中考数学试题分类汇编(圆的基本性质)
圆的基本性质(解析版)2018年数学全国中考真题-2
![圆的基本性质(解析版)2018年数学全国中考真题-2](https://img.taocdn.com/s3/m/dbc0d9d9eff9aef8951e06d3.png)
2018年数学全国中考真题圆的基本性质(试题二)解析版一、选择题1. (2018广西省柳州市,8,3分)如图,A ,B ,C ,D 是⊙O 上的四个点,⊙A =60°,⊙B =24°,则⊙C 的度数为( )第8题图 A .84° B.60°C .36°D .24°【答案】D【解析】∵AD 所对的圆周角是∠B 和∠C ,∴∠C =∠B =24°.【知识点】圆周角定理2. (2018广西贵港,9,3分)如图,点A ,B ,C 均在⊙O 上,若∠A =66°,则∠OCB 的度数是 A .24° B .28° C .33° D .48°【答案】A【解析】∵∠A =66°,∴∠BOC =2∠A =132°,又OC =OB ,∴∠OCB =12(180°-∠BOC )=24°,故选A .3. (2018贵州铜仁,5,4)如图,已知圆心角∠AOB=110°,则圆周角∠ACB=( ) A.55° B.110° C.120° D.125°【答案】D ,【解析】设点E 是优弧AB 上的一点,连接EA 、EB ,根据同弧所对的圆周角是圆心角的一半可得∠E 的度数,再根据圆内接四边形的对角互补即可得到∠ACB 的度数.【解答过程】设点E 是优弧AB 上的一点,连接EA 、EB ,如图, ∵∠AOB=110°,∴∠AEB=12∠AOB=55°,∴∠ACB=180°-∠E=125°.4. (2018江苏苏州,7,3分)如图,AB 是半圆的直径,O 为圆心,C 是半圆上的点,D 是AC 上的点.若∠BOC=40°,则∠D 的度数为 A .100° B .110°C .120°D .130°【答案】B【解析】 本题解答时要利用等腰三角形的性质和圆的内接四边形的对角互补的性质进行计算.∵OC =OB ,∠BOC =40゜,∴∠B =70゜,∴∠D =180゜-70゜=110゜,故选B .5. (2018内蒙古通辽,7,3分)已知⊙O 的半径为10,圆心O 到弦AB 的距离为5,则弦AB 所对圆周角的度数是 A .30° B .60° C .30°或150° D .60°或120° 【答案】D【解析】如答图,连接OA 、OB ,∵OC ⊥AB ,∴OC =5,OA =OB =10,又OC =12OA ,∴cos ∠AOC =12,∴∠AOC =60°∴∠AOB =120°,∴弦AB 所对的圆周角的度数是60°或120°. 故选D .6.(湖北省咸宁市,7,3)如图,已知⊙O 的半径为5,弦AB ,CD 所对的圆心角分别为∠AOB ,∠COD ,若∠AOB 与∠COD 互补,弦CD =6,则弦AB 的长为( )A .6B .8 C. D.【答案】【解析】解:作OF ⊥AB 于F ,作直径BE ,连接AE ,如图, ∵∠AOB+∠COD=180°, 而∠AOE+∠AOB=180°, ∴∠AOE=∠COD , ∴AE DC ,∴AE=DC=6,∵OF ⊥AB , ∴BF=AF , 而OB=OE ,∴OF 为△ABE 的中位线, 由勾股定理可得AF=4,∴AB=8,故选择B .【知识点】圆周角定理;垂径定理;三角形中位线性质7. (2018湖北黄石,8,3分)如图,AB 是⊙O 的直径,点D 为⊙O 上一点,且∠ABD =30°,BO =4,则BD 的长为( )第8题图A .23πB .43πC .2πD .83π FE【答案】D 【解析】连接OD ,则∠AOD =2∠B =60°,∴∠BOD =120°.∴l BD =120180π×4=83π.8. (2018湖南邵阳,6,3分)如图(二)所示,四边形ABCD 为⊙O 的内接四边形,∠BCD =120°,则∠BOD 的大小是( )A .80°B .120°C .100°D .90°图(二)【答案】B ,【解析】根据“圆内接四边形的对角互补”可得∠BCD +∠A =180°,因为∠BCD =120°所以∠A =60°.又根据“在同圆中,同弧所对的圆心角等于圆周角的2倍”,所以∠BOD =2∠A =120°.故选B .9.(2018四川眉山,6,3分)如图所示,AB 是⊙O 的直径,P A 切⊙O 于点A ,线段PO 交⊙O 于点C ,连结BC ,若∠P =36°,则∠B 等于( )A .27°B .32°C .36°D .54°【答案】A ,【解析】由P A 是⊙O 的切线,可得⊙OAP =90°,∴∠AOP =54°,根据同弧所对的圆周角等于圆心角的一半,可得∠B =27°10. (2018辽宁锦州,7,3分)如图:在△ABC 中,∠ACB=90°,过B 、C 两点的⊙O 交AC 于点D ,交AB 于点E ,连接EO 并延长交⊙O 于点F ,连接BF 、CF ,若∠EDC=135°,CF=22,则AE 2+BE 2的值为A 、8B 、12C 、16D 、20D【答案】C,【解析】:如图,∠EDC=1350,∠ACB=90°,得△ACB是等腰直角三角形,ECF是等腰直角三角形,得△AEC与△BFC是全等三角形,AE=BF,△EBF是直角三角形,AE2+BE2=FE2=2FC2.二、填空题100,则弧AB所对的圆周角是°.1.(2018广东省,11,3)同圆中,已知弧AB所对的圆心角是【答案】50°【解析】同弧所对的圆周角是圆心角的一半,圆心角为100°,所以圆周角为50°.【知识点】圆周角、圆心角关系2. (2018海南省,18,4分)如图,在平面直角坐标系中,点A 的坐标是(20,0),点B 的坐标是(16,0),点C , D 在以OA 为直径的半圆M 上,且四边形OCDB 是平行四边形,则点C 的坐标为________.【答案】(2,6)【思路分析】过点M 作MN ⊥CD ,垂足为点N ,连接CM ,过点C 作CE ⊥OA ,垂足为点E ,由题意可知OB 及圆的半径长,OB =CD ,由垂径定理可求得MN 的长,CN =EM ,从而求出OE 的长,进而得到点C 的坐标.【解题过程】过点M 作MN ⊥CD ,垂足为点N ,连接CM ,过点C 作CE ⊥OA ,垂足为点E ,点A 的坐标是(20,0),所以CM =OM =10,点B 的坐标是(16,0),所以CD =OB =16,由垂径定理可知,821==CD CN ,在Rt⊙CMN 中,CM =10,CN =8,由勾股定理可知MN =6,所以CE =MN =6,OE =OM ﹣EM =10﹣8=2,所以点C 的坐标为(2,6).【知识点】垂径定理,勾股定理,平行四边形的性质3. (2018黑龙江省龙东地区,6,3分)如图,AB 为⊙O 的直径,弦CD ⊥AB 于点E ,已知CD =6,EB ==1,则⊙O 的半径为________.【答案】5【解析】连接OC ,∵AB 是⊙O 的直径,CD ⊥AB ,∴CE =12CD ,∵CD =6,∴CE =3.设⊙O 的半径为r ,则OC =r ,∵EB =1,∴OE =4,在Rt △OCE 中,由勾股定理得OE 2+CE 2=OC 2,∴(r -1)2+32=r 2,解得r =5,∴⊙O 的半径为5.D【知识点】垂径定理;勾股定理4.(2018黑龙江绥化,16,3分)如图,△ABC是半径为2的圆内接正三角形,则图中阴影部分的面积是.(结果用含π的式子表示)【答案】4π-.【解析】解:连接OA,OB,OC,过O点作OD⊥BC于点D.∵△ABC为等边三角形,∴∠OBD=30°.∵⊙O的半径为2,∴OB=2,∴OD=1,∴∴S△ABC=3S△OBC=3×12BC·OD=D∴S阴影=4π-故答案为:4π-【知识点】含30°角的直角三角形的性质,垂径定理,三角形面积计算,圆的面积计算5.(2018黑龙江绥化,20,3分)如图,一下水管道横截面为圆形,直径为100cm,下雨前水面宽为60cm,一场大雨过后,水面宽为80cm,则水位上升 cm【答案】10或70.【解析】解:作半径OD⊥AB于C,连接OB,由垂径定理得:BC=12AB=30,在Rt△OBC中,当水位上升到圆心以下时水面宽80 cm则OC′,水面上升的高度为:40-30=10cm;当水位上升到圆心以上时,水面上升的高度为:40+30=70cm,综上可得,水面上升的高度为10cm或70cm.故答案为10或70.【知识点】垂径定理,勾股定理6.7.(2018浙江嘉兴,14,4)如图,量角器的O度刻度线为AB.将一矩形直尺与量角器部分重叠,使直尺一边与量角器相切于点C,直尺另一边交量角器于点A、D,量得AD=10cm,点D在量角器上的读数为60°.则该直尺的宽度为cm.【解析】根据题意,抽象出数学图形根据题意可知:AD =10,∠AOD =120°,由OA =OD ,∴∠DAO =30°,设OE =x ,则OA =2x ,∵OE ⊥AD ,∴AE =DE =5,在Rt △AOE 中,x 2+52=(2x )2,解得:xCE =OE8. (2018贵州省毕节市,19,3分)如图,AB 是⊙O 的直径,C 、D 为半圆的三等分点,CE ⊥AB 于点E , ∠ACE 的度数为______.【答案】30°.【解题过程】∵AB 是⊙O 的直径,C 、D 为半圆的三等分点,∴∠A =∠BOD =13×180°=60°,又∵CE ⊥AB ,∴∠ACE =90°-60°=30°.【知识点】圆的性质;直角三角形的性质9.(2018吉林省,13, 2分)如图,A ,B ,C ,D 是⊙O 上的四个点,=⌒BC ,,若∠AOB=58°,则∠BDC=___ 度.BO【答案】29【解析】连接CO,根据同圆中,等弧所对圆心角相等,则∠COB=∠AOB=58°,∴∠BDC=29°【知识点】圆周角定理,圆心角、弧、弦之间的关系10.(2018江苏扬州,15,3)如图,已知⊙O的半径为2,△ABC内接于⊙O,∠ACB=135°,则AB= .2【答案】2【思路分析】根据圆内接四边形对边互补和同弧所对的圆心角是圆周角的2倍,可以求得∠AOB的度数,然后根据勾股定理即可求得AB的长.【解题过程】连接AD、AE、OA、OB,∵⊙O的半径为2,△ABC内接于⊙O,∠ACB=135°,∴∠ADB=45°,∴∠AOB=90°,∵OA=OB=2,∴2,故答案为2.【知识点】三角形的外接圆和外心,圆内接四边形对边互补,圆周角的性质11.(2018青海,9,2分)如图5,A、B、C是⊙O上的三点,若∠AOC=110°,则∠ABC= . 【答案】125°.【解析】如图所示:优弧AC上任取一点D,连接AD、CD,∵∠AOC=110°,∴∠ADC=∠AOC=×110°=55°,∵四边形ABCD内接与⊙O,∴∠ABC=180°﹣∠ADC=180°﹣55°=125°.【知识点】圆内接四边形的性质,圆周角的性质12. (2018江苏镇江,9,2分)如图,AD 为△ABC 的外接圆⊙O 的直径,若∠BAD =50°,则∠ACD =________°.【答案】40°.【解析】如答图所示,连接B C . ∵AB 是⊙O 的直径, ∴∠ACB =90°.∵∠BCD =∠BAD =50°,∴∠ACD =∠ACB -∠BCD =90°-50°=40°.13. (2018内蒙古通辽,17,3分)如图,在平面直角坐标系中,反比例函数y =kx (k >0)的图象与半径为5的⊙O 相交于M 、N 两点,△MON 的面积为3.5,若动点P 在x 轴上,则PM +PN 的最小值是 .【答案】52【解析】设M (a ,b ),则N (b ,a ),依题意,得:a 2+b 2=52……①(第9题答图)(第9题图)a 2-ab -12(a -b )2=3.5……②①、②联立解得a =572,b =432所以M 、N 的坐标分别为(572,432),(432,572) 作M 关于x 轴的对称点M ′,则M ′的坐标为(572,-432), 则M ′N 的距离即为PM +PN 的最小值.由于M ′N 2=(572-432)2+(-432-572)2=50, 所以M ′N =52,故应填:52.14. (2018山东莱芜,16,3分)如图,正方形ABCD 的边长为2a ,E 为BC 边的中点,⌒AE 、⌒DE 的圆心分别在边AB 、CD 上,这两段圆弧在正方形内交于点F ,则E 、F 间的距离为_______.【答案】32a【思路分析】先用勾股定理求出⌒DFE 的所在圆的半径,再由垂径定理求出EF 的长.【解题过程】解:如图,设⌒DFE 的圆心为G ,作GH ⊥EF 于H ,连接EG .设⌒DFE 所在圆的半径为x ,在Rt △CEG 中,EG 2=CG 2+CE 2,则x 2=(2a -x )2+a 2,解得x =54a ;由垂径定理,得EF =2EH =2⎝ ⎛⎭⎪⎫54a 2-a 2=32a .故答案为32a .【知识点】正方形的性质;勾股定理;垂径定理;15. (2018湖北随州12,3分)如图,点A ,B ,C 在⊙O 上,∠A =40度,∠C =20度,则∠B =______度.EEA D【答案】60.【解析】如图,连接OA ,根据“同圆的半径相等”可得OA =OC =OB ,所以∠C =∠OAC ,∠OAB =∠B ,故∠B =∠OAB =∠OAC +∠BAC =∠C +∠BAC =20°+40°=60°.16.(2018湖北随州16,3分)如图,在四边形ABCD 中,AB =AD =5,BC =CD 且BC >AB ,BD =8.给出下列判断:①AC 垂直平分BD ;②四边形ABCD 的面积S =AC ·BD ;③顺次连接四边形ABCD 的四边中点得到的四边形可能是正方形;④当A 、B 、C 、D 四点在同一个圆上时,该圆的半径为256; ⑤将△ABD 沿直线BD 对折,点A 落在点E 处,连接BE 并延长交CD 于点F ,当BF ⊥CD 时,点F 到直线AB 的距离为678125.其中正确的是______________.(写出所有正确判断的序号)【答案】①③④.【解析】根据“到线段两个端点的距离相等的点在这条线段的垂直平分线上”可知,A ,C 两点都在线段BD 的垂直平分线上,又“两点确定一条直线”,所以AC 垂直平分BD ,故①正确; 如图1,取AC ,BD 的交点为点O ,则由①知OB ⊥AC ,OD ⊥AC ,所以S 四边形ABCD =S △ABC +S △ADC =12AC ·OB +12AC ·OD =12AC ·(OB +OD )= 12AC ·BD ,故②错误; 如图2,取AB ,BC ,CD ,AD 四边的中点分别为P ,Q ,M ,N ,则由三角形的中位线定理得PQ ∥AC ∥MN ,PQ =MN =12AC ,PN ∥BD ∥QM ,PN =QM =12BD ,于是知四边形PQMN 及阴影四边形都是平行四边形.又由①知AC ⊥BC ,所以可证∠AOB =∠QPN =90°,故四边形PQMN 为矩形.若AC =BD ,则有PQ =PN ,四边O ABCCBAO ABDC形PQMN 是正方形,所以顺次连接四边形ABCD 的四边中点得到的四边形可能是正方形,故③正确;当A 、B 、C 、D 四点在同一个圆上时,四边形ABCD 是这个圆的内接四边形,则∠ABC +∠ADC =180°.根据“SSS ”可证△ABC ≌△ADC ,所以∠ABC =∠ADC =90°,则AC 是这个圆的直径.由①知BO =OD =12BD =4,在Rt △AOB 中,根据勾股定理,求得AO=3.然后,证明△AOB ∽△ABC ,得到AB 2=AO ·AC ,所以AC =253,该圆的半径为256,故④正确; 如图1,过点F 作FG ⊥AB 于点G ,过点E 作EH ⊥AB 于点H ,由折叠知,AE =2AO =6,BE =BA =5.由于BF ⊥CD ,AE ⊥BD ,可证得△BOE ∽△BFD ,所以BO BF =BE BD ,即4BF =58,BF =325.因为S △ABE =12AB ·EH=12AE ·BO ,所以EH =645⨯=245.又可证△BEH ∽△BFG ,所以EH FG =BE BF ,即245FG =5325,FG =768125,故⑤错误.17. (2018云南曲靖,10,3分)如图,四边形ABCD 内接于⊙O ,E 为BC 延长线上一点,若∠A =n °,则∠DCE =_________【答案】n °【解析】圆内接四边形的对角互补,所以∠BCD =180°-∠A ,而三点BCD 在一条直线上,则∠DCE =180°-∠BCD ,所以∠DCE =∠A =n °.18. (2018年浙江省义乌市,13,5)如图,公园内有一个半径为20米的圆形草坪,A ,B 是圆上的点,O 为圆心,∠AOB =120°,从A 到B 只有路AB ,一部分市民为走“捷径”,踩坏了花草,走出了一条小路AB .通过计算可知,这些市民其实仅仅少B 走了_________步(假设1步为0.5米,结果保留整数).(参考数据:图1GFEH OABDC 图21.732,π取3.142)【答案】15【解析】作OC⊥AB于C,如图,则AC=BC,∵OA=OB,∴∠A=∠B=12(180°﹣∠AOB)=12(180°﹣120°)=30°,在Rt△AOC中,OC=12OA=10,,∴69(步);而AB的长=12020180π⨯≈84(步),AB的长与AB的长多15步.所以这些市民其实仅仅少B走了15步.故答案为15.【知识点】垂径定理;勾股定理19.(2018浙江舟山,14,4)如图,量角器的O度刻度线为AB.将一矩形直尺与量角器部分重叠,使直尺一边与量角器相切于点C,直尺另一边交量角器于点A、D,量得AD=10cm,点D在量角器上的读数为60°.则该直尺的宽度为cm.BC【解析】根据题意,抽象出数学图形根据题意可知:AD =10,∠AOD =120°,由OA =OD ,∴∠DAO =30°,设OE =x ,则OA =2x ,∵OE ⊥AD ,∴AE =DE =5,在Rt △AOE 中,x 2+52=(2x )2,解得:x ,∴CE =OE.三、解答题1. (2018年江苏省南京市,26,8分)如图,在正方形ABCD 中,E 是AB 上一点,连接DE .过点A 作AF DE ⊥,垂足为F .⊙O 经过点C 、D 、F ,与AD 相交于点G .(1)求证AFG DFC ∽△△;(2)若正方形ABCD 的边长为4,1AE =,求O 的半径.【思路分析】(1)欲证明△AFG ∽△DFC ,只要证明∠FAG=∠FDC ,∠AGF=∠FCD ; (2)首先证明CG 是直径,求出CG 即可解决问题;【解题过程】(1)证明:在正方形ABCD 中,90ADC ∠=. ∴90CDF ADF ∠+∠=. ∵AF DE ⊥. ∴90AFD ∠=.∴90DAF ADF ∠+∠=. ∴DAF CDF ∠=∠.∵四边形GFCD 是⊙O 的内接四边形, ∴180FCD DGF ∠+∠=. 又180FGA DGF ∠+∠=,O∴FGA FCD ∠=∠. ∴AFG DFC ∽△△. (2)解:如图,连接CG .∵90EAD AFD ∠=∠=,EDA ADF ∠=∠, ∴EDA ADF ∽△△. ∴EA DA AF DF =,即EA AFDA DF=. ∵AFG DFC ∽△△, ∴AG AFDC DF =. ∴AG EADC DA=. 在正方形ABCD 中,DA DC =,∴1AG EA ==,413DG DA AG =-=-=.∴5CG ===.∵90CDG ∠=, ∴CG 是⊙O 的直径. ∴⊙O 的半径为52.【知识点】相似三角形的判定和性质 正方形的性质 圆周角定理及推论2. (2018江苏徐州,28,10分) 如图,将等腰直角三角形ABC 对折,折痕为CD .展平后,再将点B 折叠再边AC 上,(不与A 、C 重合)折痕为EF ,点B 在AC 上的对应点为M ,设C D 与EM 交于点P ,连接PF .已知BC =4.(1)若点M 为AC 的中点,求CF 的长;(2)随着点M 在边AC 上取不同的位置.①△PFM 的形状是否发生变化?请说明理由; ②求△PFM 的周长的取值范围.第28题图【解答过程】 解:(1)根据题意,设BF =FM =x ,则CF =4-x ,∵M 为AC 中点,AC =BC =4,∴ CM =12AC =2,∵∠ACB =90°,∴CF 2+CM 2=FM 2,∴(4-x )2+22=x 2,解得x =52,∴CF =4-52=32; (2)①△PFM 的形状不变,始终是以PM 、PF 为腰的等腰直角三角形,理由如下:∵等腰直角三角形ABC 中,CD ⊥AB ,∴AD =DB ,CD =12AB =DB ,∴∠B =∠DCB =45°,由折叠可得∠PMF =∠B =45°,∴∠PMF =∠DCB ,∴P 、M 、F 、C 四点共圆,∴∠FPM +∠FCM =180°,∴∠FPM =180°-∠FCM =90°,∠PFM =90°-∠PMF =45°=∠PMF ,∴△PFM 的形状不变,始终是以PM 、PF 为腰的等腰直角三角形; ②当M 与C 重合时,F 为BC 中点,CF =12BC =2,PM =PF =cos 45CF=︒此时△PFM 的周长为2+当M 与A 重合时,F 于C 重合,E 与D 重合,FM =AC =4,PM =PF =ACcos45°=,此时△PFM 的周长为4+B 不与A 、C 重合,所以△PFM 的周长的取值范围是大于2+且小于4+.3. (2018辽宁葫芦岛,25,12分)在△ABC 中,AB =BC ,点O 是AC 的中点,点P 是AC 上的一个动点(点P 不与点A ,O ,C 重合).过点A ,点C 作直线BP 的垂线,垂足分别为点E 和点F ,连接OE ,OF . (1)如图1,请直接写出线段OE 与OF 的数量关系;(2)如图2,当∠ABC =90°时,请判断线段OE 与OF 之间的数量关系和位置关系,并说明理由; (3)若|CF -AE |=2,EF =POF 为等腰三角形时,请直接写出线段OP 的长.【思路分析】(1)连接OB ,则OB ⊥AC ,进而得A 、E 、O 、B 四点共圆,B 、F 、O 、C 四点共圆.由同弧所对的圆周角相等得∠OEB =∠OAB ,∠OFC =∠OBC .又因为∠OFE =90°-∠OFC ,∠ACB =90°-∠OBC ,所以∠OFE =∠OCB ,又因为∠OAB =∠OCB ,所以∠OE B =∠OFE ,所以OE =OF ;(2)类比(1)可得OE =OF ;由∠ABC =90°,AB =BC ,可得∠OAB =∠OCB =∠OEB =∠OFE =45°,所以OE ⊥OF .(3)取EF的中点为M,则EM=FMAM并延长交CF于D,连接OM.由△AME≌△DMF,|CF-AE|=2,得OM=1.进而得OF=2.由sin∠OFM=12,得∠OFM=30°.因为点P在EF上,所以OP<OE=OF;因为AE⊥EF,∠APE、∠OPF均为锐角,故PF≠PO.当PF=OF=2时,PM=2理得OP=【解答过程】(1)OE=OF;(2)OE=OF,OE⊥OF.理由:连接OB,则OB⊥AC.∵∠AEB=∠AOB=90°,∴进而得A、E、O、B四点共圆,∴∠OEB=∠OAB.∵∠BFC=∠BOC=90°,∴B、F、O、C四点共圆.∴∠OFC=∠OBC.又∵∠OFE=90°-∠OFC,∠ACB=90°-∠OBC,∴∠OFE=∠OCB,又∵∠ABC=90°,AB=BC,∴∠OAB=∠OCB=45°.∴∠OE B=∠OFE=45°.∴OE=OF,OE⊥OF.(3)OP=223.4.(2018上海,25,14分)已知圆O的直径AB=2,弦AC与弦BD,交于点E,且OD⊥AC,垂足为点F.(1)图11,如果AC=BD,求弦AC的长;(2)如图12,如果E为BD的中点,求∠ABD的余切值(3)联结BC、CD、DA,如果BC是圆O的内接正n边形的一边,CD是的内接正(n+4)边形的一边,求△ACD的面积.【思路分析】(1)连结CB.可以证明弧AD、弧DC、弧CB相等,从而得到∠ABC=60°.在△ABC中求出AC长.(2)运用中位线及全等转化求出CB长,再把直角三角形OBE中的两个直角边求出,即可∠ABD的余切值.(3)根据“BC是圆O的内接正n边形的一边,CD是的内接正(n+4)边形的一边”求出n值,从而求出∠AOD=45°,可得各线段长,再求△ACD的面积.【解答过程】(1)连结CB.∵AC=BD,∴弧AC=弧BD,∵OD⊥AC,∴弧AD=弧DC=12弧AC,∴弧AD=弧DC=弧CB,∴∠ABC=60°在Rt△ABC中, ∠ABC=60°,AB=2,∴AC=3(2)∵OD⊥AC,∴∠AFO=90°,AF=FC∵AO=OB,∴FO∥CB,FO=12 CB∵E为BD的中点,∴DE=EB∵FO∥CB,∴△DEF≌△BEC,∴DF=CB=2FO∴FO=13,CB=23在Rt △ABC 中,AB =2,CB =23,∴AC ,∴EC ∴EB ,∵E 为BD 的中点,OD =OB ,∴∠OEB =90°,∴EO cot ∠ABD =EB EO . (3)∵BC 是圆O 的内接正n 边形的一边,∴∠COB =360n° ∵CD 是的内接正(n +4)边形的一边,∴∠COD =3604n +° ∵弧AD =弧DC ,∴∠AOD =3604n +° ∵∠COB +∠COD +∠AOD =180°,∴360n +3604n ++3604n +=180,解得n =4 ∴∠AOD =∠COD =3604n +°=45°∵OD =OA =OC =1,∴AC ,OF ,DF =1,∴S △ACD =12×AC ×DF =2-12.5. (2018黑龙江哈尔滨,26,10)已知:⊙O 是正方形ABCD 的外接圆,点E 在弧AB 上,连接BE 、DE ,点F 在弧AD 上,连接BF 、DF 、BF 与DE 、DA 分别交于点G 、点H ,且DA 平分∠EDF .(1)如图1,求证:∠CBE =∠DHG ;(2)如图2,在线段AH 上取一点N (点N 不与点A 、点H 重合),连接BN 交DE 于点L ,过点H 作HK //BN 交DE 于点K ,过点E 作EP ⊥BN ,垂足为点P ,当BP =HF 时,求证:BE =HK ;(3)如图3,在(2)的条件下,当3HF =2DF 时,延长EP 交⊙O 于点R ,连接BR ,若△BER 的面积与△DHK 的面积的差为47,求线段BR 的长.图1 图2 图3【思路分析】(1)问利用同弧和等弧所对圆周角等与三角形外角性质易证的结论.(2)过H 作HM ⊥KD ,易证得HM =BP ,加上直角条件,可导出第三个全等条件,得到△BEP ≌△HKM ,所以BE =HK .(3)连接BD 后根据条件3HF =2DF 可得到tan ∠ABH =tan ∠ADE =ABAH =32,过点H 作HS ⊥BD 后再设边计算就能求出tan ∠BDE =tan ∠DBF =BSHS =51,在ER 上截取ET =DK ,连接BT 易证得△BET ≌△HKD ,这时21BP ·ER 21-HM ·DK =21BP (ER -DK )=21BP (ER -ET )=47,易求得BP =1,PR =5,BR =22RP BP +=2251+=26【解答过程】(1)证明:∵四边形ABCD 是正方形∴∠A =∠ABC =90°∵∠F =∠A =90°∴∠F =∠ABC∵DA 平分∠EDF ∴∠ADE =∠ADF ∵∠ABE =∠ADE ∴∠ABE =∠ADF又∵∠CBE =∠ABC +∠ABE ,∠DHG =∠F +∠ADF ∴∠CBE =∠DHG(2)证明:过H 作HM ⊥KD 垂足为点M ∵∠F =90°∴HF ⊥FD 又∵DA 平分∠EDF ∴HM =FH∵FH =BP ∴HM =BP ∵KH ∥BN ∴∠DKH =∠DLN ∵∠ELP =∠DLN ∴∠DKH =∠ELP∵∠BED =∠A =90°∴∠BEP +∠LEP =90°∵EP ⊥BN ∴∠BPE =∠EPL =90°∴∠LEP +∠ELP =90°∴∠BEP =∠ELP =∠DKH ∵HM ⊥KD ∴∠KMH =∠BPE =90°∴△BEP ≌△HKM ∴BE =HK(3)解:连接BD ∵3HF =2DF ,BP =FH ∴设HF =2a ,DF =3a ∴BP =FH =2a由(2)得HM =BP ,∠HMD =90°∵∠F =∠A =90°∴tan ∠HDM =tan ∠FDH ∴DM HM =DF FH =32 ∴DM =3a ∴四边形ABCD 是正方形∴AB =AD ∴∠ABD =∠ADB =45°∵∠ABF =∠ADF =∠ADE ,∠DBF =45°-∠ABF ,∠BDE =45°-∠ADE ∴∠DBF =∠BDE ∵∠BED =∠F ,BD =BD ∴△BED ≌△DFB ∴BE =FD =3a 过点H 作HS ⊥BD 垂足为点S ∵tan ∠ABH =tan ∠ADE =ABAH =32 ∴设AB =32m ,AH =22m ∴BD =2AB =6m DH =AD -AH =2m sin ∠ADB =DHHS =22 ∴HS =m ∴ DS =22HS DH -=m ∴BS =BD -DS =5m ∴tan ∠BDE =tan ∠DBF =BS HS =51 ∵∠BDE =∠BRE ∵tan ∠BRE =PR BP =51∵BP =FH =2a ∴RP =10a 在ER 上截取ET =DK ,连接BT 由(2)得∠BEP =∠HKD ∴△BET ≌△HKD ∴∠BTE =∠KDH ∴tan ∠BTE =tan ∠KDH ∴PT BP =32 ∴PT =3a ∴TR =RP -PT =7a ∵S △BER -S △KDH =47∴21BP ·ER 21-HM ·DK =47 ∴21BP (ER -DK )=21BP (ER -ET )=47∴21×2a ×7a =47 ∴a 2=41,a 1=21,a 2=21-(舍去)∴BP =1,PR =5 ∴BR =22RP BP +=2251+=26。
中考专题复习-圆的基本性质
![中考专题复习-圆的基本性质](https://img.taocdn.com/s3/m/c9096cbda45177232f60a2f2.png)
