.加深对光具组基点的理性认识与感性认识; ❖ 2.学会测定光具组基点与焦距的方法. ❖ 仪器(yíqì)和用具 ❖ 光具座、测节器、光源、物屏、像屏、平面镜、
薄透镜2片、准直透镜.
精品资料
原理(yuánlǐ)
在实验使用的透镜中,有些是不可忽略厚度的;另外(lìnɡ wài),为了纠正像差,光学仪器中常用多个透镜组合成共轴的 透镜组(也称光具组).此时最后成像的位置及像的大小可以利 用作图法逐步求出,也可用单球面及薄透镜成像的高斯公式逐 步计算出,更为简捷的做法是把透镜组等效为一个整体的光学 元件,只要经一次作图或一次计算即可得到最后的像.这样的 光学元件共有六个特征点,分为主点、节点和焦点三种,各有 物方与像方之别,总称为基点.
习题1举例说明光传播中符合几何光学各基本定律的现象和应用
习 题1-1. 举例说明光传播中符合几何光学各基本定律的现象和应用。
1-2. 一条光线入射在两个介质的分界面上,设入射角(入射光线与入射点法线的夹角)为30°,问下列情况下的折射角(折射光线与入射点法线的夹角)为多少?(1) 光线从空气射向玻璃(5.1=玻璃n )(2) 光线从水(33.1=玻璃n )中射向空气(3) 光线从水中射向玻璃1-3. 光线由水中射向空气,求在界面处发生全反射时的临界角。
当光线由玻璃内部射向空气时,临界角又为多少?(333.1=水n ,52.1=玻璃n )。
1-4. 一根没有外包层的光纤折射率为1.3,一束光线以1u 为入射角从光纤的一端射入,利用全反射通过光纤,求光线能够通过光纤的最大入射角max 1u 。
实际应用中,为了保护光纤,在光纤的外径处加一包层,设光纤的内芯折射率为1.7,外包层的折射率为1.52,问此时光纤的最大入射角为多少?1-5. 在习题1-3中,若光纤的长度为2m ,直径为m μ20,设光纤为直的,问以最大入射角入射的光线从光纤的另一端射出时,经历了多少次反射? 1-6. 利用费马原理验证反射定律。
1-7. 证明光线通过两表面平行的玻璃平板,出射光线与入射光线的方向永远平行。
1-8. 一个等边三角棱镜,假定入射光线和出射光线对棱镜对称,出射光线对入射光线的偏转角为40°,求棱镜的折射率。
习题2-1. 一个18㎜高的物体位于折射球面前180㎜处,球面半径r=30㎜,n=1,n ′=1.52,求像的位置、大小、正倒及虚实状况。
2-2. 一个球面半径30=r ㎜,物像方的折射率5.1',1==n n ,平行光的入射高度为10㎜,①求实际出射光线的像方截距;②求近轴光线的像距,并比较之。
2-3. 一个实物与被球面反射镜所成的实像相距1.2m ,如物高为像高的4倍,求球面镜的曲率半径。
2-4. 一个玻璃球半径为R ,若以平行光入射,当玻璃的折射率为何值时,会聚点恰好落在球面的后表面上。
初中物理---光学作图专题(附答案)
光学作图专题一、作图题1、如图10中S是发光点, S′经凸透镜所在的虚像。
(1)画出入射光线SA的折射光线的位置。
(2)作图确定此透镜的焦点。
2、(1)如图下左所示,F1、F2为凸透镜焦点。
CF2是经凸透镜折射后的光线,AB为一过焦点且与主光轴垂直的平面镜,请画出CF2进入凸透镜前的入射光线和经平面镜反射后的光线。
(2)如图下右所示,一个人站在河岸上,在B点位置可以看到对岸上发射塔的塔尖A在水中的倒影A′,完成光路图(保留作图痕迹).3、请你在下图两个虚线框内分别画出一个适当的光学器件,使它能够满足图中改变光路的要求,并补齐光路。
