2014人教版高中数学知识点总结新解题技巧(完整版)
高中数学高考知识点总结2014版
专题一 集合与简易逻辑1. 对于集合,一定要抓住集合的代表元素,及元素的“确定性、互异性、无序性”。
{}{}{}|lg |lg (,)|lg A x y x B y y x C x y y x A B C ======如:集合,,,、、中元素各表示什么?2. 进行集合的交、并、补运算时,不要忘记集合本身和空集的特殊情况。
∅注重借助于数轴和文氏图解集合问题空集是一切集合的子集,是一切非空集合的真子集。
{}{}2|230|1A x x x B x ax =--===如:集合,B A a ⊂若,则实数的值构成的集合为3. 注意下列性质:{}12(1)n a a a 集合,,……,的所有子集的个数是(2)A B A B A A B B ⊆⇔==若,;(3)()()U U A B AB C C ==,4. 你会用补集思想解决问题吗?(排除法、间接法)25035ax x M M M a x a-<∈∉-如:已知关于的不等式的解集为,若且,求实数的取值范围。
5. ()()∨∧可以判断真假的语句叫做命题,逻辑连接词有“或”,“且”和“非”().⌝p q ∧⇔若为真, ;p q ∨⇔若为真, ;p ⌝⇔若为真,6.①命题的四种形式及其相互关系是什么?②若p q ⇒,则p 是q 的充分条件,q 是p 的必要条件.若p q ⇔,则p 是q 的充要条件 ③你了解全称命题与特称命题吗?知道如何写出它们的否定形式吗?例如:1.若命题p 为:011>-x ,则p ⌝: ; 2. 、若p 是q 的充分不必要条件,则q ⌝是p ⌝的 条件专题二 函数与导数1. 对映射的概念了解吗?映射f :A →B ,是否注意到A 中元素的任意性和B 中与之对应元素的唯一性,哪几种对应能构成映射?(一对一,多对一,允许B 中有元素无原象。
)2. 函数的三要素是什么?如何比较两个函数是否相同? (定义域、对应法则、值域)3. 求函数的定义域有哪些常见类型? lg 3y x =-例:函数4.求复合函数的解析式的方法是什么?(特别要注明有时要注明函数的定义域)().xfex f x =+如:,求5.了解指数函数与对数函数互为反函数 (这两个函数的图象关于 对称)6. 如何用证明函数的单调性?(①用定义:取值、作差、判正负;②求导) [)30()1a f x x a x a >=-+∞如:已知,函数在,上是单调增函数,则的最大值是7. 函数f (x )具有奇偶性的必要(非充分)条件是什么?(f (x )定义域关于原点对称) ()()()f x f x f x -=-⇔⇔若总成立为奇函数函数图象关于原点对称 ()()()f x f x f x y-=⇔⇔若总成立为偶函数函数图象关于轴对称 注意:(1)在公共定义域内:两个奇函数的乘积是偶函数;两个偶函数的乘积是偶函数;一个偶函数与奇函数的乘积是奇函数。
高中数学解题技巧方法总结(必备19篇)
高中数学解题技巧方法总结第1篇(1)利用y=sin x和y=cos x的值域直接求.(2)把所给的三角函数式变换成y=A sin(ωx+φ)+b(或y=A cos(ωx+φ)+b)的形式求值域.(3)把sin x或cos x看作一个整体,将原函数转换成二次函数求值域.(4)利用sin x±cos x和sin x cos x的关系将原函数转换成二次函数求值域.高中数学解题技巧方法总结第2篇(1)分组转化求和法一个数列的通项公式是由若干个等差数列或等比数列或可求和的数列组成,则求和时可用分组求和法,分别求和后再相加减.(2)裂项相消法把数列的通项拆成两项之差,在求和时中间的一些项可以相互抵消,从而求得其和.(3)错位相减法如果一个数列的各项是由一个等差数列和一个等比数列的对应项之积构成的,那么这个数列的前n项和即可用此法来求,如等比数列的前n项和公式就是用此法推导的.(4)倒序相加法如果一个数列{an}的前n项中首末两端等“距离”的两项的和相等或等于同一个常数,那么求这个数列的前n项和即可用倒序相加法,如等差数列的前n项和公式即是用此法推导的.(5)并项法一个数列的前n项和中,可两两结合求和,称为并项法求和,形如:(-1)nf(n)类型,可考虑利用并项法求和.高中数学解题技巧方法总结第3篇先根据已知条件求出数列的前几项,确定数列的周期,再根据周期性求值.推断数列的通项公式解答此类问题的具体步骤:(1)分式中分子、分母的特征;(2)相邻项的变化特征;(3)拆项后的特征;(4)各项的符号特征和绝对值特征;(5)化异为同,对于分式还可以考虑对分子、分母各个击破,或寻找分子、分母之间的关系;(6)对于符号交替出现的情况,可用(-1)k或(-1)k+1,k∈N*处理.高中数学解题技巧方法总结第4篇以退求进,立足特殊发散一般对于一个较一般的问题,若一时不能取得一般思路,可以采取化一般为特殊(如用特殊法解选择题),化抽象为具体,化整体为局部,化参量为常量,化较弱条件为较强条件,等等。
2014年高考数学必考点解题方法秘籍解三角形理
2014高考理科数学必考点解题方法秘籍:解三角形说明:本资料适于针对学生对本单元存在问题,纠错后的平行题练习A型,是二边一角,多数用正弦定理的题型,先断解的个数为好B型:两个定理同时运用的简易题C型:乘法公式转化,用余弦定理与求面积公式的变式D型;有一定演变能力的,运算能力,切化弦,适于理科学生N型;求取值范围的题型H型:函数与三角形交汇命题,值得关注F型:方程思想A-1型已知中,的对边分别为a,b,c若a=c=且,则b= A.2 B.4+ C.4— D.A-2型在ABC中,内角A、B、C的对边长分别为a、b、c,已知,且,求b。
解法,,,化角为边,得到,化简得,,,,。
A-3型(易题)在中,角的对边分别为,.(Ⅰ)求的值;(Ⅱ)求的面积.A-4 2010山东.在中,角所对的边分别为a,b,c,若,,,则角的大小为.【答案】【解析】由得=2,即=1,因为0<B<,所以B=45°,又因为,所以在△ABC,由正弦定理得:,解得,又,所以A<B=45°,所以A=30°A-5 型设的内角A、B、C的对边长分别为a、b、c,,,求B。
解:由及得,,……3分又由及正弦定理得,…………………5分故,,(舍去),………………………………8分于是或者。