圆的基本性质|夯实基础|1.[2019·凉山州]下列命题:①直线外一点到这条直线的垂线段,叫做点到直线的距离;②两点之间线段最短;③相等的圆心角所对的弧相等;④平分弦的直径垂直于弦.其中,真命题的个数为 ()A.1B.2C.3D.4图K26-1 图K26-2 图K26-3 图K27-22.[2019·宜昌]如图K26-1,点A,B,C均在☉O上,当∠OBC=40°时,∠A的度数是()A.50°B.55°C.60°D.65°3.[2018·威海]如图K26-2,☉O的半径为5,AB为弦,点C为AB⏜的中点,若∠ABC=30°,则弦AB的长为()A.12B.5 C.5√32D.5√34.[2019·天水]如图K26-3,四边形ABCD是菱形,☉O经过点A,C,D,与BC相交于点E,连结AC,AE.若∠D=80°,则∠EAC的度数为()A.20°B.25°C.30°D.35°5.[2019·益阳]如图K27-2,P A,PB为圆O的切线,切点分别为A,B,PO交AB于点C,PO的延长线交圆O于点D,下列结论不一定成立的是()A.P A=PBB.∠BPD=∠APDC.AB⊥PDD.AB平分PD6.[2018·成都]如图K28-2,在▱ABCD中,∠B=60°,☉C的半径为3,则图中阴影部分的面积是()A.πB.2πC.3πD.6π7.[2018·杭州]如图K26-5,AB是☉O的直径,点C是半径OA的中点,过点C作DE⊥AB,交☉O于D,E两点,过点D作直径DF,连结AF,则∠DF A=.图K28-2 图K26-5 图K26-6 图K27-4 图K27-5⏜所对的圆心角∠8.[2019·海南]如图K27-4,☉O与正五边形ABCDE的边AB,DE分别相切于点B,D,则劣弧BDBOD的大小为度.9.[2019·大兴一模]将一块含30°角的三角板如图K28-6放置,三角板的一个顶点C落在以AB为直径的半圆上,⏜的长为(结果保留π).斜边恰好经过点B,一条直角边与半圆交于点D,若AB=2,则BD图K28-610.[2019·台州]如图K26-6,AC是圆内接四边形ABCD的一条对角线,点D关于AC的对称点E在边BC上,连结AE,若∠ABC=64°,则∠BAE的度数为.11.[2019·黄石]如图K27-5,在Rt△ABC中,∠A=90°,CD平分∠ACB交AB于点D,O是BC上一点,经过C,D两点的☉O分别交AC,BC于点E,F,AD=√3,∠ADC=60°,则劣弧CD的长为.12.[2018·绍兴]等腰三角形ABC中,顶角A为40°,点P在以A为圆心,BC长为半径的圆上,且BP=BA,则∠PBC的度数为.13.如图K26-7,在△ABC中,AB=AC,以AC为直径的☉O交AB于点D,交BC于点E.(1)求证:BE=CE;(2)若BD=2,BE=3,求AC的长.图K26-714.[2019·常德]如图K27-8,☉O与△ABC的AC边相切于点C,与AB,BC边分别交于点D,E,DE∥OA,CE是☉O 的直径.(1)求证:AB是☉O的切线;(2)若BD=4,CE=6,求AC的长.图K27-815.[2019·广东]在如图K28-10所示的网格中,每个小正方形的边长为1,每个小正方形的顶点叫格点,△ABC的三⏜与BC相切于点D,分别交AB,AC于点E,F.个顶点均在格点上,以点A为圆心的EF(1)求△ABC三边的长;⏜所围成的阴影部分的面积.(2)求图中由线段EB,BC,CF及FE16.[2019·安徽]筒车是我国古代发明的一种水利灌溉工具.如图K26-8,明朝科学家徐光启在《农政全书》中用图画描绘了筒车的工作原理.如图②,筒车盛水桶的运行轨道是以轴心O为圆心的圆.已知圆心在水面上方,且圆被水面截得的弦AB的长为6米,∠OAB=41.3°.若点C为运行轨道的最高点(C,O的连线垂直于AB).求点C到弦AB所在直线的距离.(参考数据:sin41.3°≈0.66,cos41.3°≈0.75,tan41.3°≈0.88)图K26-8一、单选题1.已知一个三角形的三边长分别为5、7、8,则其内切圆的半径为( )A B .32C D .2.如图,在⊙O 中,AB 是直径,CD 是弦,AB ⊥CD ,垂足为E ,连接CO ,AD ,∠BAD=20°,则下列说法中正确的是( ) A .AD=2OBB .CE=EOC .∠OCE=40°D .∠BOC=2∠BAD第2题 第3题 第4题 第5题3.如图,AB 是⊙O 的弦,半径OC ⊥AB ,D 为圆周上一点,若BC 的度数为50°,则∠ADC 的度数为 ( ) A .20°B .25°C .30°D .50°4.如图,正五边形ABCDE 内接于⊙O ,P 为DE 上的一点(点P 不与点D 重合),则CPD ∠的度数为( ) A .30B .36︒C .60︒D .72︒5.如图,扇形AOB 中,OA=2,C 为弧AB 上的一点,连接AC ,BC ,如果四边形AOBC 为菱形,则图中阴影部分的面积为( )A .23π- B .23π-C .43πD .43π-6.如图,⊙A 过点O (0,0),C 0),D (0,1),点B 是x 轴下方⊙A 上的一点,连接BO ,BD ,则∠OBD 的度数是( )A .15°B .30°C .45°D .60°第6题 第7题 第8题 第10题7.如图,四边形ABCD 是圆内接四边形,E 是BC 延长线上一点,若 105BAD ∠=︒,则DCE ∠的大小是( )A .25B .65C .75D .1058.如图,以等边ABC ∆的一边AB 为直径的半圆O 交AC 于点D ,交BC 于点E ,若4AB =,则阴影部分的面积是( )A .B .CD .29.圆锥的母线长是3,底面半径是1,则这个圆锥侧面展开图圆心角的度数为( ) A .90°B .120°C .150°D .180°10.如图,ABC 的边AC 与O 相交于,C D 两点,且经过圆心O ,边AB 与O 相切,切点为B .若30A ∠︒=,则C ∠的大小是( ) A .60︒B .45︒C .30D .20︒11.如图,P 为⊙O 外一点,PA 、PB 分别切⊙O 于点A 、B ,CD 切⊙O 于点E ,分别交PA 、PB 于点C 、D ,若PA =6,则△PCD 的周长为( ) A .8B .6C .12D .10第11题 第12题12.如图,等腰直角三角板ABC 的斜边AB 与量角器的直径重合,点D 是量角器上60°刻度线的外端点,连接CD 交AB 于点E ,则∠CEB 的度数为( ) A .60° B .65°C .70°D .75°二、填空题13.△ABC 内接于圆O ,且AB =AC ,圆O 的半径等于6cm ,O 点到BC 距离等于2cm ,则AB 长为_____cm . 14.如图,三个小正方形的边长都为1,则图中阴影部分面积的和是 (结果保留π).15.如图是一个圆环形黄花梨木摆件的残片,为求其外圆半径,小林在外圆上任取一点A ,然后过点A 作AB 与残片的内圆相切于点D ,作CD ⊥AB 交外圆于点C ,测得CD =15cm ,AB =60cm ,则这个摆件的外圆半径是_____cm .16..如图,圆锥侧面展开得到扇形,此扇形半径 CA=6,圆心角∠ACB=120°, 则此圆锥高 OC 的长度是_______.17.如图,已知半圆的直径4㎝,点C 、D 是这个半圆的三等分点,则弦AC 、AD 和弧CD 围成的阴影部分面积为 .18.如图,⊙O 中OA ⊥BC ,∠CDA=25°,则∠AOB 的度数为________.19.在平面直角坐标系中有A ,B ,C 三点,()1,3A ,()3,3B ,()5,1C .现在要画一个圆同时经过这三点,则圆心坐标为_______.20.如图,Rt △ABC 的内切圆与斜边AB 相切于点D ,AD =3,BD =4,则△ABC 的面积为_____. 三、解答题21.如图,AB 是O 的直径,AC 是弦,D 是弧BC 的中点,过点D 作EF 垂直于直线,AC 垂足为F ,交AB 的延长线于点E .()1求证:EF 是O 的切线;()2若6,8AF EF==,求O的半径.22.如图,在边长为1的小正方形组成的网格中,△ABC的三个顶点都在格点上.(1)在所给的网格中画出与△ABC相似(相似比不为1)的△A1B1C1(画出一个即可);(2)在所给的网格中,将△ABC绕点C顺时针旋转90°得到△A2B2C,画出△A2B2C,并直接写出在此旋转过程中点A经过的路径长.23.如图,CD是⊙O的直径,点B在⊙O上,连接BC、BD,直线AB与CD的延长线相交于点A,AB2=AD•AC,OE∥BD交直线AB于点E,OE与BC相交于点F.(1)求证:直线AE是⊙O的切线;(2)若⊙O的半径为3,cos A=45,求OF的长.24.如图,在△ABC中,以AB为直径的⊙O交AC于点D,过点D作DE⊥BC于点E,且∠BDE=∠A.(1)判断DE与⊙O的位置关系,并说明理由;(2)若AC=16,tanA=34,求⊙O的半径.25.如图,△AB.C内接于⊙0,点D在半径OB的延长线上,∠BCD=∠A=30°.(1)判断直线CD与⊙0的位置关系,并说明理由(2)若⊙0的半径为1,求阴影部分面积.26.如图所示,AB是⊙O的直径,BD是⊙O的弦,延长BD到点C,使DC=BD,连接AC,过点D作DE⊥AC于E.(1)求证:AB=AC;(2)求证:DE为⊙O的切线.。
中考数学复习之圆的基本性质,考点过关与基础练习题
![中考数学复习之圆的基本性质,考点过关与基础练习题](https://img.taocdn.com/s3/m/4d6aa9d7aff8941ea76e58fafab069dc502247cb.png)
32.圆的有关性质➢ 知识过关1. 圆有相关概念(1)圆:在一个平面内,线段OA 绕它固定的一个端点O 旋转_____,另一个端点A 所于形成的图形叫做圆,圆心为O ,半径为r 的圆可以看成是所有到定点O 的距离等于____r 的点的集合.(2)弧、弦、等圆、等弧①弧:圆上任意_____的部分叫做弧,大于半圆的弧叫做优弧,小于半圆的弧叫做劣弧; ①弦:连接圆上任意两点的____叫做弦,经过_____的弦叫做直径. ①等圆:能够_____的两个圆叫做等圆;①等弧:在_____或等圆中,能够互相重合的弧叫做等弧. 2. 垂径定理及其推论 (1) 对称性:①圆是中心对称图形,其对称中心是圆心 ①圆是轴对称图形,其对称轴是_______. (2) 垂径定理及其推论①垂径定理:垂直于弦的直径______这条弦,并且平分这条弦所对的______; ①推论:平分弦(非直径)的直径______于弦,并且平分这条弦所对的两条弧.➢ 考点分类考点1 圆心角、弧、弦之间的关系例1如图所示,圆O 通过五边形OABCD 的四个顶点,若D AB=150°,A=65°,D=60°,则的度数为( )A.25°B.40°C.50°D.55°考点2垂径定理及简单应用例2如图所示,水平放置的圆柱形排水管道的截面直径是1m,其中水面的宽AB 为0.8m,则排水管内水的深度为_______m.考点3垂径定理与其他知识的综合运用例3如图,线段AB 是⊙O 的直径,弦CD ⊥AB 于点H ,点M 是弧CBD 上任意一点,AH =2,CH =4.(1)求⊙O 的半径r 的长度; (2)求sin ∠CMD ;(3)直线BM 交直线CD 于点E ,直线MH 交⊙O 于点N ,连接BN 交CE 于点F ,求HE •HF 的值.➢ 真题演练1.如图,AB 是⊙O 的弦,半径OC ⊥AB 于点D ,连接AO 并延长,交⊙O 于点E ,连接BE ,DE .若DE =3DO ,AB =4√5,则△ODE 的面积为( )A .4B .3√2C .2√5D .2√62.如图,⊙O 的半径为5,弦AB 的长为8,M 是弦AB 上的一个动点,则线段OM 的长的最小值为( )A .3B .4C .6D .83.在正方形网格中,以格点O 为圆心画圆,使该圆经过格点A ,B ,并在点A ,B 的右侧圆弧上取一点C ,连接AC ,BC ,则sin C 的值为( )A .√32B .12C .1D .√224.如图,半径为5的⊙A 与y 轴交于点B (0,2)、C (0,10),则点A 的横坐标为( )A .﹣3B .3C .4D .65.如图,在⊙O 中,直径AB =10,CD ⊥AB 于点E ,CD =8.点F 是弧BC 上动点,且与点B 、C 不重合,P 是直径AB 上的动点,设m =PC +PF ,则m 的取值范围是( )A .8<m ≤4√5B .4√5<m ≤10C .8<m ≤10D .6<m <106.在⊙O 中内接四边形ABCD ,其中A ,C 为定点,AC =8,B 在⊙O 上运动,BD ⊥AC ,过O 作AD 的垂线,垂足为E ,若⊙O 的直径为10,则OE 的最大值接近于( )A .52B .5√23C .4D .57.如图,点A ,B ,C 都在⊙O 上,B 是AC ̂的中点,∠OBC =50°,则∠AOB 等于 °.8.如图,将半径为rcm 的⊙O 折叠,弧AB 恰好经过与AB 垂直的半径OC 的中点D ,已知弦AB 的长为4√15cm ,则r = cm .9.如图,AB是⊙O的直径,∠BOD=120°,C为弧BD的中点,AC交OD于点E,DE =1,则AE的长为.10.如图,AB为⊙O的直径,AE为⊙O的弦,C为优弧ABÊ的中点,CD⊥AB,垂足为D.若AE=8,DB=2,则⊙O的半径为.11.如图,⊙O中,直径CD⊥弦AB于E,AM⊥BC于M,交CD于N,连接AD.(1)求证:AD=AN;(2)若AB=8,ON=1,求⊙O的半径.➢课后练习1.如图,在⊙O中,直径CD垂直弦AB于点E,且OE=DE.点P为BĈ上一点(点P不与点B,C重合),连接AP,BP,CP,AC,BC.过点C作CF⊥BP于点F.给出下列结论:①△ABC是等边三角形;②在点P从B→C的运动过程中,CFAP−BP的值始终等于√32.则下列说法正确的是()A.①,②都对B.①对,②错C.①错,②对D.①,②都错2.如图,在半径为5的⊙O 内有两条互相垂直的弦AB 和CD ,AB =8,CD =8,垂足为E .则tan ∠OEA 的值是( )A .1B .√63C .√156D .2√1593.如图,四边形ABCD 内接于半径为5的⊙O ,AB =BC =BE ,AB ⊥BE ,则AD 的长为( )A .5B .5√2C .5√3D .104.如图,点A ,B ,C 在⊙O 上,∠AOC =90°,AB =√2,BC =1,则⊙O 的半径为( )A .√3B .√52C .√102D .√2+125.下列说法正确的是( )A .同弧或等弧所对的圆心角相等B .所对圆心角相等的弧是等弧C .弧长相等的弧一定是等弧D .平分弦的直径必垂直于弦6.如图,A ,B 为圆O 上的点,且D 为弧AB 的中点,∠ACB =120°,DE ⊥BC 于E ,若AC =√3DE ,则BE CE的值为( )A .3B .2C .√33+1D .√3+17.如图所示,在⊙O 中,BC 是弦,AD 过圆心O ,AD ⊥BC ,E 是⊙O 上一点,F 是AE 延长线上一点,EF =AE .若AD =9,BC =6,设线段CF 长度的最小值和最大值分别为m 、n ,则mn =( )A .100B .90C .80D .708.如图,A ,B 是⊙O 上的点,∠AOB =120°,C 是AB̂的中点,若⊙O 的半径为5,则四边形ACBO 的面积为( )A .25B .25√3C .25√34D .25√329.如图,AB 是⊙O 的直径,点C 是半圆上的一个三等分点,点D 是AĈ的中点,点P 是直径AB 上一点,若⊙O 的半径为2,则PC +PD 的最小值是 .10.如图,一下水管道横截面为圆形,直径为260cm ,下雨前水面宽为100cm ,一场大雨过后,水面宽为240cm ,则水位上升 cm .11.如图,在⊙O 中,点C 在弦AB 上,连接OB ,OC .若OB =5,AC =1,BC =5,则线段OC 的长为 .12.如图,以G(0,3)为圆心,半径为6的圆与x轴交于A,B两点,与y轴交于C,D 两点,点E为⊙G上一动点,CF⊥AE于F,点E在⊙G的运动过程中,线段FG的长度的最大值为.13.如图,⊙O的半径OD⊥弦AB于点C,连接AO并延长交⊙O于点E,连接EC.若AB =8,OC=3,则EC的长为.14.如图,射线PE平分∠CPD,O为射线PE上一点,以O为圆心作⊙O,与PD边交于点A、点B,连接OA,且OA∥PC.(1)求证:AP=AO.(2)若⊙O的半径为10,tan∠OPB=12,求弦AB的长.15.如图,在⊙O中,直径AB与弦CD相交于点E,OF⊥CD,垂足为F.设已知BE=5,AE=12OE,OF=1,求CD的长.➢冲击A+在Rt①ABC中,①BAC=90°,(1)如图1,D、E分别在BC、BA的延长线上,①ADE=2①CAD,求证:DA=DE;(2)如图2,在(1)的条件下,点F在BD上,①AFB=①EFD,求证:①FAD=①FED(3)如图3,若AB=AC,过点C作CN||AB,连接AN,在AN上取一点G,使GA=AC,连接BG交AC于点H,连接CG,试探究CN、CH、GN之间满足的数量关系式,并给出证明;。
2024年中考数学一轮复习考点精析与真题精练—圆的基本性质
![2024年中考数学一轮复习考点精析与真题精练—圆的基本性质](https://img.taocdn.com/s3/m/5d57ff0ab94ae45c3b3567ec102de2bd9605def7.png)
2024年中考数学一轮复习考点精析与真题精练—圆的基本性质→➊考点精析←一、圆的有关概念1.与圆有关的概念和性质1)圆:平面上到定点的距离等于定长的所有点组成的图形.2)弦与直径:连接圆上任意两点的线段叫做弦,过圆心的弦叫做直径,直径是圆内最长的弦.3)弧:圆上任意两点间的部分叫做弧,小于半圆的弧叫做劣弧,大于半圆的弧叫做优弧.4)圆心角:顶点在圆心的角叫做圆心角.5)圆周角:顶点在圆上,并且两边都与圆还有一个交点的角叫做圆周角.6)弦心距:圆心到弦的距离.2.注意1)经过圆心的直线是该圆的对称轴,故圆的对称轴有无数条;2)3点确定一个圆,经过1点或2点的圆有无数个.3)任意三角形的三个顶点确定一个圆,即该三角形的外接圆.二、垂径定理及其推论1.垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.关于垂径定理的计算常与勾股定理相结合,解题时往往需要添加辅助线,一般过圆心作弦的垂线,构造直角三角形.2.推论1)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧;2)弦的垂直平分线经过圆心,并且平分弦所对的两条弧.三、圆心角、弧、弦的关系1.定理:在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等.圆心角、弧和弦之间的等量关系必须在同圆等式中才成立.2.推论:在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等.四、圆周角定理及其推论1.定理:一条弧所对的圆周角等于它所对的圆心角的一半.2.推论:1)在同圆或等圆中,同弧或等弧所对的圆周角相等.2)直径所对的圆周角是直角.圆内接四边形的对角互补.在圆中求角度时,通常需要通过一些圆的性质进行转化.比如圆心角与圆周角间的转化;同弧或等弧的圆周角间的转化;连直径,得到直角三角形,通过两锐角互余进行转化等.五、与圆有关的位置关系1.点与圆的位置关系设点到圆心的距离为d.(1)d<r⇔点在⊙O内;(2)d=r⇔点在⊙O上;(3)d>r⇔点在⊙O外.判断点与圆之间的位置关系,将该点的圆心距与半径作比较即可.2.直线和圆的位置关系位置关系相离相切相交图形公共点个数0个1个2个数量关系d>r d=r d<r由于圆是轴对称和中心对称图形,所以关于圆的位置或计算题中常常出现分类讨论多解的情况.六、切线的性质与判定1.切线的性质1)切线与圆只有一个公共点.2)切线到圆心的距离等于圆的半径.3)切线垂直于经过切点的半径.利用切线的性质解决问题时,通常连过切点的半径,利用直角三角形的性质来解决问题.2.切线的判定1)与圆只有一个公共点的直线是圆的切线(定义法).2)到圆心的距离等于半径的直线是圆的切线.3)经过半径外端点并且垂直于这条半径的直线是圆的切线.切线判定常用的证明方法:①知道直线和圆有公共点时,连半径,证垂直;②不知道直线与圆有没有公共点时,作垂直,证垂线段等于半径.七、与圆有关的计算公式1.弧长和扇形面积的计算:扇形的弧长l=π180n r;扇形的面积S=2π360n r=12lr.2.圆锥与侧面展开图1)圆锥侧面展开图是一个扇形,扇形的半径等于圆锥的母线,扇形的弧长等于圆锥的底面周长.2)若圆锥的底面半径为r ,母线长为l ,则这个扇形的半径为l ,扇形的弧长为2πr ,圆锥的侧面积为S 圆锥侧=12ππ2l r rl ⋅=.圆锥的表面积:S 圆锥表=S 圆锥侧+S 圆锥底=πrl +πr 2=πr ·(l +r ).在求不规则图形的面积时,注意利用割补法与等积变化方法归为规则图形,再利用规则图形的公式求解.→➋真题精讲←题型一圆周角和圆心角1.(2023·云南·统考中考真题)如图,AB 是O 的直径,C 是O 上一点.若66BOC ∠=︒,则A ∠=()A.66︒B.33︒C.24︒D.30︒【答案】B 【分析】根据圆周角定理即可求解.【详解】解:∵ BCBC =,66BOC ∠=︒,∴1332A BOC ∠=∠=︒,故选:B.【点睛】本题考查了圆周角定理,熟练掌握圆周角定理是解题的关键.2.(2023·新疆·统考中考真题)如图,在O 中,若30ACB ∠=︒,6OA =,则扇形OAB (阴影部分)的面积是()A.12πB.6πC.4πD.2π【答案】B 【分析】根据圆周角定理求得60AOB ∠=︒,然后根据扇形面积公式进行计算即可求解.【详解】解:∵ AB AB =,30ACB ∠=︒,∴60AOB ∠=︒,∴260π66π360S =⨯=.故选:B.【点睛】本题考查了圆周角定理,扇形面积公式,熟练掌握扇形面积公式以及圆周角定理是解题的关键.3.(2023·四川自贡·统考中考真题)如图,ABC 内接于O ,CD 是O 的直径,连接BD ,41DCA ∠=︒,则ABC ∠的度数是()A.41︒B.45︒C.49︒D.59︒【答案】C【分析】由CD 是O 的直径,得出90DBC ∠=︒,进而根据同弧所对的圆周角相等,得出41ABD ACD ∠=∠=︒,进而即可求解.【详解】解:∵CD 是O 的直径,∴90DBC ∠=︒,∵ AD AD =,∴41ABD ACD ∠=∠=︒,∴904149ABC DBC DBA ∠=∠-∠=︒-︒=︒,故选:C.【点睛】本题考查了圆周角定理的推论,熟练掌握圆周角定理是解题的关键.4.(2023·四川宜宾·统考中考真题)如图,已知点A B C 、、在O 上,C 为 AB 的中点.若35BAC ∠=︒,则AOB ∠等于()A.140︒B.120︒C.110︒D.70︒【答案】A 【分析】连接OC ,如图所示,根据圆周角定理,找到各个角之间的关系即可得到答案.【详解】解:连接OC ,如图所示:点A B C 、、在O 上,C 为 AB 的中点,BC AC ∴=,12BOC AOC AOB ∴∠=∠=∠, 35BAC ∠=︒,根据圆周角定理可知270BOC BAC ∠=∠=︒,2140AOB BOC ∴∠=∠=︒,故选:A.【点睛】本题考查圆中求角度问题,涉及圆周角定理,找准各个角之间的和差倍分关系是解决问题的关键.5.(2023·浙江温州·统考中考真题)如图,四边形ABCD 内接于O ,BC AD ∥,AC BD ⊥.若120AOD ∠=︒,AD =CAO ∠的度数与BC 的长分别为()A.10°,1C.15°,1【答案】C 【分析】过点O 作OE AD ⊥于点E ,由题意易得45CAD ADB CBD BCA ∠=∠=︒=∠=∠,然后可得30OAD ODA ∠=∠=︒,1602ABD ACD AOD ∠=∠=∠=︒,122AE AD ==,进而可得122CD CF CD ====,最后问题可求解.【详解】解:过点O 作OE AD ⊥于点E ,如图所示:∵BC AD ∥,∴CBD ADB ∠=∠,∵CBD CAD ∠=∠,∴CAD ADB ∠=∠,∵AC BD ⊥,∴90AFD ∠=︒,∴45CAD ADB CBD BCA ∠=∠=︒=∠=∠,∵120AOD ∠=︒,OA OD =,3AD =∴30OAD ODA ∠=∠=︒,1602ABD ACD AOD ∠=∠=∠=︒,1322AE AD ==∴15CAO CAD OAD ∠=∠-∠=︒,1cos30AE OA OC OD ====︒,105BCD BCA ACD ∠=∠+∠=︒,∴290,18030COD CAD CDB BCD CBD ∠=∠=︒∠=︒-∠-∠=︒,∴1222,22CD OC CF CD ====∴21BC CF ==;故选:C.【点睛】本题主要考查平行线的性质、圆周角定理及三角函数,熟练掌握平行线的性质、圆周角定理及三角函数是解题的关键.6.(2023·山东枣庄·统考中考真题)如图,在O 中,弦AB CD ,相交于点P ,若4880A APD ∠=︒∠=︒,,则B ∠的度数为()A.32︒B.42︒C.48︒D.52︒【答案】A 【分析】根据圆周角定理,可以得到D ∠的度数,再根据三角形外角的性质,可以求出B ∠的度数.【详解】解:48A D A ∠=∠∠=︒ ,,48D ∴∠=︒,80APD APD B D ∠=︒∠=∠+∠ ,,804832B APD D ∴∠=∠-∠=︒-︒=︒,故选:A.【点睛】本题考查圆周角定理、三角形外角的性质,解答本题的关键是求出D ∠的度数.7.(2023·浙江杭州·统考中考真题)如图,在O 中,半径,OA OB 互相垂直,点C 在劣弧AB 上.若19ABC ∠=︒,则BAC ∠=()A.23︒B.24︒C.25︒D.26︒【答案】D 【分析】根据,OA OB 互相垂直可得 ADB 所对的圆心角为270︒,根据圆周角定理可得12701352ACB ∠=⨯︒=︒,再根据三角形内角和定理即可求解.【详解】解:如图,半径,OA OB 互相垂直,∴90AOB ∠=︒,∴ ADB 所对的圆心角为270︒,∴ ADB 所对的圆周角12701352ACB ∠=︒=︒,又 19ABC ∠=︒,∴18026BAC ACB ABC ∠=︒-∠-∠=︒,故选:D.【点睛】本题考查圆周角定理、三角形内角和定理,解题的关键是掌握:同圆或等圆中,同弧所对的圆周角等于圆心角的一半.8.(2023·四川广安·统考中考真题)如图,ABC 内接于O ,圆的半径为7,60BAC ∠=︒,则弦BC 的长度为___________.【答案】73【分析】连接,OB OC ,过点O 作OD BC ⊥于点D ,先根据圆周角定理可得2120BOC BAC ∠=∠=︒,再根据等腰三角形的三线合一可得60BOD ∠=︒,2BC BD =,然后解直角三角形可得BD 的长,由此即可得.【详解】解:如图,连接,OB OC ,过点O 作OD BC ⊥于点D ,60BAC ∠=︒ ,2120BOC BAC ∴∠=∠=︒,,OB OC OD BC =⊥Q ,1602BOD BOC ∴∠=∠=︒,2BC BD =,∵圆的半径为7,7OB ∴=,7sin 6032BD OB ∴=⋅︒=,23BC BD ∴==故答案为:73【点睛】本题考查了圆周角定理、解直角三角形、等腰三角形的三线合一,熟练掌握圆周角定理和解直角三角形的方法是解题关键.9.(2023·甘肃武威·统考中考真题)如图,ABC 内接于O ,AB 是O 的直径,点D 是O 上一点,55CDB ∠=︒,则ABC ∠=________︒.【答案】35【分析】由同弧所对的圆周角相等,得55,A CDB ∠=∠=︒再根据直径所对的圆周角为直角,得90ACB ∠=︒,然后由直角三角形的性质即可得出结果.【详解】解:,A CDB ∠∠Q 是 BC所对的圆周角,55,A CDB ∴∠=∠=︒AB 是O 的直径,90ACB ∠=︒ ,在Rt ACB △中,90905535ABC A ∠=︒-∠=︒-︒=︒,故答案为:35.【点睛】本题考查了圆周角定理,以及直角三角形的性质,利用了转化的思想,熟练掌握圆周角定理是解本题的关键.10.(2023·上海·统考中考真题)如图,在O 中,弦AB 的长为8,点C 在BO 延长线上,且41cos ,52ABC OC OB ∠==.(1)求O 的半径;(2)求BAC ∠的正切值.【答案】(1)5(2)94【分析】(1)延长BC ,交O 于点D ,连接AD ,先根据圆周角定理可得90BAD ∠=︒,再解直角三角形可得10BD =,由此即可得;(2)过点C 作CE AB ⊥于点E ,先解直角三角形可得6BE =,从而可得2AE =,再利用勾股定理可得92CE =,然后根据正切的定义即可得.【详解】(1)解:如图,延长BC ,交O 于点D ,连接AD ,由圆周角定理得:90BAD ∠=︒,弦AB 的长为8,且4cos 5ABC ∠=,845AB BD BD ∴==,解得10BD =,O ∴ 的半径为152BD =.(2)解:如图,过点C 作CE AB ⊥于点E ,O 的半径为5,5OB ∴=,12OC OB =,31522BC OB ∴==,4cos 5ABC ∠=,45BE BC ∴=,即41552BE =,解得6BE =,2AE AB BE ∴=-=,2292CE BC BE =-=,则BAC ∠的正切值为99224CE AE ==.【点睛】本题考查了圆周角定理、解直角三角形、勾股定理等知识点,熟练掌握解直角三角形的方法是解题关键.题型二切线定理11.(2023·四川眉山·统考中考真题)如图,AB 切O 于点B ,连接OA 交O 于点C ,BD OA ∥交O 于点D ,连接CD ,若25OCD ∠=︒,则A ∠的度数为()A.25︒B.35︒C.40︒D.45︒【答案】C【分析】如图,连接OB ,证明90∠=︒ABO ,25CDB ∠=︒,可得250BOC BDC ∠=∠=︒,从而可得40A ∠=︒.【详解】解:如图,连接OB ,∵AB 切O 于点B ,∴90∠=︒ABO ,∵BD OA ∥,25OCD ∠=︒,∴25CDB ∠=︒,∴250BOC BDC ∠=∠=︒,∴40A ∠=︒;故选:C.【点睛】本题考查的是切线的性质,圆周角定理的应用,三角形的内角和定理的应用,掌握基本图形的性质是解本题的关键.12.(2023·重庆·统考中考真题)如图,AB 为O 的直径,直线CD 与O 相切于点C ,连接AC ,若50ACD ∠=︒,则BAC ∠的度数为()A.30︒B.40︒C.50︒D.60︒【答案】B 【分析】连接OC ,先根据圆的切线的性质可得90OCD ∠=︒,从而可得40OCA ∠=︒,再根据等腰三角形的性质即可得.【详解】解:如图,连接OC ,直线CD 与O 相切,OC CD ∴⊥,90OCD ∴∠=︒,50ACD ∠=︒ ,40OCA ∴∠=︒,OA OC = ,40BAC OCA ∴∠=∠=︒,故选:B.【点睛】本题考查了圆的切线的性质、等腰三角形的性质,熟练掌握圆的切线的性质是解题关键.13.(2023·浙江嘉兴·统考中考真题)如图,点A 是O 外一点,AB ,AC 分别与O 相切于点B ,C ,点D 在 BDC上,已知50A ∠=︒,则D ∠的度数是___________.【答案】65︒【分析】连接,CO BO ,根据切线的性质得出90ACO ABO ∠=∠=︒,根据四边形内角和得出130COB ∠=︒,根据圆周角定理即可求解.【详解】解:如图,CO BO ,∵AB ,AC 分别与O 相切于点B ,C ,∴90ACO ABO ∠=∠=︒,∵50A ∠=︒,∴360909050130COB ∠=︒-︒-︒-︒=︒,∵ BCBC =,∴1652D BOC ∠=∠=︒,故答案为:65︒.【点睛】本题考查了切线的性质,圆周角定理,求得130COB ∠=︒是解题的关键.14.(2023·湖南·统考中考真题)如图,AD 是O 的直径,AB 是O 的弦,BC 与O 相切于点B ,连接OB ,若65ABC ∠=︒,则BOD ∠的大小为__________.【答案】50︒【分析】证明90OBC ∠=︒,可得906525OBD ∠=︒-︒=︒,结合OB OA =,证明25A OBA ∠=∠=︒,再利用三角形的外角的性质可得答案.【详解】解:∵BC 与O 相切于点B ,∴90OBC ∠=︒,∵65ABC ∠=︒,∴906525OBD ∠=︒-︒=︒,∵OB OA =,∴25A OBA ∠=∠=︒,∴22550BOD ∠=⨯︒=︒,故答案为:50︒【点睛】本题考查的是圆的切线的性质,等腰三角形的性质,三角形的外角的性质,熟记基本图形的性质是解本题的关键.15.(2023·山东滨州·统考中考真题)如图,,PA PB 分别与O 相切于,A B 两点,且56APB ∠=︒.若点C 是O 上异于点,A B 的一点,则ACB ∠的大小为___________.【答案】62︒或118︒【分析】根据切线的性质得到90∠=∠=︒PAO PBO ,根据四边形内角和为360︒,得出AOB ∠,然后根据圆周角定理即可求解.【详解】解:如图所示,连接,AC BC ,当点C 在优弧 AB 上时,∵,PA PB 分别与O 相切于,A B 两点∴90∠=∠=︒PAO PBO ,∵56APB ∠=︒.∴360909056124AOB ∠=︒-︒-︒-︒=︒∵ AB AB =,∴1622ACB AOB ∠=∠=︒,当点C '在 AB 上时,∵四边形AC BC '是圆内接四边形,∴180118C C '∠=︒-∠=︒,故答案为:62︒或118︒.【点睛】本题考查了切线的性质,圆周角定理,多边形内角和,熟练掌握切线的性质与圆周角定理是解题的关键.16.(2023·四川·统考中考真题)如图,45ACB ∠=︒,半径为2的O 与角的两边相切,点P 是⊙O 上任意一点,过点P 向角的两边作垂线,垂足分别为E ,F ,设t PE =+,则t 的取值范围是_____.【答案】4t ≤≤+【分析】利用切线的性质以及等腰直角三角形的性质求得2CD DH ==,再求得t PE PQ EQ =+=,分两种情况讨论,画出图形,利用等腰直角三角形的性质即可求解.【详解】解:设O 与ACB ∠两边的切点分别为D 、G ,连接OG OD 、,延长DO 交CB 于点H ,由90OGC ODC OGH ∠=∠=∠=︒,∵45ACB ∠=︒,∴45OHC ∠=︒,∴OH ==∴2CD DH ==,如图,延长EP 交CB 于点Q ,同理2PQ PF =,∵2t PE PF =+,∴t PE PQ EQ =+=,当EQ 与O 相切时,EQ 有最大或最小值,连接OP ,∵D 、E 都是切点,∴90ODE DEP OPE ∠=∠=∠=︒,∴四边形ODEP 是矩形,∵OD OP =,∴四边形ODEP 是正方形,∴t 的最大值为224EQ CE CD DE ==+=+;如图,同理,t 的最小值为22EQ CE CD DE ==-=;综上,t 的取值范围是4t ≤≤.故答案为:4t ≤≤.【点睛】本题考查了切线的性质,等腰直角三角形的性质,勾股定理,求得t EQ =是解题的关键.17.(2023·浙江绍兴·统考中考真题)如图,AB 是O 的直径,C 是O 上一点,过点C 作O 的切线CD ,交AB 的延长线于点D ,过点A 作AE CD ⊥于点E .(1)若25EAC ∠=︒,求ACD ∠的度数.(2)若2,1OB BD ==,求CE 的长.【答案】(1)115︒(2)CE =【分析】(1)根据三角形的外角的性质,ACD AEC EAC ∠=∠+∠即可求解.(2)根据CD 是O 的切线,可得90OCD ∠=︒,在Rt OCD △中,勾股定理求得CD =根据OC AE ∥,可得CD OD CE OA=,进而即可求解.【详解】(1)解:∵AE CD ⊥于点E ,∴90AEC ∠=︒,∴9025115ACD AEC EAC ∠=∠+∠=︒+︒=︒.(2)∵CD 是O 的切线,OC 是O 的半径,∴90OCD ∠=︒.在Rt OCD △中,∵2,3OC OB OD OB BD ===+=,∴225CD OD OC =-=.∵90OCD AEC ∠=∠=︒,∴OC AE∥∴CD OD CE OA =532CE =,∴253CE =.【点睛】本题考查了三角形外角的性质,切线的性质,勾股定理,平行线分线段成比例,熟练掌握以上知识是解题的关键.18.(2023·湖南张家界·统考中考真题)如图,O 是ABC 的外接圆,AD 是O 的直径,F 是AD 延长线上一点,连接CD CF ,,且DCF CAD ∠=∠.(1)求证:CF 是O 的切线;(2)若直径310,cos 5AD B ==,求FD 的长.【答案】(1)详见解析(2)907【分析】(1)根据直径所对的圆周角是直角,余角的性质即可求得结论;(2)根据已知条件可知FCD FAC ∽,再根据正切的定义和相似三角形的性质得到线段的关系即可求得线段FD 的长度.【详解】(1)证明:连接OC ,∵AD 是O 的直径,∴90ACD ∠=︒,∴90ADC CAD ∠+∠=︒,又∵OC OD =,∴ADC OCD ∠=∠,又∵DCF CAD ∠=∠,∴90DCF OCD ∠+∠=︒,即OC FC ⊥,∴FC 是O 的切线;(2)解:∵3,cos 5B ADC B ∠=∠=,∴3cos 5ADC ∠=,∵在Rt ACD 中,3cos ,10,5CD ADC AD AD∠===∴3cos 106,5CD AD ADC =⋅∠=⨯=∴8AC =,∴34CD AC =,∵FCD FAC F F ∠=∠∠=∠,,∴FCD FAC ∽,∴34CD FC FD AC FA FC ===,设3FD x =,则4310FC x AF x ==+,,又∵2FC FD FA =⋅,即2(4)3(310)x x x =+,解得307x =(取正值),∴9037FD x ==,【点睛】本题考查了圆周角的性质,切线的判定定理,正切的定义,相似三角形的性质和判定,找出正切的定义与相似三角形相似比的关联是解题的关键.19.(2023·辽宁·统考中考真题)如图,AB 是O 的直径,点C E ,在O 上,2CAB EAB ∠=∠,点F 在线段AB 的延长线上,且AFE ABC ∠=∠.(1)求证:EF 与O 相切;(2)若41sin 5BF AFE =∠=,,求BC 的长.