第四节土的抗剪强度.
土的抗剪强度与地基承载力
上一页 下一页 返回
第二节土的抗剪强度试验方法
(二)三轴剪切试验 1.试验原理及设备组成 三轴剪切仪也就是三轴压缩仪,试样破坏的本质是压一剪
型。土样是一个圆柱体,高75~100 mm,直径为38~50 mm, 用橡皮薄膜套起来,置于压力室中。土样三向受压,可以发 生横向变形,通过液压加周围压力,通过杠杆系统加竖向压 力。当压力及其组合达到一定程度时,土样就会按规律产生 一个斜向破裂面或沿弱面破裂。 2.试验分类 三轴试验根据土样的排水条件可分为: (1)不固结不排水试验。该试验简称为UU试验,和直剪仪 中的快剪相当。UU试验的本质是自始至终关闭排水阀门,不 能排水。因为不能排水,所以也不能固结。不能排水是问题 的本质方面,因而,也简称不排水剪。也因为不能排水,自 始至终存在孔隙水压力,随着加荷增大,孔隙水压力越来越 大,而有效应力是常量。
3.土的黏聚力
土的黏聚力包括原始黏聚力、加固黏聚力及毛细黏聚力三部 分。
二、土的极限平衡条件
(一)黏性土
劲伸h并}土与的抗轴剪交强于度O曲’点线,表如达图式4为-4所: 示f ,则tanOO'
c pc
。把曲线延 c
tan
第六章 土的抗剪强度
τ
f c tg
D A B
τ=τf 极限平衡条件 莫尔-库仑破 坏准则
O
σ
剪切破坏面
极限应力圆 破坏应力圆
粘性土的极限平衡条件
σ1= σ3tg2(45+φ/2)+2ctg (45+φ/2)
σ3= σ1tg2(45-φ/2)-2ctg (45-φ/2)
无粘性土的极限平衡条件
σ1= σ3tg2(45+φ/2)
2)固结不排水剪
正常固结和超固结试样对 土的固结不排水强度有很 大影响 正常固结饱和粘性土的试 验结果见图 超固结土的固结不排水剪 试验结果
超固结土的固结不排水剪试验
当试验固结压力小于Pc时,为 曲线,但可近似用直线ab代替; 当试验固结压力大于Pc时是直 线,说明试验进入正常固结状 态。bc线的延长线也通过坐标 原点。 对于超固结土,特别是高度超 固结土,由于剪切时产生负的 孔隙水压力,有效应力圆在总 应力圆的右侧;在正常固结段, 孔隙水压力是正的,有效应力 圆在总应力圆的左侧,有效应 力强度包线可取为一条直(图)
f tg c
有效应力法是用剪切面上的有效应力来 表示土的抗剪强度,即:
f tg c
饱和土的抗剪强度与土受剪前在法向应 力作用下的固结度有关。而土只有在有 效应力作用下才能固结。有效应力逐渐 增加的过程,就是土的抗剪强度逐渐增 加的过程。
总应力法与有效应力法的优缺点: 1.总应力法:优点:操作简单,运用方便。 (一般用直剪仪测定) 缺点:不能反映地基土在实际固结情况下的抗 剪强度。 2.有效应力法:优点:理论上比较严格,能 较好的反映抗剪强度的实质,能检验土体处于 不同固结情况下的稳定性。 缺点:孔隙水压力的正确测定比较困难。
土的抗剪强度(第四章)
不同试验方法的剪切试验结果
(1)不固结不排水剪(UU)
饱和粘性土在三组3下的不排水剪试验得到A、B、C三个 不同3作用下破坏时的总应力圆
结 不 排 水 剪 的 剪 切 试 验 结 果
cu
uA
有效应力圆 A
3A
总应力圆
u=0
B
1A
C
试验表明:三个试样的周围压力3不同,但破坏时的主应力差相 等,三个极限应力圆的直径相等,因而强度包线是一条水平线 三个试样只能得到一个有效应力圆
q
CU应力路径 K’f C
Kf
B p A
利用有效应力强度指标估算
f
cos
f
sin
f (1 -3)/2
’
K
1
1
cos
’3
’ 1
cos sin cos sin K 1U f 1 1 1 sin 1 sin cos sin f 1U 1 sin
45
cu
2
45
tanc
sin cu coscu 1 sin cu
f 1 3 / 2 sin cu tanc 3 3 1 sin cu
六 软粘土在荷载作用下的强度增长
饱和软粘土地基在外荷载作用下,随着孔隙水压力的消散以 及土层的固结,土的抗剪强度也将会随之增长。
总应力法(固结不排水强度为例)
q
tan cu
f
nf
f
O
3 =3 1
cu
1 3 sin cu 1 3 f
p(p)
第四节 土的抗剪强度
2. 三轴固结试验
优点:能控制排水条件、受力状态明确、剪切面不固 定、能准确测定土的孔隙压力变化及体积变化; 分类:排水条件的不同(不固结不排水剪UU、固结不 排水剪CU、固结排水剪CD)