又由知或者,所以………10分A型在中,,则的面积为__.A型)△ABC的内角A、B、C的对边分别为a、b、c.己知. (Ⅰ)求B;(Ⅱ)若.【精讲精析】(I)由正弦定理得由余弦定理得。
故,因此。
(II)故.A型在中。
若b=5,,tanA=2,则sinA=__;a=_______。
A型在△ABC中,角A、B、C所对的边分别为a,b,c.已知(I)求sinC的值;(Ⅱ)当a=2.2sinA=sinC时.求b及c的长.(Ⅰ)解:因为,及所以(Ⅱ)解:当时,由正弦定理,得由及得由余弦定理,得解得所以B-1型在⊿ABC中,BC=,AC=3,sinC=2sinA(I) 求AB的值: (II) 求sin的值【解析】(1)解:在中,根据正弦定理,,于是(2)解:在中,根据余弦定理,得于是=,从B在中,为锐角,角所对应的边分别为,且(I)求的值;(II)若,求的值。
高中数学(新人教版)必修一知识点归纳
高中数学(新人教版)必修一知识点归纳
本文将归纳高中数学(新人教版)必修一的主要知识点。
以下是
各个主题的简要概述:
1. 数与式
- 数的分类:自然数、整数、有理数、实数等。
- 代数式:基本概念、多项式、公式等。
- 幂与乘方:指数、乘方、幂等运算。
- 整式的加减法:同类项、整式的加减法规则。
- 分式:基本概念、分式的性质与化简等。
2. 一元一次方程与不等式
- 一元一次方程:基本概念、解方程的方法、应用问题等。
- 一元一次不等式:基本概念、解不等式的方法、应用问题等。
3. 函数及其图像
- 函数与自变量、函数与因变量的关系。
- 函数的表示与性质:映射、函数图像、奇偶性等。
- 一次函数:定义、性质、图像、方程等。
- 反函数与复合函数:定义、性质、求反函数、求复合函数等。
4. 等差数列
- 等差数列的定义与性质。
- 等差数列的前n项和与通项公式。
- 应用问题:等差数列应用于数学与生活中的实际问题。
5. 平面向量
- 向量的基本概念与表示法。
- 向量的运算:加法、数乘等。
- 向量共线与共面的判定。
- 向量的数量积与模的概念与性质。
6. 不等式与线性规划
- 不等式的基本性质与解法。
- 一元一次不等式组:基本概念、解法、应用问题等。
- 线性规划的基本概念与常见问题。
以上是高中数学(新人教版)必修一的主要知识点的简要归纳。
详细内容可以参考相关教材或课堂讲义。
希望这份归纳对你有帮助!。
高中数学知识点全总结解法
高中数学知识点全总结解法一、代数1. 集合与函数概念集合的基本概念,包括集合的表示、运算及其性质。
函数的定义、性质和常见类型(如一次函数、二次函数、指数函数、对数函数、三角函数等)。
2. 代数式的运算整式的加减乘除、因式分解、分式的运算法则。
根式的化简、同类二次根式的合并。
3. 不等式与方程一元一次不等式、一元二次不等式的解法。
方程的解法,包括一元一次方程、一元二次方程、分式方程、无理方程等。
4. 函数的图像与性质函数的图像绘制,包括函数的单调性、奇偶性、周期性等性质的判断与应用。
5. 指数与对数指数运算法则、对数运算法则及其在实际问题中的应用。
指数函数与对数函数的图像和性质。
6. 排列组合与概率排列组合的基本概念、公式及计算方法。
概率的基本概念、计算公式和条件概率、独立事件的概率等。
二、几何1. 平面几何点、线、面的基本性质。
三角形、四边形、圆的基本性质和计算公式。
2. 空间几何空间直线与平面的位置关系,包括平行与垂直的判定与性质。
空间几何体(如棱柱、棱锥、圆柱、圆锥、球等)的性质和体积、表面积的计算。
3. 解析几何坐标系的建立和点的坐标表示。
直线、圆的方程及其性质。
圆锥曲线(椭圆、双曲线、抛物线)的标准方程和性质。
三、三角学1. 三角比与三角函数三角比的定义、关系和变换。
三角函数的图像、性质和周期性。
2. 三角恒等变换三角恒等式的证明和应用。
3. 解三角形利用三角比和三角函数解三角形的边长和角度问题。
四、数列与数学归纳法1. 等差数列与等比数列等差数列和等比数列的通项公式、求和公式。
数列的极限概念及其计算。
2. 数学归纳法数学归纳法的原理和证明方法。
五、微积分1. 导数与微分导数的定义、几何意义和物理意义。
常见函数的导数计算,高阶导数。
2. 函数的极值与最值问题利用导数研究函数的极值和最值。
3. 不定积分与定积分不定积分的概念、基本积分表和积分技巧。
定积分的概念、性质及应用,包括计算面积、体积等。
高中数学知识点方法与技巧总结
高中数学知识点方法与技巧总结数学作为一门学科,对于高中学生来说,是一门既重要又具有挑战性的学科。
为了帮助学生掌握高中数学知识,提升数学学习的效果,本文将总结一些数学知识点的方法与技巧。
一、代数知识点1.方程与不等式解方程是代数学的基本运算,其中一元二次方程和一元一次方程是高中数学中常见的类型。
在解一元二次方程时,可以通过配方法、公式法或因式分解等方法进行。
而在解一元一次方程时,则可以通过移项、消元、代入等方法进行。
对于不等式,我们可以通过图像法或者整理法进行解答。
图像法是将不等式用图像表示出来,通过观察图像来判断不等式解的范围。
而整理法则是将不等式整理成等式形式,再进行解答。
2.函数与图像函数是数学中的重要概念,学生应掌握函数的定义和性质。
在绘制函数图像时,可以利用函数的对称性、分段函数的性质等来简化绘图过程。
此外,了解常见函数的图像特征,例如一次函数、二次函数、指数函数、对数函数等,也有助于更好地理解函数与图像之间的关系。
二、几何知识点1.平面几何平面几何是数学中的重要分支,包括直线、角、面积等概念。
在解决平面几何问题时,可以利用数学归纳法、反证法等思维方法来推导证明。
同时,学生应熟悉常见的几何定理,如皮亚诺定理、平行线性质定理、相似三角形定理等,以便在解题过程中灵活运用。
2.立体几何立体几何是平面几何的延伸,涉及到体积、表面积等概念。
在计算立体的体积时,可以利用分割法、重心法等方法简化计算过程。
另外,熟悉不同立体的特征,如正方体、圆柱体、锥体等,也有助于解决立体几何问题。
三、概率与统计1.概率概率是数学中的一门重要分支,用来描述随机事件发生的可能性。
在解决概率问题时,可以利用频率法、几何法等进行计算。
此外,掌握概率的基本性质和计算公式也非常重要。
2.统计统计是数学中的一门实用分支,用于对数据进行分析和归纳。
在统计学中,常用的统计指标有平均数、中位数、众数等。
此外,学生还应掌握频率分布表与频率分布图的制作方法,以便能够更好地理解与分析数据。