【答案】(1)见解析(2)245BC =【分析】(1)利用圆周角定理得到2EOB EAB ∠=∠,结合已知推出CAB EOB ∠=∠,再证明OFE ABC ∽△△,推出90OEF C ∠=∠=︒,即可证明结论成立;(2)设O 半径为x ,则1=+OF x ,在Rt OEF △中,利用正弦函数求得半径的长,再在Rt ABC △中,解直角三角形即可求解.【详解】(1)证明:连接OE ,∵ =BEBE ,∴2EOB EAB ∠=∠,∵2CAB EAB ∠=∠,∴CAB EOB ∠=∠,∵AB 是O 的直径,∴90C ∠=︒,∵AFE ABC ∠=∠,∴OFE ABC ∽△△,∴90OEF C ∠=∠=︒,∵OE 为O 半径,∴EF 与O 相切;(2)解:设O 半径为x ,则1=+OF x ,∵AFE ABC ∠=∠,4sin 5AFE ∠=,∴4sin 5ABC ∠=,在Rt OEF △中,90OEF ∠=︒,4sin 5AFE ∠=,∴45OE OF =,即415x x =+,解得4x =,经检验,4x =是所列方程的解,∴O 半径为4,则8AB =,在Rt ABC △中,90C ∠=︒,4sin 5ABC ∠=,8AB =,∴32sin 5A AB C AB C ∠==⋅,∴245BC ==.【点睛】本题考查了圆的切线的判定、圆周角定理、解直角三角形以及相似三角形的判定和性质等知识,熟练掌握圆的相关知识和相似三角形的判定和性质是解题的关键.题型三垂径定理20.(2023·四川凉山·统考中考真题)如图,在O 中,30OA BC ADB BC ⊥∠=︒=,,,则OC =()A.1B.2C.D.4【答案】B 【分析】连接OB ,由圆周角定理得60AOB ∠=︒,由OA BC ⊥得,60COE BOE ∠=∠=︒,CE BE ==,在Rt OCE 中,由sin 60CE OC =︒,计算即可得到答案.【详解】解:连接OB ,如图所示,,30ADB ∠=︒ ,223060AOB ADB ∴∠=∠=⨯︒=︒,OA BC ⊥,60COE BOE ∴∠=∠=︒,113322CE BE BC ===⨯在Rt OCE 中,603COE CE ∠=︒,32sin 6032CE OC ∴==︒,故选:B.【点睛】本题主要考查了圆周角定理,垂径定理,解直角三角形,解题的关键是熟练掌握圆周角定理,垂径定理,添加适当的辅助线.21.(2023·四川宜宾·统考中考真题)《梦溪笔谈》是我国古代科技著作,其中它记录了计算圆弧长度的“会圆术”.如图, AB 是以点O 为圆心、OA 为半径的圆弧,N 是AB 的中点,MN AB ⊥.“会圆术”给出 AB 的弧长l 的近似值计算公式:2MN l AB OA=+.当4OA =,60AOB ∠=︒时,则l 的值为()A.1123-B.113-C.823-D.843-【答案】B【分析】连接ON ,根据等边三角形的性质,垂径定理,勾股定理,特殊角的三角函数,后代入公式计算即可.【详解】连接ON ,根据题意, AB 是以点O 为圆心、OA 为半径的圆弧,N 是AB 的中点,MN AB ⊥,得ON AB ⊥,∴点M ,N ,O 三点共线,∵4OA =,60AOB ∠=︒,∴OAB 是等边三角形,∴4,60sin 60OA AB OAN ON OA ==∠=︒=︒=,,∴4,60sin 60OA AB OAN ON OA ==∠=︒=︒=,∴(22441144MN l AB OA-=+=+=-故选:B.【点睛】本题考查了等边三角形的性质,垂径定理,勾股定理,特殊角的函数值,熟练掌握相关知识是解题的关键.22.(2023·广西·统考中考真题)赵州桥是当今世界上建造最早,保存最完整的中国古代单孔敞肩石拱桥.如图,主桥拱呈圆弧形,跨度约为37m ,拱高约为7m ,则赵州桥主桥拱半径R 约为()A.20mB.28m C.35m D.40m【答案】B 【分析】由题意可知,37m AB =,7m =CD ,主桥拱半径R ,根据垂径定理,得到37m 2AD =,再利用勾股定理列方程求解,即可得到答案.【详解】解:如图,由题意可知,37m AB =,7m =CD ,主桥拱半径R ,()7m OD OC CD R ∴=-=-,OC 是半径,且OC AB ⊥,137m 22AD BD AB ∴===,在Rt △ADO 中,222AD OD OA +=,()2223772R R ⎛⎫∴+-= ⎪⎝⎭,解得:156528m 56R =≈,故选:B.【点睛】本题考查了垂径定理,勾股定理,利用直角三角形求解是解题关键.23.(2023·四川南充·统考中考真题)如图,AB 是O 的直径,点D ,M 分别是弦AC ,弧AC 的中点,12,5AC BC ==,则MD 的长是________.【答案】4【分析】根据圆周角定理得出90ACB ∠=︒,再由勾股定理确定13AB =,半径为132,利用垂径定理确定OM AC ⊥,且6AD CD ==,再由勾股定理求解即可.【详解】解:∵AB 是O 的直径,∴90ACB ∠=︒,∵12,5AC BC ==,∴13AB =,∴11322AO AB ==,∵点D ,M 分别是弦AC ,弧AC 的中点,∴OM AC ⊥,且6AD CD ==,∴52OD ==,∴4MD OM OD AO OD =-=-=,故答案为:4.【点睛】题目主要考查圆周角定理、垂径定理及勾股定理解三角形,理解题意,综合运用这些知识点是解题关键.24.(2023·湖南永州·统考中考真题)如图,O 是一个盛有水的容器的横截面,O 的半径为10cm .水的最深处到水面AB 的距离为4cm ,则水面AB 的宽度为_______cm .【答案】16【分析】过点O 作OD AB ⊥于点D ,交O 于点E ,则12AD DB AB ==,依题意,得出6OD =,进而在Rt AOD 中,勾股定理即可求解.【详解】解:如图所示,过点O 作OD AB ⊥于点D ,交O 于点E ,则12AD DB AB ==,∵水的最深处到水面AB 的距离为4cm ,O 的半径为10cm .∴1046OD =-=cm ,在Rt AOD 中,22221068AD AO OD =--cm∴216AB AD ==cm故答案为:16.【点睛】本题考查了垂径定理的应用,勾股定理,熟练掌握垂径定理是解题的关键.25.(2023·山东东营·统考中考真题)“圆材埋壁”是我国古代数学名著《九章算术》中的一个问题:“今有圆材,埋在壁中,不知大小,以锯锯之,深一寸,锯道长一尺.问:径几何?”.用现在的几何语言表达即:如图,CD 为O 的直径,弦AB CD ⊥,垂足为点E ,1CE =寸,10AB =寸,则直径CD 的长度是________寸.【答案】26【分析】连接OA构成直角三角形,先根据垂径定理,由DE垂直AB得到点E为AB的中点,AB=可求出AE的长,再设出圆的半径OA为x,表示出OE,根据勾股定理建立关于x 由6的方程,求解方程可得2x的值,即为圆的直径.【详解】解:连接OA,AB=寸,,且10⊥AB CDAE BE∴==寸,5==,设圆O的半径OA的长为x,则OC OD xQ,CE=1OE x∴=-,1在直角三角形AOE中,根据勾股定理得:222x x--=,化简得:222125(1)5-+-=,x x xx=,即226∴=(寸).CD26故答案为:26.【点睛】本题考查了垂径定理和勾股定理,解题的关键是正确作出辅助线构造直角三角形.26.(2023·浙江金华·统考中考真题)如图,点A 在第一象限内,A 与x 轴相切于点B ,与y 轴相交于点,C D .连接AB ,过点A 作AH CD ⊥于点H .(1)求证:四边形ABOH 为矩形.(2)已知A 的半径为4,OB ,求弦CD 的长.【答案】(1)见解析(2)6【分析】(1)根据切线的性质及有三个角是直角的四边形是矩形判定即可.(2)根据矩形的性质、垂径定理及圆的性质计算即可.【详解】(1)证明:∵A 与x 轴相切于点B ,∴AB x ⊥轴.∵,AH CD HO OB ⊥⊥,∴90AHO HOB OBA ∠=∠=∠=︒,∴四边形AHOB 是矩形.(2)如图,连接AC .四边形AHOB 是矩形,AH OB ∴==在Rt AHC 中,222CH AC AH =-,3CH ∴==.点A 为圆心,AH CD ⊥,2CD CH ∴=6=.【点睛】本题考查了矩形的判定,垂径定理,圆的性质,熟练掌握矩形的判定和垂径定理是解题的关键.。
河北省中考数学复习 圆 第29讲 圆的基本性质试题(含解析)-人教版初中九年级全册数学试题
![河北省中考数学复习 圆 第29讲 圆的基本性质试题(含解析)-人教版初中九年级全册数学试题](https://img.taocdn.com/s3/m/90287414856a561253d36f08.png)
第29讲 圆的基本性质1. (2012,某某)如图,CD 是⊙O 的直径,AB 是弦(不是直径),AB ⊥CD 于点E ,则下列结论正确的是(D)第1题图A. AE >BEB. 弧AD =弧BCC. ∠D =12∠AEC D. △ADE ∽△CBE 【解析】 ∵CD 是⊙O 的直径,AB 是弦(不是直径),AB ⊥CD 于点E ,∴AE =BE ,弧AC =弧BC .∴A ,B 两选项错误.∵∠AEC 不是圆心角,∴∠D ≠12∠AE C. ∴C 选项错误.∵∠AED =∠CEB =90°,∠DAE =∠BCE ,∴△ADE ∽△CBE .∴D 选项正确.2. (2015,某某)如图,AC ,BE 是⊙O 的直径,弦AD 与BE 相交于点F .下列三角形中,外心不是点O 的是(B)第2题图A. △ABEB. △ACFC. △ABDD. △ADE【解析】 只有△ACF 的三个顶点不都在⊙O 上,故外心不是点O 的是△ACF .3. (2016,某某)如图所示的为4×4的网格图,A ,B ,C ,D ,O 均在格点上,点O 是(B)第3题图A. △ACD 的外心B. △ABC 的外心C. △ACD 的内心D. △ABC 的内心【解析】 由网格图,知点O 是边AC ,BC 的垂直平分线的交点.根据三角形外心的定义,知点O 是 △ABC 的外心.圆的有关概念例1 下列语句正确的是(D)A. 长度相等的两条弧是等弧B. 平分弦的直径垂直于弦C. 相等的圆心角所对的弧相等D. 经过圆心的每一条直线都是圆的对称轴【解析】 能完全重合的两条弧是等弧,所以A 选项错误.平分弦(不是直径)的直径垂直于弦,所以B 选项错误.在同圆或等圆中,相等的圆心角所对的弧相等,所以C 选项错误.经过圆心的每一条直线都是圆的对称轴,所以D 选项正确.针对训练1 如图,半圆O 是一个量角器,△AOB 为一纸片,AB 交半圆于点D ,OB 交半圆于点C .若点C ,D ,A 在量角器上对应的读数分别为45°,70°,160°,则∠B 的度数为(A)训练1题图A. 20°B. 30°C. 45°D. 60°【解析】 如答图,连接OD ,则∠DOC =70°-45°=25°,∠AOD =160°-70°= 90°.∵OD =OA ,∴∠ADO =∠A =45°.∵∠ADO =∠B +∠DOB ,∴∠B =45°-25°= 20°.训练1答图针对训练2 如图,点P 在线段AB 上,PA =PB =PC =PD .当∠BPC =60°时,∠BDC 的度数为(B)训练2题图A. 15°B. 30°C. 25°D. 60°【解析】 ∵PA =PB =PC =PD ,∴点A ,B ,C ,D 在以点P 为圆心,PB 的长为半径的圆上.∴∠BDC =12∠BPC =12×60°=30°.确定圆的条件例2 (2010,某某)如图,在5×5的正方形网格中,一条圆弧经过A,B,C三点,那么这条圆弧所在圆的圆心是(B)例2题图A. 点PB. 点QC. 点RD. 点M【解析】如答图,连接BC,作AB和BC的垂直平分线,它们相交于点Q,则点Q即为圆心.例2答图针对训练3 在平面直角坐标系中,点A的坐标是(-1,0),点B的坐标是(3,0),在y 轴的正半轴上取一点C,使A,B,C三点确定一个圆,且使AB为圆的直径,则点C的坐标是(A)A. (0,3)B. (3,0)C. (0,2)D. (2,0)【解析】如答图,连接AC,CB.根据题意可证得△AOC∽△COB,∴OCOA=OBOC,即OC2=OA·OB.∴OC2OC= 3.故点C的坐标为(0,3).训练3答图针对训练4 如图,在矩形ABCD中,E为AB的中点,有一圆过C,D,E三点,且此圆分别与AD,BC相交于P,Q两点.甲、乙两人想找到此圆的圆心O,其作法如下:甲:连接DE,EC,作∠DEC的平分线EM,作DE的垂直平分线,交EM于点O,则点O即为所求.乙:连接PC,QD,两线段交于一点O,则点O即为所求.对于甲、乙两人的作法,下列判断正确的是(A)训练4题图A. 两人皆正确B. 两人皆错误C. 甲正确,乙错误D. 甲错误,乙正确【解析】 对于甲,易知ED =EC ,∴△DEC 为等腰三角形.进而易知EM 为CD 的垂直平分线.∴点O 为两垂直平分线的交点,即点O 为△CDE 的外心.∴点O 为此圆的圆心.对于乙,∵∠ADC =90°,∠DCB =90°,∴PC ,QD 为此圆的直径.∴PC 与QD 的交点O 为此圆的圆心.因此甲、乙两人皆正确.圆的基本性质例3 (2018,某某裕华区模拟)如图,在半径为5的⊙O 中,弦AB =6,C 是优弧AB 上一点(不与点A ,B 重合),则cos C 的值为(D)例3题图A. 43B. 34C. 35D. 45【解析】 如答图,作直径AD ,连接BD .∵AD 为直径,∴∠ABD =90°.在Rt △ABD 中,∵AD =10,AB =6,∴BD =102-62=8.∴cos D =BD AD =810=45.∵∠C =∠D ,∴cos C =45.例3答图针对训练5 (2018,某某模拟)如图,在半径为5的⊙A 中,弦BC ,ED 所对的圆心角分别是∠BAC ,∠EAD .若DE =6,∠BAC +∠EAD =180°,则弦BC 的长是(A)训练5题图A. 8B. 10C. 11D. 12【解析】 如答图,作直径CF ,连接BF ,则∠FBC =90°.∵∠BAC +∠EAD =180°,∠BAC +∠BAF =180°,∴∠DAE =∠BAF .∴弧DE =弧BF .∴BF =DE =6.∴BC =CF 2-BF 2=8.训练5答图 针对训练6 (2018,某某)已知⊙O 的半径为10,圆心O 到弦AB 的距离为5,则弦AB 所对的圆周角的度数为(D)A. 30°B. 60°C. 30°或150°D. 60°或120°【解析】 如答图.在Rt △OAD 中,∵OA =10,OD =5,∴cos ∠AOD =OD AO =12.∴∠AOD =60°.同理可得∠BOD =60°.∴∠AOB =∠AOD +∠BOD =60°+60°=120°.∴弦AB 所对的圆周角的度数是60°或120°.训练6答图垂径定理例4 (2018,某某,导学号5892921)已知⊙O 的直径CD =10 cm ,AB 是⊙O 的弦,AB ⊥CD ,垂足为M ,且AB =8 cm ,则AC 的长为(C)A. 2 5 cmB. 4 5 cmC. 2 5 cm 或4 5 cmD. 2 3 cm 或4 3 cm【解析】 如答图,连接AC ,AO .∵⊙O 的直径CD =10 cm ,AB ⊥CD ,AB =8 cm ,∴AM =12AB =12×8=4(cm),OD =OC =5 cm.当点C 的位置如答图①所示时,∵OA =5 cm ,AM = 4 cm ,CD ⊥AB ,∴OM =OA 2-AM 2=52-42=3(cm).∴CM =OC +OM =5+3=8(cm).∴AC =AM 2+CM 2=42+82=45(cm).当点C 的位置如答图②所示时,同理可得OM =3 cm.∵OC =5 cm ,∴MC =5-3=2(cm).∴在Rt △AMC 中,AC =AM 2+MC 2=42+22= 25(cm).综上所述,AC 的长为2 5 cm 或4 5 cm.例4答图针对训练7 (2018,某某)如图,AB 是⊙O 的直径,弦CD ⊥AB 于点E ,OC =5 cm ,CD =8 cm ,则AE 的长为(A)训练7题图A. 8 cmB. 5 cmC. 3 cmD. 2 cm【解析】 ∵CD ⊥AB ,CD =8 cm ,∴CE =12CD =4 cm.在Rt △OCE 中,OC =5 cm ,CE =4 cm ,∴OE =OC 2-CE 2=3 cm.∴AE =AO +OE =5+3=8(cm).一、 选择题1. (2018,聊城)如图,在⊙O 中,弦BC 与半径OA 相交于点D ,连接AB ,OC . 若∠A =60°,∠ADC =85°,则∠C 的度数是(D)第1题图A. 25°° C. 30° D. 35°【解析】 ∵∠A =60°,∠ADC =85°,∴∠B =85°-60°=25°,∠CDO =95°. ∴∠AOC =2∠B =50°.∴∠C =180°-95°-50°=35°.2. (2018,威海)如图,⊙O 的半径为5,AB 为弦,C 为弧AB 的中点.若∠ABC =30°,则弦AB 的长为(D)第2题图A. 12B. 5C. 532D. 53 【解析】 如答图,连接OA ,OC ,OC 与AB 相交于点E .∵∠ABC =30°,∴∠AOC = 60°.由AB 为弦,C 为弧AB 的中点,易知OC ⊥AB ,AE =BE .在Rt △OAE 中,AE =OA · sin ∠AOC =5×32=532,∴AB =2AE =5 3.第2题答图3. (2018,某某)如图,⊙A 过点O (0,0),C (3,0),D (0,1),B 是x 轴下方⊙A 上的一点,连接BO ,BD ,则∠OBD 的度数是(B)第3题图A. 15°B. 30°C. 45°D. 60°【解析】 如答图,连接DC .∵C (3,0),D (0,1),∴∠DOC =90°,OD =1,OC = 3.∴∠DCO =30°.∴∠OBD =∠DCO =30°.第3题答图4. (2018,某某)如图,BC 是⊙O 的直径,A 是⊙O 上的一点,∠OAC =32°,则∠B 的度数是(A)第4题图A. 58°B. 60°C. 64°D. 68°【解析】 ∵OA =OC ,∴∠C =∠OAC =32°.∵BC 是直径,∴∠CAB =90°.∴∠B = 90°-32°=58°.5. (2018,贵港)如图,点A ,B ,C 均在⊙O 上.若∠A =66°,则∠OCB 的度数是(A)第5题图A. 24°B. 28°C. 33°D. 48°【解析】 ∵∠A =66°,∴∠COB =132°.∵CO =BO ,∴∠OCB =∠OBC =12×(180°-132°)=24°.6. (2018,某某)如图,AB 为⊙O 的直径,CD 是⊙O 的弦,∠ADC =35°,则∠CAB 的度数为(C)第6题图A. 35°B. 45°C. 55°D. 65°【解析】 由圆周角定理,得∠ABC =∠ADC =35°.∵AB 为⊙O 的直径,∴∠ACB =90°.∴∠CAB =90°-∠ABC =55°.7. (2018,某某)如图,AB 是半圆的直径,O 为圆心,C 是半圆上的点,D 是弧AC 上的点.若∠BOC =40°,则∠D 的度数为(B)第7题图A. 100°B. 110°C. 120°D. 130°【解析】 ∵∠BOC =40°,∴∠AOC =180°-40°=140°.∴∠D =12×(360°-140°)=110°.8. (2018,某某)如图,点A ,B ,C ,D 在⊙O 上,∠AOC =140°,B 是弧AC 的中点,则∠D 的度数是(D)第8题图A. 70°B. 55°° D. 35°【解析】 如答图,连接OB .∵B 是弧AC 的中点,∴∠AOB =12∠AOC =70°.由圆周角定理,得∠D =12∠AOB =35°.第8题答图9. (2018,滨州)已知半径为5的⊙O 是△ABC 的外接圆.若∠ABC =25°,则劣弧AC 的长为(C)A. 25π36B. 125π36C. 25π18D. 5π36【解析】 如答图,连接AO ,CO .∵∠ABC =25°,∴∠AOC =50°.∴劣弧AC 的长为50π·5180=25π18.第9题答图10. (2018,某某)如图,AC 是⊙O 的直径,弦BD ⊥AO 于点E ,连接BC ,过点O 作OF ⊥BC 于点F .若BD =8 cm ,AE =2 cm ,则OF 的长是(D)第10题图A. 3 cmB. 6 cmC. 2.5 cmD. 5 cm【解析】 如答图,连接OB .∵AC 是⊙O 的直径,弦BD ⊥AO ,BD =8,∴BE =DE =4.∵AE =2,∴在Rt △OEB 中,OE 2+BE 2=OB 2,即OE 2+42=(OE +2)2.解得OE =3.∴OB =3+2=5.∴EC Rt △EBC 中,BC =BE 2+EC 2=42+82=4 5.∵OF ⊥BC ,∴∠OFC =∠CEB =90°.∵∠C =∠C ,∴△OFC ∽△BEC .∴OF BE =OC BC ,即OF 4=545.解得OF = 5.所以OF 的长是 5 cm.第10题答图二、 填空题11. (2018,某某)在同圆中,已知弧AB 所对的圆心角是100°,则弧AB 所对的圆周角是50°.【解析】 由圆周角定理,得弧AB 所对的圆周角为50°.12. (2018,某某模拟)如图,截面为圆形的油槽内放入一些油.若圆的直径为150 cm ,油的深度DC 为30 cm ,则油面宽度AB 是120cm.第12题图【解析】 ∵OC ⊥AB ,∴AD =BD =12AB .∵OC =OB =12×150=75(cm),∴OD =OC -CD =75-30=45(cm).在Rt △OBD 中,BD =OB 2-OD 2=752-452=60(cm),∴AB =2BD =120 cm.13. (2018,某某)如图,方格纸上每个小正方形的边长均为1个单位长度,点O ,A ,B ,C 在格点(两条网格线的交点叫格点)上,以点O 为原点建立直角坐标系,则过A ,B ,C 三点的圆的圆心坐标为(-1,-2).第13题图【解析】 如答图,连接AB ,CB ,作AB ,CB 的垂直平分线,相交于点D .所以点D 是过A ,B ,C 三点的圆的圆心.所以点D 的坐标为(-1,-2).第13题答图14. (2018,某某)如图,量角器的0度刻度线为AB ,将一矩形直尺与量角器部分重叠,使直尺一边与量角器相切于点C ,直尺另一边交量角器于点A ,D ,量得AD =10 cm ,点D 在量角器上的读数为60°,则该直尺的宽度为( 533)cm.第14题图【解析】 如答图,连接OC ,OD ,OC 与AD 相交于点E .∵直尺一边与量角器相切于点C ,∴OC ⊥AD .∵AD =10,∠DOB =60°,∴∠DAO =30°.∴OE =533,OA =1033.∴CE =OC -OE =OA -OE =533.即该直尺的宽度是533cm.第14题答图三、 解答题15. (2018,枣庄)如图,在Rt △ACB 中,∠C =90°,AC =3 cm ,BC =4 cm ,以BC 为直径作⊙O 交AB 于点D .(1)求线段AD 的长;(2)E 是线段AC 上的一点,当点E 在什么位置时,直线ED 与⊙O 相切?请说明理由.第15题图【思路分析】 (1)由勾股定理易求得AB 的长.可连接CD ,知CD ⊥AB ,易知Rt △ADC ∽Rt △ACB ,可得关于AC ,AD ,AB 的比例关系式,即可求出AD 的长.(2)当ED 与⊙O 相切时,由切线长定理知EC =ED ,则∠ECD =∠EDC .连接OD ,证OD ⊥DE 即可.解:(1)如答图,连接CD . 在Rt △ACB 中,∵AC =3 cm ,BC =4 cm ,∠ACB =90°, ∴AB =5 cm. ∵BC 为直径,∴∠ADC =∠BDC =90°. ∵∠A =∠A ,∠ADC =∠ACB , ∴Rt △ADC ∽Rt △ACB . ∴AC AB =AD AC. ∴AD =AC 2AB =325=95(cm).(2)当E是AC的中点时,直线ED与⊙O相切.理由:如答图,连接OD.∵DE是Rt△ADC的中线,∴ED=EC.∴∠EDC=∠ECD.∵OC=OD,∴∠ODC=∠OCD.∴∠EDO=∠EDC+∠ODC=∠ECD+∠OCD=∠ACB=90°.∴ED⊥OD.∴直线ED与⊙O相切.第15题答图16. (2018,某某,导学号5892921)如图,在△ABC中,AB=AC,以AB为直径的半圆交AC于点D,交BC于点E,延长AE至点F,使EF=AE,连接FB,FC.(1)求证:四边形ABFC是菱形;(2)若AD=7,BE=2,求半圆形和菱形ABFC的面积.第16题图【思路分析】 (1)根据对角线相互平分的四边形是平行四边形,证明四边形ABFC是平行四边形,再根据邻边相等的平行四边形是菱形即可证明.(2)连接BD.利用勾股定理构建方程即可解决问题.(1)证明:∵AB是直径,∴∠AEB=90°.∴AE⊥BC.∵AB =AC , ∴BE =CE . ∵AE =EF ,∴四边形ABFC 是平行四边形. ∵AC =AB ,∴四边形ABFC 是菱形. (2)解:如答图,连接BD . ∵AB 是直径,∴∠ADB =∠BDC =90°. ∴AB 2-AD 2=CB 2-CD 2. ∴(7+CD )2-72=(2+2)2-CD 2. 解得CD =1.∴AB =AC =AD +CD =7+1=8. ∴BD =82-72=15. ∴S 半圆形=12π·42=8π,S 菱形ABFC =AC ·BD =815.第16题答图1. (2018,襄阳)如图,点A ,B ,C ,D 都在半径为2的⊙O 上.若OA ⊥BC ,∠CDA = 30°,则弦BC 的长为(D)第1题图A. 4B. 2 2C. 3D. 23【解析】 如答图.∵OA ⊥BC ,∴CH =BH ,弧AB =弧AC .∴∠AOB =2∠CDA =60°.∴BH =OB ·sin ∠AOB = 3.∴BC =2BH =2 3.第1题答图2. (2018,某某)如图,AB 是⊙O 的直径,C 是半径OA 的中点,过点C 作DE ⊥AB ,交⊙O 于D ,E 两点,过点D 作直径DF ,连接AF ,则∠DFA =30°.第2题图【解析】 ∵C 是半径OA 的中点,∴OC =12OD .∵DE ⊥AB ,∴∠CDO =30°.∴∠DOA =60°.∴∠DFA =30°.3. (2018,某某,导学号5892921)如图,D 是△ABC 的边BC 上一点,连接AD ,作△ABD 的外接圆,将△ADC 沿直线AD 折叠,点C 的对应点E 落在弧BD 上.(1)求证:AE =AB ;(2)若∠CAB =90°,cos ∠ADB =13,BE =2,求BC 的长.第3题图【思路分析】 (1)由折叠得出∠AED =∠ACD ,AE =AC ,结合∠ABD =∠AED 知∠ABD =∠ACD ,从而得出AB =AC ,据此得证.(2)过点A 作AH ⊥BE 于点H ,由AB =AE 且BE =2知BH =EH =1.根据∠ABE =∠AEB =∠ADB 知cos ∠ABE =cos ∠ADB =BH AB =13,据此得AC =AB =3,利用勾股定理可得答案.(1)证明:由折叠的性质,知△ADE ≌△ADC . ∴∠AED =∠ACD ,AE =AC . ∵∠ABD =∠AED , ∴∠ABD =∠ACD . ∴AB =AC . ∴AE =AB .(2)解:如答图,过点A 作AH ⊥BE 于点H . ∵AB =AE ,BE =2, ∴BH =EH =1.∵∠ABE =∠AEB =∠ADB , ∴cos ∠ABE =cos ∠ADB =13.∴BH AB =13. ∴AB =3.∵∠CAB =90°,AC =AB =3, ∴BC =3 2.第3题答图。
初三数学中考复习圆的基本性质专项练习题含解析
![初三数学中考复习圆的基本性质专项练习题含解析](https://img.taocdn.com/s3/m/e2be41cbcf2f0066f5335a8102d276a20029609e.png)
初三数学中考复习圆的基本性质专项练习题含解析1. 正六边形ABCDEF 内接于⊙O ,正六边形的周长是12,则⊙O 的半径是( B ) A. 3 B .2 C .2 2 D .2 32.如图是“明清影视城”的一扇圆弧形门,小红到影视城游玩,她了解到这扇门的相关数据:这扇圆弧形门所在的圆与水平地面是相切的,AB =CD =0.25米,BD =1.5米,且AB ,CD 与水平地面差不多上垂直的,依照以上数据,请你帮小红运算出这扇圆弧形门的最高点离地面的距离是( B )A .2米B .2.5米C .2.4米D .2.1米3.如图,将⊙O 沿弦AB 折叠,圆弧恰好通过圆心O ,点P 是优弧A MB 上一点,则∠APB 的度数为( D )A .45°B .30°C .75°D .60°4.如图,已知AC 是⊙O 的直径,点B 在圆周上(不与点A ,C 重合),点D 在AC 的延长线上,连结BD 交⊙O 于点E.若∠AOB =3∠ADB ,则(D )A .DE =EB B.2DE =EB C.3DE =DO D .DE =OB5.如图,在⊙O 中,AB 是直径,CD 是弦,AB ⊥CD ,垂足为E ,连结CO ,AD ,∠BAD =20°,则下列说法中正确的是( D )A .AD =2OB B .CE =EOC .∠OCE =40°D .∠BOC =2∠B AD6.如图,四边形PAOB 是扇形OMN 的内接矩形,顶点P 在MN ︵上,且不与点M ,N 重合,当点P 在MN ︵上移动时,矩形PAOB 的形状、大小随之变化,则AB 的长度( A )A .不变B .变小C .变大D .不能确定7.如图,四边形ABCD 为⊙O 内接四边形,延长AB 与DC 相交于点G ,AO ⊥CD ,垂足为E ,连结BD ,∠GBC =50°,则∠DBC 的度数为(C )A .50°B .60°C .80°D .90°8.如图,已知四边形ABCD 内接于半径为4的⊙O 中,且∠C =2∠A ,则BD =__43.9.如图,点A ,B ,C 为⊙O 上的三个点,∠BOC =2∠AOB ,∠BAC =40°,则∠ACB =__20__度.10.如图,已知AM 为⊙O 的直径,直线BC 通过点M ,且AB =AC ,∠BAM =∠CAM ,线段AB 和AC 分别交⊙O 于点D ,E ,∠BMD =40°,则∠EOM =__80°__.11.如图,△ABC 内接于⊙O ,∠ACB =90°,∠ACB 的角平分线交⊙O 于点D.若AC =6,BD =52,则BC 的长为__8__.12.在半径为1的⊙O 中,弦AB ,AC 的长分别为1和2,则∠BAC 的度数为__15°或105°__.13.如图,一条公路的转弯处是一段圆弧(AB ︵).(1)用直尺和圆规作出AB ︵所在圆的圆心O ;(要求保留作图痕迹,不写作法)(2)若AB ︵的中点C 到弦AB 的距离为20 m ,AB =80 m ,求AB ︵所在圆的半径.解:(1)作图如图所示:(2)连结AB ,OB ,OC.设OC 交AB 于点D ,∵AB =80 m ,C 为AB ︵的中点,∴OC ⊥AB.∴AD =BD =40 m ,CD =20 m .设OB =r m ,则OD =(r -20)m.在Rt △OBD 中,OB2=OD2+BD2,∴r2=(r -20)2+402,解得r=50,∴AB ︵所在圆的半径是50 m.14.如图,在△ABC 中,AB =AC ,以AB 为直径的半圆分别交AC ,BC 边于点D ,E ,连结BD.(1)求证:点E 是BD ︵的中点;(2)当BC =12,且AD ∶CD =1∶2时,求⊙O 的半径.解:(1)证明:连结AE ,DE ,∵AB 是直径,∴AE ⊥BC ,∵AB =AC ,∴BE =EC.∵∠CDB =90°,DE 是斜边BC 的中线,∴DE =EB.∴ED ︵=EB ︵,即点E 是BD ︵的中点.(2)设AD =x ,则CD =2x ,∴AB =AC =3x ,∴BD2=(3x)2-x2=8x2.在Rt △CDB 中,(2x)2+8x2=122,∴x =23,∴OA =32x =33,即⊙O 的半径是3 3.15.如图,△ABC 内接于⊙O ,AB =AC ,CO 的延长线交AB 于点D.(1)求证:AO 平分∠BAC ;证明:连结OB. 在△AOB 与△AOC 中,⎩⎪⎨⎪⎧AB =AC ,OB =OC ,AO =AO ,∴△AOB ≌△AOC(SSS), ∴∠BAO =∠CAO ,∴AO 平分∠BAC.(2)若BC =6,sin ∠BAC =35,求AC 和CD 的长.解:过点C 作CE ⊥AB 于点E ,∴sin ∠BAC =CE AC =35.设AC =5m(m >0),则CE =3m ,∴AE =AC2-CE2=(5m )2-(3m )2=4m ,BE =AB -AE =AC -AE =5m -4m =m.在Rt △CBE 中,∠BEC =90°,BC =6,BE =m ,CE =3m ,∴m2+(3m)2=62. 解得m =3105,m =-3105(舍去). ∴AC =5m =5×3105=310.16.在⊙O 中,直径AB =6,BC 是弦,∠ABC =30°,点P 在BC 上,点Q 在⊙O 上,且OP ⊥PQ.(1)如图①,当PQ ∥AB 时,求PQ 的长度;(2)如图②,当点P 在BC 上移动时,求PQ 长的最大值.解:(1)连结OQ ,如图①,∵PQ ∥AB ,OP ⊥PQ ,∴OP ⊥AB.在Rt △OBP 中,∵tan ∠B =OP OB ,∴OP =3tan30°=3,在Rt △OPQ 中,∵OP =3,OQ =3,∴PQ =OQ2-OP2= 6.(2)连结OQ ,如图②,在Rt △OPQ 中,PQ =OQ2-OP2=9-OP2,当OP 的长最小时,PQ 的长最大,现在OP ⊥BC ,则OP =12OB =32,∴PQ长的最大值为9-(32)2=332.。
中考总复习数学第1节 圆的基本性质
![中考总复习数学第1节 圆的基本性质](https://img.taocdn.com/s3/m/87bdc7b101f69e314232947f.png)
∴C6E=160. ∴CE=3.6. ∵OC=12AB=5, ∴OE=OC-EC=5-3.6=1.4.