试验过程:施加围压
液压;对于一个样试验结 果为主应力差与与轴向应变之间的关系,取峰值或 稳定值作为破坏点;同一种土取3-4个具有相同密度 和含水量的试样分别在不同的围压下进行重复试验; 绘制极限应力圆和强度包线,读出土的抗剪强度参 数内聚力和内摩擦角。
该函数是一条曲线,称为莫尔包线。
土的莫尔包线通常可以近似地用直线代替,该直 线方程就是库伦公式表示的方程。由库伦公式表示莫 尔包线的强度理论称为莫尔-库伦强度理论。。 对于平面问题,当土体中任意一点受到两个主应 力为σ1和σ3(σ1>σ3),在某一平面mn上的剪应力达 到土的抗剪强度时,就发生剪切破坏,我们现在的问 题是确定该面上的正应力σ、剪应力τ。
土体的破坏: 首先是从局部开始,发展贯通、最终导致土体的整体破坏。 土的抗剪强度: 是由土的内摩擦角φ和内聚力C两个指标决定。对于高层建 筑地基稳定性分析、斜坡稳定性分析及支护等问题,c、φ值是 必不可少的指标。 土的抗剪强度的机理: 无粘性土一般没有粘结力,抗剪力主要由颗粒间的滑动摩 擦以及凹凸面间镶嵌作用所产生的摩擦力组成,指标“内摩擦 角φ”值的大小,体现了土粒间摩擦力的强弱,也反映了土的抗 剪能力; 粘性土的抗剪力不仅有颗粒间的摩擦力,还有相互粘结力, 不同种类的粘性土,具有不同的粘结力,指标“内聚力c”值的 大小,体现了粘结力的强弱。因此,对于粘性土的抗剪能力, 由内摩擦角φ和粘聚力 c 两个指标决定。我们把土的抗剪能力 称为土的抗剪强度。
1776又提出适合粘性土的普遍形式:
上两式统称为库仑公式。C、 φ抗剪强度指标。
4-土的抗剪强度
《工程地质与岩土力学》教学模块 “土力学部分”
过程考核4 ———“土的抗剪强度计算”
班级: 学号:___________________姓名:______________成绩:____________
1. 已知住宅地基中某一点所受的最大主应力为kPa 6001=σ,最小主应力kPa 1003=σ,求:①绘制摩尔应
力圆;②求最大剪应力值和最大剪应力作用面与大主应力作用面的夹角;③计算作用在与小主应力面成300的面上的正压力和剪应力。
2. 已知某工厂地基土的抗剪强度指标黏聚力kPa 100=c ,内摩擦角 30=φ,作用在此地基中某平面上的总应力为kPa 1700=σ,倾斜角为 37=θ。
问该处会不会发生剪切破坏?
3. 某饱和粘性土无侧限抗压强度试验的不排水剪切强度kPa 70=u c ,如果对同一土样进行三轴不固结不排水试验,施加周围压力kPa 1503=σ,试问土样将在多大的轴向压力作用下发生破坏?(参考答案290kPa)
4. 某饱和粘性土在三轴仪中进行固结不排水试验,得0'=c 、 28'=φ,如果这个试件受到kP a 2001=σ、kPa 1503=σ的作用,测得孔隙水压力kPa 100=u ,试问该试件是否会破坏,为什么?。
土力学第四章抗剪强度
时对试样施加垂直压力后,每小时测读垂直变形一次,直至变形
稳定。变形稳定标准为变形量每小时不大于0.005mm,在拔去固 定销,剪切过程同快剪试验。所得强度称为固结快剪强度,相应
指
第四章 土的抗剪强度
标称为固结快剪强度指标,以cR,υR表示。 (三)慢剪(S) 慢剪试验是对试样施加垂直压力后,待固结稳定后,再拔去固定 销,以小于0.02mm/min的剪切速度使试样在充分排水的条件下进 行剪切,这样得到的强度称为慢剪强度,其相应的指标称为慢剪
第四章 土的抗剪强度
直剪试验 为了考虑固结程度和排水条件对抗剪强度的影响,根据加荷速率的快 慢将直剪试验划分为快剪、固结快剪和慢剪三种试验类型。 (一)快剪(Q) 《土工试验方法标准》规定抗剪试验适用于渗透系数小于10-6cm / s 的细粒土,试验时在试样上施加垂直压力后,拔去固定销钉,立即以
第四章 土的抗剪强度
θ
3
1
第四章 土的抗剪强度
(二)土的极限平衡条件 根据这一准则,当土处于极限平衡状态即应理解为破坏状态,此时的 莫尔应力圆即称为极限应力圆或破坏应力圆,相应的一对平面即称为 剪切破坏面(简称剪破面)。
第四章 土的抗剪强度
下面将根据莫尔-库仑破坏准则来研究某一土体单元处于极限平衡状 态时的应力条件及其、小主应力之间的关系,该关系称为土的极限 平衡条件。
第四章 土的抗剪强度
②也可由式(4-9)计算达到极限平衡条件时所需要得大主应力 值为σ1f,此时把实际存在的大主应力σ3 =480kPa及强度指标c, υ代入公式(4-8)中,则得