2014高考数学必考点解题方法秘籍 数列1 理
2014高考理科数学必考点解题方法秘籍:数列1一.复习目标:能灵活地运用等差数列、等比数列的定义、性质、通项公式、前n 项和公式解题; 2.能熟练地求一些特殊数列的通项和前n 项的和;3.使学生系统掌握解等差数列与等比数列综合题的规律,深化数学思想方法在解题实践中的指导作用,灵活地运用数列知识和方法解决数学和实际生活中的有关问题;4.通过解决探索性问题,进一步培养学生阅读理解和创新能力,综合运用数学思想方法分析问题与解决问题的能力.5.在解综合题的实践中加深对基础知识、基本技能和基本数学思想方法的认识,沟通各类知识的联系,形成更完整的知识网络,提高分析问题和解决问题的能力.6.培养学生善于分析题意,富于联想,以适应新的背景,新的设问方式,提高学生用函数的思想、方程的思想研究数列问题的自觉性、培养学生主动探索的精神和科学理性的思维方法. 二.考试要求:1.理解数列的概念,了解数列通项公式的意义,了解递推公式是给出数列的一种方法,并能根据递推公式写出数列的前几项。
2.理解等差数列的概念,掌握等差数列的通项公式与前n 项和公式,并能运用公式解答简单的问题。
3.理解等比数列的概念,掌握等比数列的通项公式与前n 项和公式,并能运用公式解决简单的问题。
4.数列是高中数学的重要内容,又是学习高等数学的基础,所以在高考中占有重要的地位。
高考对本章的考查比较全面,等差数列,等比数列的考查每年都不会遗漏。
解答题多为中等以上难度的试题,突出考查考生的思维能力,解决问题的能力,试题大多有较好的区分度。
有关数列的试题经常是综合题,经常把数列知识和指数函数、对数函数和不等式的知识综合起来,试题也常把等差数列、等比数列,求极限和数学归纳法综合在一起。
探索性问题是高考的热点,常在数列解答题中出现。
本章中还蕴含着丰富的数学思想,在主观题中着重考查函数与方程、转化与化归、分类讨论等重要思想,以及配方法、换元法、待定系数法等基本数学方法。
高考考前复习:2014年高考数学押题复习技巧_答题技巧
高考考前复习:2014年高考数学押题复习技巧_答题技巧高考考前复习:2014年高考数学押题复习技巧【摘要】查字典数学网为大家带来高考考前复习:2014年高考数学押题复习技巧,希望大家喜欢下文!函数与导数押题范围:函数主要考查函数与方程、函数与数列、函数与不等式的相互渗透和交叉。
抽象函数问题、函数与向量结合、函数与概率统计结合。
导数主要考查导数的定义、导数的几何意义、导数的物理意义、求导的公式和求导的法则、函数的极值,求函数的单调区间,证明函数的增减性。
这些部分都以简单、中等题出现。
难题部分将导数与不等式、函数、解析几何等知识有机地结合在一起,设计综合试题。
有了这些我们整理出来的内容做指引,那么我们很容易将题归类,容易根据自己的优缺点重点去押题,去突破。
再说技巧,过于特殊的技巧,针对性过于特殊的技巧或技巧就不要考虑了,奉劝诸位,一天一道题、一天一个思想只能害了你。
只有一天一类题、思想归类才是做题的根本。
如我们玖久教育提倡从题目信息角度出发式的做题方法、思维方式,就属于放在哪里都能用上的。
我们提倡同学们这阶段复习的方法和技巧仍旧是基础知识点的理解,而不是简单的记背。
对概念形成应用上的认识。
知道公式定理怎么来、怎么去才是做题的根本。
在解答选择题方面上,虽然讲究的技巧是不择手段,但从根源上说是利用题目的一切信息,尤其是选项比较。
在解答题方面上,常规方法为主,大家常用的有数形结合、判别式、数学归纳法、构造同分母等等。
这些虽然细致,但是用惯了就成。
整体的解题思维希望大家统一为题目让干什么,我们做什么,完全跟着题目走,尽量少用知识点去套用。
当然,一眼看出可以套用的,不用就傻了。
这段时间,我们简单阐述一下数学的考点以及押题的方向,给同学们做个参考。
函数与导数押题方向见上文,通用备考方法和技巧:数形结合、取值范围、极值点概率与统计(偏重文科押题方向,简单、中等题,难题不出):涉及等可能事件,互斥事件,对立事件,独立事件的概率的求法。
高中解题知识点总结数学
高中解题知识点总结数学一、数列与数学归纳法1. 数列的概念数列是指按一定的顺序排列的一组数,数列中的每个数称为数列的项。
例如:1,2,3,4,5,6,……就是一个从1开始的等差数列。
2. 数列的通项公式对于等差数列an=a1+(n-1)d对于等比数列an=a1*r^(n-1)3. 数学归纳法数学归纳法是一种证明数学命题的方法。
它的基本思想是:证明当n=k时命题成立,再证明若n=k时命题成立,则n=k+1时也成立,由此可知从n=k时命题成立可推出n=k+1时命题成立。
4. 递推数列递推数列是一种特殊的数列,数列的每一项都是前面一项的某个表达式。
例如:Fibonacci数列1,1,2,3,5,8,13,21,……满足递推关系an=an-1+an-2。
二、不等式1. 不等式的性质不等式的性质包括加法性、减法性、乘法性等,通过这些性质可以对不等式进行变形和求解。
2. 一元一次不等式一元一次不等式就是一个未知数的一次不等式。
例如:3x+1>73. 一元二次不等式一元二次不等式就是一个未知数的二次不等式。
例如:x^2-4x+3>04. 不等式组不等式组是由多个不等式构成的一个系统。
例如:{x+2>0, 3x-5<2}三、函数与方程1. 函数的概念函数是一个或多个自变量的输入,经过特定的变换规律得到一个或多个因变量的输出。
例如:y=x^2就是一个函数。
2. 基本初等函数基本初等函数包括常数函数、幂函数、指数函数、对数函数、三角函数等。
3. 方程的概念方程是等号的两边包含一个或多个未知数的代数式。
例如:2x+3=74. 一元一次方程一元一次方程是一个未知数的一次方程。
例如:3x-2=75. 一元二次方程一元二次方程是一个未知数的二次方程。
例如:2x^2+3x-5=06. 一元二次函数一元二次函数就是一个二次函数。
例如:y=ax^2+bx+c7. 方程组方程组是由多个方程构成的一个系统。
例如:{2x+y=5, x-y=3}四、集合与逻辑1. 集合的概念集合是由若干个确定的对象组成的整体,这些对象称为集合的元素。
人教版高中数学知识点总结(二篇)
人教版高中数学知识点总结一、函数与方程1. 函数的定义与性质:函数的概念、关系与函数、函数的特性、函数的分类、函数的运算、函数的图象。