4、平面镜、凸透镜、凹透镜都可以使一细束光的光路发生如图的改变.请在图(A)(B)(C)中分别画出示意图.5.如图所示,是探究凸透镜成像规律实验时,光屏上所得到的像.请你在图上大致画出其所对应的物体.6、如图所示,OO′为凸透镜的主光轴,S′为点光源S经凸透镜成的像,SA为光源S发出的一条光线,请在图中适当的位置画出凸透镜,并完成光线SA通过凸透镜的光路图.7、如图所示,B为发光点A通过凸透镜所成的像,试通过作图画出凸透镜的光心O及两个焦点F的位置;8、体温表上部既是三棱又是圆柱面,并且有一个面涂成乳白色,其中AB为水银柱的直径。
请作图说明其看到的像的光路图。
9、如图,黑箱内有一只焦距为3cm的凸透镜和一只平面镜,请你画出黑箱内的光路图,并标出平面镜上入射角的度数。
10、如图11所示,由发光点A发出的光射到水面上,同时发生反射和折射,反射光线经过S点,试在图中画出入射光线、反射光线和大致的折射光线.11、按照题目要求完成作图:(1)通过细管可以看见水底的物块,但从细管穿过的直铁丝,却碰不上物块。
请在图10中作出通过细管看见物块的入射光线。
12、如图所示为一个等腰直角玻璃砖,一束光线从一个直角边AB垂直入射。
请你画出该光线从AB边折射进入玻璃砖,从斜边AC反射后从另一个直角边BC出射的光路图。
应用光学习题解答
应⽤光学习题解答应⽤光学习题解答⼀、简答题1、⼏何光学的基本定律及其内容是什么?答:⼏何光学的基本定律是直线传播定律、独⽴传播定律、反射定律和折射定律。
直线传播定律:光线在均匀透明介质中按直线传播。
独⽴传播定律:不同光源的光在通过介质某点时互不影响。
反射定律:反射光线位于⼊射⾯内;反射⾓等于⼊射⾓;折射定律:折射光线位于⼊射⾯内;⼊射⾓和折射⾓正弦之⽐,对两种⼀定的介质来说,是⼀个和⼊射⾓⽆关的常数2111sin sin I n I n =。
2、理想光学系统的基点和基⾯有哪些?答:理想光学系统的基点包括物⽅焦点、像⽅焦点;物⽅主点、像⽅主点;物⽅节点、像⽅节点。
基⾯包括:物⽅焦平⾯、像⽅焦平⾯;物⽅主平⾯、像⽅主平⾯;物⽅节平⾯、像⽅节平⾯。
3、什么是光学系统的孔径光阑和视场光阑?答:孔径光阑是限制轴上物点成像光束⽴体⾓的光阑。
视场光阑是限制物平⾯上或物空间中成像范围的光阑。
4、常见⾮正常眼有哪两种?如何校正常见⾮正常眼?答:常见⾮正常眼包括近视眼和远视眼。
近视眼是将其近点校正到明视距离,可以⽤负透镜进⾏校正;远视眼是将其远点校正到⽆限远,可以⽤正透镜进⾏校正。
5、光学系统极限分辨⾓为多⼤?采取什么途径可以提⾼极限分辨⾓?答:衍射决定的极限分辨⾓为Dλσ61.0=。
可见其与波长和孔径有关。
减⼩波长和增⼤孔径可以提⾼光学系统的分辨率。
6、什么是共轴光学系统、光学系统物空间、像空间?答:光学系统以⼀条公共轴线通过系统各表⾯的曲率中⼼,该轴线称为光轴,这样的系统称为共轴光学系统。
物体所在的空间称为物空间,像所在的空间称为像空间。
7、如何确定光学系统的视场光阑?答:将系统中除孔径光阑以外的所有光阑对其前⾯所有的光学零件成像到物空间。
这些像中,孔径对⼊瞳中⼼张⾓最⼩的⼀个像所对应的光阑即为光学系统的视场光阑。
8、成像光学系统有哪两种⾊差?试说明它们的成因?答:有位置⾊差(或轴向⾊差)和放⼤率⾊差(或垂轴⾊差)两种。