由计算结果表明, σ3<σ3f , σ1 >σ1f ,所以该单元土体早已 破坏。
第四章 土的抗剪强度
4-3 确定强度指标的试验
第四章 土的抗剪强度
Teacher Yang Ping
第二节 土的抗剪强度理论
一、抗剪强度的库仑定律 1、无粘性土
f tan
f—土的抗剪强度; —滑动面上法向总应力; —土的内摩擦角,度。
Teacher Yang Ping
2019年11月4日星期一
2、粘性土 f tan c
㈡、土的极限平衡条件 1、根据抗剪强度曲线与莫尔圆的关系判断
2019年11月4日星期一
①、莫尔圆位于抗剪强度曲线以下,处于稳定状态。 ②、莫尔圆与抗剪强度曲线相切,处于极限平衡状态。 ③、莫尔圆与抗剪强度曲线相割,土体已被剪破。
Teacher Yang Ping
2、根据极限平衡条件判断
2019年11月4日星期一
第一节 概述 第二节 土的抗剪强度理论
2019年11月4日星期一
第三节 土的抗剪强度试验
第四节 无粘性土的抗剪强度
第五节 饱和粘性土的抗剪强度
Teacher Yang Ping
第一节 概述
2019年11月4日星期一
一、概念:土的抗剪强度是指土体抵抗剪切破坏的极限能力,是土 的重要力学性质之一。
二、与土的抗剪强度有关的工程问题 1、建筑地基的承载力; 2、土工建筑物的土坡稳定; 3、深基坑土壁的稳定性; 4、挡土墙的稳定性。
Teacher Yang Ping
2019年11月4日星期一
直接剪切试验可分为快剪、固结快剪和慢剪三种方法: 1、快剪:是在试样施加竖向压力后,立即快速施加水平剪应 力使试样剪切破坏。 2、固结快剪:是允许试样在竖向压力下排水,待固结稳定后, 再快速施加水平剪应力使试样剪切破坏。 3、慢剪:是允许试样在竖向压力下排水,待固结稳定后,以缓 慢的速率施加水平剪应力使试样剪切破坏。
(完整版)土的抗剪强度
一、土的抗剪性
土是由固体颗粒组成的,土粒间的连结强度远远小于土粒本身的强度,故在外力作用下土粒 之间发生相互错动,引起土中的一部分相对另一部分产生滑动。土粒抵抗这种滑动的性能, 称为土的抗剪性。 土的抗剪性是由土的内摩擦角 φ 和内聚力 c 两个指标决定。对于高层建筑地基稳定性分析、 斜坡稳定性分析及支护等问题,c、φ 值是必不可少的指标。 无粘性土一般没有粘结力,抗剪力主要由颗粒间的滑动摩擦以及凹凸面间镶嵌作用所产生的 摩擦力组成,指标"内摩擦角 φ"值的大小,体现了土粒间摩擦力的强弱,也反映了土的抗 剪能力; 粘性土的抗剪力不仅有颗粒间的摩擦力,还有相互粘结力,不同种类的粘性土,具有不同的 粘结力,指标"内聚力 c"值的大小,体现了粘结力的强弱。因此,对于粘性土的抗剪能力, 由内摩擦角 φ 和粘聚力 c 两个指标决定。
三、影响土体抗剪强度的因素分析
决定土的抗剪强度因素很多,主要为:土体本身的性质,土的组成、状态和结构;而 这些性质又与它形成环境和应力历史等因素有关;此外,还决定于它当前所受的应力状态。
土的抗剪强度主要依靠室内经验和原位测试确定,试验中,仪器的种类和试验方法以 及模拟土剪切破坏时的应力和工作条件好坏,对确定强度值有很大的影响。
一、直接剪切试验
直接剪切仪分为应变控制式和应力控制式两种,前者是等速推动试样产生位移,测定相应的 剪应力,后者则是对试件分级施加水平剪应力测定相应的位移,目前我国普遍采用的是应变 控制式直剪仪。
应变控制式直剪仪主要部件由固定的上盒和活动的下盒组成,试样放在盒内上下两块透 水石之间。试验时,由杠杆系统通过加压活塞和透水石对试件施加某一垂直压力 σ,然后等 速转动手轮对下盒施加水平推力,使试样在上下盒的水平接触面上产生剪切变形,直至破坏, 剪应力的大小可借助与上盒接触的量力环的变形值计算确定。假设这时土样所承受的水平向 推力为 T,土样的水平横断面面积为 A,那么,作用在土样上的法向应力则为σ=P/A,而 土的抗剪强度就可以表示为 f =T/A。ຫໍສະໝຸດ 主要内容第一节 概述
土的抗剪强度
第四节 土的抗剪强度
• 二 库仑强度条件
图3.4-1 抗剪强度与法向应力之间的关系 (a)无粘性土; (b)粘性土 )无粘性土; )
第四节 土的抗剪强度
• 二 库仑强度条件