2. 一次函数:函数的表达式与图象、函数的增减性与单调性、零点与根的概念、函数的解与方程。
3. 二次函数:函数的表达式与图象、函数的增减性与单调性、函数的最值与极值、函数的解与方程。
4. 幂函数与指数函数:函数的定义域与值域、函数的图象与性质、函数的运算与应用。
二、数列与数列的表示方法1. 等差数列:等差数列的概念与特性、等差数列的通项公式、等差数列的前n项和、等差数列的应用。
2. 等比数列:等比数列的概念与特性、等比数列的通项公式、等比数列的前n项和、等比数列的应用。
3. 通项公式与通项公式的逆向推导:等差数列与等比数列的通项公式的推导与应用。
三、平面坐标系与直线1. 平面直角坐标系:直角坐标系的概念、直角坐标系的运用及常用定理。
2. 直线的方程:直线的一般方程、直线的斜截式方程、直线的截距式方程、两直线的位置关系。
四、图形的变换1. 平移:图形的平移规律、平移的定义与性质、平移的向量表示。
2. 旋转:图形的旋转规律、旋转的定义与性质、旋转的向量表示。
3. 对称:图形的对称规律、对称的定义与性质、对称的向量表示。
五、三角函数1. 角与弧度:角的度量与单位、角的标准位置、弧度制与角度制的换算。
2. 正弦函数:正弦函数的定义与性质、正弦函数的图象与性质、正弦函数的应用。
3. 余弦函数:余弦函数的定义与性质、余弦函数的图象与性质、余弦函数的应用。
4. 正切函数:正切函数的定义与性质、正切函数的图象与性质、正切函数的应用。
六、解析几何1. 平面与空间几何:平面的点坐标与方程、平面的性质及应用、空间几何的概念与基本性质。
2. 平面图形:平面图形的概念与性质、平面图形的参数方程、平面图形的拟合。
3. 空间图形:立体图形的概念与性质、立体图形的参数方程、立体图形的拟合。
七、立体几何1. 空间中的位置关系:直线的位置关系、平面的位置关系、直线与平面的位置关系。
高中数学解题技巧归纳总结大全
高中数学解题技巧归纳总结大全1高中数学解题技巧特值检验法对于具有一般性的数学问题,我们在解题过程中,可以将问题特殊化,利用问题在某一特殊情况下不真,则它在一般情况下不真这一原理,达到去伪存真的目的。
极端性原则将所要研究的问题向极端状态进行分析,使因果关系变得更加明显,从而达到迅速解决问题的目的。
极端性多数应用在求极值、取值范围、解析几何上面,很多计算步骤繁琐、计算量大的题,一但采用极端性去分析,那么就能瞬间解决问题。
剔除法利用已知条件和选择支所提供的信息,从四个选项中剔除掉三个错误的答案,从而达到正确选择的目的。
这是一种常用的方法,尤其是答案为定值,或者有数值范围时,取特殊点代入验证即可排除。
2高一数学解题技巧学会画图画图是一个翻译的过程,把解题时的抽象思维,变成了形象思维,从而降低了解题难度。
有些题目,只要分析图一画出来,其中的关系就变得一目了然。
尤其是对于几何题,包括解析几何题,若不会画图,有时简直是无从下手。
因此,牢记各种题型的基本作图方法,牢记各种函数的图像和意义及演变过程和条件,对于提高解题速度非常重要。
先易后难,逐步增加习题的难度人们认识事物的过程都是从简单到复杂。
简单的问题解多了,从而使概念清晰了,对公式、定理以及解题步骤熟悉了,解题时就会形成跳跃性思维,解题的速度就会大大提高。
我们在学习时,应根据自己的能力,先去解那些看似简单,却很重要的习题,以不断提高解题速度和解题能力。
随着速度和能力的提高,再逐渐增加难度,就会达到事半功倍的效果。
限时答题,先提速后纠正错误很多同学做题慢的一个重要原因就是平时做作业习惯了拖延时间,导致形成了一个不太好的解题习惯。
所以,提高解题速度就要先解决“拖延症”。
比较有效的方式是限时答题,例如在做数学作业时,给自己限时,先不管正确率,首先保证在规定时间内完成数学作业,然后再去纠正错误。
这个过程对提高书写速度和思考效率都有较好的作用。
你习惯了一个较快的思考和书写后,解题速度自然就会提高,及改正了拖延的毛病,也提高了成绩。
2014年高考数学答题技巧及方法
2014年高考数学答题技巧及方法一、答题和时间的关系整体而言,高考数学要想考好,必须要有扎实的基础知识和一定量的习题练习,在此基础上辅以一些做题方法和考试技巧。
往年考试中总有许多考生抱怨考试时间不够用,导致自己会做的题最后没时间做,觉得很“亏”。
高考考的是个人能力,要求考生不但会做题还要准确快速地解答出来,只有这样才能在规定的时间内做完并能取得较高的分数。
因此,对于大部分高考生来说,养成快速而准确的解题习惯并熟练掌握解题技巧是非常有必要的。
二、快与准的关系在目前题量大、时间紧的情况下,“准”字则尤为重要。
只有“准”才能得分,只有“准”你才可不必考虑再花时间检查,而“快”是平时训练的结果,不是考场上所能解决的问题,一味求快,只会落得错误百出。
如去年第21题应用题,此题列出分段函数解析式并不难,但是相当多的考生在匆忙中把二次函数甚至一次函数都算错,尽管后继部分解题思路正确又花时间去算,也几乎得不到分,这与考生的实际水平是不相符的。
适当地慢一点、准一点,可得多一点分;相反,快一点,错一片,花了时间还得不到分。
三、审题与解题的关系有的考生对审题重视不够,匆匆一看急于下笔,以致题目的条件与要求都没有吃透,至于如何从题目中挖掘隐含条件、启发解题思路就更无从谈起,这样解题出错自然多。
只有耐心仔细地审题,准确地把握题目中的关键词与量(如“至少”,“a >0”,自变量的取值范围等等),从中获取尽可能多的信息,才能迅速找准解题方向。
四、“会做”与“得分”的关系要将你的解题策略转化为得分点,主要靠准确完整的数学语言表述,这一点往往被一些考生所忽视,因此卷面上大量出现“会而不对”“对而不全”的情况,考生自己的估分与实际得分差之甚远。
如立体几何论证中的“跳步”,使很多人丢失1/3以上得分,代数论证中“以图代证”,尽管解题思路正确甚至很巧妙,但是由于不善于把“图形语言”准确地转译为“文字语言”,得分少得可怜;再如去年理17题三角函数图像变换,许多考生“心中有数”却说不清楚,扣分者也不在少数。
高中数学知识点解题技巧
高中数学知识点解题技巧数学作为一门重要的学科,是学生们在学习中必不可少的一环。
在高中阶段,数学的难度也逐渐增加,而知识点繁杂,造成学生们在学习和解题中困难重重。
因此,本文将为大家详细介绍高中数学知识点的解题技巧。
一、代数式的化简在高中数学中,代数式的化简是一项基本的技能。
对于任何一个代数式,我们都可以采用多种方法进行化简。