B 卷(30 分)
四、填空或选择题(每小题 4 分,共 20 分)
11.(2020·凉山州)如图,等边三角形
ABC 和正方形 ADEF 都内接于⊙O,则
AD∶AB=( B )
A.2 2∶ 3
B. 2∶ 3
C. 3∶ 2
D. 3∶2 2
12.(2020·荆州)如图,在 6×6 的正方 形网格中,每个小正方形的边长都是 1,点 A,B,C 均在网格交点上,⊙O 是△ABC 的外接圆,则 cos∠BAC 的值为( B )
5
25
1
3
A. 5
B. 5
C.2
D. 2
13.(2020·武汉)如图,在半径为 3 的⊙O
10.(本题满分 18 分)(2020·衢州)如 图,△ABC 内接于⊙O,AB 为⊙O 的直径, AB=10,AC=6.连接 OC,弦 AD 分别交 OC,BC 于点 E,F,其中点 E 是 AD 的中 点.
(1)求证:∠CAD=∠CBA; (2)求 OE 的长.
解:(1)证明:∵AE=DE,OC 是半径, ∴A︵C=C︵D. ∴∠CAD=∠CBA. (2)∵AB 是直径,∴∠ACB=90°. ∵AE=DE,∴OC⊥AD. ∴∠AEC=90°.∴∠AEC=∠ACB. ∴△AEC∽△BCA.∴CACE=AACB.
4 ∴AB=
3× 3
2 2 =4
2
2,2R=4 33=8. 2
过点 B 作 BH⊥AC 于点 H,
∵∠AHB=∠BHC=90°,
∴AH=AB·cos60°=4 2×21=2 2, CH= 22BC=2 6.
2018届中考数学复习 专题31 圆的基本性质试题(a卷,含解析)
![2018届中考数学复习 专题31 圆的基本性质试题(a卷,含解析)](https://img.taocdn.com/s3/m/c4dc2177f18583d048645957.png)
专题31 圆的基本性质一、选择题1. ( 山东聊城,9,3分)如图所示,四边形ABCD 内接于⊙O ,F 是弧CD 上一点,且»»DFBC =,连接CF 并延长交AD 的延长线于点E ,连接AC ,若∠ABC=105°,∠BAC=25°,则∠E 的度数为A 、45°B 、50°C 、55°D 、60° 【答案】B 【逐步提示】第一步先利用圆的内接四边形对角互补的性质求出∠ACD 的度数,第二步利用等弧所对的圆周角相等求出∠DCE ,第三步利用三角形的一个外角等于不相邻两个内角的和求出∠E 的度数.【详细解答】解:因为,四边形ABCD 内接于⊙O ,所以∠ADC=180°-∠ABC=180°-105°=75°,又因为»»DFBC =,所以∠DCE=∠BAC=25°,又因为∠ADC=∠DCE+∠E ,所以∠E=∠ADC-∠DCE=75°-25°=50°,故选择B .【解后反思】本题考查了圆内接四边形及性质,解题的关键是掌握圆内接四边形的性质,并结合三角形内外角关系解决问题.等弧所对的圆周角相等;圆内接四边形对角互补;三角形的一个外角等于不相邻两个内角的和. 【关键词】圆内接四边形及性质 ;圆心角、圆周角定理;与三角形有关的线段、角;;2.( 山东泰安,10,3分)如图,点A 、B 、C 是圆O 上的三点,且四边形ABCO 是平行四边形,OF ⊥OC 交圆O于点F ,则∠BAF 等于( )A .12.5°B .15°C .20°D .22.5° 【答案】B 【逐步提示】本题考查了垂径定理及等边三角形的判定及性质,解题的关键是利用圆的有关性质及平行四边形的AOC B F 第10题图性质判定三角形的形状.连接OB ,由四边形ABCO 是平行四边形,可知AB OC ∥,再由半径相等可得△ABO 为等边三角形,由OF ⊥OC 可得OF ⊥AB ,从而知道∠BOF 的度数,利用同弧所对的圆周角等于圆心角的一半,可以计算出∠BAF 的度数.【详细解答】解:连接OB ,∵四边形ABCO 是平行四边形,∴AB OC ∥,∵OA =OB =OC ,∴AB =OB =OA ,∴△ABO 为等边三角形,∴∠AOB =60°.又∵OF ⊥OC ,∴OF ⊥AB ,∴∠BOF =12∠AOB =30°,∴∠BAF =12∠BOF =15°.故选择B .【解后反思】(1)圆周角定理能有效地把圆心角与圆周角联系起来即在同圆或等圆中圆周角的度数等于同弧或等弧所对的圆心角的一半;(2)圆中任意两条半径和弦组成的三角形都是等腰三角形.此题利用平行四边形对边平行且相等的性质,并结合圆中半径都相等,得到一个等边三角形,从而求得一个60°的角,这是解决问题的关键所在.【关键词】平行四边形的性质;等边三角形;圆心角、圆周角定理.3. ( 山东泰安,17,3分)如图,△ABC 内接于⊙O ,AB 是⊙O 的直径,∠B =30°,CE 平分∠ACB 交⊙O 于E ,交AB 于点D ,连接AE ,则ADE CDB S S ∆∆:的值等于( )A .1.1.1:2 D .2:3【答案】D 【逐步提示】本题考查了圆的有关性质及相似三角形的判定与性质,解决本题的关键是掌握有关的性质及图形之间的联系.因为可以知道△ADE ∽△CDB ,面积比就等于相似比的平方.所以求出相似比AEBC即可.因为AB 是⊙O AOCB F 第10题图AB第17题图的直径,∠B =30°,可知BC =AB cos30°,再找出AE 与AB 的关系就可以了.因为CE 平分∠ACB ,连接BE 可知△AEB 为等腰直角三角形,AE =AB cos45°.这样就知道了AEBC,问题解决.【详细解答】解:连接BE ,∵AB 为⊙O 的直径,∴∠ACB =∠AEB =90°,在Rt △ABC 中,∠B =30°,∴BC =AB cos30°AB .∵ CE 平分∠ACB ,∴∠ACE =∠BCE =45°,∵∠BCE =∠BAE ,∴∠BAE =45°,∴AE =AB cos45°=AB,∴AB AE BC,∵∠BCE =∠BAE ,∠ADE =∠CDB ,∴△ADE ∽△CDB ,∴ADE CDB S S ∆∆=223= 故答案为D .【解后反思】求两个三角形的面积关系首先判断两个三角形是否相似,如果相似可以用相似三角形的性质:两个相似三角形面积比等于相似比的平方去解决.此题解题的关键是利用直径所对的圆周角是直角得到两个直角三角形,然后通过特殊角的三角形函数值找到线段AE 与BC 的等量关系.【关键词】圆周角定理 ;特殊角的三角函数值;相似三角形的判定;相似三角形的性质4. ( 山东潍坊,9,3分)如图,在平面直角坐标系中,⊙M 与x 轴相切于点A (8,0).与y 轴分别交于点B (0,4)与点C (0,16).则圆心M 到坐标原点O 的距离是( ) A .10 B...【答案】D【逐步提示】本题考查了垂径定理及图形与坐标,解题的关键是作出辅助线,利用勾股定理进行解答.过点M 作MN ⊥BC ,交BC 于点N ,连接OM 、BM ,先利用垂径定理求出BN 的长度,再利用勾股定理求出⊙M 的半径,然后利用勾股定理求OM 的长度.【详细解答】解:过点M 作MN ⊥BC ,交BC 于点N ,连接OM 、BM ,AB第17题图由A(8,0)、B(0,4)、C(0,16)可得:OA=8,BC=16-4=12.∴MN=OA=8,BN=12BC=6∴在Rt△MNB中,BM10==,即⊙M的半径为10.∴ON=10.在Rt△OMN中,OM===故选择D .【解后反思】垂径定理与勾股定理联系密切,解此类题时需注意构造直角三角形,利用勾股定理进行解答.【关键词】垂径定理;勾股定理;平面直角坐标系;5.(山东省烟台市,10,3分)如图,Rt△ABC的斜边AB与量角器的直径恰好重合,B点与0刻度线的一端重合,∠ABC=40°,射线CD绕点C转动,与量角器外沿交于点D.若射线CD将△ABC分割出以BC为边的等腰三角形,则点D在量角器上对应的度数是()【答案】D【逐步提示】由于不明确等腰三角形的边和腰,所以要分两种情况进行讨论:当BC为底边时,当BC为腰时,分别求出∠BCD的度数,即可求解.在求解过程中要注意:点C在以AB为直径的圆上,所以点D在量角器上对应的度数等于2∠BCD的度数.【详细解答】解:∵∠ACB=90°,∴点C在以AB为直径的圆上.分两种情况进行讨论:当BC为底边时,∠BCD=∠ABC=40°,∴点D在量角器上对应的度数是40°⨯2=80°,当BC为腰时,∠BCD=240180︒-︒=70°,∴点D在量角器上对应的度数是70°⨯2=140°,故选择D .【解后反思】解此题的关键是掌握圆心角、圆周角定理和等腰三角形的定义和性质.1.圆周角定理的推论:圆周角的度数等于它所对弧上的圆心角度数的一半.2.已知顶角求底角的方法:底角=1802-顶角.3.解决与圆有关的角度的相关计算时,一般先判断角是圆周角还是圆心角,再转化成同弧所对的圆周角或圆心角,然后利用圆周角定理以及推论求解,特别地,当有直径这一条件时,往往要用到直径所对的圆周角是直角这一性质;或是当有直角时,往往要用到90°的圆周角所对的斜边是直径..4.没有明确等腰三角形的底或腰时,一定要注意分类讨论.分类讨论是一种重数学思想,在研究数学问题时,常常需要通过分类讨论解决问题.分类要依据一个标准,且要做到不重不漏. 【关键词】等腰三角形;圆周角;弧;分类讨论思想;6.(浙江杭州,8,3分)如图,已知AC 是⊙O 的直径,点B 在圆周上(不与A .C 重合),点D 在AC 的延长线上,连结BD 交⊙O 于点E .若∠AOB =3∠ADB ,则( )A .DE =EB B .2DE =EBC .3DE =DOD .DE =OB【答案】D .【逐步提示】本题考查了圆的性质和等腰三角形的性质与判断,解题的关键是充分利用半径相等、等腰三角形的两底角相等及等角对等边等有关性质.由四个选项中都是线段DE 与相关线段的大小比较,且题目中条件为角之间的倍数关系,这样就联想到通过三角形之间的边角关系来探索相关线段的数量关系了:不妨连接OE ,首先由OB =OE ,得到∠B =∠OEB ;再由三角形的外角性质,得到∠AOB =∠B +∠D ,∠OEB =∠EOD +∠D ,加上已知条件∠AOB =3∠ADB ,就不难推导出∠DOE =∠D ,最后由等角对等边,得到DE =EO =OB . 【解析】连接OE ,如下图. ∵OB =OE , ∴∠B =∠OEB .∵∠AOB =∠B +∠D ,∠OEB =∠EOD +∠D ,∠AOB =3∠ADB , ∴∠B =∠OEB =2∠D . ∴∠DOE =∠D . ∴DE =EO =OB . 故选择D .【解后反思】本题是一道探究题,由两个角之间的3倍关系去探索线段DE 与图中相关线段的数量关系.如何充分利用已知条件与图形中隐含的条件,是解题的关键.连接OE 后,就容易利用圆的半径相等,加上等腰三角形的性质与判定定理及三角形的外角性质,得到图中两组相等的角及这两组角的对边也相等的结论,从而就探究出DE 与圆的半径相等的正确结论了.【关键词】圆的性质;等腰三角形的性质和判定;三角形的外角性质第8题图第7题图7.(浙江金华,9,3分)足球射门,不考虑其他因素,仅考虑射点到球门AB 的张角大小时,张角越大,射门越好.如图的正方形网格中,点A,B,C,D,E 均在格点上,球员带球沿CD 方向进攻,最好的射点在( )A.点CB.点D 或点EC.线段DE (异于端点) 上一点D.线段CD (异于端点) 上一点【答案】C【逐步提示】认真审题确定解题思路,过A . B .D 三点作圆,可以根据圆内角、圆周角及圆外角的性质确定各射点到球门AB 的张角,比较各张角的大小,确定答案.【解析】连接EB .AD .DB .AC .CB ,作过点A .B .D 的圆,可以确定点E 在圆上,点C 在圆外,根据圆周角及圆外角的性质可以确定∠AEB=∠ADB>∠ACB ,所以最好的射点是线段DE (异于端点) 上一点,故选择C.【解后反思】解题的关键在于构造圆,然后根据圆周角、圆内角及圆外角的性质确定各张角的大小,进而得出结论.【关键词】圆周角;“网格”数学题型8.(淅江丽水,10,3分)如图,已知⊙O 是等腰Rt △ABC 的外接圆,点D 是AC 上一点,BD 交AC 于点E ,若BC=4,AD=45,则AE 的长是A.3B.2C.1D.1.2 【答案】【逐步提示】确定AC=BC ,△CBE ∽△DAE ,根据相似比判断各选项中的数据是否正确.(第9题图)【解析】由题意得AC=BC=4,BD=285,△CBE∽△DAE,所以AE:BE=DE:CE=AD:CB=45:4=15,所以BE˙DE=AE˙CE,若AE=3,则BE=15>285,错误;若AE=2,则BE=10>285,错误;若AE=1,则BE=5,DE=35,CE=4-1=3,此时满足BE˙DE=AE˙CE,故AE=1;若AE=1.2,则BE=6>285,错误,故选择C.【解后反思】根据题意确定图形中各线段间的关系,然后根据已知条件对所给选项进行验证得出正确的结论.【关键词】圆;相似三角形的性质;验证法;;9.(四川达州,7,3分)如图,半径为3的⊙A经过原点O和点C(0,2),B是y轴左侧⊙A优弧上一点,则tan∠OBC 为第7题图A.13B.2 2C.24D.223【答案】C【逐步提示】本题主要考查了圆中有关计算.解题的关键是把∠OBC的正切值转化到直角三角形中求解.解题是:如图,连接CD,则CD是⊙A的直径,且∠OBC=∠ODC,在Rt△OCD中可求得tan∠ODC.【详细解答】解:连接CD,∵∠COD=90°,∴CD是⊙A的直径,∠OBC=∠ODC,在Rt△OCD中,OD=62-22=42,∴tan∠ODC=242=24故选择C.【解后反思】解答这类问题时,往往将坐标系内的点坐标转化为线段的长度,进而化归到直角三角形中,应用三角函数定义求得三角函数值.求锐角三角函数的方法:(1)直接定义法;(2)构造直角三角形;(3)借助三角函数关系求值.【关键词】圆周角定理及推论;三角函数10.(四川乐山,7,3分)如图4,C、D是以线段AB为直径的⊙O上两点,若CA=CD,且∠ACD=40°,则∠CAB= ( ).A.10°B.20°C.30°D.40°图4【答案】B.【逐步提示】欲求∠CAB,在Rt△ABC中,由AB是⊙O的直径得到∠ACB=90°,所以只需知道∠ABC的度数,在⊙O中,∠ABC=∠ADC,这样在等腰三角形ACD中,由∠ACD=40°可得解.【详细解答】解:∵CA=CD,并且∠ACD=40°,∴∠ADC=70°.在⊙O中,∵AB为直径,∠ACB=90°,∵∠ABC 与∠ADC是⊙O中»AC的圆周角,∴∠ABC=∠ADC=70°,∴∠CAB=∠AC B-∠ABC= 90°-70=20°,故选择B.【解后反思】对于圆的有关性质的考查,一般会将圆周角、圆心角,弧、弦、弦心距等量之间的关系合并考查,解题的关键是明确相关性质.本题涉及到的有:①在同圆(或等圆)中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等;②直径其所对的圆周角是90°.【关键词】等腰三角形性质;圆周角定理11.(四川省自贡市,5,4分)如图,⊙O中,弦AB与CD交于点M,∠A=45°,∠AMD=75°,则∠B的度数是A.15° B.25° C.30° D.75°【答案】C【逐步提示】∠B为圆周角,可以考虑将其转移,再利用三角形的内外角关系求解即可.【详细解答】解:∵∠A=45°,∠AMD=75°,∴∠C=30°,∴∠B=30°,故选择C.【解后反思】求角度数问题,通常手段就是转移和分解,本题在第一步是将角分解求出∠C,再利用转移的方法求出∠B.【关键词】三角形的内角和;圆心角、圆周角定理二、填空题1. .(山东青岛,11,3分)如图,AB是⊙O的直径,C , D是⊙O上的两点,若∠BCD = 28° ,则∠ABD= °.【答案】62【逐步提示】∠ABD 和∠ACD 都是弧AD 所对的圆周角,故只要求出∠ACD 的度数即可;根据“直径所对的圆周角是直角”可知∠ACB =90°,进而由∠BCD 的度数可求得∠ACD 的度数,问题得解. 【详细解答】解:∵AB 是⊙O 的直径,∴∠ACB =90°.∵∠BCD =28°,∴∠ACD =90°-28°=62°,∴∠ABD =62°,故答案为62.【解后反思】与圆周角有关的知识点有:半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是圆的直径;同弧(或等弧)所对的圆周角等于圆心角的一半. 【关键词】 圆周角;圆周角定理2. ( 山东省枣庄市,15,4分)如图,在半径为3的⊙O 中,直径AB 与弦CD 相交于点E ,连接AC ,BD ,若AC =2,【答案】【逐步提示】本题考查了有关圆周角的性质,解题的关键是运用直径所对圆周角为直角及同弧所对圆周角相等把∠D 与直角三角形联系起来.连接BC ,利用直径所对圆周角为直角,解Rt △ABC ,然后利用同弧或等弧所对的圆周角相等,即可求得tan D 的值.【详细解答】解:连接BC ,∵AB 为⊙O 直径,∠ACB =90°,又∵AB =2r =6,∴BC =∵BC =BC ,∴∠D =∠A ,∴tan D =tan A =BCAC=,故答案为【解后反思】在圆中解决与角有关的问题时,常用的是弧、弦、圆心角的对应关系和圆周角定理,从而实现圆心角与圆周角、圆周角与圆周角的互换.若如涉及到三角函数,通常利用直径所对圆周角为直角,或构造垂径定理三角形求解.【关键词】 圆心角、圆周角定理;锐角三角函数值的求法DBD3.(重庆A,15,4分)如图,OA,OB是⊙O的半径,点C在⊙O上,连接AC,BC. 若∠AOB=120°,则∠ACB=_______度.【答案】60【逐步提示】∠AOB与∠ACB是同弧(AB)所对的圆心角和圆周角,则∠ACB=12∠AOB.【解析】∵∠AOB=120°,∠AOB所对的弧为AB,AB所对的圆周角为∠ACB,∴∠ACB=12∠AOB=12×120°=60°.故答案为60.【解后反思】在圆中,同弧所对的圆周角是它所对圆心角的一半.【关键词】圆心角、圆周角定理4.(重庆B,15,4分)如图,CD是⊙O的直径,若AB⊥CD,垂足为B,∠OAB=40°,则∠C等于度.【答案】25【逐步提示】利用直角三角形的两个锐角互余,由∠OAB的度数可求得∠AOB的度数,再根据同弧所对的圆周角与圆心角的关系求解.【解析】∵AB⊥CD,∠OAB=40°,∴∠AOB=50°. ∵∠C与∠AOB分别为AD所对的圆周角和圆心角,∴∠C=12∠AOB=25°. 故答案为25.【解后反思】在圆中,求角的度数时,首先要考虑要求的角是圆周角还是圆心角,再根据圆心角、圆周角的性质定理求解. 在同圆中,同弧所对的圆周角等于它所对的圆心角的一半.【关键词】三角形的内角和;圆心角、圆周角定理5.(四川省巴中市,16,3分)如图,∠A是⊙O的圆周角,∠OBC=550,则∠A= .【答案】350.【逐步提示】本题考查了圆心角、圆周角定理及其推论,解题的关键是理解并能熟练运用圆心角、圆周角定理及其推论,在⊙O中,弧BC所对的圆心角和圆周角分别是∠BOC和∠BAC,在△BOC中,OB=OC,由∠OBC=550,可以求得圆心角∠BOC的度数,从而求得圆周角∠A的度数.【详细解答】解:∵OB=OC,∴∠OCB=∠OBC=550,∴∠BOC=700,∴∠A=12∠BOC=350,故答案为350. 【解后反思】解决与圆有关的角度的相关计算时,一般先判断角是圆周角还是圆心角,再转化成同弧所对的圆周角或圆心角,利用同弧所对的圆周角相等,同弧所对的圆周角是圆心角的一半等关系求解 【关键词】圆心角、圆周角定理;6. ( 四川省成都市,23,4分)如图,△ABC 内接于⊙O ,AH ⊥BC 于点H ,若AC =24,AH =18,⊙O 的半径OC=13,则AB = .【答案】392. 【逐步提示】本题考查了圆周角定理、相似三角形的判定及性质等相关知识,解题的关键是利用直径所对圆周角为直角及同弧所对圆周角相等,构造相似三角形.延长CO 交⊙O 于点E ,连接AM ,证明△AMC ∽△HBA ,然后利用相似三角形的性质即可求出AB 的值.【详细解答】解:延长CO 交⊙O 于点M ,连接AM .∵CM 是⊙O 的直径,∴∠MAC =90°,∵AH ⊥BC ,∴∠MAC =∠AHB = 90°,又∵∠M =∠B ,∴△AMC ∽△HBA ,∴AC AH =CM AB ,∵CM =2OC =26,即2418=26AB ,∴AB =182624⨯=392. 【解后反思】在有关圆的问题中,有直径通常作直径所对的圆周角,构造直角三角形;有弧、弦中点,通常连弧、弦中点与圆心,应用垂径定理;有切线,连过切点的半径.【关键词】圆心角、圆周角定理 ;相似三角形的判定;相似三角形的性质7. ( 四川南充,15,3分)如图是由两个长方形组成的工件平面图(单位,mm ),直线l 是它的对称轴,能完全覆盖这个平面图形的圆面的最小半径是 mm .【答案】50 【逐步提示】本题考查的圆内接四边形,是垂径定理,解题的关键是根据题意画出图形,利用数形结合进行解答. 根据已知条件得到CM=30,AN=40,根据勾股定理列方程得到OM=40,由勾股定理得到结论. 【详细解答】解:设圆心为O,由题意知,点O 在l 上。
中考数学二轮复习专题 圆的基本性质及答案详解
![中考数学二轮复习专题 圆的基本性质及答案详解](https://img.taocdn.com/s3/m/e4fbb5fe541810a6f524ccbff121dd36a22dc45b.png)
中考数学二轮复习专题圆的基本性质一、单选题1.如图,AB是⊙O的弦,圆心O到弦AB的距离,点C是弧AB中点,点D是优弧AB上的一点,,则弦AB的长为()A.6B.9C.10D.122.如图,△ABC内接于⊙O,∠B=65°,∠C=70°,若BC=2 ,则的长为()A.πB.πC.2πD.π3.如图,菱形中,,.以A为圆心,长为半径画,点P为菱形内一点,连,,.若,且,则图中阴影部分的面积为()A.B.C.D.4.如图,中,,,,,为,边上的两个动点,且,为中点,则的最小值为()A.B.C.D.5.如图,上有A、B两点,点C为弧AB上一点,点P是外一点,且,,则的度数为()A.B.C.D.6.如图,点A,B,C,D为⊙O上的四个点,AC平分∠BAD,AC交BD于点E,CE=2,CD=3,则AE的长为()A.2B.2.5C.3D.3.57.如图,点是以为直径的半圆上的动点,于点,连接,设,则下列函数图象能反映与之间关系的是()A.B.C.D.8.以为中心点的量角器与直角三角板按如图方式摆放,量角器的0刻度线与斜边重合.点为斜边上一点,作射线交弧于点,如果点所对应的读数为,那么的大小为()A.B.C.D.9.如图,A,B,C,D是⊙O上的点,则图中与∠A相等的角是()A.∠B B.∠C C.∠DEB D.∠D10.如图,点C,D是劣弧上两点,CD∥AB,∠CAB=45°,若AB=6,CD=2,则所在圆的半径长为()A.B.C.2 D.二、填空题11.如图,点A、B、C在⊙O上,∠ACB+∠AOB=90°,则∠ACB的大小为12.如图,水平放置的圆柱形油桶的截面半径是,油面高为,截面上有油的弓形(阴影部分)的面积为.13.如图,在半径为5的⊙O中,弦AB=8,P是弦AB所对的优弧上的动点,连接AP,过点A作AP的垂线交射线PB于点C,当△PAB是等腰三角形时,线段BC的长为.14.如图5,AB是半圆O 的直径,E是BC的中点,OE交弦BC于点D,已知BC=8cm,DE=2cm,则AD的长为cm.15.如图,AB是的直径,点C,D,E都在上,∠1=55°,则∠2=°16.在中,若,,则的面积的最大值为. 17.已知:如同,△ABC内接于⊙O,且半径OC⊥AB,点D在半径OB的延长线上,且∠A=∠BCD=30°,AC=2,则由,线段CD和线段BD所围成图形的阴影部分的面积为.18.如图,网格纸中每个小正方形的边长为1,一段圆弧经过格点,点O为坐标原点.(1)该图中弧所在圆的圆心D的坐标为;.(2)根据(1)中的条件填空:①圆D的半径=(结果保留根号);②点(7,0)在圆D(填“上”、“内”或“外”);③∠ADC的度数为.三、作图题19.如图,破残的圆形轮片上,弦AB的垂直平分线交弧AB于点C,交弦AB于点D.已知:AB=24cm, CD=8cm(1)求作此残片所在的圆(不写作法,保留作图痕迹)(2)求(1)中所作圆的半径四、解答题20.如图,在⊙O中,半径OC垂直弦AB于D,点E在⊙O上,∠E=22.5°,AB=2.求半径OB 的长.21.小王在学习浙教版九上课本第72页例2后,进一步开展探究活动:将一个矩形ABCD绕点A顺时针旋转α(0°<α≤90°),得到矩形AB′C′D′,连结BD.[探究1]如图1,当α=90°时,点C′恰好在DB延长线上.若AB=1,求BC的长.[探究2]如图2,连结AC′,过点D′作D′M∥AC′交BD于点M.线段D′M与DM相等吗?请说明理由.[探究3]在探究2的条件下,射线DB分别交AD′,AC′于点P,N(如图3),发现线段DN,MN,PN存在一定的数量关系,请写出这个关系式,并加以证明.五、综合题22.如图,在△ABC中,∠BAC=90°,点E在BC边上,且CA=CE,过A,C,E三点的⊙O交AB于另一点F,作直径AD,连结DE并延长交AB于点G,连结CD,CF.(1)求证:四边形DCFG是平行四边形;(2)当BE=4,CD=AB时,求⊙O的直径长.23.以的一条边AC为直径的⊙O与BC相交于点D,点D是BC的中点,过点D作⊙O的切线交AB于点E.(1)求证:AB=AC;(2)若BE=1,,求⊙O的半径.24.如图,在等腰△ABC中,AB=AC,以AC为直径作⊙O交BC于点D,过点D作DE⊥AB,垂足为E.(1)求证:DE是⊙O的切线.(2)若DE= ,∠C=30°,求的长。
最新初中数学圆的分类汇编及解析(3)
![最新初中数学圆的分类汇编及解析(3)](https://img.taocdn.com/s3/m/a170269fbb68a98270fefa27.png)
最新初中数学圆的分类汇编及解析(3)一、选择题1.如图,已知圆O的半径为10,AB⊥CD,垂足为P,且AB=CD=16,则OP的长为()A.6 B.6C.8 D.8【答案】B【解析】【分析】作OM⊥AB于M,ON⊥CD于N,连接OP,OB,OD,首先利用勾股定理求得OM的长,然后判定四边形OMPN是正方形,求得正方形的对角线的长即可求得OP的长.【详解】作OM⊥AB于M,ON⊥CD于N,连接OP,OB,OD,∵AB=CD=16,∴BM=DN=8,∴OM=ON==6,∵AB⊥CD,∴∠DPB=90°,∵OM⊥AB于M,ON⊥CD于N,∴∠OMP=∠ONP=90°∴四边形MONP是矩形,∵OM=ON,∴四边形MONP是正方形,∴OP=.故选B.【点睛】本题考查的是垂径定理,正方形的判定与性质及勾股定理,根据题意作出辅助线,构造出直角三角形是解答此题的关键.2.已知,如图,点C,D在⊙O上,直径AB=6cm,弦AC,BD相交于点E,若CE=BC,则阴影部分面积为()A.934π-B.9942π-C.39324π-D.3922π-【答案】B【解析】【分析】连接OD、OC,根据CE=BC,得出∠DBC=∠CEB=45°,进而得出∠DOC=90°,根据S阴影=S 扇形-S△ODC即可求得.【详解】连接OD、OC,∵AB是直径,∴∠ACB=90°,∵CE=BC,∴∠CBD=∠CEB=45°,∴∠COD =2∠DBC=90°,∴S阴影=S扇形−S△ODC=2903360π⋅⋅−12×3×3=94π−92.故答案选B.【点睛】本题考查的知识点是扇形面积的计算,解题的关键是熟练的掌握扇形面积的计算.3.如图,点I为△ABC的内心,AB=4,AC=3,BC=2,将∠ACB平移使其顶点与I重合,则图中阴影部分的周长为()A.4.5 B.4 C.3 D.2【答案】B【解析】【分析】连接AI、BI,因为三角形的内心是角平分线的交点,所以AI是∠CAB的平分线,由平行的性质和等角对等边可得:AD=DI,同理BE=EI,所以图中阴影部分的周长就是边AB 的长.【详解】连接AI、BI,∵点I为△ABC的内心,∴AI平分∠CAB,∴∠CAI=∠BAI,由平移得:AC∥DI,∴∠CAI=∠AID,∴∠BAI=∠AID,∴AD=DI,同理可得:BE=EI,∴△DIE的周长=DE+DI+EI=DE+AD+BE=AB=4,即图中阴影部分的周长为4,故选B.【点睛】本题考查了三角形内心的定义、平移的性质及角平分线的定义等知识,熟练掌握三角形的内心是角平分线的交点是关键.4.如图,四边形ABCD为⊙O的内接四边形.延长AB与DC相交于点G,AO⊥CD,垂足为E,连接BD,∠GBC=50°,则∠DBC的度数为()A.50°B.60°C.80°D.90°【答案】C【解析】【分析】根据圆内接四边形的性质得:∠GBC =∠ADC =50°,由垂径定理得:··CMDM =,则∠DBC =2∠EAD =80°.【详解】如图,∵四边形ABCD 为⊙O 的内接四边形,∴∠GBC =∠ADC =50°.∵AE ⊥CD ,∴∠AED =90°,∴∠EAD =90°﹣50°=40°,延长AE 交⊙O 于点M .∵AO ⊥CD ,∴··CMDM =,∴∠DBC =2∠EAD =80°. 故选C .【点睛】本题考查了圆内接四边形的性质:圆内接四边形的任意一个外角等于它的内对角,还考查了垂径定理的应用,属于基础题.5.如图,弧 AB 等于弧CD ,OE AB ⊥于点E ,OF CD ⊥于点F ,下列结论中错误..的是( )A .OE=OFB .AB=CDC .∠AOB =∠COD D .OE >OF【答案】D【解析】【分析】 根据圆心角、弧、弦的关系可得B 、C 正确,根据垂径定理和勾股定理可得A 正确,D 错误.【详解】解:∵»»AB CD =,∴AB =CD ,∠AOB =∠COD ,∵OE AB ⊥,OF CD ⊥,∴BE =12AB ,DF =12CD ,∴BE =DF ,又∵OB =OD ,∴由勾股定理可知OE =OF ,即A 、B 、C 正确,D 错误,故选:D .【点睛】本题考查了圆心角、弧、弦的关系,垂径定理,勾股定理,熟练掌握基本性质定理是解题的关键.6.如图,用半径为12cm ,面积272cm π的扇形无重叠地围成一个圆锥,则这个圆锥的高为( )A .12cmB .6cmC .6√2 cmD .63 cm【答案】D【解析】【分析】先根据扇形的面积公式计算出扇形的圆心角,再利用周长公式计算出底面圆的周长,得出半径.再构建直角三角形,解直角三角形即可.【详解】 72π=212360n π⨯ 解得n=180°,∴扇形的弧长=18012180π⨯=12πcm . 围成一个圆锥后如图所示:因为扇形弧长=圆锥底面周长即12π=2πr解得r=6cm ,即OB=6cm根据勾股定理得22126=63-,故选D .【点睛】本题综合考查了弧长公式,扇形弧长=用它围成的圆锥底面周长,及勾股定理等知识,所以学生学过的知识一定要结合起来.7.已知⊙O的直径CD=10cm,AB是⊙O的弦,AB=8cm,且AB⊥CD,垂足为M,则AC的长为()A.25cm B.45 cm C.25cm或45cm D.23cm或43cm【答案】C【解析】连接AC,AO,∵O的直径CD=10cm,AB⊥CD,AB=8cm,∴AM=12AB=12×8=4cm,OD=OC=5cm,当C点位置如图1所示时,∵OA=5cm,AM=4cm,CD⊥AB,∴222254OA AM-=-=3cm,∴CM=OC+OM=5+3=8cm,∴22224845AM CM+=+=;当C点位置如图2所示时,同理可得OM=3cm,∵OC=5cm,∴MC=5−3=2cm,在Rt△AMC中22224225AM CM+=+=cm.故选C.8.中国科学技术馆有“圆与非圆”展品,涉及了“等宽曲线”的知识.因为圆的任何一对平行切线的距离总是相等的,所以圆是“等宽曲线”.除了例以外,还有一些几何图形也是“等宽曲线”,如勒洛只角形(图1),它是分别以等边三角形的征个顶点为圆心,以边长为半径,在另两个顶点间画一段圆弧.三段圆弧围成的曲边三角形.图2是等宽的勒洛三角形和圆.下列说法中错误的是( )A .勒洛三角形是轴对称图形B .图1中,点A 到¶BC上任意一点的距离都相等 C .图2中,勒洛三角形上任意一点到等边三角形DEF 的中心1O 的距离都相等 D .图2中,勒洛三角形的周长与圆的周长相等【答案】C【解析】【分析】根据轴对称形的定义,可以找到一条直线是的图像左右对着完全重合,则为轴对称图形.鲁列斯曲边三角形有三条对称轴. 鲁列斯曲边三角形可以看成是3个圆心角为60°,半径为DE 的扇形的重叠,根据其特点可以进行判断选项的正误.【详解】鲁列斯曲边三角形有三条对称轴,就是等边三角形的各边中线所在的直线,故正确;点A 到¶BC上任意一点的距离都是DE ,故正确; 勒洛三角形上任意一点到等边三角形DEF 的中心1O 的距离都不相等,1O 到顶点的距离是到边的中点的距离的2倍,故错误;鲁列斯曲边三角形的周长=3×60180DE DE ππ⨯=⨯ ,圆的周长=22DE DE ππ⨯=⨯ ,故说法正确.故选C.【点睛】主要考察轴对称图形,弧长的求法即对于新概念的理解.9.如图,已知AB 是⊙O 是直径,弦CD ⊥AB ,AC =22,BD =1,则sin ∠ABD 的值是( )A .22B .13C .223D .3【答案】C【解析】【分析】 先根据垂径定理,可得BC 的长,再利用直径对应圆周角为90°得到△ABC 是直角三角形,利用勾股定理求得AB 的长,得到sin ∠ABC 的大小,最终得到sin ∠ABD【详解】解:∵弦CD ⊥AB ,AB 过O ,∴AB 平分CD ,∴BC =BD ,∴∠ABC =∠ABD ,∵BD =1,∴BC =1,∵AB 为⊙O 的直径,∴∠ACB =90°,由勾股定理得:AB =()22222213AC BC +=+=, ∴sin ∠ABD =sin ∠ABC =22AC AB = 故选:C .