1776年,法国学者库仑(C、A、Coulomb)根据砂土的试验结果 (图3.4-1a),将土的抗剪强度表达为破坏面上法向应力的函数,即 τ f = σ ⋅ tan ϕ (3.4-1) 此后库仑又根据粘土的试验结果(图3.4-1b),提出更为普遍的抗剪 强度表达形式: τ f = σ ⋅ tan ϕ + c (3.4-2) 式中: τ f ——土的抗剪强度(kPa); σ ——剪切破坏面上的法向应力(kPa);
由式(3.4-4)可知,当平面 mn 与大主应力σ 1作用面的夹 mn 角 α 变化时, 平面上的 σ 和 τ 亦相应变化。为了表达 某一土体单元所有各方向平面上的应力状态,可以引用材 料力学中有关表达一点的应力状态的摩尔应力圆方法(图 3.4-3c)),即在 σ —τ 坐标系中,按一定的比例尺,在横 坐标上截取 σ 3和σ1 的线段 OB 和OC ,再以 BC 为直径作圆, 取圆心为 D ,自 DC 逆时针旋转2α 角,使DA 与圆周交于A 点 。不难证明, 点的横坐标即为平面 mn 上的法向应力σ A ,纵坐标即为剪应力 τ 。由此可见,摩尔应力圆圆周可以 完整地表示一点的应力状态。
第四节 土的抗剪强度
• 三 摩尔 库仑强度理论 摩尔—库仑强度理论
理论分析和实验研究表明,在各种破坏理论中,对土最适 用的是摩尔—库仑理论。1910年摩尔(Mohr)提出: 1)材料的破坏是剪切破坏 2)任何面上的抗剪强度τ f 是作用于该面上的法向应力 σ 的函数,即 τ f = f (σ ) (3.4-3) 3)当材料中任何一个面上的剪应力τ 等于材料的抗剪强 度 τ f 时,该点便被破坏。
第四章 土的抗剪强度
第四章土的抗剪强度(4学时)内容提要1.土的抗剪强度及其破坏准则;2.土的极限平衡条件;3.土的抗剪强度指标的测定;4. 强度指标的表达方法及指标的选用。
能力培养要求1.掌握测定土的抗剪强度指标的试验仪器和试验方法。
2.会用土中一点的极限平衡条件式,判别土所处的应力状态。
3.会用库仑定律判别土的状态。
4.掌握强度指标的选用。
5.了解不同排水条件对强度指标的影响。
教学形式教师主讲、课堂讨论、学生讲评、提问答疑、工程案例分析等第一节土的抗剪强度及其破坏准则教学目标1.理解直接剪切试验与抗剪强度定律。
2.理解抗剪强度指标c、φ及其影响因素。
教学内容设计及安排一、土的强度与破坏形式土的抗剪强度——土体抵抗剪切破坏的极限能力。
注意:土体受荷作用后,土中各点同时产生法向应力和剪应力,其中法向应力作用将使土体发生压密,这是有利的因素;而剪应力作用可使土体发生剪切,这是不利的因素。
因此,土的强度破坏通常是指剪切破坏,所谓土的强度往往指抗剪强度。
二、土的抗剪强度规律----库仑定律库仑(Coulomb)根据砂土的剪切试验,得到抗剪强度的表达式粘性土的抗剪强度表达式式中τf――土的抗剪强度,kPa;σ――剪切面上的法向应力,kPa;ϕ――土的内摩擦角,o;c ――土的粘聚力,kPa。
c和ϕ称为土的抗剪强度指标以上两式为著名的抗剪强度定律,即库仑定律,如下图:【讨论】:土的抗剪强度不是一个定值,而是剪切面上的法向总应力σ 的线性函数;对于无粘性土,其抗剪强度仅仅由粒间的摩擦力(σ tan ϕ)构成;对于粘性土,其抗剪强度由摩擦力(σ tan ϕ)和粘聚力(c )两部分构成。
三、土的抗剪强度影响因素摩擦力⎭⎬⎫⎩⎨⎧咬合摩擦滑动摩擦 影响因素⎪⎪⎪⎩⎪⎪⎪⎨⎧土粒级配土粒表面的粗糙程度土粒的形状剪切面上的法向总应力土的原始密度 粘聚力⎭⎬⎫⎩⎨⎧颗粒之间的分子引力土粒之间的胶结作用 影响因素⎪⎪⎩⎪⎪⎨⎧土的结构含水量矿物成分粘粒含量 【注意】:c 和ϕ 是决定土的抗剪强度的两个重要指标,对某一土体来说,c 和ϕ 并不 是常数,c 和ϕ 的大小随试验方法、固结程度、土样的排水条件等不同而有较大的差异。
土力学与地基基础4-1
工程实例-土坡稳定
The slide extended for about 1100 feet along the embankment. At the north end, near the inletoutlet structure visible in this photo, the scarp at the top of the slide was about 30 feet high. At the bottom of the slope the toe of the slide moved horizontally about 30 feet out into the reservoir.