其中的核心原则就是利用公式将式子简化,简单化的式子更容易进行运算。
1. 分组因式法分组因式法是一种常见的代数复杂式的化简方法。
在化简时,我们可以将式子中相似的项提取出来,然后进行分组合并。
举例来说,我们可以将$x+2y$和$x-2y$分组,得到$x+2y+x-2y=2x$。
2. 公因式法公因式法是代数式常用的化简方法之一。
公因式法的基本思路就是将代数式中的公因式提取出来,利用提取的公因式因子进行化简。
例如,$(a+b)^2-a^2-b^2$,可以利用$(a+b)^2$ – $a^2-b^2$=2ab。
3. 合并同类项法合并同类项法也是一种常用的代数式的化简方法。
主要是通过合并同类项使入一个多项式,并利用合并后的同类项之和的模式进行化简。
例如,$3x+5x-2x=6x$。
二、函数的解题函数是高中数学中最基础的知识点之一。
在许多应用场景中,我们需要求函数值、函数图像、函数最值等。
下面是几种基本的解题技巧。
1. 函数的解析式函数的解析式描述了函数与其自变量之间的关系。
解析式的推导需要根据函数的具体定义,通过一系列符号操作得出。
例如,已知$f(x)=x^2+1$,可以根据此式子得出$f(2)=2^2+1=5$。
2. 函数的图像函数的图像是函数与自变量的关系的图形体现。
在解题中,我们需要了解如何绘制函数图像、求函数在指定点的斜率、切线方程等。
例如,已知$f(x)=x^2+1$,可以通过将$f(x)$代入坐标系中,绘制出对应的函数图像。
3. 函数的最大、最小值函数的最大、最小值是函数解题中最为常见的问题之一。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中数学 必修1知识点第一章 集合与函数概念 【1.1.1】集合的含义与表示(1)集合的概念集合中的元素具有确定性、互异性和无序性. (2)常用数集及其记法N 表示自然数集,N *或N +表示正整数集,Z 表示整数集,Q 表示有理数集,R 表示实数集.(3)集合与元素间的关系对象a 与集合M 的关系是a M ∈,或者a M ∉,两者必居其一. (4)集合的表示法①自然语言法:用文字叙述的形式来描述集合.②列举法:把集合中的元素一一列举出来,写在大括号内表示集合. ③描述法:{x |x 具有的性质},其中x 为集合的代表元素. ④图示法:用数轴或韦恩图来表示集合. (5)集合的分类①含有有限个元素的集合叫做有限集.②含有无限个元素的集合叫做无限集.③不含有任何元素的集合叫做空集(∅).【1.1.2】集合间的基本关系(6)子集、真子集、集合相等 名称记号意义性质示意图子集B A ⊆(或)A B ⊇A 中的任一元素都属于B(1)A ⊆A(2)A ∅⊆(3)若B A ⊆且B C ⊆,则A C ⊆ (4)若B A ⊆且B A ⊆,则A B =A(B)或B A真子集A ≠⊂B(或B ≠⊃A )B A ⊆,且B 中至少有一元素不属于A(1)A ≠∅⊂(A 为非空子集)(2)若A B ≠⊂且B C ≠⊂,则A C ≠⊂B A集合 相等A B =A 中的任一元素都属于B ,B 中的任一元素都属于A(1)A ⊆B (2)B ⊆AA(B)(7)已知集合A 有(1)n n ≥个元素,则它有2n 个子集,它有21n -个真子集,它有21n -个非空子集,它有22n-非空真子集.【1.1.3】集合的基本运算(8)交集、并集、补集名称记号意义性质示意图交集A B{|,x x A∈且}x B∈(1)A A A=(2)A∅=∅(3)A B A⊆A B B⊆BA并集A B{|,x x A∈或}x B∈(1)A A A=(2)A A∅=(3)A B A⊇A B B⊇BA补集U Að{|,}x x U x A∈∉且1()UA A=∅ð2()UA A U=ð【补充知识】含绝对值的不等式与一元二次不等式的解法(1)含绝对值的不等式的解法不等式解集||(0)x a a<>{|}x a x a-<<||(0)x a a>>|x x a<-或}x a>||,||(0)ax b c ax b c c+<+>>把ax b+看成一个整体,化成||x a<,||(0)x a a>>型不等式来求解(2)一元二次不等式的解法判别式24b ac∆=-∆>0∆=0∆<二次函数2(0)y ax bx c a=++>的图象O()()()U U UA B A B=痧()()()U U UA B A B=痧一元二次方程20(0)ax bx c a ++=>的根21,242b b ac x a-±-=(其中12)x x <122b x x a==-无实根20(0)ax bx c a ++>>的解集1{|x x x <或2}x x >{|x }2b x a≠-R20(0)ax bx c a ++<>的解集12{|}x x x x <<∅ ∅〖1.2〗函数及其表示 【1.2.1】函数的概念(1)函数的概念①设A 、B 是两个非空的数集,如果按照某种对应法则f,对于集合A 中任何一个数x ,在集合B中都有唯一确定的数()f x 和它对应,那么这样的对应(包括集合A ,B 以及A 到B 的对应法则f )叫做集合A 到B 的一个函数,记作:f A B →.②函数的三要素:定义域、值域和对应法则.③只有定义域相同,且对应法则也相同的两个函数才是同一函数. (2)区间的概念及表示法①设,a b 是两个实数,且a b <,满足a x b ≤≤的实数x 的集合叫做闭区间,记做[,]a b ;满足a xb <<的实数x 的集合叫做开区间,记做(,)a b ;满足a x b ≤<,或a x b <≤的实数x 的集合叫做半开半闭区间,分别记做[,)a b ,(,]a b ;满足,,,x a x a x b x b ≥>≤<的实数x 的集合分别记做[,),(,),(,],(,)a a b b +∞+∞-∞-∞. 注意:对于集合{|}x a x b <<与区间(,)a b ,前者a 可以大于或等于b ,而后者必须a b <.(3)求函数的定义域时,一般遵循以下原则:①()f x 是整式时,定义域是全体实数.②()f x 是分式函数时,定义域是使分母不为零的一切实数.③()f x 是偶次根式时,定义域是使被开方式为非负值时的实数的集合.④对数函数的真数大于零,当对数或指数函数的底数中含变量时,底数须大于零且不等于1. ⑤tan y x =中,()2x k k Z ππ≠+∈.