【点睛】本题考查了垂径定理、直径对应圆周角为90°、勾股定理和三角函数,解题关键是找出图形中的直角三角形,然后按照三角函数的定义求解10.如图,点A 、B 、C 、D 、E 、F 等分⊙O ,分别以点B 、D 、F 为圆心,AF 的长为半径画弧,形成美丽的“三叶轮”图案.已知⊙O 的半径为1,那么“三叶轮”图案的面积为( )A .π+332B .π-332C .332π+ D 33π-【答案】B【解析】【分析】连接OA 、OB 、AB ,作OH ⊥AB 于H ,根据正多边形的中心角的求法求出∠AOB ,根据扇形面积公式计算.【详解】连接OA 、OB 、AB ,作OH ⊥AB 于H ,∵点A 、B 、C 、D 、E 、F 是⊙O 的等分点,∴∠AOB=60°,又OA=OB ,∴△AOB 是等边三角形,∴AB=OB=1,∠ABO=60°,∴OH=2211()2-=32, ∴“三叶轮”图案的面积=(2601360π⨯⨯-12×1×32)×6=π-33, 故选B .【点睛】本题考查的是正多边形和圆、扇形面积的计算,掌握正多边形的中心角的求法、扇形面积公式是解题的关键.11.如图,AB 是⊙O 的直径,AC 是⊙O 的切线,连接OC 交⊙O 于点D ,连接BD ,∠C=40°.则∠ABD 的度数是( )A .30°B .25°C .20°D .15°【答案】B【解析】 试题分析:∵AC 为切线 ∴∠OAC=90° ∵∠C=40° ∴∠AOC=50°∵OB=OD ∴∠ABD=∠ODB ∵∠ABD+∠ODB=∠AOC=50° ∴∠ABD=∠ODB=25°. 考点:圆的基本性质.12.如图,四边形ABCD 是⊙O 的内接四边形,若∠BOD=86°,则∠BCD 的度数是( )A.86°B.94°C.107°D.137°【答案】D【解析】【分析】【详解】解:∵∠BOD=86°,∴∠BAD=86°÷2=43°,∵∠BAD+∠BCD=180°,∴∠BCD=180°-43°=137°,即∠BCD的度数是137°.故选D.【点睛】本题考查圆内接四边形的对角互补.②圆内接四边形的任意一个外角等于它的内对角(就是和它相邻的内角的对角).13.如图,在圆O中,直径AB平分弦CD于点E,且CD=43,连接AC,OD,若∠A与∠DOB互余,则EB的长是()A.3B.4 C3D.2【答案】D【解析】【分析】连接CO,由直径AB平分弦CD及垂径定理知∠COB=∠DOB,则∠A与∠COB互余,由圆周角定理知∠A=30°,∠COE=60°,则∠OCE=30°,设OE=x,则CO=2x,利用勾股定理即可求出x,再求出BE即可.【详解】连接CO,∵AB平分CD,∴∠COB=∠DOB,AB⊥CD,3∵∠A与∠DOB互余,∴∠A+∠COB=90°,又∠COB=2∠A,∴∠A=30°,∠COE=60°,∴∠OCE=30°,设OE=x,则CO=2x,∴CO2=OE2+CE2即(2x)2=x2+(23)2解得x=2,∴BO=CO=4,∴BE=CO-OE=2.故选D.【点睛】此题主要考查圆内的综合问题,解题的关键是熟知垂径定理、圆周角定理及勾股定理.14.如图,在扇形AOB中,∠AOB=90°,OA=4,以OB为直径作半圆,圆心为点C,过点C 作OA的平行线分别交两弧点D、E,则阴影部分的面积为()A.53π﹣3B.533C.3πD353π【答案】A【解析】【分析】连接OE.可得S阴影=S扇形BOE-S扇形BCD-S△OCE.根据已知条件易求得BC=OC=CD=2,BO=OE=4.∠BOE=60o,CE=23所以由扇形面积公式、三角形面积公式进行解答即可.【详解】解:连接OE,可得S阴影=S扇形BOE-S扇形BCD-S△OCE,由已知条件可得,BC=OC=CD=2,又,BO=OE=4,∴∠BOE=o60,可得CE=23,S扇形BOE=2604360π⋅⋅8=3π,S扇形BCD2902==360ππ⋅⋅,S△OCE=1=223=232⨯⨯,∴S阴影=S扇形BOE-S扇形BCD-S△OCE=8--233ππ=5-233π,故选A.【点睛】本题主要考查扇形面积公式、三角形面积公式,牢记公式并灵活运用可求得答案.15.如图在Rt△ABC中,∠ACB=90°,AC=6,BC=8,⊙O是△ABC的内切圆,连接AO,BO,则图中阴影部分的面积之和为()A.10﹣32πB.14﹣52πC.12 D.14【答案】B【解析】【分析】根据勾股定理求出AB,求出△ABC的内切圆的半径,根据扇形面积公式、三角形的面积公式计算,得到答案.【详解】解:设⊙O与△ABC的三边AC、BC、AB的切点分别为D、E、F,连接OD、OE、OF,在Rt△ABC中,AB22AC BC+10,∴△ABC的内切圆的半径=68102+-=2,∵⊙O是△ABC的内切圆,∴∠OAB=12∠CAB,∠OBA=12∠CBA,∴∠AOB=180°﹣(∠OAB+∠OBA)=180°﹣12(∠CAB+∠CBA)=135°,则图中阴影部分的面积之和=222902113525 21021436023602πππ⨯⨯-+⨯⨯-=-,故选B.【点睛】本题考查的是三角形的内切圆与内心、扇形面积计算、勾股定理,掌握扇形面积公式是解题的关键.16.如图,AB是⊙O的直径,弦CD⊥AB于点M,若CD=8 cm,MB=2 cm,则直径AB的长为()A.9 cm B.10 cm C.11 cm D.12 cm【答案】B【解析】【分析】由CD⊥AB,可得DM=4.设半径OD=Rcm,则可求得OM的长,连接OD,在直角三角形DMO中,由勾股定理可求得OD的长,继而求得答案.【详解】解:连接OD,设⊙O半径OD为R,∵AB是⊙O的直径,弦CD⊥AB于点M,∴DM=12CD=4cm,OM=R-2,在RT△OMD中,OD²=DM²+OM²即R²=4²+(R-2)²,解得:R=5,∴直径AB的长为:2×5=10cm.故选B.【点睛】本题考查了垂径定理以及勾股定理.注意掌握辅助线的作法及数形结合思想的应用.17.如图,在⊙O中,OC⊥AB,∠ADC=26°,则∠COB的度数是()A.52°B.64°C.48°D.42°【答案】A【解析】【分析】由OC⊥AB,利用垂径定理可得出,再结合圆周角定理及同弧对应的圆心角等于圆周角的2倍,即可求出∠COB的度数.【详解】解:∵OC⊥AB,∴,∴∠COB=2∠ADC=52°.故选:A.【点睛】考查了圆周角定理、垂径定理以及圆心角、弧、弦的关系,利用垂径定理找出是解题的关键.18.如图所示,AB是⊙O的直径,点C为⊙O外一点,CA,CD是⊙O的切线,A,D为切点,连接BD,AD.若∠ACD=30°,则∠DBA的大小是()A.15°B.30°C.60°D.75°【答案】D【解析】【分析】【详解】连接OD,∵CA,CD是⊙O的切线,∴OA⊥AC,OD⊥CD,∴∠OAC=∠ODC=90°,∵∠ACD=30°,∴∠AOD=360°﹣∠C﹣∠OAC﹣∠ODC=150°,∵OB=OD,∴∠DBA=∠ODB=12∠AOD=75°.故选D.考点:切线的性质;圆周角定理.19.一个圆锥的侧面展开图是半径为1的半圆,则该圆锥的底面半径是()A.13B.12C.34D.1【答案】B【解析】【分析】根据侧面展开图的弧长等于圆锥的底面周长,即可求得底面周长,进而即可求得底面的半径长.【详解】圆锥的底面周长是:π;设圆锥的底面半径是r,则2πr=π.解得:r=12.故选B.【点睛】本题考查了圆锥的计算,正确理解理解圆锥的侧面展开图与原来的扇形之间的关系是解决本题的关键,理解圆锥的母线长是扇形的半径,圆锥的底面圆周长是扇形的弧长.20.如图,抛物线y=ax2﹣6ax+5a(a>0)与x轴交于A、B两点,顶点为C点.以C点为圆心,半径为2画圆,点P在⊙C上,连接OP,若OP的最小值为3,则C点坐标是()A .522(,22-B .(4,﹣5)C .(3,﹣5)D .(3,﹣4)【答案】D【解析】【分析】首先根据二次函数的解析式求出点A 、B 、C 三点的坐标,再由当点O 、P 、C 三点共线时,OP 取最小值为3,列出关于a 的方程,即可求解.【详解】∵2650y ax ax a a +-=(>) 与x 轴交于A 、B 两点, ∴A (1,0)、B (5,0),∵226534y ax ax a a x a =+=---() , ∴顶点34C a (,-), 当点O 、P 、C 三点共线时,OP 取最小值为3,∴OC =OP+2=5, 29165(0)a a +=> ,∴1a = ,∴C (3,﹣4),故选:D .【点睛】本题考查了二次函数的图象和性质,解题的关键是明确圆外一点到圆上的最短距离即该点与圆心的距离减去半径长.。
2021年中考数学真题分类汇编:专题24圆的有关性质(解析版)
![2021年中考数学真题分类汇编:专题24圆的有关性质(解析版)](https://img.taocdn.com/s3/m/9d06c480b84ae45c3a358c05.png)
2021年中考数学真题分类汇编:专题24圆的有关性质一、单选题1.(2021·甘肃武威市·中考真题)如图,点,,,,A B C D E 在O 上,,42AB CD AOB =∠=︒,则CED ∠=( )A .48︒B .24︒C .22︒D .21︒ 【答案】D【分析】先证明,AB CD =再利用等弧的性质及圆周角定理可得答案.【详解】 解: 点,,,,A B C D E 在O 上,,42AB CD AOB =∠=︒,,AB CD ∴=114221,22CED AOB ∴∠=∠=⨯︒=︒ 故选:.D【点睛】本题考查的两条弧,两个圆心角,两条弦之间的关系,圆周角定理,等弧的概念与性质,掌握同弧或等弧的概念与性质是解题的关键.2.(2021·广西玉林市·中考真题)学习圆的性质后,小铭与小熹就讨论起来,小铭说:“被直径平分的弦也与直径垂直”,小熹说:“用反例就能说明这是假命题” .下列判断正确的是( )A .两人说的都对B .小铭说的对,小燕说的反例不存在C .两人说的都不对D .小铭说的不对,小熹说的反例存在【答案】D【分析】根据垂径定理可直接进行排除选项.【详解】解:由垂径定理的推论“平分弦(不是直径)的直径垂直于弦,并且平分弦所对的弧”可知:小铭忽略了垂径定理中的“弦不能是直径”这一条件,因为一个圆中的任意两条直径都互相平分,但不垂直,所以小铭说法错误,小熹所说的反例即为两条直径的情况下;故选D.【点睛】本题主要考查垂径定理,熟练掌握垂径定理是解题的关键.3.(2021·青海中考真题)如图是一位同学从照片上剪切下来的海上日出时的画面,“图上”太阳与海平线交AB 厘米.若从目前太阳所处位置到太阳完全跳出于A,B两点,他测得“图上”圆的半径为10厘米,16海平面的时间为16分钟,则“图上”太阳升起的速度为().A.1.0厘米/分B.0.8厘米分C.12厘米/分D.1.4厘米/分【答案】A【分析】首先过⊙O的圆心O作CD⊙AB于C,交⊙O于D,连接OA,由垂径定理,即可求得OC的长,继而求得CD的长,又由从目前太阳所处位置到太阳完全跳出海面的时间为10分钟,即可求得“图上”太阳升起的速度.【详解】解:过⊙O的圆心O作CD⊙AB于C,交⊙O于D,连接OA,⊙AC=12AB=12×16=8(厘米),在Rt⊙AOC中,6OC===(厘米),⊙CD=OC+OD=16(厘米),⊙从目前太阳所处位置到太阳完全跳出海面的时间为16分钟,⊙16÷16=1(厘米/分).⊙“图上”太阳升起的速度为1.0厘米/分.故选:A.【点睛】此题考查了垂径定理的应用.解题的关键是结合图形构造直角三角形,利用勾股定理求解.4.(2021·山东聊城市·中考真题)如图,A,B,C是半径为1的⊙O上的三个点,若AB⊙CAB=30°,则⊙ABC的度数为()A.95°B.100°C.105°D.110°【答案】C【分析】连接OB,OC,根据勾股定理逆定理可得⊙AOB=90°,⊙ABO=⊙BAO=45°,根据圆周角定理可得⊙COB=2⊙CAB=60°,⊙OBC=⊙OCB=60°,由此可求得答案.【详解】解:如图,连接OB,OC,⊙OA =OB =1,AB⊙OA 2+OB 2=AB 2,⊙⊙AOB =90°,又⊙OA =OB ,⊙⊙ABO =⊙BAO =45°,⊙⊙CAB =30°,⊙⊙COB =2⊙CAB =60°,又⊙OC =OB ,⊙⊙OBC =⊙OCB =60°,⊙⊙ABC =⊙ABO +⊙OBC =105°,故选:C .【点睛】本题考查了勾股定理的逆定理,等腰三角形的性质,圆周角定理,熟练掌握圆周角定理是解决本题的关键. 5.(2021·湖北鄂州市·中考真题)已知锐角40AOB ∠=︒,如图,按下列步骤作图:⊙在OA 边取一点D ,以O 为圆心,OD 长为半径画MN ,交OB 于点C ,连接CD .⊙以D 为圆心,DO 长为半径画GH ,交OB 于点E ,连接DE .则CDE ∠的度数为( )A .20︒B .30C .40︒D .50︒【答案】B【分析】 根据画图过程,得到OD =OC ,由等边对等角与三角形内角和定理得到⊙ODC =⊙OCD =70︒,同理得到⊙DOE =⊙DEO =40⊙,由⊙OCD 为⊙DCE 的外角,得到结果.【详解】解:⊙以O 为圆心,OD 长为半径画MN ,交OB 于点C ,⊙OD =OC ,⊙⊙ODC =⊙OCD ,⊙⊙AOB =40⊙,⊙⊙ODC =⊙OCD =118040702⨯︒-︒=︒, ⊙以D 为圆心,DO 长为半径画GH ,交OB 于点E ,⊙DO =DE ,⊙⊙DOE =⊙DEO =40⊙,⊙⊙OCD 为⊙DCE 的外角,⊙⊙OCD =⊙DEC +⊙CDE ,⊙70⊙=40⊙+⊙CDE ,⊙⊙CDE =30⊙,故选:B .【点睛】本题考查了等腰三角形的判定与性质、以及三角形外角的性质,关键在于等边对等角与三角形的外角等于与它不相邻的两个内角之和两个知识点的熟练运用.6.(2021·海南中考真题)如图,四边形ABCD 是O 的内接四边形,BE 是O 的直径,连接AE .若2BCD BAD ∠=∠,则DAE ∠的度数是( )A .30B .35︒C .45︒D .60︒【答案】A【分析】 先根据圆内接四边形的性质可得60BAD ∠=︒,再根据圆周角定理可得90BAE ∠=︒,然后根据角的和差即可得.【详解】 解:四边形ABCD 是O 的内接四边形,180BCD BAD ∴∠+∠=︒,2BCD BAD ∠=∠,1180603BAD =⨯︒∴∠=︒, BE 是O 的直径,90BAE ∴∠=︒,906030DAE BAE BAD ∴∠=∠-∠=︒-︒=︒,故选:A .【点睛】本题考查了圆内接四边形的性质、圆周角定理,熟练掌握圆内接四边形的性质是解题关键.7.(2021·四川眉山市·中考真题)如图,在以AB 为直径的O 中,点C 为圆上的一点,3BC AC =,弦CD AB ⊥于点E ,弦AF 交CE 于点H ,交BC 于点G .若点H 是AG 的中点,则CBF ∠的度数为( )A .18°B .21°C .22.5°D .30°【答案】C【分析】根据直径所对的圆周角是90︒,可知90ACB AFB ∠=∠=︒,根据3BC AC =,可知ABC ∠、BAC ∠的度数,根据直角三角形斜边上的中线等于斜边的一半可知,AHC 为等腰三角形,再根据CAE BFG BCA ∽∽可求得CBF ∠的度数.【详解】解:⊙AB 为O 的直径,⊙90ACB AFB ∠=∠=︒,⊙3BC AC =,⊙=22.5ABC ∠︒,=67.5BAC ∠︒,⊙点H 是AG 的中点,⊙CE AH =,⊙CAH ACH ∠=∠,⊙CD AB ⊥,⊙AEC GCA ∽,又⊙,CAF CBF CGA FGB ∠=∠∠=∠,⊙AEC GCA GFB ∽∽,⊙90ACE ECB ABC ECB ∠+∠=∠+∠=︒,⊙ABE ABC ∠=∠,⊙AEC GCA GFB ACB ∽∽∽,⊙22.5ABC ACE GAC GBF ∠=∠=∠=∠=︒,⊙=22.5CBF ∠︒,故选:C .【点睛】本题主要考查圆周角定理,垂径定理,相似三角形,直角三角形斜边上中线等知识点,找出图形中几个相似三角形是解题关键.8.(2021·四川南充市·中考真题)如图,AB 是O 的直径,弦CD AB ⊥于点E ,2CD OE =,则BCD ∠的度数为( )A .15︒B .22.5︒C .30D .45︒【答案】B【分析】连接OD ,根据垂径定理得CD =2DE ,从而得ODE 是等腰直角三角形,根据圆周角定理即可求解.【详解】解:连接OD ,⊙AB 是O 的直径,弦CD AB ⊥于点E ,⊙CD =2DE ,⊙2CD OE =,⊙DE =OE ,⊙ODE 是等腰直角三角形,即⊙BOD =45°,⊙BCD ∠=12⊙BOD =22.5°, 故选B .【点睛】本题主要考查圆的基本性质,熟练掌握垂径定理和圆周角定理,是解题的关键.9.(2021·四川广安市·中考真题)如图,公园内有一个半径为18米的圆形草坪,从A 地走到B 地有观赏路(劣弧AB )和便民路(线段AB ).已知A 、B 是圆上的点,O 为圆心,120AOB ∠=︒,小强从A 走到B ,走便民路比走观赏路少走( )米.A .6π-B .6π-C .12π-D .12π-【答案】D【分析】 作OC ⊙AB 于C ,如图,根据垂径定理得到AC =BC ,再利用等腰三角形的性质和三角形内角和计算出⊙A ,从而得到OC 和AC ,可得AB ,然后利用弧长公式计算出AB 的长,最后求它们的差即可.【详解】解:作OC ⊙AB 于C ,如图,则AC =BC ,⊙OA =OB ,⊙⊙A =⊙B =12(180°-⊙AOB )=30°, 在Rt ⊙AOC 中,OC =12OA =9,AC =⊙AB =2AC =又⊙12018180AB π⨯⨯==12π,⊙走便民路比走观赏路少走12π-故选D .【点睛】本题考查了垂径定理:垂径定理和勾股定理相结合,构造直角三角形,可解决计算弦长、半径、弦心距等问题.10.(2021·重庆中考真题)如图,AB 是⊙O 的直径,AC ,BC 是⊙O 的弦,若20A ∠=︒,则B 的度数为( )A .70°B .90°C .40°D .60°【答案】A【分析】直接根据直径所对的圆周角为直角进行求解即可.【详解】⊙AB 是⊙O 的直径,⊙⊙ACB =90°,⊙在Rt ⊙ABC 中,⊙B =90°-⊙A =70°,故选:A .【点睛】本题考查直径所对的圆周角为直角,理解基本定理是解题关键.11.(2021·浙江丽水市·中考真题)如图,AB 是O 的直径,弦CD OA ⊥于点E ,连结,OC OD .若O 的半径为,m AOD α∠=∠,则下列结论一定成立的是( )A .tan OE m α=⋅B .2sin CD m α=⋅C .cos AE m α=⋅D .2sin COD S m α=⋅【答案】B【分析】 根据垂径定理、锐角三角函数的定义进行判断即可解答.【详解】解:⊙AB 是O 的直径,弦CD OA ⊥于点E , ⊙12DE CD = 在Rt EDO ∆中,OD m =,AOD α∠=∠ ⊙tan =DE OEα ⊙=tan 2tan DE CD OE αα=,故选项A 错误,不符合题意;又sin DE ODα= ⊙sin DE OD α=⊙22sin CD DE m α==,故选项B 正确,符合题意; 又cos OE ODα= ⊙cos cos OE OD m αα==⊙AO DO m ==⊙cos AE AO OE m m α=-=-,故选项C 错误,不符合题意;⊙2sin CD m α=,cos OE m α= ⊙2112sin cos sin cos 22COD S CD OE m m m αααα∆=⨯=⨯⨯=,故选项D 错误,不符合题意; 故选B .【点睛】本题考查了垂径定理,锐角三角函数的定义以及三角形面积公式的应用,解本题的关键是熟记垂径定理和锐角三角函数的定义.12.(2021·山东泰安市·中考真题)如图,在ABC 中,6AB =,以点A 为圆心,3为半径的圆与边BC 相切于点D ,与AC ,AB 分别交于点E 和点G ,点F 是优弧GE 上一点,18CDE ∠=︒,则GFE ∠的度数是( )A .50°B .48°C .45°D .36°【答案】B【分析】 连接AD ,由切线性质可得⊙ADB =⊙ADC =90°,根据AB=2AD 及锐角的三角函数可求得⊙BAD =60°,易求得⊙ADE =72°,由AD=AE 可求得⊙DAE =36°,则⊙GAC =96°,根据圆周角定理即可求得⊙GFE 的度数.【详解】解:连接AD ,则AD =AG =3,⊙BC与圆A相切于点D,⊙⊙ADB=⊙ADC=90°,在Rt⊙ADB中,AB=6,则cos⊙BAD=ADAB=12,⊙⊙BAD=60°,⊙⊙CDE=18°,⊙⊙ADE=90°﹣18°=72°,⊙AD=AE,⊙⊙ADE=⊙AED=72°,⊙⊙DAE=180°﹣2×72°=36°,⊙⊙GAC=36°+60°=96°,⊙⊙GFE=12⊙GAC=48°,故选:B.【点睛】本题考查切线性质、锐角的三角函数、等腰三角形的性质、三角形的内角和定理、圆周角定理,熟练掌握切线性质和圆周角定理,利用特殊角的三角函数值求得⊙BAD=60°是解答的关键.13.(2021·浙江绍兴市·中考真题)如图,正方形ABCD内接于O,点P在AB上,则P∠的度数为()A.30B.45︒C.60︒D.90︒【答案】B【分析】连接OB ,OC ,由正方形ABCD 的性质得90BOC ∠=°,再根据圆周角与圆心角的关系即可得出结论.【详解】解:连接OB ,OC ,如图,⊙正方形ABCD 内接于O ,⊙90BOC ∠=° ⊙11904522BPC BOC ∠=∠=⨯︒=︒ 故选:B .【点睛】此题主要考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.14.(2021·四川凉山彝族自治州·中考真题)点P 是O 内一点,过点P 的最长弦的长为10cm ,最短弦的长为6cm ,则OP 的长为( )A .3cmB .4cmC .5cmD .6cm 【答案】B【分析】根据直径是圆中最长的弦,知该圆的直径是10cm ;最短弦即是过点P 且垂直于过点P 的直径的弦;根据垂径定理即可求得CP 的长,再进一步根据勾股定理,可以求得OP 的长.【详解】解:如图所示,CD ⊙AB 于点P .根据题意,得AB =10cm ,CD =6cm .⊙OC =5,CP =3⊙CD ⊙AB ,⊙CP =12CD =3cm .根据勾股定理,得OP .故选B .【点睛】此题综合运用了垂径定理和勾股定理.正确理解圆中,过一点的最长的弦和最短的弦.15.(2021·四川自贡市·中考真题)如图,AB 为⊙O 的直径,弦CD AB ⊥于点F ,OE AC ⊥于点E ,若3OE =,5OB =,则CD 的长度是( )A .9.6B .C .D .19【答案】A【分析】 先利用垂径定理得出AE =EC ,CF =FD ,再利用勾股定理列方程即可【详解】解:连接OC⊙AB ⊙CD , OE ⊙AC⊙ AE =EC ,CF =FD⊙OE =3,OB =5⊙OB =OC =OA =5⊙在Rt ⊙OAE 中4AE =⊙AE =EC =4设OF =x ,则有2222AC AF OC OF -=-22228(5)5x x -+=-x =1.4在Rt ⊙OFC 中, 4.8FC ==⊙29.6CD FC ==故选:A【点睛】本题考查垂径定理、勾股定理、方程思想是解题关键16.(2021·山东临沂市·中考真题)如图,PA 、PB 分别与O 相切于A 、B ,70P ∠=︒,C 为O 上一点,则ACB ∠的度数为( )A .110︒B .120︒C .125︒D .130︒ 【答案】C【分析】由切线的性质得出⊙OAP =⊙OBP =90°,利用四边形内角和可求⊙AOB =110°,再利用圆周角定理可求⊙ADB =55°,再根据圆内接四边形对角互补可求⊙ACB .【详解】解:如图所示,连接OA ,OB ,在优弧AB 上取点D ,连接AD ,BD ,⊙AP 、BP 是切线,⊙⊙OAP =⊙OBP =90°,⊙⊙AOB =360°-90°-90°-70°=110°,⊙⊙ADB =55°,又⊙圆内接四边形的对角互补,⊙⊙ACB =180°-⊙ADB =180°-55°=125°.故选:C .【点睛】本题考查了切线的性质、圆周角定理、圆内接四边形的性质.解题的关键是连接OA 、OB ,求出⊙AOB .17.(2021·湖北鄂州市·中考真题)如图,Rt ABC 中,90ACB ∠=︒,AC =3BC =.点P 为ABC ∆内一点,且满足22PA PC +2AC =.当PB 的长度最小时,ACP ∆的面积是( )A .3B .CD 【答案】D【分析】由题意知90APC ∠=︒,又AC 长度一定,则点P 的运动轨迹是以AC 中点O 为圆心,12AC 长为半径的圆弧,所以当B 、P 、O 三点共线时,BP 最短;在Rt BCO ∆中,利用勾股定理可求BO 的长,并得到点P 是BO 的中点,由线段长度即可得到PCO ∆是等边三角形,利用特殊Rt APC ∆三边关系即可求解.【详解】解:222PA PC AC +=∴90APC ∠=︒取AC 中点O ,并以O 为圆心,12AC 长为半径画圆 由题意知:当B 、P 、O 三点共线时,BP 最短AO PO CO ∴== 11322CO AC BC ==⨯==BO ∴=BP BO PO ∴=-=∴点P 是BO 的中点∴在Rt BCO ∆中,12CP BO PO === ∴PCO ∆是等边三角形∴60ACP ∠=︒ ∴在Rt APC ∆中,tan 603AP CP =⨯︒=12APC S AP CP ∆∴=⨯==【点睛】本题主要考察动点的线段最值问题、点与圆的位置关系和隐形圆问题,属于动态几何综合题型,中档难度.解题的关键是找到动点P 的运动轨迹,即隐形圆.18.(2021·浙江嘉兴市·中考真题)如图,在ABC ∆中,90BAC ∠=︒,AB =AC =5,点D 在AC 上,且2AD =,点E 是AB 上的动点,连结DE ,点F ,G 分别是BC ,DE 的中点,连接AG ,FG ,当AG =FG 时,线段DE 长为( )A B .2C D .4 【答案】A【分析】连接DF ,EF ,过点F 作FN ⊙AC ,FM ⊙AB ,结合直角三角形斜边中线等于斜边的一半求得点A ,D ,F ,E 四点共圆,⊙DFE =90°,然后根据勾股定理及正方形的判定和性质求得AE 的长度,从而求解.【详解】解:连接DF ,EF ,过点F 作FN ⊙AC ,FM ⊙AB⊙在ABC ∆中,90BAC ∠=︒,点G 是DE 的中点,⊙AG =DG =EG又⊙AG =FG⊙点A ,D ,F ,E 四点共圆,且DE 是圆的直径⊙⊙DFE =90°⊙在Rt ⊙ABC 中,AB =AC =5,点F 是BC 的中点,⊙CF =BF =122BC =,FN =FM =52 又⊙FN ⊙AC ,FM ⊙AB ,90BAC ∠=︒⊙四边形NAMF 是正方形⊙AN =AM =FN =52又⊙90NFD DFM ∠+∠=︒,90DFM MFE ∠+∠=︒⊙NFD MFE ∠=∠⊙⊙NFD ⊙⊙MFE⊙ME =DN =AN -AD =12 ⊙AE =AM +ME =3⊙在Rt ⊙DAE 中,DE故选:A .【点睛】本题考查直径所对的圆周角是90°,四点共圆及正方形的判定和性质和用勾股定理解直角三角形,掌握相关性质定理正确推理计算是解题关键.19.(2021·四川自贡市·中考真题)如图,()8,0A,()2,0C -,以点A 为圆心,AC 长为半径画弧,交y 轴正半轴于点B ,则点B 的坐标为( )A .()0,5B .()5,0C .()6,0D .()0,6 【答案】D【分析】先根据题意得出OA =8,OC =2,再根据勾股定理计算即可【详解】解:由题意可知:AC =AB⊙()8,0A ,()2,0C -⊙OA =8,OC =2⊙AC =AB =10在Rt ⊙OAB 中,6OB ==⊙B (0,6)故选:D【点睛】本题考查勾股定理、正确写出点的坐标,圆的半径相等、熟练进行勾股定理的计算是关键 20.(2021·广西来宾市·中考真题)如图,O 的半径OB 为4,OC AB ⊥于点D ,30BAC ∠=︒,则OD 的长是( )A B C .2 D .3【答案】C【分析】 根据圆周角定理求出⊙COB 的度数,再求出⊙OBD 的度数,根据“30°的锐角所对的直角边等于斜边的一半”求出OD 的长度.【详解】⊙ ⊙BAC =30°,⊙⊙COB =60°,⊙⊙ODB =90°,⊙⊙OBD =30°,⊙OB =4,⊙OD =12OB =142⨯=2. 故选:C .【点睛】本题考查了圆周角定理,直角三角形的性质,掌握相关定理和性质是解题的关键.21.(2021·湖北荆州市·中考真题)如图,矩形OABC 的边OA ,OC 分别在x 轴、y 轴的正半轴上,点D 在OA 的延长线上.若()2,0A ,()4,0D ,以О为圆心、OD 长为半径的弧经过点B ,交y 轴正半轴于点E ,连接DE ,BE 、则BED ∠的度数是( )A .15︒B .22.5︒C .30D .45︒【答案】C【分析】连接OB ,由题意易得⊙BOD =60°,然后根据圆周角定理可进行求解.【详解】解:连接OB ,如图所示:⊙()2,0A ,()4,0D ,⊙2,4OA OB OE OD ====, ⊙12OA OB =, ⊙四边形OABC 是矩形,⊙90OAB ∠=︒,⊙30OBA ∠=︒,⊙9060BOD OBA ∠=︒-∠=︒, ⊙1302BED BOD ∠=∠=︒; 故选C .【点睛】本题主要考查圆周角定理、矩形的性质及含30°的直角三角形的性质,熟练掌握圆周角定理、矩形的性质及含30°的直角三角形的性质是解题的关键.22.(2021·湖北宜昌市·中考真题)如图,C ,D 是O 上直径AB 两侧的两点.设25ABC ∠=︒,则BDC ∠=( )A .85︒B .75︒C .70︒D .65︒【答案】D【分析】 先利用直径所对的圆周角是直角得到⊙ACB =90°,从而求出⊙BAC ,再利用同弧所对的圆周角相等即可求出⊙BDC .【详解】解:⊙C ,D 是⊙O 上直径AB 两侧的两点,⊙⊙ACB =90°,⊙⊙ABC =25°,⊙⊙BAC =90°-25°=65°,⊙⊙BDC =⊙BAC =65°,故选:D .【点睛】本题考查了圆周角定理的推论,即直径所对的圆周角是90°和同弧或等弧所对的圆周角相等,解决本题的关键是牢记相关概念与推论,本题蕴含了属性结合的思想方法.23.(2021·河北中考真题)如图,等腰AOB 中,顶角40AOB ∠=︒,用尺规按⊙到⊙的步骤操作: ⊙以O 为圆心,OA 为半径画圆;⊙在O 上任取一点P (不与点A ,B 重合),连接AP ;⊙作AB 的垂直平分线与O 交于M ,N ;⊙作AP 的垂直平分线与O 交于E ,F .结论⊙:顺次连接M ,E ,N ,F 四点必能得到矩形;结论⊙:O 上只有唯一的点P ,使得OFM OAB S S =扇形扇形.对于结论⊙和⊙,下列判断正确的是( )A .⊙和⊙都对B .⊙和⊙都不对C .⊙不对⊙对D .⊙对⊙不对【答案】D【分析】 ⊙、根据“弦的垂直平分线经过圆心”,可证四边形MENF 的形状;⊙、在确定点P 的过程中,看⊙MOF =40°是否唯一即可.【详解】解:⊙、如图所示.⊙MN 是AB 的垂直平分线,EF 是AP 的垂直平分线,⊙MN 和EF 都经过圆心O ,线段MN 和EF 是⊙O 的直径.⊙OM =ON ,OE =OF .⊙四边形MENF 是平行四边形.⊙线段MN 是⊙O 的直径,⊙⊙MEN =90°.⊙平行四边形MENF 是矩形.⊙结论⊙正确;⊙、如图2,当点P 在直线MN 左侧且AP =AB 时,⊙AP =AB ,⊙AB AP =.⊙MN ⊙AB ,EF ⊙AP , ⊙1122AE AP AN AB ==,. ⊙AE AN =. ⊙1===202AOE AON AOB ∠∠∠.⊙40EON =∠.⊙=40MOF EON =∠∠.⊙扇形OFM 与扇形OAB 的半径、圆心角度数都分别相等,⊙OFM OAB S S =扇形扇形.如图3,当点P 在直线MN 右侧且BP =AB 时,同理可证:FOM AOB S S =扇形扇形.⊙结论⊙错误.故选:D【点睛】本题考查了圆的有关性质、矩形的判定、扇形面积等知识点,熟知圆的有关性质、矩形的判定方法及扇形面积公式是解题的关键.24.(2021·湖北黄冈市·中考真题)如图,O 是Rt ABC △的外接圆,OE AB ⊥交O 于点E ,垂足为点D ,AE ,CB 的延长线交于点F .若3OD =,8AB =,则FC 的长是( )A .10B .8C .6D .4【答案】A【分析】 先根据垂径定理可得4=AD ,再利用勾股定理可得5OE OA ==,然后根据三角形中位线定理即可得.【详解】解:,8OE AB AB ⊥=,142AD AB ∴==, 3OD =,5OA ∴=,5OE ∴=,OE AB ⊥,90A ADO BC =︒∠∴∠=,//OE FC ∴,又OA OC =,OE ∴是ACF 的中位线,210FC OE ∴==,故选:A .【点睛】本题考查了垂径定理、三角形中位线定理等知识点,熟练掌握垂径定理是解题关键.25.(2021·湖南邵阳市·中考真题)如图,点A ,B ,C 是O 上的三点.若90AOC ∠=︒,30BAC ∠=︒,则AOB ∠的大小为( )A .25︒B .30C .35︒D .40︒【答案】B【分析】首先根据圆周角定理求得BOC ∠的度数,根据AOC ∠的度数求AOB AOC BOC ∠=∠-∠即可.【详解】解:⊙30BAC ∠=︒⊙⊙BOC=223060BAC ∠=⨯︒=︒,⊙90AOC ∠=︒,906030AOB AOC BOC ,故选:B .