施工观测及质量检验
三、沉降观测 1.观测点的布置: 沿场地对称轴线、场地中心、坡顶、坡脚和场外 10m范围 2.资料应用 ⑴推算最终变形量;⑵求任意时间固结度; ⑶控制加荷速率。 四、边桩位移观测
4.6 土的强度特性
砂性土的剪切性状
砂土的抗剪强度受密度、颗粒形状、表面粗糙度 和级配的影响。对于一般砂土来讲,影响抗剪强 度的主要因素是其初始孔隙比(或初始干密度) 初始孔隙比越小,抗剪强度越高 同一种砂土在相同的孔隙比下饱和时的内摩擦角 比干燥时小
例题2 已知某地基土的c=20kPa,Φ=20°,若地基中某 点的大主应力为300kPa,当小主应力为何值时,该土 处于极限平衡状态?并说明其剪裂的位置。 解:已知最大主应力σ1=300kPa,将有关数据代 入公式,得最小主应力的计算值:
4.3 抗剪强度试验方法
测定土抗剪强度指标的试验称为剪切试验 按照常用的试验仪器将剪切试验分为 直接剪切试验 三轴压缩试验 无侧向抗压强度试验 十字板剪切试验
工程实例-土坡稳定
土的抗剪强度与地基承载力
关系上 3.测试设备进入土层对土层也有一定扰动 4.试验时旳主应力方向与实际工程不一致 5.应变场不均匀,应变速率不小于实际工程正常固
结
第四节 不同排水条件下强度指标应用
1. 三轴不固结不排水剪切试验(UU)和直剪快剪试验
饱和土旳重度sat=21kN/m3,抗剪强度指标为 =20°, c=20kPa,求(1)该地基承载力p1/4 ,(2)若地下水位上升至地 表下1.5m,承载力有何变化
【解答】 (1)
p1/ 4
(c ctg 0d b / ctg / 2
4)
0d
244.1kPa
(2)地下水位上升时,地下水位下列土旳重度用有效重度
二、土旳极限平衡状态
土旳抗剪强度是指土体抵抗剪切破坏旳极限 能力,用τf表达。
当土体中某点旳剪力
τ<τf 土体处于弹性平衡状态 τ=τf 土体处于极限平衡状态 τ>τf 土体发生剪切破坏
1. 土体中任一点旳应力状态
假定土层为均匀、连续旳 半空间材料,研究地面下 列任一深度处M点旳应力 状态。
3ds sin ds sin ds cos 0 1ds cos ds cos ds sin 0
f
cu
qu 2
旳优点
无侧限试验 无侧限试验
3. 试验优缺陷
替代三轴试验(当 u 0 )
可用来求土旳敏捷度
St
qu q0
旳缺陷
太软土(流塑)不可 试验快 , 水来不及排除
四、十字板剪切试验
1. 合用范围 十字板剪切仪合用于饱
和软粘土,尤其合用于难于 取样或试样在自重作用下不 能保持原有形状旳软粘土
土的抗剪强度
构造
② 试验方法:套橡皮膜圆柱状土样(试验前饱和器内养护), 围压σ3(三向受力)、竖向压力 1 3 ③数据测读:各级压力作用下对应的体积变形和竖向变形以及孔隙水压力、 静止侧压力系数等 ④数据整理(多个试样):~ 曲线定大小主应力,进而作应力圆,可求 抗剪强度指标 、 和 f ,并据公式(5-4)求破坏面的 、 。
【岩土力学】
第五章 土的抗剪强度
19
极限应力园
【岩土力学】
第五章 土的抗剪强度
20
图中: ①任意截面 f ②其中一截面 f 该点处于极限平衡状 态,属于极限应力圆 ③有些截面 f 这些截面的平面剪应 力超过抗剪强度(当然不可能存在此状态)
【岩土力学】
第五章 土的抗剪强度
中密 28~32 30~34 34~40 36~42
密 30~34 32~36 38~46 40~48
6பைடு நூலகம்
26~30 26~30 30~34 32~36
第五章 土的抗剪强度
无粘性土的τf主要来源于内摩擦力 粘性土因 较小,则较多依靠粘聚力(原始粘聚 力、固化粘聚力)。 原始粘聚力 ——土颗粒之间的分子引力 固化粘聚力 ——化合物的胶结作用。 其中,固化粘聚力会因土结构的破坏而丧失, 故不能扰动基底土。
1 ds cos ds cos ds sin 0 3 ds sin ds sin ds cos 0
联立求解得:
1 1 = ( 1+ 3〕+ ( 1- 3 ) cos 2 2 2 1 ( 1 3 ) sin 2 2
第五章2土的剪力
第五章.土的抗剪强度(2)
土木系
第四节: 第四节:总应力和有效应力抗剪强度指标 一、概述: 概述: 以砂土为例:总应力抗剪强度公式 以砂土为例:总应力抗剪强度公式: τf = σtgφ τf = (σ- µ) tgφ’ - = σ’ tgφ’ ……(1) 有效应力写出抗剪强度公式,则为 有效应力写出抗剪强度公式,则为: ……(2)
σn =
σ1 + σ 3 σ1 − σ 3
2 + 2
cos 2α
第五节:应力路径: 第五节:应力路径:
思考:
a、θ 与c、ϕ 有什么关系?计算公式?