⑥零(负)指数幂的底数不能为零. ⑦若()f x 是由有限个基本初等函数的四则运算而合成的函数时,则其定义域一般是各基本初等函数的定义域的交集.⑧对于求复合函数定义域问题,一般步骤是:若已知()f x 的定义域为[,]a b ,其复合函数[()]f g x 的定义域应由不等式()a g x b ≤≤解出.⑨对于含字母参数的函数,求其定义域,根据问题具体情况需对字母参数进行分类讨论. ⑩由实际问题确定的函数,其定义域除使函数有意义外,还要符合问题的实际意义. (4)求函数的值域或最值求函数最值的常用方法和求函数值域的方法基本上是相同的.事实上,如果在函数的值域中存在一个最小(大)数,这个数就是函数的最小(大)值.因此求函数的最值与值域,其实质是相同的,只是提问的角度不同.求函数值域与最值的常用方法:①观察法:对于比较简单的函数,我们可以通过观察直接得到值域或最值.②配方法:将函数解析式化成含有自变量的平方式与常数的和,然后根据变量的取值范围确定函数的值域或最值. ③判别式法:若函数()y f x =可以化成一个系数含有y 的关于x 的二次方程2()()()0a y x b y x c y ++=,则在()0a y ≠时,由于,x y 为实数,故必须有2()4()()0b y a y c y ∆=-⋅≥,从而确定函数的值域或最值.④不等式法:利用基本不等式确定函数的值域或最值.⑤换元法:通过变量代换达到化繁为简、化难为易的目的,三角代换可将代数函数的最值问题转化为三角函数的最值问题.⑥反函数法:利用函数和它的反函数的定义域与值域的互逆关系确定函数的值域或最值. ⑦数形结合法:利用函数图象或几何方法确定函数的值域或最值. ⑧函数的单调性法.【1.2.2】函数的表示法(5)函数的表示方法表示函数的方法,常用的有解析法、列表法、图象法三种.解析法:就是用数学表达式表示两个变量之间的对应关系.列表法:就是列出表格来表示两个变量之间的对应关系.图象法:就是用图象表示两个变量之间的对应关系. (6)映射的概念①设A 、B 是两个集合,如果按照某种对应法则f,对于集合A 中任何一个元素,在集合B 中都有唯一的元素和它对应,那么这样的对应(包括集合A ,B 以及A 到B 的对应法则f )叫做集合Ayxo到B 的映射,记作:f A B →.②给定一个集合A 到集合B 的映射,且,a A b B ∈∈.如果元素a 和元素b 对应,那么我们把元素b 叫做元素a 的象,元素a 叫做元素b 的原象.〖1.3〗函数的基本性质 【1.3.1】单调性与最大(小)值(1)函数的单调性①定义及判定方法 函数的 性 质定义图象判定方法 函数的 单调性如果对于属于定义域I 内某个区间上的任意两个自变量的值x 1、x 2,当x .1.< x ..2.时,都有f(x ...1.)<f(x .....2.).,那么就说f(x)在这个区间上是增函数.... x 1x 2y=f(X)xy f(x )1f(x )2o(1)利用定义(2)利用已知函数的单调性(3)利用函数图象(在某个区间图象上升为增) (4)利用复合函数 如果对于属于定义域I 内某个区间上的任意两个自变量的值x 1、x 2,当x .1.< x ..2.时,都有f(x ...1.)>f(x .....2.).,那么就说f(x)在这个区间上是减函数.... y=f(X)yxox x 2f(x )f(x )211(1)利用定义(2)利用已知函数的单调性(3)利用函数图象(在某个区间图象下降为减) (4)利用复合函数②在公共定义域内,两个增函数的和是增函数,两个减函数的和是减函数,增函数减去一个减函数为增函数,减函数减去一个增函数为减函数. ③对于复合函数[()]y f g x =,令()u g x =,若()y f u =为增,()u g x =为增,则[()]y f g x =为增;若()y f u =为减,()u g x =为减,则[()]y f g x =为增;若()y f u =为增,()ug x =为减,则[()]y f g x =为减;若()y f u =为减,()u g x =为增,则[()]y f g x =为减.(2)打“√”函数()(0)af x x a x=+>的图象与性质()f x 分别在(,]a -∞-、[,)a +∞上为增函数,分别在[,0)a -、(0,]a 上为减函数.(3)最大(小)值定义 ①一般地,设函数()y f x =的定义域为I ,如果存在实数M 满足:(1)对于任意的x I ∈,都有()f x M≤;(2)存在0x I ∈,使得0()f x M=.那么,我们称M 是函数()f x 的最大值,记作max ()f x M=.②一般地,设函数()y f x =的定义域为I ,如果存在实数m 满足:(1)对于任意的x I ∈,都有()f x m ≥;(2)存在0x I ∈,使得0()f x m =.那么,我们称m 是函数()f x 的最小值,记作max ()f x m =.【1.3.2】奇偶性(4)函数的奇偶性①定义及判定方法 函数的 性 质定义图象判定方法 函数的 奇偶性如果对于函数f(x)定义域内任意一个x ,都有f(..-.x)=...-.f(x)....,那么函数f(x)叫做奇函..数..(1)利用定义(要先判断定义域是否关于原点对称)(2)利用图象(图象关于原点对称)如果对于函数f(x)定义域内任意一个x ,都有f(..-.x)=...f(x)....,那么函数f(x)叫做偶函数....(1)利用定义(要先判断定义域是否关于原点对称)(2)利用图象(图象关于y 轴对称) ②若函数()f x 为奇函数,且在0x =处有定义,则(0)0f =.③奇函数在y 轴两侧相对称的区间增减性相同,偶函数在y 轴两侧相对称的区间增减性相反.④在公共定义域内,两个偶函数(或奇函数)的和(或差)仍是偶函数(或奇函数),两个偶函数(或奇函数)的积(或商)是偶函数,一个偶函数与一个奇函数的积(或商)是奇函数.〖补充知识〗函数的图象(1)作图利用描点法作图:①确定函数的定义域; ②化解函数解析式; ③讨论函数的性质(奇偶性、单调性); ④画出函数的图象. 