【点睛】考查了圆周角定理及两锐角互余性质,求得BOC ∠的度数是解题的关键.26.(2021·湖南长沙市·中考真题)如图,点A ,B ,C 在⊙O 上,54BAC ∠=︒,则BOC ∠的度数为()A .27︒B .108︒C .116︒D .128︒【答案】B【分析】直接利用圆周角定理即可得.【详解】解:54BAC ∠=︒,∴由圆周角定理得:2108BOC BAC ∠=∠=︒,故选:B .【点睛】本题考查了圆周角定理,熟练掌握圆周角定理是解题关键.27.(2021·湖北武汉市·中考真题)如图,AB 是O 的直径,BC 是O 的弦,先将BC 沿BC 翻折交AB 于点D .再将BD 沿AB 翻折交BC 于点E .若BE DE =,设ABC α∠=,则α所在的范围是( )A .21.922.3α︒<<︒B .22.322.7α︒<<︒C .22.723.1α︒<<︒D .23.123.5α︒<<︒【答案】B【分析】 将⊙O 沿BC 翻折得到⊙O ′,将⊙O ′沿BD 翻折得到⊙O ″,则⊙O 、⊙O ′、⊙O ″为等圆.依据在同圆或等圆中相等的圆周角所对的弧相等可证明AC DC DE EB ===,从而可得到弧AC 的度数,由弧AC 的度数可求得⊙B 的度数.【详解】解:将⊙O 沿BC 翻折得到⊙O ′,将⊙O ′沿BD 翻折得到⊙O ″,则⊙O 、⊙O ′、⊙O ″为等圆.⊙⊙O 与⊙O ′为等圆,劣弧AC 与劣弧CD 所对的角均为⊙ABC ,⊙AC CD =.同理:DE CD =.又⊙F 是劣弧BD 的中点,⊙DE BE =.⊙AC DC DE EB ===.⊙弧AC 的度数=180°÷4=45°.⊙⊙B =12×45°=22.5°. ⊙α所在的范围是22.322.7α︒<<︒;故选:B .【点睛】本题主要考查的是圆的综合应用,解答本题主要应用了翻折的性质、弧、弦、圆周角之间的关系、圆内接四边形的性质,等腰三角形的判定,找出图形中的等弧是解题的关键.二、填空题28.(2021·黑龙江中考真题)如图,在O 中,AB 是直径,弦AC 的长为5cm ,点D 在圆上,且30ADC ∠=︒,则O 的半径为_____.【答案】5cm【分析】连接BC ,由题意易得30ABC ADC ∠=∠=︒,进而问题可求解.【详解】解:连接BC ,如图所示:⊙30ADC ∠=︒,⊙30ABC ADC ∠=∠=︒,⊙AB 是直径,⊙90ACB ∠=︒,⊙5cm AC =,⊙210cm AB AC ==,⊙O 的半径为5cm ;故答案为5cm .【点睛】本题主要考查圆周角定理及含30°直角三角形的性质,熟练掌握圆周角定理及含30°直角三角形的性质是解29.(2021·安徽中考真题)如图,圆O 的半径为1,ABC 内接于圆O .若60A ∠=︒,75B ∠=︒,则AB =______.【分析】先根据圆的半径相等及圆周角定理得出⊙ABO =45°,再根据垂径定理构造直角三角形,利用锐角三角函数解直角三角形即可【详解】解:连接OB 、OC 、作OD ⊙AB⊙60A ∠=︒⊙⊙BOC =2⊙A =120°⊙OB =OC⊙⊙OBC =30°又75B ∠=︒⊙⊙ABO =45°在Rt ⊙OBD 中,OB =1⊙BD⊙BD =AD =⊙AB【点睛】本题考查垂径定理、圆周角定理,正确使用圆的性质及定理是解题关键30.(2021·湖南张家界市·中考真题)如图,ABC 内接于O ,50A ∠=︒,点D 是BC 的中点,连接OD ,OB ,OC ,则BOD ∠=_________.【答案】50︒【分析】圆上弧长对应的圆周角等于圆心角的一半,再利用等腰三角形三线合一的性质,即可得出答案.【详解】解:根据圆上弦长对应的圆周角等于圆心角的一半,12A BOC ∠=∠, 100BOC ∴∠=︒,OB OC =, BOC ∴为等腰三角形, 又点D 是BC 的中点,根据等腰三角形三线合一,OD ∴为BOC ∠的角平分线,50BO D ∴∠=︒,故答案是:50︒.【点睛】本题考查了弦长所对应的圆周角等于圆心角的一半和等腰三角形三线合一的性质,解题的关键是:根据性质求出BOC ∠,再利用角平分线或三角形全等都能求出解.31.(2021·广东中考真题)在ABC 中,90,2,3ABC AB BC ∠=︒==.点D 为平面上一个动点,45ADB ∠=︒,则线段CD 长度的最小值为_____.-【分析】由已知45ADB ∠=︒,2AB =,根据定角定弦,可作出辅助圆,由同弧所对的圆周角等于圆心角的一半可知,点D 在以O 为圆心OB 为半径的圆上,线段CD 长度的最小值为CO OD -.【详解】如图: 以12AB 为半径作圆,过圆心O 作,ON AB OM BC ⊥⊥, 以O 为圆心OB 为半径作圆,则点D 在圆O 上,45ADB ∠=︒90AOB ∠=︒∴2AB =1AN BN ==AO ∴==112ON OM AB ===,3BC =OC ∴==CO OD ∴-线段CD 长度的最小值为-.-【点睛】 本题考查了圆周角与圆心角的关系,圆外一点到圆上的线段最短距离,勾股定理,正确的作出图形是解题的关键.32.(2021·江苏宿迁市·中考真题)如图,在Rt⊙ABC 中,⊙ABC =90°,⊙A =32°,点B 、C 在O 上,边AB 、AC 分别交O 于D 、E 两点﹐点B 是CD 的中点,则⊙ABE =__________.【答案】13︒【分析】如图,连接,DC 先证明,BDC BCD ∠=∠再证明,ABE ACD ∠=∠利用三角形的外角可得:,BDC A ACD A ABE ∠=∠+∠=∠+∠再利用直角三角形中两锐角互余可得:()2902,BDC A ABE ∠=︒-∠+∠再解方程可得答案.【详解】解:如图,连接,DC B 是CD 的中点,,,BD BC BDC BCD ∴=∠=∠,DE DE =,ABE ACD ∴∠=∠,BDC A ACD A ABE ∴∠=∠+∠=∠+∠90,32,ABC A ∠=︒∠=︒()2902,BDC A ABE ∴∠=︒-∠+∠45453213.ABE A ∴∠=︒-∠=︒-︒=︒故答案为:13.︒【点睛】本题考查的是圆周角定理,三角形的外角的性质,直角三角形的两锐角互余,掌握圆周角定理的含义是解题的关键.33.(2021·江苏南京市·中考真题)如图,AB 是O 的弦,C 是AB 的中点,OC 交AB 于点D .若8cm,2cm AB CD ==,则O 的半径为________cm .【答案】5【分析】连接OA ,由垂径定理得AD =4cm ,设圆的半径为R ,根据勾股定理得到方程2224(2)R R =+-,求解即可【详解】解:连接OA ,⊙C 是AB 的中点,⊙OC AB ⊥ ⊙14cm 2AD AB == 设O 的半径为R ,⊙2cm CD =⊙(2)cm OD OC CD R =-=-在Rt OAD ∆中,222OA AD OD =+,即2224(2)R R =+-,解得,5R =即O 的半径为5cm故答案为:5【点睛】本题考查的是垂径定理及勾股定理,根据垂径定理判断出OC 是AB 的垂直平分线是解答此题的关键. 34.(2021·湖北随州市·中考真题)如图,O 是ABC 的外接圆,连接AO 并延长交O 于点D ,若50C ∠=︒,则BAD ∠的度数为______.【答案】40︒【分析】连接BD ,则C D ∠=∠,再根据AD 为直径,求得BAD ∠的度数【详解】如图,连接BD ,则50D C ∠=∠=︒AD 为直径90ABD ∴∠=︒90905040BAD D ∴∠=︒-∠=︒-︒=︒故答案为40︒【点睛】此题主要考查了圆周角定理,圆周角定理是中考中考查重点,熟练掌握圆周角定理是解决问题的关键. 35.(2021·江苏连云港市·中考真题)如图,OA 、OB 是O 的半径,点C 在O 上,30AOB ∠=︒,40OBC ∠=︒,则OAC ∠=______︒.【答案】25【分析】连接OC ,根据等腰三角形的性质和三角形内角和定理得到⊙BOC =100°,求出⊙AOC ,根据等腰三角形的性质计算.【详解】解:连接OC ,⊙OC =OB ,⊙⊙OCB =⊙OBC =40°,⊙⊙BOC =180°-40°×2=100°,⊙⊙AOC =100°+30°=130°,⊙OC =OA ,⊙⊙OAC =⊙OCA =25°,故答案为:25.【点睛】本题考查的是圆的基本性质、等腰三角形的性质,三角形内角和定理,掌握三角形内角和等于180°是解题的关键.36.(2021·四川成都市·中考真题)如图,在平面直角坐标系xOy 中,直线33y x =+与O 相交于A ,B 两点,且点A 在x 轴上,则弦AB 的长为_________.【答案】【分析】过O 作OE ⊙AB 于C ,根据垂径定理可得AC =BC =12AB ,可求OA =2,OD Rt ⊙AOD 中,由勾股定理AD =,可证⊙OAC ⊙⊙DAO ,由相似三角形性质可求AC 即可. 【详解】 解:过O 作OE ⊙AB 于C ,⊙AB 为弦,⊙AC =BC =12AB ,⊙直线33y x =+与O 相交于A ,B 两点,⊙当y =00x +=,解得x =-2, ⊙OA =2,⊙当x =0时,y =⊙OD=3, 在Rt ⊙AOD中,由勾股定理3AD ===, ⊙⊙ACO =⊙AOD =90°,⊙CAO =⊙OAD ,⊙⊙OAC ⊙⊙DAO ,AC AO AO AD =即2AO AC AD === ⊙AB =2AC故答案为【点睛】本题考查直线与圆的位置关系,垂径定理,直线与两轴交点,勾股定理,三角形相似判定与性质,掌握以上知识、正确添加辅助线是解题关键.37.(2021·江苏扬州市·中考真题)在一次数学探究活动中,李老师设计了一份活动单:“追梦”学习小组通过操作、观察、讨论后汇报:点A 的位置不唯一,它在以BC 为弦的圆弧上(点B 、C 除外),…….小华同学画出了符合要求的一条圆弧(如图1).(1)小华同学提出了下列问题,请你帮助解决.⊙该弧所在圆的半径长为___________;⊙ABC 面积的最大值为_________;(2)经过比对发现,小明同学所画的角的顶点不在小华所画的圆弧上,而在如图1所示的弓形内部,我们记为A ',请你利用图1证明30BA C '∠>︒;(3)请你运用所学知识,结合以上活动经验,解决问题:如图2,已知矩形ABCD 的边长2AB =,3BC =,点P 在直线CD 的左侧,且4tan 3DPC ∠=. ⊙线段PB 长的最小值为_______;⊙若23PCD PAD S S =,则线段PD 长为________.【答案】(1)⊙2;2;(2)见解析;(3);⊙4 【分析】(1)⊙设O 为圆心,连接BO ,CO ,根据圆周角定理得到⊙BOC =60°,证明⊙OBC 是等边三角形,可得半径;⊙过点O 作BC 的垂线,垂足为E ,延长EO ,交圆于D ,以BC 为底,则当A 与D 重合时,⊙ABC 的面积最大,求出OE ,根据三角形面积公式计算即可;(2)延长BA ′,交圆于点D ,连接CD ,利用三角形外角的性质和圆周角定理证明即可;(3)⊙根据4tan 3DPC ∠=,连接PD ,设点Q 为PD 中点,以点Q 为圆心,12PD 为半径画圆,可得点P 在优弧CPD 上,连接BQ ,与圆Q 交于P ′,可得BP ′即为BP 的最小值,再计算出BQ 和圆Q 的半径,相减即可得到BP ′;⊙根据AD ,CD 和23PCD PAD S S =推出点P 在⊙ADC 的平分线上,从而找到点P 的位置,过点C 作CF ⊙PD ,垂足为F ,解直角三角形即可求出DP .【详解】解:(1)⊙设O 为圆心,连接BO ,CO ,⊙⊙BAC =30°,⊙⊙BOC =60°,又OB =OC ,⊙⊙OBC 是等边三角形,⊙OB =OC =BC =2,即半径为2;⊙⊙⊙ABC 以BC 为底边,BC =2,⊙当点A 到BC 的距离最大时,⊙ABC 的面积最大,如图,过点O 作BC 的垂线,垂足为E ,延长EO ,交圆于D ,⊙BE =CE =1,DO =BO =2,⊙OE⊙DE 2,⊙⊙ABC 的最大面积为)1222⨯⨯2;(2)如图,延长BA ′,交圆于点D ,连接CD ,⊙点D 在圆上,⊙⊙BDC =⊙BAC ,⊙⊙BA ′C =⊙BDC +⊙A ′CD ,⊙⊙BA ′C >⊙BDC ,⊙⊙BA ′C >⊙BAC ,即⊙BA ′C >30°;(3)⊙如图,当点P在BC上,且PC=32时,⊙⊙PCD=90°,AB=CD=2,AD=BC=3,⊙tan⊙DPC=CDPC=43,为定值,连接PD,设点Q为PD中点,以点Q为圆心,12PD为半径画圆,⊙当点P在优弧CPD上时,tan⊙DPC=43,连接BQ,与圆Q交于P′,此时BP′即为BP的最小值,过点Q作QE⊙BE,垂足为E,⊙点Q是PD中点,⊙点E为PC中点,即QE=12CD=1,PE=CE=12PC=34,⊙BE=BC-CE=3-34=94,⊙BQ4,⊙PD 52,⊙圆Q的半径为155 224⨯=,⊙BP′=BQ-P′Q,即BP;⊙⊙AD =3,CD =2,23PCD PAD S S =, 则23CD AD =, ⊙⊙P AD 中AD 边上的高=⊙PCD 中CD 边上的高,即点P 到AD 的距离和点P 到CD 的距离相等,则点P 到AD 和CD 的距离相等,即点P 在⊙ADC 的平分线上,如图,过点C 作CF ⊙PD ,垂足为F ,⊙PD 平分⊙ADC ,⊙⊙ADP =⊙CDP =45°,⊙⊙CDF 为等腰直角三角形,又CD =2,⊙CF =DF⊙tan⊙DPC =CF PF =43,⊙PF =4,⊙PD =DF +PF【点睛】本题是圆的综合题,考查了圆周角定理,三角形的面积,等边三角形的判定和性质,最值问题,解直角三角形,三角形外角的性质,勾股定理,知识点较多,难度较大,解题时要根据已知条件找到点P 的轨迹. 38.(2021·辽宁本溪市·中考真题)如图,由边长为1的小正方形组成的网格中,点A ,B ,C 都在格点上,以AB 为直径的圆经过点C 和点D ,则tan =ADC ∠________.。
2021年江苏各市(苏州扬州泰州盐城无锡等)中考数学真题分项汇编16 圆含详解
![2021年江苏各市(苏州扬州泰州盐城无锡等)中考数学真题分项汇编16 圆含详解](https://img.taocdn.com/s3/m/7577fde70408763231126edb6f1aff00bed570b8.png)
专题16圆一、圆的基本性质1.(2021·江苏无锡市)用半径为50,圆心角为120°的扇形纸片围成一个圆锥的侧面,则这个圆锥的底面半径为________.2.(2021·江苏扬州市)如图是某圆柱体果罐,它的主视图是边长为10cm 的正方形,该果罐侧面积为_____2cm .3.(2021·江苏盐城市)一圆锥的底面半径为2,母线长为3,则这个圆锥的侧面积为_______.4.(2021·江苏宿迁市)已知圆锥的底面圆半径为4,侧面展开图扇形的圆心角为120°,则它的侧面展开图面积为_____________.二、圆锥与扇形5.(2021·江苏徐州市)如图,一枚圆形古钱币的中间是一个正方形孔,已知圆的直径与正方形的对角线之比为3:1,则圆的面积约为正方形面积的( )A .27倍B .14倍C .9倍D .3倍6.(2021·江苏南京市)如图,AB 是O 的弦,C 是AB 的中点,OC 交AB 于点D .若8cm,2cm AB CD ==,则O 的半径为________cm .7.(2021·江苏常州市)如图,BC 是O 的直径,AB 是O 的弦.若60AOC ∠=︒,则OAB ∠的度数是( )A .20︒B .25︒C .30D .35︒8.(2021·江苏宿迁市)如图,在Rt△ABC 中,△ABC =90°,△A =32°,点B 、C 在O 上,边AB 、AC 分别交O 于D 、E 两点﹐点B 是CD 的中点,则△ABE =__________.9.(2021·江苏盐城市)如图,在△O 内接四边形ABCD 中,若100ABC ∠=︒,则ADC ∠=________︒.10.(2021·江苏连云港市)如图,OA 、OB 是O 的半径,点C 在O 上,30AOB ∠=︒,40OBC ∠=︒,则OAC ∠=______︒.11.(2021·江苏南京市)如图,,,,,FA GB HC ID JE 是五边形ABCDE 的外接圆的切线,则BAF CBG DCH EDI AEJ ∠+∠+∠+∠+∠=______︒.12.(2021·江苏徐州市)如图,AB 是O 的直径,点C D 、在O 上,若58ADC ∠=︒,则BAC ∠=_________°.13.(2021·江苏连云港市)如图,正方形ABCD 内接于O ,线段MN 在对角线BD 上运动,若O 的面积为2π,1MN =,则AMN 周长的最小值是( )A .3B .4C .5D .614.(2021·江苏常州市)如图,在Rt ABC 中,90,30,1ACB CBA AC ∠=︒∠=︒=,D 是AB 上一点(点D 与点A 不重合).若在Rt ABC 的直角边上存在4个不同的点分别和点A 、D 成为直角三角形的三个顶点,则AD 长的取值范围是________.15.(2021·江苏扬州市)在一次数学探究活动中,李老师设计了一份活动单:“追梦”学习小组通过操作、观察、讨论后汇报:点A 的位置不唯一,它在以BC 为弦的圆弧上(点B 、C 除外),…….小华同学画出了符合要求的一条圆弧(如图1).(1)小华同学提出了下列问题,请你帮助解决.△该弧所在圆的半径长为___________;△ABC 面积的最大值为_________;(2)经过比对发现,小明同学所画的角的顶点不在小华所画的圆弧上,而在如图1所示的弓形内部,我们记为A ',请你利用图1证明30BA C '∠>︒;(3)请你运用所学知识,结合以上活动经验,解决问题:如图2,已知矩形ABCD 的边长2AB =,3BC =,点P 在直线CD 的左侧,且4tan 3DPC ∠=. △线段PB 长的最小值为_______;△若23PCD PAD S S =,则线段PD 长为________.三、圆的切线16.(2021·江苏泰州市)如图,平面直角坐标系xOy 中,点A 的坐标为(8,5),△A 与x 轴相切,点P 在y 轴正半轴上,PB 与△A 相切于点B .若△APB =30°,则点P 的坐标为 ___.17.(2021·江苏南京市)如图,已知P 是O 外一点.用两种不同的方法过点P 作O 的一条切线.要求: (1)用直尺和圆规作图;(2)保留作图的痕迹,写出必要的文字说明.18.(2021·江苏南通市)如图,AB 为O 的直径,C 为O 上一点,弦AE 的延长线与过点C 的切线互相垂直,垂足为D ,35CAD ∠=︒,连接BC .(1)求B 的度数;(2)若2AB =,求EC 的长.19.(2021·江苏盐城市)如图,O 为线段PB 上一点,以O 为圆心OB 长为半径的△O 交PB 于点A ,点C 在△O 上,连接PC ,满足2PC PA PB =⋅.(1)求证:PC 是△O 的切线;(2)若3AB PA =,求AC BC的值. 20.(2021·江苏无锡市)如图,四边形ABCD 内接于O ,AC 是O 的直径,AC 与BD 交于点E ,PB 切O 于点B .(1)求证:PBA OBC ∠=∠;(2)若20PBA ,40ACD ∠=︒,求证:OAB CDE ∽.21.(2021·江苏宿迁市)如图,在Rt △AOB 中,△AOB =90°,以点O 为圆心,OA 为半径的圆交AB 于点C ,点D 在边OB 上,且CD= BD .(1)判断直线CD 与圆O 的位置关系,并说明理由;(2)已知24tan 7DOC ∠=,AB =40,求O 的半径.22.(2021·江苏苏州市)如图,四边形ABCD 内接于O ,12∠=∠,延长BC 到点E ,使得CE AB =,连接ED . (1)求证:BD ED =;(2)若4AB =,6BC =,60ABC ∠=︒,求tan DCB ∠的值.23.(2021·江苏扬州市)如图,四边形ABCD 中,//AD BC ,90BAD ∠=︒,CB CD =,连接BD ,以点B 为圆心,BA 长为半径作B ,交BD 于点E .(1)试判断CD 与B 的位置关系,并说明理由;(2)若AB =60BCD ∠=︒,求图中阴影部分的面积.24.(2021·江苏连云港市)如图,Rt ABC 中,90ABC ∠=︒,以点C 为圆心,CB 为半径作C ,D 为C 上一点,连接AD 、CD ,AB AD =,AC 平分BAD ∠.(1)求证:AD 是C 的切线;(2)延长AD 、BC 相交于点E ,若2EDC ABC S S =,求tan BAC ∠的值.25.(2021·江苏泰州市)如图,在△O中,AB为直径,P为AB上一点,P A=1,PB=m(m为常数,且m>0).过点P的弦CD△AB,Q为BC上一动点(与点B不重合),AH△QD,垂足为H.连接AD、BQ.(1)若m=3.△求证:△OAD=60°;△求BQDH的值;(2)用含m的代数式表示BQDH,请直接写出结果;(3)存在一个大小确定的△O,对于点Q的任意位置,都有BQ2﹣2DH2+PB2的值是一个定值,求此时△Q的度数.26.(2021·江苏苏州市)如图△,甲,乙都是高为6米的长方体容器,容器甲的底面ABCD是正方形,容器乙的底面EFGH是矩形.如图△,已知正方形ABCD与矩形EFGH满足如下条件:正方形ABCD外切于一个半径为5米的圆O,矩形EFGH内接于这个圆O,2EF EH=.(1)求容器甲,乙的容积分别为多少立方米?(2)现在我们分别向容器甲,乙同时持续注水(注水前两个容器是空的),一开始注水流量均为25立方米/小时,4小时后.把容器甲的注水流量增加a立方米/小时,同时保持容器乙的注水流量不变,继续注水2小时后,把容器甲的注水流量再一次增加50立方米/小时,同时容器乙的注水流量仍旧保持不变.直到两个容器的水位高度相同,停止注水.在整个注水过程中,当注水时间为t时,我们把容器甲的水位高度记为h甲,容器乙的水位高度记为h乙,设h h h-=乙甲,已知h(米)关于注水时间t(小时)的函数图像如图△所示,其中MN平行于横轴.根据图中所给信息,解决下列问题:△求a的值;△求图△中线段PN所在直线的解析式.专题16圆一、圆的基本性质1.(2021·江苏无锡市)用半径为50,圆心角为120°的扇形纸片围成一个圆锥的侧面,则这个圆锥的底面半径为________.【答案】50 3【分析】先求出扇形的弧长,再根据圆的周长公式,即可求解.【详解】△扇形的弧长=120501001803ππ⨯=,△圆锥的底面半径=1003π÷2π=503.故答案是:503.【点睛】本题主要考查扇形的弧长公式,掌握圆锥的底面周长等于圆锥展开扇形的弧长,是解题的关键.2.(2021·江苏扬州市)如图是某圆柱体果罐,它的主视图是边长为10cm的正方形,该果罐侧面积为_____2cm.【答案】100π【分析】根据圆柱体的主视图为边长为10cm的正方形,得到圆柱的底面直径和高,从而计算侧面积.【详解】解:△果罐的主视图是边长为10cm的正方形,为圆柱体,△圆柱体的底面直径和高为10cm,△侧面积为1010π⨯=100π,故答案为:100π.【点睛】本题考查了几何体的三视图,解题的关键是根据三视图得到几何体的相关数据.3.(2021·江苏盐城市)一圆锥的底面半径为2,母线长为3,则这个圆锥的侧面积为_______.【答案】6π【分析】根据圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和扇形的面积公式求解.【详解】解:该圆锥的侧面积=12×2π×2×3=6π.故答案为6π.【点睛】本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.4.(2021·江苏宿迁市)已知圆锥的底面圆半径为4,侧面展开图扇形的圆心角为120°,则它的侧面展开图面积为_____________.【答案】48π【分析】首先根据底面圆的半径求得扇形的弧长,然后根据弧长公式求得扇形的半径,然后利用公式求得面积即可.【详解】解:△底面圆的半径为4,△底面周长为8π,△侧面展开扇形的弧长为8π,设扇形的半径为r,△圆锥的侧面展开图的圆心角是120°,△120180rπ=8π,解得:r=12,△侧面积为π×4×12=48π,故答案为:48π.【点睛】考查了圆锥的计算,解题的关键是了解圆锥的侧面展开扇形的弧长等于底面圆的周长,难度不大.二、圆锥与扇形5.(2021·江苏徐州市)如图,一枚圆形古钱币的中间是一个正方形孔,已知圆的直径与正方形的对角线之比为3:1,则圆的面积约为正方形面积的()A .27倍B .14倍C .9倍D .3倍【答案】C【分析】 设OB =x ,则OA =3x ,BC =2x ,根据圆的面积公式和正方形的面积公式,求出面积,进而即可求解.【详解】解:由圆和正方形的对称性,可知:OA =OD ,OB =OC ,△圆的直径与正方形的对角线之比为3:1,△设OB =x ,则OA =3x ,BC =2x ,△圆的面积=π(3x )2=9πx 2,正方形的面积=()2122x =2x 2, △9πx 2÷2x 2=9142π≈,即:圆的面积约为正方形面积的14倍, 故选C .【点睛】本题主要考查圆和正方形的面积以及对称性,根据题意画出图形,用未知数表示各个图形的面积,是解题的关键.6.(2021·江苏南京市)如图,AB 是O 的弦,C 是AB 的中点,OC 交AB 于点D .若8cm,2cm AB CD ==,则O 的半径为________cm .【答案】5【分析】连接OA ,由垂径定理得AD =4cm ,设圆的半径为R ,根据勾股定理得到方程2224(2)R R =+-,求解即可【详解】解:连接OA ,△C 是AB 的中点,△OC AB ⊥ △14cm 2AD AB ==设O 的半径为R ,△2cm CD =△(2)cm OD OC CD R =-=-在Rt OAD ∆中,222OA AD OD =+,即2224(2)R R =+-,解得,5R =即O 的半径为5cm故答案为:5【点睛】本题考查的是垂径定理及勾股定理,根据垂径定理判断出OC 是AB 的垂直平分线是解答此题的关键.7.(2021·江苏常州市)如图,BC 是O 的直径,AB 是O 的弦.若60AOC ∠=︒,则OAB ∠的度数是()A .20︒B .25︒C .30D .35︒【答案】C【分析】先根据平角的定义求出△AOB ,再根据等腰三角形的性质求解,即可.【详解】解:△60AOC ∠=︒,△△AOB =180°-60°=120°,△OA =OB ,△OAB ∠=△OBA =(180°-120°)÷2=30°,故选C .【点睛】本题主要考查圆的基本性质以及等腰三角形的性质,掌握圆的半径相等,是解题的关键.8.(2021·江苏宿迁市)如图,在Rt△ABC 中,△ABC =90°,△A =32°,点B 、C 在O 上,边AB 、AC 分别交O 于D 、E 两点﹐点B 是CD 的中点,则△ABE =__________.【答案】13︒【分析】如图,连接,DC 先证明,BDC BCD ∠=∠再证明,ABE ACD ∠=∠利用三角形的外角可得:,BDC A ACD A ABE ∠=∠+∠=∠+∠再利用直角三角形中两锐角互余可得:()2902,BDC A ABE ∠=︒-∠+∠再解方程可得答案.【详解】解:如图,连接,DC B 是CD 的中点,,,BD BC BDC BCD ∴=∠=∠,DE DE =,ABE ACD ∴∠=∠,BDC A ACD A ABE ∴∠=∠+∠=∠+∠90,32,ABC A ∠=︒∠=︒()2902,BDC A ABE ∴∠=︒-∠+∠45453213.ABE A ∴∠=︒-∠=︒-︒=︒故答案为:13.︒【点睛】本题考查的是圆周角定理,三角形的外角的性质,直角三角形的两锐角互余,掌握圆周角定理的含义是解题的关键. 9.(2021·江苏盐城市)如图,在△O 内接四边形ABCD 中,若100ABC ∠=︒,则ADC ∠=________︒.【答案】80【分析】根据圆内接四边形的性质计算出18080ADC ABC ∠∠=︒-=︒即可.【详解】解:△ABCD 是△O 的内接四边形,△ABC =100°,△△ABC +△ADC =180°,△180********ADC ABC ∠∠=︒-=︒-︒=︒.故答案为80.【点睛】本题考查了圆内接四边形的性质、解题的关键是熟练掌握圆内接四边形的性质.10.(2021·江苏连云港市)如图,OA 、OB 是O 的半径,点C 在O 上,30AOB ∠=︒,40OBC ∠=︒,则OAC ∠=______︒.【答案】25【分析】连接OC ,根据等腰三角形的性质和三角形内角和定理得到△BOC =100°,求出△AOC ,根据等腰三角形的性质计算.【详解】解:连接OC,△OC=OB,△△OCB=△OBC=40°,△△BOC=180°-40°×2=100°,△△AOC=100°+30°=130°,△OC=OA,△△OAC=△OCA=25°,故答案为:25.【点睛】本题考查的是圆的基本性质、等腰三角形的性质,三角形内角和定理,掌握三角形内角和等于180°是解题的关键.FA GB HC ID JE是五边形ABCDE的外接圆的切线,则11.(2021·江苏南京市)如图,,,,,∠+∠+∠+∠+∠=______︒.BAF CBG DCH EDI AEJ【答案】180︒【分析】由切线的性质可知切线垂直于半径,所以要求的5个角的和等于5个直角减去五边形的内角和的一半.【详解】如图:过圆心连接五边形ABCDE的各顶点,∠+∠+∠+∠+∠则OAB OBC OCD ODE OEA=∠+∠+∠+∠+∠OBA OCB ODC OED OAE1=-⨯︒=︒(52)1802702∴BAF CBG DCH EDI AEJ∠+∠+∠+∠+∠=⨯︒-∠+∠+∠+∠+∠590()OAB OBC OCD ODE OEA=︒-︒450270180=︒.故答案为:180︒.【点睛】本题考查了圆的切线的性质,多边形的内角和公式2180()n -⨯︒(n 为多边形的边数),由半径相等可得“等边对等角”,正确的理解题意作出图形是解题的关键.12.(2021·江苏徐州市)如图,AB 是O 的直径,点C D 、在O 上,若58ADC ∠=︒,则BAC ∠=_________°.【答案】32【分析】由同弧所对的圆周角相等和直径所对的圆周角为90°然后根据三角形内角和即可求出BAC ∠的度数.【详解】△58ADC ∠=︒,△58ABC ADC ∠=∠=︒,又△AB 是直径,△90ACB ∠=︒,△905832BAC =︒-︒=︒∠.故答案为:32.【点睛】此题考查了同弧所对圆周角的性质和直径所对圆周角的性质,解题的关键是熟练掌握同弧所对圆周角的性质和直径所对圆周角的性质.13.(2021·江苏连云港市)如图,正方形ABCD 内接于O ,线段MN 在对角线BD 上运动,若O 的面积为2π,1MN =,则AMN 周长的最小值是( )A .3B .4C .5D .6【答案】B【分析】 利用将军饮马之造桥选址的数学方法进行计算.【详解】如图所示,(1)N 为BD 上一动点,A 点关于线段BD 的对称点为点C ,连接CN ,则=CN AN ,过A 点作CN 的平行线AG ,过C 点作BD 的平行线CG ,两平行线相交于点G ,AG 与BD 相交于点M .//,//,CN MG NM CG∴四边形CNMG 是平行四边形∴MG CN =∴MG AN =则=1AMN C AN AM NM MG AM ++=++(2)找一点'N , 连接'CN ,则'='CN AN ,过G 点作'CN 的平行线MG ,连接'AM 则''=''''''''''1AM N C AN AM N M AN AM CG AN AM NM AN AM ++=++=++=++.此时1''1AN AM AN AM ++<++∴''AMN AM N C C <∴(1)中AMN 周长取到最小值四边形CNMG 是平行四边形∴CNM NMA ∠=∠四边形ABCD 是正方形∴CO OA =,AC BD ⊥又CNM NMA ∠=∠,NOC MOA ∠=∠,CO OA =∴()CNO AOM AAS ≅∴ON OM =又AC BD∴AN AM =∴ANM 是等腰三角形22S r ππ==,则圆的半径r =1111222OM MN ==⨯= 2222219+24AM r OM ⎛⎫==+= ⎪⎝⎭ 32AM ∴= 3=2+1=42AMN C ∴⨯ 故选:B .【点睛】本题难度较大,需要具备一定的几何分析方法.关键是要找到AMN 周长取最小值时M N 、的位置.14.(2021·江苏常州市)如图,在Rt ABC 中,90,30,1ACB CBA AC ∠=︒∠=︒=,D 是AB 上一点(点D 与点A 不重合).若在Rt ABC 的直角边上存在4个不同的点分别和点A 、D 成为直角三角形的三个顶点,则AD 长的取值范围是________.【答案】43<AD <2 【分析】以AD 为直径,作O 与BC 相切于点M ,连接OM ,求出此时AD 的长;以AD 为直径,作O ,当点D 与点B 重合时,求出AD 的长,进入即可得到答案.【详解】解:以AD 为直径,作O 与BC 相切于点M ,连接OM ,则OM △BC ,此时,在Rt ABC 的直角边上存在3个不同的点分别和点A 、D 成为直角三角形,如图,△在Rt ABC 中,90,30,1ACB CBA AC ∠=︒∠=︒=,△AB =2,△OM △BC , △1sin 302OM OB ︒==, 设OM =x ,则AO =x , △122x x =-,解得:23x =, △AD =2×23=43, 以AD 为直径,作O ,当点D 与点B 重合时,如图,此时AD =AB =2,△在Rt ABC 的直角边上存在4个不同的点分别和点A 、D 成为直角三角形的三个顶点,则AD 长的取值范围是:43<AD <2. 