结束 谢谢!
Keep Connecting In The Future
二、孔隙水压力系数 1、孔隙水压力系数B: 、孔隙水压力系数
∆
(1)∆µ1引起的孔隙体积变化为 v ,则有: 引起的孔隙体积变化为∆V 则有 则有: ∆Vv /Vv= ∆Vv /(nV)=Cv ∆µ1 ……(1) (2)有效应力增量 3 - ∆µ1 引起土骨架压缩,应变 有效应力增量∆σ 引起土骨架压缩, 有效应力增量 量为: 量为: ∆Vv /V。 。 ……(2) ∆Vv /V=Cs (∆σ3 - ∆µ1 )
2、孔隙水压力系数A: 、孔隙水压力系数
如果在试样上仅施加偏应力增量 ∆σ= ∆σ1 -∆σ 3 = 此时, 此时,在土中施加的平均应力增量 ∆σ m = 1/3( ∆σ1 -∆σ 3 ) ( 孔隙水压力也会在土中产生一孔压∆µ 孔隙水压力也会在土中产生一孔压 2 ∆σ’ m = 1/3( ∆σ1 -∆σ 3 ) - ∆µ2 ( ∆σ’= ∆σ1 -∆σ 3 - ∆µ2 = --轴向应力增量 ∆σ3’= - ∆µ2 --径向应力增量 = 同理,可得此时土体积应变为: ∆Vv /Vv= ∆Vv /(nV)=Cv ∆µ2 ……(3) 将土骨架看成理想材料,土体积变化只与∆σ’ m有关: ∆Vv /Vv= Cs [1/3( ∆σ1 -∆σ 3 ) - ∆µ2 ] ……(4) (
第四章土的抗剪强度
抗剪强度包线
c
不固结不排水剪试验(UU试验)
三轴剪切试验 固结不排水剪试验(CU试验)
固结排水剪试验(CD试验)
对于重大工程或科学研究必须进行三轴剪切试验。当采 用室内剪切试验确定土的抗剪强度指标时,《建筑地基基 础设计规范》(GB50007-2002)推荐采用三轴试验。 鉴于多数工程施工速度快,其工况较接近于不固结不排水 条件,故规范进一步推荐选择三轴剪切试验中的不固结不 排水剪试验。采用三轴试验测定土的抗剪强度也是国际上 常用的方法。
⑵ 三轴剪切试验
由压力室、施加周 围压力系统、轴向加 压系统和孔隙水压力 量测系统组成。目前 较为先进的三轴剪切 仪还配备有自动控制 系统和数据自动采集 系统
三轴剪切仪
试验步骤: 1.装样 2.施加周围压力 3.施加竖向压力
3 3
△ 3
3 3
3 △
抗剪强度包线
分别在不同的周围压力3作用下进行剪切,得到3~4
度包线近似于一水平线,即
u=0,因此无侧限抗压强度
试验适用于测定饱和软粘土的
qu 不排水强度
f
cu
qu 2
无侧限抗压强度试验仪器构造简单,操作方便, 可代替三轴试验测定饱和软粘土的不排水强度
灵敏度
• 粘性土的原状土无侧限抗压强度与原土结构完全破坏的重 塑土的无侧限抗压强度的比值
反映土的结构 受挠动对强度 的影响程度
2、粘性土与无粘性土的极限平衡条件
由图可知: Sin AO1
BO1
AO1
1
2
3
BO1
c
cot
1
2
3
1
3
土力学第四章抗剪强度
土力学第四章抗剪强度土力学第四章抗剪强度一、引言土力学是研究土体力学性质及其应力、应变关系的学科,而抗剪强度是土力学中的重要概念之一。
本文将探讨土力学第四章中与抗剪强度相关的内容,包括抗剪强度的定义、影响因素以及在工程实践中的应用。
二、抗剪强度的定义抗剪强度是指土体抵抗剪切力的能力。
在土力学中,土体通常是以颗粒状存在,受力时会发生内部颗粒之间的相对位移,导致剪切变形。
抗剪强度是土体抵抗这种剪切变形的能力的一种表征。
三、影响抗剪强度的因素1. 土体类型:不同类型的土体具有不同的抗剪强度。
粘土的抗剪强度相对较高,而砂土的抗剪强度相对较低。
2. 湿度:湿度对土体的抗剪强度有着显著的影响。
在一定范围内,湿度的增加会使土体的抗剪强度增加。
3. 应力状态:土体在不同应力状态下的抗剪强度也会有所不同。
例如,在三轴压缩试验中,土体在不同的主应力差下会表现出不同的抗剪强度。
4. 颗粒形状和排列方式:土体中颗粒的形状和排列方式对抗剪强度有着重要影响。
颗粒形状不规则或排列紧密的土体具有较高的抗剪强度。
四、抗剪强度的实验测定方法为了准确测定土体的抗剪强度,工程实践中通常使用一系列实验方法。
常用的方法包括直剪试验、三轴剪切试验和动三轴剪切试验等。
这些实验方法可以通过施加不同的剪切应力来测定土体的抗剪强度。