利用基本函数图象的变换作图:要准确记忆一次函数、二次函数、反比例函数、指数函数、对数函数、幂函数、三角函数等各种基本初等函数的图象. ①平移变换0,0,|()()h h h h y f x y f x h ><=−−−−−−−→=+左移个单位右移|个单位0,0,|()()k k k k y f x y f x k ><=−−−−−−−→=+上移个单位下移|个单位②伸缩变换01,1,()()y f x y f x ωωω<<>=−−−−→=伸缩01,1,()()A A y f x y Af x <<>=−−−−→=缩伸③对称变换()()x y f x y f x =−−−→=-轴()()y y f x y f x =−−−→=-轴()()y f x y f x =−−−→=--原点 1()()y x y f x y f x -==−−−−→=直线()(||)y y y y f x y f x =−−−−−−−−−−−−−−−→=去掉轴左边图象保留轴右边图象,并作其关于轴对称图象()|()|x x y f x y f x =−−−−−−−−−→=保留轴上方图象将轴下方图象翻折上去(2)识图对于给定函数的图象,要能从图象的左右、上下分别范围、变化趋势、对称性等方面研究函数的定义域、值域、单调性、奇偶性,注意图象与函数解析式中参数的关系. (3)用图函数图象形象地显示了函数的性质,为研究数量关系问题提供了“形”的直观性,它是探求解题途径,获得问题结果的重要工具.要重视数形结合解题的思想方法.第二章 基本初等函数(Ⅰ) 〖2.1〗指数函数【2.1.1】指数与指数幂的运算(1)根式的概念①如果,,,1nxa a R x R n =∈∈>,且n N +∈,那么x 叫做a 的n 次方根.当n 是奇数时,a 的n 次方根用符号n a 表示;当n 是偶数时,正数a 的正的n 次方根用符号n a 表示,负的n 次方根用符号na -表示;0的n 次方根是0;负数a 没有n 次方根.②式子na 叫做根式,这里n 叫做根指数,a 叫做被开方数.当n 为奇数时,a 为任意实数;当n 为偶数时,0a ≥.③根式的性质:()n n a a=;当n为奇数时,nn a a=;当n为偶数时,(0)|| (0)nn a a a a a a ≥⎧==⎨-<⎩.(2)分数指数幂的概念①正数的正分数指数幂的意义是:(0,,,m n m na a a m n N +=>∈且1)n >.0的正分数指数幂等于0.②正数的负分数指数幂的意义是: 11()()(0,,,m m m nn n aa m n N a a-+==>∈且1)n >.0的负分数指数幂没有意义. 注意口诀:底数取倒数,指数取相反数. (3)分数指数幂的运算性质①(0,,)rs r s aa a a r s R +⋅=>∈ ②()(0,,)r s rs a a a r s R =>∈③()(0,0,)rr r ab a b a b r R =>>∈【2.1.2】指数函数及其性质(4)指数函数 函数名称指数函数定义函数(0x y a a =>且1)a ≠叫做指数函数图象1a >01a <<定义域 R 值域(0,)+∞过定点 图象过定点(0,1),即当0x =时,1y =.奇偶性 非奇非偶单调性在R 上是增函数在R 上是减函数函数值的 变化情况1(0)1(0)1(0)x x x a x a x a x >>==<< 1(0)1(0)1(0)x x x a x a x a x <>==>< a 变化对 图象的影响在第一象限内,a 越大图象越高;在第二象限内,a 越大图象越低.〖2.2〗对数函数xa y =xy(0,1)O1y =xa y =xy(0,1)O1y =【2.2.1】对数与对数运算(1)对数的定义 ①若(0,1)xaN a a =>≠且,则x 叫做以a 为底N 的对数,记作log a xN =,其中a 叫做底数,N 叫做真数.②负数和零没有对数. ③对数式与指数式的互化:log (0,1,0)x a x N a N a a N =⇔=>≠>.(2)几个重要的对数恒等式log 10a =,log 1a a =,log b a a b =.(3)常用对数与自然对数常用对数:lg N ,即10log N ;自然对数:ln N ,即log e N (其中 2.71828e =…).(4)对数的运算性质 如果0,1,0,0a a MN >≠>>,那么①加法:log log log ()aa a M N MN += ②减法:log log log a a aMM N N-=③数乘:log log ()n aa n M M n R =∈ ④log a N a N =⑤loglog (0,)bn a a nM M b n R b =≠∈ ⑥换底公式:log log (0,1)log b a bN N b b a =>≠且【2.2.2】对数函数及其性质(5)对数函数 函数 名称 对数函数定义函数log (0a y x a =>且1)a ≠叫做对数函数图象1a > 01a <<定义域 (0,)+∞值域RxyO(1,0)1x =log a y x=xyO (1,0)1x =log a y x=过定点 图象过定点(1,0),即当1x =时,0y =.奇偶性 非奇非偶单调性在(0,)+∞上是增函数在(0,)+∞上是减函数函数值的 变化情况log 0(1)log 0(1)log 0(01)a a a x x x x x x >>==<<<log 0(1)log 0(1)log 0(01)a a a x x x x x x <>==><<a 变化对 图象的影响在第一象限内,a 越大图象越靠低;在第四象限内,a 越大图象越靠高.(6)反函数的概念设函数()y f x =的定义域为A ,值域为C ,从式子()y f x =中解出x ,得式子()x y ϕ=.如果对于y 在C 中的任何一个值,通过式子()x y ϕ=,x 在A 中都有唯一确定的值和它对应,那么式子()xy ϕ=表示x 是y 的函数,函数()x y ϕ=叫做函数()y f x =的反函数,记作1()x f y -=,习惯上改写成1()y f x -=.(7)反函数的求法①确定反函数的定义域,即原函数的值域;②从原函数式()y f x =中反解出1()x f y -=;③将1()xf y -=改写成1()y f x -=,并注明反函数的定义域.(8)反函数的性质 ①原函数()y f x =与反函数1()y f x -=的图象关于直线y x =对称.②函数()y f x =的定义域、值域分别是其反函数1()y f x -=的值域、定义域.③若(,)P a b 在原函数()y f x =的图象上,则'(,)P b a 在反函数1()y f x -=的图象上.