故答案是:43<AD <2.【点睛】本题主要考查圆的综合问题,熟练掌握圆周角定理的推论,解直角三角形,画出图形,分类讨论,是解题的关键.15.(2021·江苏扬州市)在一次数学探究活动中,李老师设计了一份活动单:“追梦”学习小组通过操作、观察、讨论后汇报:点A 的位置不唯一,它在以BC 为弦的圆弧上(点B 、C 除外),…….小华同学画出了符合要求的一条圆弧(如图1).(1)小华同学提出了下列问题,请你帮助解决.△该弧所在圆的半径长为___________;△ABC 面积的最大值为_________;(2)经过比对发现,小明同学所画的角的顶点不在小华所画的圆弧上,而在如图1所示的弓形内部,我们记为A ',请你利用图1证明30BA C '∠>︒;(3)请你运用所学知识,结合以上活动经验,解决问题:如图2,已知矩形ABCD 的边长2AB =,3BC =,点P 在直线CD 的左侧,且4tan 3DPC ∠=. △线段PB 长的最小值为_______;△若23PCD PAD S S =,则线段PD 长为________.【答案】(1)△2;2;(2)见解析;(3) 【分析】(1)△设O 为圆心,连接BO ,CO ,根据圆周角定理得到△BOC =60°,证明△OBC 是等边三角形,可得半径; △过点O 作BC 的垂线,垂足为E ,延长EO ,交圆于D ,以BC 为底,则当A 与D 重合时,△ABC 的面积最大,求出OE ,根据三角形面积公式计算即可;(2)延长BA ′,交圆于点D ,连接CD ,利用三角形外角的性质和圆周角定理证明即可;(3)△根据4tan 3DPC ∠=,连接PD ,设点Q 为PD 中点,以点Q 为圆心,12PD 为半径画圆,可得点P 在优弧CPD 上,连接BQ ,与圆Q 交于P ′,可得BP ′即为BP 的最小值,再计算出BQ 和圆Q 的半径,相减即可得到BP ′; △根据AD ,CD 和23PCD PAD S S =推出点P 在△ADC 的平分线上,从而找到点P 的位置,过点C 作CF △PD ,垂足为F ,解直角三角形即可求出DP .【详解】解:(1)△设O 为圆心,连接BO ,CO ,△△BAC =30°,△△BOC =60°,又OB =OC ,△△OBC 是等边三角形,△OB =OC =BC =2,即半径为2;△△△ABC 以BC 为底边,BC =2,△当点A 到BC 的距离最大时,△ABC 的面积最大,如图,过点O 作BC 的垂线,垂足为E ,延长EO ,交圆于D ,△BE =CE =1,DO =BO =2,△OE△DE 2,△△ABC 的最大面积为)1222⨯⨯2;(2)如图,延长BA ′,交圆于点D ,连接CD ,△点D 在圆上,△△BDC =△BAC ,△△BA ′C =△BDC +△A ′CD ,△△BA ′C >△BDC ,△△BA ′C >△BAC ,即△BA ′C >30°;(3)△如图,当点P在BC上,且PC=32时,△△PCD=90°,AB=CD=2,AD=BC=3,△tan△DPC=CDPC =43,为定值,连接PD,设点Q为PD中点,以点Q为圆心,12PD为半径画圆,△当点P在优弧CPD上时,tan△DPC=43,连接BQ,与圆Q交于P′,此时BP′即为BP的最小值,过点Q作QE△BE,垂足为E,△点Q是PD中点,△点E为PC中点,即QE=12CD=1,PE=CE=12PC=34,△BE=BC-CE=3-34=94,△BQ,△PD 52,△圆Q的半径为155 224⨯=,△BP′=BQ-P′Q BP△△AD=3,CD=2,23PCD PADS S=,则23 CDAD=,△△P AD中AD边上的高=△PCD中CD边上的高,即点P到AD的距离和点P到CD的距离相等,则点P到AD和CD的距离相等,即点P在△ADC的平分线上,如图,过点C作CF△PD,垂足为F,△PD平分△ADC,△△ADP=△CDP=45°,△△CDF为等腰直角三角形,又CD=2,△CF=DF△tan△DPC=CFPF=43,△PF△PD=DF+PF.【点睛】本题是圆的综合题,考查了圆周角定理,三角形的面积,等边三角形的判定和性质,最值问题,解直角三角形,三角形外角的性质,勾股定理,知识点较多,难度较大,解题时要根据已知条件找到点P的轨迹.三、圆的切线16.(2021·江苏泰州市)如图,平面直角坐标系xOy中,点A的坐标为(8,5),△A与x轴相切,点P在y轴正半轴上,PB与△A相切于点B.若△APB=30°,则点P的坐标为___.【答案】()0,11.【分析】连接AB,作AD△x轴,AC△y轴,根据题意和30°直角三角形的性质求出AP的长度,然后由圆和矩形的性质,根据勾股定理求出OC的长度,即可求出点P的坐标.【详解】如下图所示,连接AB ,作AD △x 轴,AC △y 轴,△PB 与△A 相切于点B△AB △PB ,△△APB =30°,AB △PB ,△P A =2AB =2510⨯=.△90,90,90O OCA ADO =︒=︒=︒∠∠∠,△四边形ACOD 是矩形,点A 的坐标为(8,5),所以AC =OD =8,CO =AD =5,在Rt PAC △中,6PC ==.如图,当点P 在C 点上方时,△5611OP OC CP =+=+=,△点P 的坐标为()0,11.【点睛】此题考查了勾股定理,30°角直角三角形的性质和矩形等的性质,解题的关键是根据题意作出辅助线.17.(2021·江苏南京市)如图,已知P 是O 外一点.用两种不同的方法过点P 作O 的一条切线.要求: (1)用直尺和圆规作图;(2)保留作图的痕迹,写出必要的文字说明.【答案】答案见解析.【分析】方法一:作出OP 的垂直平分线,交OP 于点A ,再以点A 为圆心,P A 长为半径画弧,交O 于点Q ,连结PQ ,PQ 即为所求.方法二:作出以OP 为底边的等腰三角形BPO ,再作出△OBP 的角平分线交OP 于点A ,再以点A 为圆心,P A 长为半径画弧,交O 于点Q ,连结PQ ,PQ 即为所求.【详解】解:作法:连结PO ,分别以P 、O 为圆心,大于12PO 的长度为半径画弧,交于两点,连结两点交PO 于点A ;以点A 为圆心,P A 长为半径画弧,交O 于点Q ,连结PQ ,PQ 即为所求.作法:连结PO ,分别以P 、O 为圆心,以大于12PO 的长度为半径画弧交PO 上方于点B ,连结BP 、BO ;以点B 为圆心,任意长为半径画弧交BP 、BO 于C 、D 两点,分别以于C 、D 两点为圆心,大于12CD 的长度为半径画弧交于一点,连结该点与B 点,并将其反向延长交PQ 于点A ,以点A 为圆心,P A 长为半径画弧,交O 于点Q ,连结PQ ,PQ 即为所求.【点睛】本题考查了作图——复杂作图,涉及垂直平分线的作法,角平分线的作法,等腰三角形的作法,圆的作法等知识点.复杂作图是在五种基本作图的基础上进行作图.解题的关键是熟悉基本几何图形的性质,结合基本几何图形的性质把复杂作图拆解成基本作图,逐步操作.18.(2021·江苏南通市)如图,AB 为O 的直径,C 为O 上一点,弦AE 的延长线与过点C 的切线互相垂直,垂足为D ,35CAD ∠=︒,连接BC .(1)求B的度数;(2)若2AB=,求EC的长.【答案】(1)55°;(2)718π.【分析】(1)连接OC,如图,利用切线的性质得到OC△CD,则判断OC△AE,所以△DAC=△OCA,然后利用△OCA=△OAC 得到△OAB的度数,即可求解;(2)利用(1)的结论先求得△AEO=△EAO=70°,再平行线的性质求得△COE=70°,然后利用弧长公式求解即可.【详解】解:(1)连接OC,如图,△CD是△O的切线,△OC△CD,△AE△CD,△OC△AE,△△DAC=△OCA,△OA=OC,△CAD=35°,△△OAC=△OCA=△CAD=35°,△AB为△O的直径,△△ACB=90°,△△B=90°-△OAC=55°;(2)连接OE,OC,如图,由(1)得△EAO =△OAC +△CAD =70°,△OA =OE ,△△AEO =△EAO =70°,△OC △AE ,△△COE =△AEO =70°,△AB =2,则OC =OE =1,△EC 的长为70718018018n r πππ==. 【点睛】本题考查了切线的性质,圆周角定理,弧长公式等知识,解题的关键是学会添加常用辅助线.19.(2021·江苏盐城市)如图,O 为线段PB 上一点,以O 为圆心OB 长为半径的△O 交PB 于点A ,点C 在△O 上,连接PC ,满足2PC PA PB =⋅.(1)求证:PC 是△O 的切线;(2)若3AB PA =,求AC BC的值. 【答案】(1)见解析;(2)12【分析】(1) 连接OC ,把2PC PA PB =⋅转化为比例式,利用三角形相似证明90PCO ∠=︒即可;(2)利用勾股定理和相似三角形的性质求解即可.【详解】(1)证明:连接OC△2PC PA PB =⋅ △PC PB PA PC=, 又△△P =△P ,△PAC PCB ∽△PAC PCB =∠∠,PCA PBC ∠=∠△PCO PCB OCB ∠=∠-∠△PCO PAC OCB ∠=∠-∠又△OC OB =△OCB OBC ∠=∠△PCO PAC ABC ACB ∠=∠-∠=∠已知C 是O 上的点,AB 是直径,△90ACB ∠=︒,△90PCO ∠=︒△AC PO ⊥,△PC 是圆的切线;(2)设AP a =,则3AB a =, 1.5r a =△ 1.5OC a =在Rt △PCO 中△ 2.5OP a =, 1.5OC a =,△2PC a =已知PAC PCB ∽,AC PA BC PC= △12AC BC =. 【点睛】本题考查了切线的判定,三角形相似的判定和性质,勾股定理,熟练掌握切线的判定方法,灵活运用三角形相似的判定证明相似,运用勾股定理计算是解题的关键.20.(2021·江苏无锡市)如图,四边形ABCD 内接于O ,AC 是O 的直径,AC 与BD 交于点E ,PB 切O 于点B .(1)求证:PBA OBC ∠=∠;(2)若20PBA ,40ACD ∠=︒,求证:OAB CDE ∽.【答案】(1)见详解;(2)见详解【分析】(1)由圆周角定理的推论,可知△ABC =90°,由切线的性质可知△OBP =90°,进而即可得到结论;(2)先推出20OCB OBC ∠=∠=︒,从而得△AOB =40°,继而得△OAB =70°,再推出△CDE =70°,进而即可得到结论.【详解】证明:(1)△AC 是O 的直径,△△ABC =90°,△PB 切O 于点B ,△△OBP =90°,△90PBA ABO OBC ABO ∠+∠=∠+∠=︒,△PBA OBC ∠=∠;(2)△20PBA ,PBA OBC ∠=∠,△20OBC ∠=︒,△OB =OC ,△20OCB OBC ∠=∠=︒,△△AOB =20°+20°=40°,△OB =OA ,△△OAB =△OBA =(180°-40°)÷2=70°,△△ADB =12△AOB =20°,△AC 是O 的直径,△△ADC =90°,△△CDE =90°-20°=70°,△△CDE =△OAB ,△40ACD ∠=︒,△40ACD AOB ∠=∠=︒,△OAB CDE ∽.【点睛】本题主要考查圆的性质以及相似三角形的判定定理,掌握圆周角定理的推论,相似三角形的判定定理,切线的性质定理,是解题的关键.21.(2021·江苏宿迁市)如图,在Rt △AOB 中,△AOB =90°,以点O 为圆心,OA 为半径的圆交AB 于点C ,点D 在边OB 上,且CD= BD .(1)判断直线CD 与圆O 的位置关系,并说明理由;(2)已知24tan 7DOC ∠=,AB =40,求O 的半径.【答案】(1)直线CD 与圆O 相切,理由见解析;(2)【分析】(1)连接,OC 证明90,DCB OCA ∠+∠=︒可得90,OCD ∠=︒ 从而可得答案;(2)由24,tan ,7CD OC CD DOC OC ⊥∠== 设24,CD x = 则7,OC x = 再求解25,7,OD x OA x == 再表示49,OB OD BD x =+= 再利用222,AO BO AB += 列方程解方程,可得答案.【详解】解:(1)直线CD 与圆O 相切,理由如下:如图,连接,OC90,,AOB OA OC ∠=︒=90,,B OAC OAC OCA ∴∠+∠=︒∠=∠,CD BD =,B DCB ∴∠=∠90,DCB OCA ∴∠+∠=︒1809090,OCD ∴∠=︒-︒=︒,OC CD ∴⊥ OC 为O 的半径,CD ∴是O 的切线.(2)24,tan ,7CD OC CD DOC OC ⊥∠== 设24,CD x = 则7,OC x =25,7,OD x OA OC x ∴===,CD BD =24,BD x ∴=49,OB OD BD x ∴=+=40,90,AB AOB =∠=︒222,AO BO AB ∴+=()()22274940,x x ∴+= 232,49x ∴=12x x ∴==(负根舍去)O ∴的半径为:777OC x ==⨯= 【点睛】本题考查的是切线的判定与性质,勾股定理的应用,等腰三角形的性质,锐角三角函数的应用,一元二次方程的解法,熟练应用基础知识,把知识串联起来是解题的关键.22.(2021·江苏苏州市)如图,四边形ABCD 内接于O ,12∠=∠,延长BC 到点E ,使得CE AB =,连接ED . (1)求证:BD ED =;(2)若4AB =,6BC =,60ABC ∠=︒,求tan DCB ∠的值.【答案】(1)见解析;(2 【分析】(1)由圆内接四边形的性质可知180A BCD ∠+∠=︒,再由180DCE BCD ∠+∠=︒,即可得出A DCE ∠=∠.根据圆周角定理结合题意可知AD CD =,即得出AD CD =.由此易证()ABD CED SAS △≌△,即得出BD ED =. (2)过点D 作DM BE ⊥,垂足为M .根据题意可求出10BE =,结合(1)可知152BM EM BE ===,即可求出1CM =.根据题意又可求出230∠=︒,利用三角函数即可求出DM =最后再利用三角函数即可求出最后结果. 【详解】(1)证明:△四边形ABCD 是圆的内接四边形,△180A BCD ∠+∠=︒.△180DCE BCD ∠+∠=︒,△A DCE ∠=∠.△12∠=∠,△AD CD =,△AD CD =. 在ABD △和CED 中,AB CE A DCE AD CD =⎧⎪∠=∠⎨⎪=⎩△()ABD CED SAS △≌△,△BD ED =.(2)解:如图,过点D 作DM BE ⊥,垂足为M .△6BC =,4AB CE ==,△10BE BC CE =+=.由(1)知BD ED =. △152BM EM BE ===. △1CM BC BM =-=.△60ABC ∠=︒,12∠=∠,△230∠=︒.△tan 305DM BM =⋅︒==.△tan DM DCB CM ∠== 【点睛】 本题为圆的综合题.考查圆内接四边形的性质,圆周角定理,全等三角形的判定和性质,等腰三角形的判定和性质以及解直角三角形.利用数形结合的思想并正确作出辅助线是解答本题的关键.23.(2021·江苏扬州市)如图,四边形ABCD 中,//AD BC ,90BAD ∠=︒,CB CD =,连接BD ,以点B 为圆心,BA 长为半径作B ,交BD 于点E .(1)试判断CD 与B 的位置关系,并说明理由;(2)若AB =60BCD ∠=︒,求图中阴影部分的面积.【答案】(1)相切,理由见解析;(2)π【分析】(1)过点B 作BF △CD ,证明△ABD △△FBD ,得到BF =BA ,即可证明CD 与圆B 相切;(2)先证明△BCD 是等边三角形,根据三线合一得到△ABD =30°,求出AD ,再利用S △ABD -S 扇形ABE 求出阴影部分面积.【详解】解:(1)过点B 作BF △CD ,△AD △BC ,△△ADB =△CBD ,△CB =CD ,△△CBD =△CDB ,△△ADB =△CDB ,又BD =BD ,△BAD =△BFD =90°,△△ABD △△FBD (AAS ),△BF =BA ,则点F 在圆B 上,△CD 与圆B 相切;(2)△△BCD =60°,CB =CD ,△△BCD 是等边三角形,△△CBD =60°△BF △CD ,△△ABD =△DBF =△CBF =30°,△△ABF =60°,△AB =BF =△AD =DF =tan30AB ⋅︒=2,△阴影部分的面积=S △ABD -S 扇形ABE=(230122360π⨯⨯⨯-=π.【点睛】本题考查了切线的判定,全等三角形的判定和性质,等边三角形的判定和性质,扇形面积,三角函数的定义,题目的综合性较强,难度不小,解题的关键是正确做出辅助线.24.(2021·江苏连云港市)如图,Rt ABC 中,90ABC ∠=︒,以点C 为圆心,CB 为半径作C ,D 为C 上一点,连接AD 、CD ,AB AD =,AC 平分BAD ∠.(1)求证:AD 是C 的切线;(2)延长AD 、BC 相交于点E ,若2EDC ABC S S =,求tan BAC ∠的值.【答案】(1)见解析;(2【分析】 (1)利用SAS 证明≌∆∆BAC DAC ,可得90ADC ABC ∠=∠=︒,即可得证;(2)由已知条件可得EDC EBA ∆∆∽,可得出:=DC BA :=CB BA tan BAC ∠;【详解】(1)△AC 平分BAD ∠,△BAC DAC ∠=∠.△AB AD =,AC AC =,△≌∆∆BAC DAC .△90ADC ABC ∠=∠=︒.△CD AD ⊥,△AD 是C 的切线.(2)由(1)可知,90EDC ABC ∠=∠=︒,又E E ∠=∠,△EDC EBA ∆∆∽.△2∆∆=EDC ABC S S ,且≌∆∆BAC DAC ,△:1:2∆∆=EDC EBA S S ,△:=DC BA△DC CB =,△:=CB BA△90ABC ∠=︒△tan ∠=CB BAC BA 【点睛】此题考查了切线的判定与性质,正切的性质,以及相似三角形的性质判定,熟练掌握基础知识是解本题的关键. 25.(2021·江苏泰州市)如图,在△O 中,AB 为直径,P 为AB 上一点,P A =1,PB =m (m 为常数,且m >0).过点P 的弦CD △AB ,Q 为BC 上一动点(与点B 不重合),AH △QD ,垂足为H .连接AD 、BQ .(1)若m =3.△求证:△OAD =60°;△求BQ DH的值; (2)用含m 的代数式表示BQ DH ,请直接写出结果; (3)存在一个大小确定的△O ,对于点Q 的任意位置,都有BQ 2﹣2DH 2+PB 2的值是一个定值,求此时△Q 的度数.【答案】(1)△见解析;△2;(2(3)存在半径为1的圆,45°【分析】(1)△连接OD ,则易得CD 垂直平分线段OA ,从而OD =AD ,由OA =OD ,即可得△OAD 是等边三角形,从而可得结论;△连接AQ ,由圆周角定理得:△ABQ =△ADH ,从而其余弦值相等,因此可得BQ AB DH AD= ,由△可得AB 、AD 的值,从而可得结论;(2)连接AQ 、BD , 首先与(1)中的△相同,有BQ AB DH AD =,由△APD △△ADB ,可求得AD 的长,从而求得结果; (3)由(2)的结论可得:22(1)BQ m DH =+,从而BQ 2﹣2DH 2+PB 222(1)m DH m =-+当m =1时,即可得是一个定值,从而可求得△Q 的值.【详解】(1)△如图,连接OD ,则OA =OD△AB =P A +PB =1+3=4△OA =122AB = △OP =AP =1即点P 是线段OA 的中点△CD △AB△CD 垂直平分线段OA△OD =AD△OA =OD =AD。
2024年中考数学真题汇编专题22 圆的相关性质+答案详解
![2024年中考数学真题汇编专题22 圆的相关性质+答案详解](https://img.taocdn.com/s3/m/db5e4345fe00bed5b9f3f90f76c66137ee064fb5.png)
2024年中考数学真题汇编专题22 圆的相关性质+答案详解(试题部分)一、单选题1.(2024·湖南·中考真题)如图,AB ,AC 为O 的两条弦,连接OB ,OC ,若45A ∠=︒,则BOC ∠的度数为( )A .60︒B .75︒C .90︒D .135︒2.(2024·甘肃临夏·中考真题)如图,AB 是O 的直径,35E ∠=︒,则BOD ∠=( )A .80︒B .100︒C .120︒D .110︒3.(2024·江苏连云港·中考真题)如图,将一根木棒的一端固定在O 点,另一端绑一重物.将此重物拉到A 点后放开,让此重物由A 点摆动到B 点.则此重物移动路径的形状为( )A .倾斜直线B .抛物线C .圆弧D .水平直线4.(2024·四川凉山·中考真题)数学活动课上,同学们要测一个如图所示的残缺圆形工件的半径,小明的解决方案是:在工件圆弧上任取两点,A B ,连接AB ,作AB 的垂直平分线CD 交AB 于点D ,交AB 于点C ,测出40cm 10cm AB CD ==,,则圆形工件的半径为( )A .50cmB .35cmC .25cmD .20cm5.(2024·内蒙古赤峰·中考真题)如图,AD 是O 的直径,AB 是O 的弦,半径OC AB ⊥,连接CD ,交OB 于点E ,42BOC ∠=︒,则OED ∠的度数是( )A .61︒B .63︒C .65︒D .67︒6.(2024·湖北·中考真题)AB 为半圆O 的直径,点C 为半圆上一点,且50CAB ∠=︒.①以点B 为圆心,适当长为半径作弧,交,AB BC 于,D E ;②分别以DE 为圆心,大于12DE 为半径作弧,两弧交于点P ;③作射线BP ,则ABP ∠=( )A .40︒B .25︒C .20︒D .15︒7.(2024·四川宜宾·中考真题)如图,AB 是O 的直径,若60CDB ∠=︒,则ABC ∠的度数等于( )A .30︒B .45︒C .60︒D .90︒8.(2024·四川广元·中考真题)如图,已知四边形ABCD 是O 的内接四边形,E 为AD 延长线上一点,128AOC ∠=︒,则CDE ∠等于( )A .64︒B .60︒C .54︒D .52︒9.(2024·云南·中考真题)如图,CD 是O 的直径,点A 、B 在O 上.若AC BC =,36AOC ∠=,则D ∠=( )A .9B .18C .36oD .4510.(2024·黑龙江绥化·中考真题)下列叙述正确的是( )A .顺次连接平行四边形各边中点一定能得到一个矩形B .平分弦的直径垂直于弦CD .相等的圆心角所对的弧相等,所对的弦相等,所对的弦心距也相等11.(2024·广东广州·中考真题)如图,O 中,弦AB 的长为点C 在O 上,OC AB ⊥,30ABC ∠=︒.O 所在的平面内有一点P ,若5OP =,则点P 与O 的位置关系是( )A .点P 在O 上B .点P 在O 内C .点P 在O 外D .无法确定12.(2024·黑龙江牡丹江·中考真题)如图,四边形ABCD 是O 的内接四边形,AB 是O 的直径,若20BEC ∠=︒,则ADC ∠的度数为( )A .100︒B .110︒C .120︒D .130︒13.(2024·湖北武汉·中考真题)如图,四边形ABCD 内接于O ,60ABC ∠=︒,45BAC CAD ∠=∠=︒,2AB AD +=,则O 的半径是( )A B C D二、填空题14.(2024·四川南充·中考真题)如图,AB 是O 的直径,位于AB 两侧的点C ,D 均在O 上,30BOC ∠=︒,则ADC ∠= 度.15.(2024·北京·中考真题)如图,O 的直径AB 平分弦CD (不是直径).若35D ∠=︒,则C ∠= ︒16.(2024·江苏苏州·中考真题)如图,ABC 是O 的内接三角形,若28OBC ∠=︒,则A ∠= .17.(2024·黑龙江大兴安岭地·中考真题)如图,ABC 内接于O ,AD 是直径,若25B ∠=︒,则CAD ∠ ︒.18.(2024·四川眉山·中考真题)如图,ABC 内接于O ,点O 在AB 上,AD 平分BAC ∠交O 于D ,连接BD .若10AB =,BD =BC 的长为 .19.(2024·陕西·中考真题)如图,BC 是O 的弦,连接OB ,OC ,A ∠是BC 所对的圆周角,则A ∠与OBC ∠的和的度数是 .20.(2024·黑龙江牡丹江·中考真题)如图,在O 中,直径AB CD ⊥于点E ,6,1CD BE ==,则弦AC 的长为 .21.(2024·江西·中考真题)如图,AB 是O 的直径,2AB =,点C 在线段AB 上运动,过点C 的弦DE AB ⊥,将DBE 沿DE 翻折交直线AB 于点F ,当DE 的长为正整数时,线段FB 的长为 .22.(2024·河南·中考真题)如图,在Rt ABC △中,90ACB ∠=︒,3CA CB ==,线段CD 绕点C 在平面内旋转,过点B 作AD 的垂线,交射线AD 于点E .若1CD =,则AE 的最大值为 ,最小值为 .三、解答题23.(2024·四川甘孜·中考真题)如图,AB 为⊙O 的弦,C 为AB 的中点,过点C 作CD AB ∥,交OB 的延长线于点D .连接OA OC ,.(1)求证:CD 是⊙O 的切线;(2)若32OA BD ==,,求OCD 的面积.24.(2024·内蒙古包头·中考真题)如图,AB 是O 的直径,,BC BD 是O 的两条弦,点C 与点D 在AB 的两侧,E 是OB 上一点(OE BE >),连接,OC CE ,且2BOC BCE ∠=∠.(1)如图1,若1BE =,CE =O 的半径;(2)如图2,若2BD OE =,求证:BD OC ∥.(请用两种证法解答)25.(2024·安徽·中考真题)如图,O 是ABC 的外接圆,D 是直径AB 上一点,ACD ∠的平分线交AB 于点E ,交O 于另一点F ,FA FE =.(1)求证:CD AB ⊥;(2)设FM AB ⊥,垂足为M ,若1OM OE ==,求AC 的长.26.(2024·四川眉山·中考真题)如图,BE 是O 的直径,点A 在O 上,点C 在BE 的延长线上,EAC ABC ∠=∠,AD 平分BAE ∠交O 于点D ,连结DE .(1)求证:CA 是O 的切线;(2)当8,4AC CE ==时,求DE27.(2024·江苏扬州·中考真题)如图,已知PAQ ∠及AP 边上一点C .(1)用无刻度直尺和圆规在射线AQ 上求作点O ,使得2COQ CAQ ∠=∠;(保留作图痕迹,不写作法)(2)在(1)的条件下,以点O 为圆心,以OA 为半径的圆交射线AQ 于点B ,用无刻度直尺和圆规在射线CP 上求作点M ,使点M 到点C 的距离与点M 到射线AQ 的距离相等;(保留作图痕迹,不写作法)(3)在(1)、(2)的条件下,若3sin 5A =,12CM =,求BM 的长. 28.(2024·河南·中考真题)如图1,塑像AB 在底座BC 上,点D 是人眼所在的位置.当点B 高于人的水平视线DE 时,由远及近看塑像,会在某处感觉看到的塑像最大,此时视角最大.数学家研究发现:当经过A ,B 两点的圆与水平视线DE 相切时(如图2),在切点P 处感觉看到的塑像最大,此时APB ∠为最大视角.(1)请仅就图2的情形证明APB ADB ∠>∠.(2)经测量,最大视角APB ∠为30︒,在点P 处看塑像顶部点A 的仰角APE ∠为60︒,点P 到塑像的水平距离PH 为6m .求塑像AB 的高(结果精确到0.1m 1.73≈).29.(2024·江西·中考真题)如图,AB 是半圆O 的直径,点D 是弦AC 延长线上一点,连接BD BC ,,60D ABC ∠=∠=︒.(1)求证:BD 是半圆O 的切线;(2)当3BC =时,求AC 的长.30.(2024·广东深圳·中考真题)如图,在ABD △中,AB BD =,O 为ABD △的外接圆,BE 为O 的切线,AC 为O 的直径,连接DC 并延长交BE 于点E .(1)求证:DE BE ⊥;(2)若AB =5BE =,求O 的半径.31.(2024·四川广元·中考真题)如图,在ABC 中,AC BC =,90ACB ∠=︒,O 经过A 、C 两点,交AB 于点D ,CO 的延长线交AB 于点F ,DE CF ∥交BC 于点E .(1)求证:DE 为O 的切线;(2)若4AC =,tan 2CFD ∠=,求O 的半径.32.(2024·内蒙古呼伦贝尔·中考真题)如图,在ABC 中,以AB 为直径的O 交BC 于点,D DE AC ⊥,垂足为E . O 的两条弦,FB FD 相交于点,F DAE BFD ∠∠=.(1)求证:DE 是O 的切线;(2)若30,C CD ∠=︒=OBD 的面积.33.(2024·江苏扬州·中考真题)在综合实践活动中,“特殊到一般”是一种常用方法,我们可以先研究特殊情况,猜想结论,然后再研究一般情况,证明结论.如图,已知ABC ,CA CB =, O 是ABC 的外接圆,点D 在O 上(AD BD >),连接AD 、BD 、CD .【特殊化感知】(1)如图1,若60ACB ∠=︒,点D 在AO 延长线上,则AD BD −与CD 的数量关系为________;【一般化探究】(2)如图2,若60ACB ∠=︒,点C 、D 在AB 同侧,判断AD BD −与CD 的数量关系并说明理由;【拓展性延伸】(3)若ACB α∠=,直接写出AD 、BD 、CD 满足的数量关系.(用含α的式子表示)34.(2024·浙江·中考真题)如图,在圆内接四边形ABCD 中,AD AC ADC BAD <∠<∠,,延长AD 至点E ,使AE AC =,延长BA 至点F ,连结EF ,使AFE ADC ∠=∠.(1)若60AFE ∠=︒,CD 为直径,求ABD ∠的度数.(2)求证:①EF BC ∥;②EF BD =.2024年中考数学真题汇编专题22 圆的相关性质+答案详解(答案详解)一、单选题1.(2024·湖南·中考真题)如图,AB ,AC 为O 的两条弦,连接OB ,OC ,若45A ∠=︒,则BOC ∠的度数为( )A .60︒B .75︒C .90︒D .135︒ 45A ∠=BOC ∴∠故选:C .2.(2024·甘肃临夏·中考真题)如图,AB 是O 的直径,35E ∠=︒,则BOD ∠=( )A .80︒B .100︒C .120︒D .110︒【答案】D 【分析】本题考查圆周角定理,关键是由圆周角定理推出2AOD E ∠=∠.由圆周角定理得到270AOD E ∠=∠=︒,由邻补角的性质求出18070110BOD ∠=︒−︒=°.【详解】解:35E ∠=︒,270AOD E ∴∠=∠=︒,18070110BOD ︒∴∠=−︒=︒.故选:D .3.(2024·江苏连云港·中考真题)如图,将一根木棒的一端固定在O 点,另一端绑一重物.将此重物拉到A 点后放开,让此重物由A 点摆动到B 点.则此重物移动路径的形状为( )A .倾斜直线B .抛物线C .圆弧D .水平直线【答案】C 【分析】本题考查动点的移动轨迹,根据题意,易得重物移动的路径为一段圆弧.【详解】解:在移动的过程中木棒的长度始终不变,故点A 的运动轨迹是以O 为圆心,OA 为半径的一段圆弧,故选:C .4.(2024·四川凉山·中考真题)数学活动课上,同学们要测一个如图所示的残缺圆形工件的半径,小明的解决方案是:在工件圆弧上任取两点,A B ,连接AB ,作AB 的垂直平分线CD 交AB 于点D ,交AB 于点C ,测出40cm 10cm AB CD ==,,则圆形工件的半径为( )A .50cmB .35cmC .25cmD .20cm【答案】C 【分析】本题考查垂径定理,勾股定理等知识.由垂径定理,可得出BD 的长;设圆心为O ,连接OB ,在Rt OBD △中,可用半径OB 表示出OD 的长,进而可根据勾股定理求出得出轮子的半径,即可得出轮子的直径长.【详解】解:∵CD 是线段AB 的垂直平分线,∴直线CD 经过圆心,设圆心为O ,连接OB .Rt 根据勾股定理得:222OD BD OB +=,即:)2221020OB OB −+=,解得:25OB =;5.(2024·内蒙古赤峰·中考真题)如图,AD 是O 的直径,AB 是O 的弦,半径OC AB ⊥,连接CD ,交OB 于点E ,42BOC ∠=︒,则OED ∠的度数是( )A .61︒B .63︒C .65︒D .67︒6.(2024·湖北·中考真题)AB 为半圆O 的直径,点C 为半圆上一点,且50CAB ∠=︒.①以点B 为圆心,适当长为半径作弧,交,AB BC 于,D E ;②分别以DE 为圆心,大于12DE 为半径作弧,两弧交于点P ;③作射线BP ,则ABP ∠=( )A .40︒B .25︒C .20︒D .15︒7.(2024·四川宜宾·中考真题)如图,AB 是O 的直径,若60CDB ∠=︒,则ABC ∠的度数等于( )A .30︒B .45︒C .60︒D .90︒【答案】A 【分析】本题考查了直径所对的圆周角为直角,同弧或等弧所对的圆周角相等.根据直径所对的圆周角为直角得到90ACB ∠=︒,同弧或等弧所对的圆周角相等得到60CDB A ∠=∠=︒,进一步计算即可解答.【详解】解:AB 是O 的直径,90ACB ∴∠=︒,60CDB ∠=︒,60A CDB ∴∠=∠=︒,9030ABC A ∴∠=︒−∠=︒,故选:A .8.