五、抗剪强度在工程实践中的应用抗剪强度是土力学中一个非常重要的参数,广泛应用于各种工程实践中。
在土壤基础工程中,准确测定和分析土体的抗剪强度可以帮助工程师评估土体的稳定性,并设计合理的基础结构。
此外,在土木工程中,抗剪强度也被用来评估土体的抗冲刷能力和抗滑移能力。
六、结论土力学第四章中的抗剪强度是研究土体力学性质时的重要内容。
本文从抗剪强度的定义、影响因素、实验测定方法以及在工程实践中的应用等方面进行了论述。
通过深入研究和理解抗剪强度这一概念,可以更好地应用于土壤力学和土木工程实践中,提高工程设计的可靠性和安全性。
参考文献:1. 毛振泉,王曙明,李敏. 工程土力学基础. 北京: 中国建筑工业出版社,2013.2. 刘福赉, 张猛, 刘允斌. 土力学与岩土工程高级课程. 西安: 西安建筑科技大学出版社,2014.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一. 土的强度应用 地基由岩土组成,地基在外荷载作用下将产生剪应力和剪应 变,土体抵抗剪切破坏的能力,相应于剪应力的增加逐渐发挥, 当剪阻力发挥到极限时,土就处于剪切破坏的极限状态。 土是由固体颗粒组成的,土粒间的连结强度远远小于土粒 本身的强度。在外力作用下土粒之间发生相互错动,引起土中 的一部分相对另一部分产生滑动。土粒间抵抗这种滑动的能力, 称为土的抗剪强度。 二. 土的抗剪强度 土的抗剪强度是指土体抵抗剪切破坏的极限能力。工程设 计中,对于地基首先应该满足强度要求,其后是设计满足地基 变形条件。
该函数是一条曲线,称为莫尔包线。
土的莫尔包线通常可以近似地用直线代替,该直 线方程就是库伦公式表示的方程。由库伦公式表示莫 尔包线的强度理论称为莫尔-库伦强度理论。。 对于平面问题,当土体中任意一点受到两个主应 力为σ1和σ3(σ1>σ3),在某一平面mn上的剪应力达 到土的抗剪强度时,就发生剪切破坏,我们现在的问 题是确定该面上的正应力σ、剪应力τ。
土体的破坏: 首先是从局部开始,发展贯通、最终导致土体的整体破坏。 土的抗剪强度: 是由土的内摩擦角φ和内聚力C两个指标决定。对于高层建 筑地基稳定性分析、斜坡稳定性分析及支护等问题,c、φ值是 必不可少的指标。 土的抗剪强度的机理: 无粘性土一般没有粘结力,抗剪力主要由颗粒间的滑动摩 擦以及凹凸面间镶嵌作用所产生的摩擦力组成,指标“内摩擦 角φ”值的大小,体现了土粒间摩擦力的强弱,也反映了土的抗 剪能力; 粘性土的抗剪力不仅有颗粒间的摩擦力,还有相互粘结力, 不同种类的粘性土,具有不同的粘结力,指标“内聚力c”值的 大小,体现了粘结力的强弱。因此,对于粘性土的抗剪能力, 由内摩擦角φ和粘聚力 c 两个指标决定。我们把土的抗剪能力 称为土的抗剪强度。
5.抗剪强度指标的选择 土的抗剪强度与土的生成环境、物质组成、应力历史等 因素有关,而且我们为了定量的评价土的抗剪强度,需利用 一定的测试方法来确定抗剪强度指标,即内聚力c和内摩擦角 φ ,这又与试验方法、排水条件、应力路径等条件有关。 对于饱和粘性土,利用不排水不固结试验只能测出总应 力破坏包线,不能测得有效应力破坏包线,并且φ 值为零, 抗剪强度τf=c;利用固结不排水剪,既能测得总应力破坏包 线,即τf =c+tanφ ,也能测得有效应力破坏包线,即τf =c+tanφ ;而利用固结排水试,有效应力破坏包线就是总应 力破坏包线。因此在选取指标时要根据工程问题决定采用总 应力或有效应力强度指标,然后选择测试方法。一般认为, 由三轴固结不排水试验确定的有效应力强度参数c′和φ′值 用于分析地基的长期稳定性(例如土坡的长期稳定分析,估计 挡土结构物的土压力、位于软土地基上结构物的地基长期稳 定分析等);而对于饱和软粘土的短期稳定问题,则宜采用不 固结不排水试验的强度指标,以总应力法进行分析。一般工 程问题多采用总应力分析法,其指标和测试方法的选择大致 如下:
若建筑物施工速度较快,而地基土的透水性和排 水条件不良时,可采用三轴仪不固结不排水试验或直 剪仪快剪试验的结果;如果建筑物加荷速率较慢,地 基土的透水性较小(如低塑性的粘土)以及排水条件又 较佳时(如粘土层中夹砂层),则可以采用固结排水或 慢剪试验;如果介于以上两种情况之间,可用固结不 排水或固结快剪试验结果。由于实际加荷情况和土的 性质是复杂的,而且在建筑物的施工和使用过程中都 要经历不同的固结状态,因此,在确定强度指标时还 应结合工程经验。 对于无粘性土,抗剪强度决定于有效法向应力和 内摩擦角,密实砂土的内摩擦角与天然孔隙比、土粒 表面的粗糙度以及颗粒级配等因素有关。天然孔隙比 小、土粒表面粗糙、级配良好的砂土,其内摩擦角较 大。松砂的内摩擦角大致与干砂的天然休止角相等 (天然休止角是指干燥砂土堆积起来所形成的自然坡 角)。
用莫尔应力圆可表示土体中一点的应力状态,圆 周上各点的坐标就是相应斜面上的法向应力和剪应力。
任意斜面上的应力(法向应力和剪应力)
抗剪强度包线与莫尔应力圆之间的关系有以下三种情况: (1)整个莫尔圆位于抗剪强度包线下(圆Ⅰ),说明该点在 任何平面上的剪应力都小于所发挥的抗剪强度(τ< τf ),因 此不会发生剪切破坏; (2)抗剪强度包线是莫尔圆的一条割线(圆Ⅲ),说明该 点某些平面上的剪应力已超过了土的抗剪强度(τ> τf ),实 际上这种情况是不可能发生的; (3)莫尔圆与抗剪强度包线相切(圆Ⅱ),切点为 A,说 明在A 点所代表的平面上,剪应力正好等于抗剪强度(τ=τf), 该点处于极限平衡状态。圆Ⅱ 称为极限应力圆。根据极限应力 圆与抗剪强度包线之间的几何关系:破坏面与最大主应力σ1的 作用面的夹角为 ,该面并不是剪应力最大的面。
2. 三轴固结试验
优点:能控制排水条件、受力状态明确、剪切面不固 定、能准确测定土的孔隙压力变化及体积变化; 分类:排水条件的不同(不固结不排水剪UU、固结不 排水剪CU、固结排水剪CD)
试验过程:施加围压
液压;对于一个样试验结 果为主应力差与与轴向应变之间的关系,取峰值或 稳定值作为破坏点;同一种土取3-4个具有相同密度 和含水量的试样分别在不同的围压下进行重复试验; 绘制极限应力圆和强度包线,读出土的抗剪强度参 数内聚力和内摩擦角。
应力莫尔圆与强度包线关系: 就是土中一点的应力状态与破坏准则之间 的关系。相切表示该点处于极限平衡条件。 土的极限平衡条件(剪切破坏条件):
粘性土: 或
无粘性土:
破坏面与最大主应力作用面的夹角为
三、 抗剪强度指标的确定
试验方法:室内(直接剪切、三轴压缩、无侧限抗 压);原位(大型剪切、十字板剪切) 1.直接剪切试验 试验过程:沿着给定的面进行剪切;对于一个样试验 结果为剪应力与剪位移之间的关系,取峰值或稳定 值作为破坏点;同一种土取4-5个具有相同密度和含 水量的试样分别在不同的垂直压力下进行重复试验; 建立抗剪强度与垂直压力之间的关系,读出土的抗 剪强度参数内聚力和内摩擦角。 分类:排水条件(快剪、固结快剪、慢剪) 优点:简单、方便; 缺点:剪切面不是最薄弱面、应力集中、剪切面积不 准、孔隙压力和排水条件的控制不严格。
不足:设备复杂。
3. 无侧限抗压强度
适用土质:饱和粘性土 无侧限抗压强度 :不施加任何侧向压力 的情况下,施加垂直压力 ,试件剪切破坏时所能 承受的最大轴向压力。 =0, UU试验结果表明饱和粘性土UU试验破坏 包线为近水平直线, 。
用无侧限抗压强度确定土的灵敏度。
4. 现场十字板剪切试验 优点:可避免室内试样受扰动的不足,特别适用 于高灵敏度的软粘土、淤泥等。 破坏:十字板扭转,破坏面为旋转形成的圆柱面。 简化假设: 的到十字板试验土的 抗剪强度 十字板现场测定的抗强度属于不排水试验条件, 因此有:
研究土的抗剪强度,我们常采用莫 尔-库伦强度理论。 该强度理论的两个指标φ、c 值的 确定方法有直接剪切试验、三轴剪切试 验、无侧限抗压强度试验、十字板剪切 试验等。
三、库仑公式和莫尔-库仑强度理论 1、 库仑公式 1773年库仑(Coulomb)砂土试验,把物 体斜面平衡和摩擦系数概念应用于土中,得 到砂土的抗剪强度公式:
1776又提出适合粘性土的普遍形式:
上两式统称为库仑公式。C、 φ抗剪强度指标。
抗 剪 强 度 与 法 向 压 应 力 关 系
2. 莫尔-库仑强度理论
1910等于材料的抗剪强度时该点就发生
破坏,并提出在破坏面上的剪应力τf是该面上法向应力σ的 函数 :