④一般地,函数()y f x =要有反函数则它必须为单调函数.〖2.3〗幂函数(1)幂函数的定义 一般地,函数y x α=叫做幂函数,其中x 为自变量,α是常数.(2)幂函数的图象(3)幂函数的性质①图象分布:幂函数图象分布在第一、二、三象限,第四象限无图象.幂函数是偶函数时,图象分布在第一、二象限(图象关于y 轴对称);是奇函数时,图象分布在第一、三象限(图象关于原点对称);是非奇非偶函数时,图象只分布在第一象限.②过定点:所有的幂函数在(0,)+∞都有定义,并且图象都通过点(1,1). ③单调性:如果0α>,则幂函数的图象过原点,并且在[0,)+∞上为增函数.如果0α<,则幂函数的图象在(0,)+∞上为减函数,在第一象限内,图象无限接近x 轴与y 轴.④奇偶性:当α为奇数时,幂函数为奇函数,当α为偶数时,幂函数为偶函数.当qpα=(其中,p q 互质,p 和q Z ∈),若p 为奇数q 为奇数时,则q py x=是奇函数,若p 为奇数q 为偶数时,则q py x=是偶函数,若p 为偶数q 为奇数时,则qpy x=是非奇非偶函数.⑤图象特征:幂函数,(0,)y x x α=∈+∞,当1α>时,若01x <<,其图象在直线y x =下方,若1x >,其图象在直线y x =上方,当1α<时,若01x <<,其图象在直线y x =上方,若1x >,其图象在直线y x =下方.〖补充知识〗二次函数(1)二次函数解析式的三种形式 ①一般式:2()(0)f x ax bx c a =++≠②顶点式:2()()(0)f x a x h k a =-+≠③两根式:12()()()(0)f x a x x x x a =--≠(2)求二次函数解析式的方法①已知三个点坐标时,宜用一般式.②已知抛物线的顶点坐标或与对称轴有关或与最大(小)值有关时,常使用顶点式.③若已知抛物线与x 轴有两个交点,且横线坐标已知时,选用两根式求()f x 更方便.(3)二次函数图象的性质 ①二次函数2()(0)f x ax bx c a =++≠的图象是一条抛物线,对称轴方程为,2bx a=-顶点坐标是24(,)24b ac b a a--.②当0a>时,抛物线开口向上,函数在(,]2b a -∞-上递减,在[,)2ba-+∞上递增,当2b x a =-时,2min 4()4ac b f x a -=;当0a <时,抛物线开口向下,函数在(,]2b a -∞-上递增,在[,)2ba-+∞上递减,当2bx a=-时,2max 4()4ac b f x a-=.③二次函数2()(0)f x ax bx c a =++≠当240b ac ∆=->时,图象与x 轴有两个交点11221212(,0),(,0),||||||M x M x M M x x a ∆=-=.(4)一元二次方程20(0)axbx c a ++=≠根的分布一元二次方程根的分布是二次函数中的重要内容,这部分知识在初中代数中虽有所涉及,但尚不够系统和完整,且解决的方法偏重于二次方程根的判别式和根与系数关系定理(韦达定理)的运用,下面结合二次函数图象的性质,系统地来分析一元二次方程实根的分布. 设一元二次方程20(0)axbx c a ++=≠的两实根为12,x x ,且12x x ≤.令2()f x ax bx c =++,从以下四个方面来分析此类问题:①开口方向:a ②对称轴位置:2b x a=-③判别式:∆ ④端点函数值符号. ①k <x 1≤x 2 ⇔xy1x 2x 0>a O∙ab x 2-=0)(>k f kxy1x 2x O ∙a bx 2-=k<a 0)(<k f②x 1≤x 2<k ⇔xy1x 2x 0>a O ∙ab x 2-=k 0)(>k fxy1x 2x O∙ab x 2-=k<a 0)(<k f③x 1<k <x 2 ⇔ af (k )<0)(<k f xy1x 2x 0>a O ∙kxy1x 2x O∙k<a 0)(>k f④k 1<x 1≤x 2<k 2 ⇔xy1x 2x 0>a O∙∙1k 2k 0)(1>k f 0)(2>k f ab x 2-=xy1x 2x O∙<a 1k ∙2k 0)(1<k f 0)(2<k f a b x 2-=⑤有且仅有一个根x 1(或x 2)满足k 1<x 1(或x 2)<k 2 ⇔ f (k 1)f (k 2)<0,并同时考虑f (k 1)=0或f (k 2)=0这两种情况是否也符合xy1x 2x 0>a O∙∙1k 2k 0)(1>k f 0)(2<k fxy1x 2x O∙<a 1k ∙2k 0)(1>k f 0)(2<k f⑥k 1<x 1<k 2≤p 1<x 2<p 2 ⇔ 此结论可直接由⑤推出. (5)二次函数2()(0)f x ax bx c a =++≠在闭区间[,]p q 上的最值设()f x 在区间[,]p q 上的最大值为M,最小值为m ,令01()2x p q =+. (Ⅰ)当0a>时(开口向上)①若2b p a -<,则()m f p = ②若2b p q a ≤-≤,则()2bm f a=- ③若2b q a ->,则()m f q =①若02b x a-≤,则()M f q = ②02b x a->,则()M f p =(Ⅱ)当0a <时(开口向下)①若2b p a -<,则()M f p = ②若2b p q a ≤-≤,则()2b M f a =- ③若2b q a ->,则()M f q =①若02b x a -≤,则()m f q = ②02b x a->,则()m f p =.第三章 函数的应用一、方程的根与函数的零点 1、函数零点的概念:对于函数))((D x x f y ∈=,把使0)(=x f 成立的实数x 叫做函数x>O-=f(p) f (q)()2b f a -x>O-=f (p)f (q)()2b f a -x>O-=f (p)f (q)()2bf a-x>O -=f(p)f (q)()2b f a- 0x x>O-=f(p) f (q) ()2bf a-0x x<O-=f (p)f(q)()2b f a-x<O-=f (p)f(q)()2b f a-x<O-=f (p)f(q)()2bf a-0xx<O-=f(p)f (q)()2b f a-x<O-=f(p) f (q)()2b f a-x))((D x x f y ∈=的零点。