(2024·四川广元·中考真题)如图,已知四边形ABCD 是O 的内接四边形,E 为AD 延长线上一点,128AOC ∠=︒,则CDE ∠等于( )A .64︒B .60︒C .54︒D .52︒ 【详解】解:ABC ∠是圆周角,与圆心角12AOC ∠=又四边形ABCD 是O 的内接四边形,180ADC =︒,又180CDE ADC ∠+∠=︒,64CDE ∴∠=∠︒,故选:A .9.(2024·云南·中考真题)如图,CD 是O 的直径,点A 、B 在O 上.若AC BC =,36AOC ∠=,则D ∠=( )A .9B .18C .36oD .4510.(2024·黑龙江绥化·中考真题)下列叙述正确的是( )A .顺次连接平行四边形各边中点一定能得到一个矩形B .平分弦的直径垂直于弦C .物体在灯泡发出的光照射下形成的影子是中心投影D .相等的圆心角所对的弧相等,所对的弦相等,所对的弦心距也相等【答案】C【分析】本题考查了矩形的判定,垂径定理,中心投影,弧、弦与圆心角的关系,根据相关定理逐项分析判断,即可求解.【详解】A. 顺次连接平行四边形各边中点不一定能得到一个矩形,故该选项不正确,不符合题意;B. 平分弦(非直径)的直径垂直于弦,故该选项不正确,不符合题意;C. 物体在灯泡发出的光照射下形成的影子是中心投影,故该选项正确,符合题意;D. 在同圆或等圆 中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦心距也相等,故该选项不正确,不符合题意;故选:C .11.(2024·广东广州·中考真题)如图,O 中,弦AB 的长为点C 在O 上,OC AB ⊥,30ABC ∠=︒.O 所在的平面内有一点P ,若5OP =,则点P 与O 的位置关系是( )A .点P 在O 上B .点P 在O 内C .点P 在O 外D .无法确定 ,再结合特殊角的正弦值,求出O 的OC 为半径,12AD ∴=ABC =∠AOC ∴∠=在ADO △sin AOD ∠sin AD OA ∴=,即O 的半径为5OP =>∴点P 在O 外,故选:C .12.(2024·黑龙江牡丹江·中考真题)如图,四边形ABCD 是O 的内接四边形,AB 是O 的直径,若20BEC ∠=︒,则ADC ∠的度数为( )A .100︒B .110︒C .120︒D .130︒ 【答案】B 【分析】此题考查了圆周角定理、圆内接四边形的性质,连接AC ,由AB 是O 的直径得到90ACB ∠=︒,根据圆周角定理得到20CAB BEC ∠=∠=︒,得到9070ABC BAC ∠=︒−∠=︒,再由圆内接四边形对角互补得到答案.【详解】解:如图,连接AC ,∵AB 是O 的直径,∴90ACB ∠=︒,∵20BEC ∠=︒,∴20CAB BEC ∠=∠=︒∴9070ABC BAC ∠=︒−∠=︒∵四边形ABCD 是O 的内接四边形,∴180110ADC ABC ∠=︒−∠=︒,故选:B13.(2024·湖北武汉·中考真题)如图,四边形ABCD 内接于O ,60ABC ∠=︒,45BAC CAD ∠=∠=︒,2AB AD +=,则O 的半径是( )A B C 2 D 并延长交O 于点F ()SAS ADC EBC ≌,再利用圆周角定理得到函数即可求解.【详解】解:延长AB 并延长交O 于点F∵四边形ABCD 内接于O ,∴ADC ABC ABC CBE ∠+∠=∠+∠∴ADC CBE ∠=∠∵45BAC CAD ∠=∠=︒︒,DAB ∠是O 的直径,90DCB =︒DCB 是等腰直角三角形,BCAD∴()SAS ADC EBC ≌ACD ECB ∠=∠,AC 2AB AD +=2AB BE AE +==又∵90DCB ∠=︒二、填空题14.(2024·四川南充·中考真题)如图,AB是O的直径,位于AB两侧的点C,D均在O上,30∠=︒,BOC ∠=度.则ADC是O的直径,位于均在O上,∠BOC=︒,15075︒;15.(2024·北京·中考真题)如图,O的直径AB平分弦CD(不是直径).若35∠=︒,则C∠=D︒【答案】55【分析】本题考查了垂径定理的推论,圆周角定理,直角三角形的性质,熟练掌握知识点是解题的关键.先由垂径定理得到AB CD ⊥,由BC BC =得到35A D ∠=∠=︒,故903555C ︒︒∠=−=︒.【详解】解:∵直径AB 平分弦CD ,∴AB CD ⊥,∵BC BC =,∴35A D ∠=∠=︒,∴903555C ︒︒∠=−=︒,故答案为:55.16.(2024·江苏苏州·中考真题)如图,ABC 是O 的内接三角形,若28OBC ∠=︒,则A ∠= .∵OB OC =,OBC ∠∴OCB OBC ∠=∠∴180BOC ∠=︒−∠117.(2024·黑龙江大兴安岭地·中考真题)如图,ABC 内接于O ,AD 是直径,若25B ∠=︒,则CAD ∠ ︒.【答案】65【分析】本题考查了圆周角定理,直角三角形的两个锐角互余,连接CD ,根据直径所对的圆周角是直角得出=90ACD ∠︒,根据同弧所对的圆周角相等得出25D B ∠=∠=︒,进而根据直角三角形的两个锐角互余,即可求解.【详解】解:如图所示,连接CD ,∵ABC 内接于O ,AD 是直径,∴=90ACD ∠︒,∵AC AC =,25B ∠=︒,∴25D B ∠=∠=︒∴902565CAD ∠=︒−︒=︒,故答案为:65.18.(2024·四川眉山·中考真题)如图,ABC 内接于O ,点O 在AB 上,AD 平分BAC ∠交O 于D ,连接BD .若10AB =,BD =BC 的长为 .可证明(ASA ABD AED ≌BCE ∽△,得到BE AB 【详解】解:延长AC ,BD AB 是O 的直径,90ADB ADE ∴∠=∠=︒,∠AD 平分BAD ∴∠=又∵AD =∴(ASA ABD AED ≌25BD DE ∴==,45BE =,10AB =,25BD =,AD ∴=DAC ∠=又∵BAD ∠∴BAD ∠ADB ∠=ABD BEC ∴∽,BE BC AB AD∴=, 451045BC ∴=, 8BC ∴=,19.(2024·陕西·中考真题)如图,BC 是O 的弦,连接OB ,OC ,A ∠是BC 所对的圆周角,则A ∠与OBC ∠的和的度数是 .【答案】90︒/90度【分析】本题考查了圆周角定理,等腰三角形的性质,三角形内角和定理,熟练掌握圆周角定理是解题的关键.根据圆周角定理可得2BOC A ∠=∠,结合三角形内角和定理,可证明2180A OBC OCB ∠+∠+∠=︒,再根据等腰三角形的性质可知OBC OCB ∠=∠,由此即得答案.【详解】A ∠是BC 所对的圆周角,BOC ∠是BC 所对的圆心角,2BOC A ∴∠=∠,180BOC OBC OCB ∠+∠+∠=︒,2180A OBC OCB ∴∠+∠+∠=︒,OB OC =,OBC OCB ∴∠=∠,2180A OBC OBC ∴∠+∠+∠=︒,22180A OBC ∴∠+∠=︒,90A OBC ∴∠+∠=︒.故答案为:90︒.20.(2024·黑龙江牡丹江·中考真题)如图,在O 中,直径AB CD ⊥于点E ,6,1CD BE ==,则弦AC 的长为 .,设O 的半径为Rt OED 中,由勾股定9=,在Rt AEC 中,由勾股定理即可求解.设O的半径为Rt OED中,由勾股定理得:r,解得:=5==5,OA OE=+AE OA OERt AEC中,由勾股定理得:故答案为:321.(2024·江西·中考真题)如图,AB是O的直径,2⊥,AB=,点C在线段AB上运动,过点C的弦DE AB 将DBE沿DE翻折交直线AB于点F,当DE的长为正整数时,线段FB的长为.【详解】解:AB为直径,的长为正整数时,时,即DE为直径,∵22.(2024·河南·中考真题)如图,在Rt ABC △中,90ACB ∠=︒,3CA CB ==,线段CD 绕点C 在平面内旋转,过点B 作AD 的垂线,交射线AD 于点E .若1CD =,则AE 的最大值为 ,最小值为 .与C在ABC 内部时,与C 相切于点在ABC AE 最小,分别画出图形,求出结果即可.90=︒,CA 9045︒=︒,在平面内旋转,与C 相切于点在ABC 内部时,则CD AE ⊥,∴90ADC CDE ∠=∠=︒,∴22231AD AC CD =−=−∵AC AC =,∴45CED ABC ==︒∠∠,∵90CDE ∠=︒,∴CDE 为等腰直角三角形,DE CD =AE AD =AE 的最大值为AE 与C 相切于点在ABC 外部时,则CD AE ⊥,∴90CDE ∠=︒,∴222231AD AC CD =−=−=∵四边形ABCE 为圆内接四边形,∴180135CEA ABC =︒−=︒∠∠∴18045CED CEA =︒−=︒∠∠,∵90CDE ∠=︒,∴CDE 为等腰直角三角形,DE CD =AE AD =AE 的最小值为故答案为:三、解答题23.(2024·四川甘孜·中考真题)如图,AB 为⊙O 的弦,C 为AB 的中点,过点C 作CD AB ∥,交OB 的延长线于点D .连接OA OC ,.(1)求证:CD 是⊙O 的切线;(2)若32OA BD ==,,求OCD 的面积.24.(2024·内蒙古包头·中考真题)如图,AB 是O 的直径,,BC BD 是O 的两条弦,点C 与点D 在AB 的两侧,E 是OB 上一点(OE BE >),连接,OC CE ,且2BOC BCE ∠=∠.(1)如图1,若1BE =,CE =O 的半径;(2)如图2,若2BD OE =,求证:BD OC ∥.(请用两种证法解答) Rt OCE 中,利用勾股定理求解即可;,利用垂径定理等可得出BF =Rt Rt CEO OFB ≌,得出,然后利用平行线的判定即可得证;法二:连接AD ,证明CEO ADB ∽,得出ABD ∠,然后利用平行线的判定即可得证【详解】(1)解∶∵OC OB =,()11802OBC OCB BOC ∠=∠=︒−∠, 2BOC BCE ∠=∠,)90BCE BCE ∠=︒−∠即O 的半径为2)证明:法一:过∴12BF BD =, ∵2BD OE =∴OE BF =,又OC OB =,OEC ∠=∠()Rt Rt HL CEO OFB ≌,COE OBF =∠,BD OC ∥;法二:连接AD , ∵AB 是直径,∴90ADB ∠=︒,∴22AD AB BD =−=∴1OC CE OE ===,∴CEO ADB ∽,COE ABD ∠=∠,BD OC ∥.【点睛】本题考查了垂径定理,相似三角形的判定与性质,等腰三角形的性质,三角形的内角和定理,全等三角形的判定与性质等知识,明确题意,灵活运用所学知识解题是解题的关键.25.(2024·安徽·中考真题)如图,O 是ABC 的外接圆,D 是直径AB 上一点,ACD ∠的平分线交AB 于点E ,交O 于另一点F ,FA FE =.(1)求证:CD AB ⊥;(2)设FM AB ⊥,垂足为M ,若1OM OE ==,求AC 的长.在ABC中.AB OA==2=AC ABAC的长为26.(2024·四川眉山·中考真题)如图,BE是O的直径,点A在O上,点C在BE的延长线上,EAC ABC ∠=∠,AD 平分BAE ∠交O 于点D ,连结DE .(1)求证:CA 是O 的切线;(2)当8,4AC CE ==时,求DE 的长. BE 是O 的直径,OA OB =ABC ∴∠EAC ∠=CAE ∴∠=CAE ∴∠+OAC ∴∠OA 是O 的半径,是O 的切线;)解:EAC ∠=ABC EAC ∽△,CE AC, 4, ,AD 平分BAD \?∴BD DE =BD DE ∴=BE 是O 的直径,90BDE ∴∠=︒,22DE BD ∴==27.(2024·江苏扬州·中考真题)如图,已知PAQ ∠及AP 边上一点C .(1)用无刻度直尺和圆规在射线AQ 上求作点O ,使得2COQ CAQ ∠=∠;(保留作图痕迹,不写作法)(2)在(1)的条件下,以点O 为圆心,以OA 为半径的圆交射线AQ 于点B ,用无刻度直尺和圆规在射线CP 上求作点M ,使点M 到点C 的距离与点M 到射线AQ 的距离相等;(保留作图痕迹,不写作法)(3)在(1)、(2)的条件下,若3sin 5A =,12CM =,求BM 的长. 【答案】(1)作图见详解的值,在直角BCM 中运用勾股定理即可求解.()1Rt BCM Rt BB M HL ≌,1CM B M =,Rt AMW 中,53WM ==AM CM =−是直径,90ACB =︒,Rt ABC 中,2x =(负值舍去)36x ==,Rt BCM 中,【点睛】本题主要考查尺规作角等于已知角,掌握以上知识的综合运用是解题的关键.28.(2024·河南·中考真题)如图1,塑像AB 在底座BC 上,点D 是人眼所在的位置.当点B 高于人的水平视线DE 时,由远及近看塑像,会在某处感觉看到的塑像最大,此时视角最大.数学家研究发现:当经过A ,B 两点的圆与水平视线DE 相切时(如图2),在切点P 处感觉看到的塑像最大,此时APB ∠为最大视角.(1)请仅就图2的情形证明APB ADB ∠>∠.(2)经测量,最大视角APB ∠为30︒,在点P 处看塑像顶部点A 的仰角APE ∠为60︒,点P 到塑像的水平距离PH 为6m .求塑像AB 的高(结果精确到0.1m 1.73≈). Rt AHP 中,利用正切的定义求出1)证明:如图,连接Rt AHP 中,AH PH, tan606︒=⨯,APH APB −∠29.(2024·江西·中考真题)如图,AB 是半圆O 的直径,点D 是弦AC 延长线上一点,连接BD BC ,,60D ABC ∠=∠=︒.(1)求证:BD 是半圆O 的切线;(2)当3BC =时,求AC 的长. 【答案】(1)见解析(2)2π【分析】本题考查了直径所对的圆周角为直角,等边三角形的判定和性质,弧长公式,熟知相关性质和计算公式是解题的关键.(1)根据直径所对的圆周角为直角结合已知条件,可得30CAB ∠=︒,即可得90ABD??,进而可证得结论;(2)连接OC ,证明OBC △为等边三角形,求得120AOC ∠=︒,利用弧长公式即可解答.【详解】(1)证明:AB 是半圆O 的直径,90ACB ∴∠=︒, 60D ABC ∠=∠=︒,9030CAB ABC ∴∠=︒−∠=︒,18090ABD CAB D ∴∠=︒−∠−∠=︒,BD ∴是半圆O 的切线;(2)解:如图,连接OC ,,60OC OB CBA =∠=︒,OCB ∴为等边三角形,COB ∴∠=180AOC ∴∠=120360AC l ∴=30.(2024·广东深圳·中考真题)如图,在ABD △中,AB BD =,O 为ABD △的外接圆,BE 为O 的切线,AC 为O 的直径,连接DC 并延长交BE 于点E .(1)求证:DE BE ⊥;(2)若AB =5BE =,求O 的半径. 的长,设O 的半径为OD ,∵AB BD =,OA OD =,∴BO 垂直平分AD ,为O 的切线,BE ,为O 的直径,90ADC =︒,∴四边形BHDE 为矩形,BE ; )由(1)知四边形设O 的半径为Rt AOH △解得:3r =即:O 的半径为31.(2024·四川广元·中考真题)如图,在ABC 中,AC BC =,90ACB ∠=︒,O 经过A 、C 两点,交AB 于点D ,CO 的延长线交AB 于点F ,DE CF ∥交BC 于点E .(1)求证:DE 为O 的切线;(2)若4AC =,tan 2CFD ∠=,求O 的半径.DE CFDE CF为O的切线.)过点C作CHACB为等腰直角三角形,42,AH=22【点睛】本题考查了切线的判定,圆周角定理,正切,勾股定理等知识以及等腰三角形的性质等知识,问题难度不大,正确作出合理的辅助线,是解答本题的关键.32.(2024·内蒙古呼伦贝尔·中考真题)如图,在ABC 中,以AB 为直径的O 交BC 于点,D DE AC ⊥,垂足为E . O 的两条弦,FB FD 相交于点,F DAE BFD ∠∠=.(1)求证:DE 是O 的切线;(2)若30,C CD ∠=︒=OBD 的面积.是O 的半径;是O 的切线;)解:∵C ∠=132CD =DE ,180BDO =︒−∠33.(2024·江苏扬州·中考真题)在综合实践活动中,“特殊到一般”是一种常用方法,我们可以先研究特殊情况,猜想结论,然后再研究一般情况,证明结论.如图,已知ABC ,CA CB =, O 是ABC 的外接圆,点D 在O 上(AD BD >),连接AD 、BD 、CD .【特殊化感知】(1)如图1,若60ACB ∠=︒,点D 在AO 延长线上,则AD BD −与CD 的数量关系为________;【一般化探究】(2)如图2,若60ACB ∠=︒,点C 、D 在AB 同侧,判断AD BD −与CD 的数量关系并说明理由;【拓展性延伸】(3)若ACB α∠=,直接写出AD 、BD 、CD 满足的数量关系.(用含α的式子表示) )根据题意得出ABC 是等边三角形,则CE =,设BD ,证明(AAS AFB CDB ≌①当D 在BC 上时,在AD 上截取证明CAB DEB ∽,ABE V AB ⊥于点F ,得出2AB BC =进而即可得出结论;②当D AG ,证明CAB DAG ∽,CAD BAG ∽,同①可得AB =∴ABC 是等边三角形,则∵O 是ABC 的外接圆,AD 是BAC ∠的角平分线,则AD BC ⊥∵四边形ACDB 是圆内接四边形,120CDB ∠=︒DBC =∠=在Rt BDE △中,∴cos30BE BD =︒⋅=∴3BC =,∵AD 是直径,则ABD ?∵AB AB =∴60ADB ACB ∠=∠=∴DBF 是等边三角形,∴BF BD =,则BFD ∠∴120AFB ∠=︒∵四边形ACDB CDB ∠=∴ABC 是等边三角形,则在,AFB CDB 中AFB CDB BAF BCD AB CB ∠=∠∠=∠= ∴(AAS AFB CDB ≌AF CD =,AD BD AD DF −=−AD BD CD −=;3)解:①如图所示,当在AD 上截取DE BD =∵AB AB =∴ACB ADB ??又∵,CA CB DE DB ==∴CAB DEB ∽,则∠AB BC EB BD =即AB BC =又∵ABC EBD ∠=∠ABE CBD ∠=∠ABE CBD V V ∽Rt BCF 中,sin 2BC α⋅=∴2sin2AB BC α=⋅ ∴2sin 2AD BD CD α−=,即②当D 在AB 上时,如图所示,延长∵四边形ACDB 是圆内接四边形,∴180GDA ACB ∠=∠=又∵,CA CB DG DA ==∴CAB DAG ∽,则∴AC AB AD AG =即AC AB =又∵CAB DAG ∠=∠CAD BAG ∠=∠∴CAD BAG ∽CD AC BG AB=, BG BD DG BD =+=同①可得2sin AB AC =⋅CD AC ==34.(2024·浙江·中考真题)如图,在圆内接四边形ABCD 中,AD AC ADC BAD <∠<∠,,延长AD 至点E ,使AE AC =,延长BA 至点F ,连结EF ,使AFE ADC ∠=∠.(1)若60AFE ∠=︒,CD 为直径,求ABD ∠的度数.(2)求证:①EF BC ∥;②EF BD =. 可证明ADG AEF ∽,CDA △60AFE =︒,∽,,ADG AEF,=∠,ABD ACDBGD,∽,∵ADG AEFAD GD=,AE EFAD AE=,GD EFAC AE=,BD EF=,AE AC。
中考数学复习圆的基本性质练习题含答案解析
![中考数学复习圆的基本性质练习题含答案解析](https://img.taocdn.com/s3/m/8fd3bdae87c24028915fc3ee.png)
第六单元圆第24课时圆的基本性质点对点·课时内考点巩固30分钟1. (2019柳州)如图,A,B,C,D是⊙O上的点,则图中与∠A相等的角是()A. ∠BB. ∠CC. ∠DEBD. ∠D第1题图2. (2019宜昌)如图,点A,B,C均在⊙O上,当∠OBC=40°时,∠A的度数是()A. 50°B. 55°C. 60°D. 65°第2题图3. (2019兰州)如图,四边形ABCD内接于⊙O,若∠A=40°,则∠C=()A. 110°B. 120°C. 135°D. 140°第3题图4. (2019甘肃省卷)如图,点A,B,S在圆上,若弦AB的长度等于圆半径的2倍,则∠ASB的度数是()A. 22.5°B. 30°C. 45°D. 60°第4题图5.如图,AB是⊙O的直径,点C,D在⊙O上,若∠DCB=110°,则∠AED的度数为()A. 15°B. 20°C. 25°D. 30°第5题图6.(2019西安高新一中模拟)如图,四边形ABCD内接于⊙O,AD∥BC,∠DAB=48°,则∠AOC的度数是()A. 48°B. 96°C. 114°D. 132°第6题图7. (2019陕西黑马卷)如图,在⊙O中,弦AB∥CD,连接BC,OA,OD.若∠BCD=25°,CD=OD,则∠AOD的度数是()A. 140°B. 120°C. 110°D. 100°第7题图8. (2019赤峰)如图,AB 是⊙O 的弦,OC ⊥AB 交⊙O 于点C ,点D 是⊙O 上一点,∠ADC =30°,则∠BOC 的度数为( )A. 30°B. 40°C. 50°D. 60°第8题图9. (2019贵港)如图,AD 是⊙O 的直径,AB ︵=CD ︵,若∠AOB =40°,则圆周角∠BPC 的度数是( ) A. 40° B. 50° C. 60° D .70°第9题图10. 如图,△ABC 内接于⊙O ,∠BAC =120°,AB =AC ,BD 为⊙O 的直径,AD =6,则BD 的长为( ) A. 3 B. 2 3 C. 4 3 D. 12第10题图11. 如图,AB 为⊙O 的直径,∠CAB =30°,CB =3,∠ACB 的平分线CD 交⊙O 于点D ,则弦AD 的长为( )A. 2 3B. 2 2C. 3 3D. 32第11题图12. 如图,B 、C 是⊙A 上的两点,AB 的垂直平分线与⊙A 交于E 、F 两点,与线段AC 交于点D ,连接BC 、BD 、BF 、CF .若∠BFC =20°,则∠DBC =( )A. 30°B. 29°C. 28°D. 20°第12题图13. (2019西工大附中模拟)如图,已知△ABC 内接于⊙O ,EF 为⊙O 的直径,且点F 是弧BC ︵的中点.若∠B =40°,∠C =60°,则∠AFE 的度数为( )A. 10°B. 20°C. 30°D. 40°第13题图14. (2019西安铁一中模拟)如图,在半径为3的⊙O 中,弦BC 、DE 所对的圆周角分别是∠A 、∠F ,且∠A +∠F =90°.若BC =4,则DE 的长为( )A. 13B. 4C. 5D. 25第14题图15.在圆内接四边形ABCD中,∠ACB=∠ACD=60°,对角线AC、BD交于点E.已知BC=32,CD =22,则线段CE的长为()第15题图A. 32 2B. 7 5C. 62 5D. 22 316. (2019株洲)如图所示,AB为⊙O的直径,点C在⊙O上,且OC⊥AB,过点C的弦CD与线段OB 相交于点E,满足∠AEC=65°,连接AD,则∠BAD=________度.第16题图17.(2019安徽)如图,△ABC内接于⊙O,∠CAB=30°,∠CBA=45°,CD⊥AB于点D,若⊙O的半径为2,则CD的长为________.第17题图18.已知半径为5的⊙O中,弦AB=52,弦AC=5,则∠BAC的度数是________.点对线·板块内考点衔接10分钟1. (2019襄阳)如图,AD是⊙O的直径,BC是弦,四边形OBCD是平行四边形,AC与OB相交于点P,下列结论错误的是()A. AP=2OPB. CD=2OPC. OB⊥ACD. AC平分OB第1题图2. (2019西工大附中模拟)如图,已知⊙O的内接五边形ABCDE,连接BE、CE,若AB=BC=CE,∠EDC =130°,则∠ABE的度数为()A. 25°B. 30°C. 35°D. 40°第2题图3.(2019天水)如图,四边形ABCD是菱形,⊙O经过点A、C、D,与BC相交于点E,连接AC、AE.若∠D=80°,则∠EAC的度数为()A. 20°B. 25°C. 30°D. 35°第3题图4.(2019柳州)在半径为5的圆形纸片上裁出一个边长最大的正方形纸片,则这个正方形纸片的边长应为________.5.如图,在矩形ABCD中,AB=3,BC=4,O为矩形ABCD的中心,以D为圆心,1为半径作⊙D,P为⊙D上的一个动点,连接AP、OP、OA,则△AOP面积的最大值为________.第5题图点对面·跨板块考点迁移2分钟1. (2019安顺)如图,半径为3的⊙A经过原点O和点C(0,2),B是y轴左侧⊙A优弧上一点,则tan∠OBC 为()第1题图A. 13 B. 22 C.223 D.24参考答案第24课时 圆的基本性质点对点·课时内考点巩固1. D 【解析】在⊙O 中,∵∠A 与∠D 都是BC ︵所对的圆周角,∴∠A =∠D .2. A 【解析】∵OB =OC ,∴∠OCB =∠OBC =40°.∴在△OBC 中,∠BOC =180°-∠OCB -∠OBC =180°-40°-40°=100°.∴∠A =12∠BOC =12×100°=50°.3. D 【解析】∵四边形ABCD 内接于⊙O ,∠A =40°,∴∠C =180°-∠A =140°.4. C 【解析】如解图,设圆心为O ,半径为r ,则AB =2r .连接OA 、OB ,则r 2+r 2=(2r )2,∴△OAB 为等腰直角三角形,∠AOB =90°.∴∠ASB =12∠AOB =45°.第4题解图5. B 【解析】如解图,连接AC ,∵AB 为直径,∴∠ACB =90°,∴∠ACD =∠DCB -∠ACB =110°-90°=20°,∴∠AED =∠ACD =20°.第5题解图6. B 【解析】∵AD ∥BC ,∴∠B =180°-∠DAB =132°,∵四边形ABCD 内接于⊙O ,∴∠D =180°-∠B =48°,由圆周角定理得,∠AOC =2∠D =96°.7. C 【解析】如解图,连接OC ,∵AB ∥CD ,∴∠B =∠BCD =25°,∴∠AOC =50°,∵CD =OD ,OD =OC ,∴OC =OD =CD ,∴△COD 为等边三角形,∴∠COD =60°,∴∠AOD =∠AOC +∠COD =110°.第7题解图8. D 【解析】∵OC ⊥AB ,∴点C 是AB ︵的中点,即AC ︵=BC ︵.∴∠BOC =∠AOC =2∠ADC =60°. 9. B 【解析】∵AB ︵=CD ︵,∴∠COD =∠AOB =40°,∴∠BOC =100°,∴∠BPC =12∠BOC =50°.10. C 【解析】∵∠BAC =120°,AB =AC ,∴∠BCA =12×(180°-120°)=30°.∴∠D =∠BCA =30°.∵BD为⊙O 的直径,∴∠BAD =90°.在Rt △BAD 中,BD =AD cos30°=632=4 3. 11. D 【解析】如解图,连接BD ,∵AB 为⊙O 的直径,∴∠ACB =∠ADB =90°,在Rt △ABC 中,∵∠CAB =30°,∴AB =2CB =6,∵CD 平分∠ACB ,∴∠BCD =45°,∵∠BAD =∠BCD =45°,∴△ABD 为等腰直角三角形,∴AD =22AB =22×6=3 2.第11题解图12. A 【解析】∵∠BFC =20°,∴∠BAC =2∠BFC =40°,∵AB =AC ,∴∠ABC =∠ACB =12(180°-40°)=70°.又∵EF 是线段AB 的垂直平分线,∴AD =BD ,∴∠ABD =∠BAC =40°,∴∠DBC =∠ABC -∠ABD =70°-40°=30°.13. A 【解析】如解图,连接OC 、CF .∵∠B =40°,∠ACB =60°,∴∠BAC =80°,∠AFC =∠ABC =40°,∵点F 是弧BC ︵的中点,∴∠BAF =∠CAF =40°,∴∠COF =2∠CAF =80°,∵OF =OC ,∴∠OFC =12(180°-80°)=50°,∴∠AFE =∠OFC -∠AFC =10°.第13题解图14. D 【解析】如解图,连接DO 并延长,交⊙O 于点G ,连接EG 、FG ,则∠DFG =∠DEG =90°,又∵∠A +∠DFE =90°,∠GFE +∠DFE =90°,∴∠A =∠GFE .则GE =BC =4.∵⊙O 的半径为3,∴DG =6.在Rt △DEG 中,DE =DG 2-GE 2=62-42=2 5.第14题解图15. C 【解析】如解图,作BM ⊥AC 于点M ,DN ⊥AC 于点N ,则BM ∥DN ,∴△BME ∽△DNE ,∴MENE =BM DN ,∵∠ACB =∠ACD =60°,∴∠CBM =∠CDN =30°,∴CM =12BC =322,CN =12CD =2,∴BM =3CM =362,DN =3CN =6,∴MN =CM -CN =122,∴ME NE =32,∴EN =25MN =25,∴CE =CN +EN =2+25=625.第15题解图16. 20 【解析】∵AB 为⊙O 的直径,点C 在⊙O 上,且OC ⊥AB ,∴∠ADC =12∠AOC =45°.∵∠AEC=65°,且∠AEC 是△ADE 的一个外角,∴∠BAD =∠AEC -∠ADC =20°.17. 2 【解析】如解图,连接OA 、OC ,∵∠CBA =45°,∴∠AOC =90°.又∵OA =OC =2,∴AC =2 2.在Rt △ACD 中,∠CDA =90°,∠CAD =30°,∴CD =AC ·sin30°= 2.第17题解图18. 105°或15° 【解析】如解图,连接OC ,OA ,OB .∵OC =OA =AC =5,∴△OAC 是等边三角形,∴∠CAO =60°,∵OA =OB =5,AB =52,∴OA 2+OB 2=AB 2,∴△OAB 是等腰直角三角形,∠OAB =45°,点C 的位置有两种情况,如解图①时,∠BAC =∠CAO +∠OAB =60°+45°=105°;如解图②时,∠BAC =∠CAO -∠OAB =60°-45°=15°.综上所述,∠BAC 的度数是105°或15°.第18题解图点对线·板块内考点衔接1. A 【解析】如解图,连接OC .∵四边形OBCD 是平行四边形,OD =OB ,∴四边形OBCD 是菱形.∴OD =OC =CD .∵AD 是⊙O 的直径,∴∠ACD =90°.∵CD ∥OB ,∴CD =2OP ,OB ⊥AC .故B 、C 选项正确.∵△CBP ≌△COP (HL),∴BP =OP .故D 选项正确.第1题解图2. B 【解析】如解图,连接OA ,OB ,OC ,OE ,∵AB =BC =CE ,∴AB ︵=BC ︵=CE ︵,∠1=∠2=∠3,在四边形BCDE 中,∵∠D =130°,∴∠CBE =50°,∠2=2∠CBE =100°,∴∠1=∠3=∠2=100°,∠AOE=360°-3×100°=60°,∴∠ABE =12∠AOE =30°.第2题解图3. C 【解析】∵∠AEB +∠AEC =∠D +∠AEC =180°,∠D =80°,∴∠AEB =∠D =80°.∵四边形ABCD是菱形,∴∠B =∠D =80°,AB =BC ,∴∠B =∠AEB .∴∠BAE =180°-2∠B =20°,∠BAC =∠ACB =12(180°-∠B )=50°.∴∠EAC =∠BAC -∠BAE =30°.4. 52 【解析】如解图,四边形ABCD 为正方形,BD 为⊙O 的直径,OA 为半径,则OA =OB =5,OA ⊥OB ,∴AB = OA 2+OB 2=52+52=5 2.第4题解图5. 174【解析】如解图,延长AO 至C 点,过点D 作DF ⊥AC 于点F ,延长FD 交⊙D 于点P ′,连接AP ′,OP ′,要使△AOP 面积最大,则只需AO 边上的高最大,此时P ′满足条件,即P ′F 为△AOP 的AO 边上最大的高.∵DF =AD ·CD AC =4×342+32=125,∴P ′F =DF +DP ′=125+1=175,AO =12AC =52,∴△AOP 的最大面积为12AO ·P ′F =12×52×175=174.第5题解图点对面·跨板块考点迁移1. D 【解析】如解图,连接AC 、AO ,得到等腰三角形AOC ,过A 点作AD ⊥OC ,垂足为点D ,∴∠CAD =12∠CAO =∠OBC ,∵点C 坐标为(0,2),∴CD =OD =1,∴在Rt △ACD 中,AD =AC 2-CD 2=32-12=22,∴tan ∠OBC =tan ∠CAD =CD AD =122=24.第1题解图。
中考数学考点29圆的基本性质总复习(原卷版)
![中考数学考点29圆的基本性质总复习(原卷版)](https://img.taocdn.com/s3/m/1419b5b303d276a20029bd64783e0912a2167c0c.png)
圆的基本性质【命题趋势】圆的基本性质是中考考查的重点,常以选择题,填空题和解答题考查为主;其中选择题和填空题的难度不会太大,对应用、创新、开放探究型题目,会根据当前的政治形势、新闻背景和实际生活去命题,进一步体现数学来源于生活,又应用于生活。
【中考考查重点】一、运用垂径定理及其推论进行计算二、运用圆周角定理及其推论进行计算三、垂径定理雪与圆周角定理结合考点:圆的有关概念圆的定义:在一个平面内,线段OA绕它固定的一个端点O旋转一周,另一个端点A所形成的图形叫圆。
这个固定的端点O叫做圆心,线段OA叫做半径。
圆的表示方法:以O点为圆心的圆记作⊙O,读作圆O。
圆的特点:在一个平面内,所有到一个定点的距离等于定长的点组成的图形。
确定圆的条件:1)圆心;2)半径。
备注:圆心确定圆的位置,半径长度确定圆的大小。
【补充】1)圆心相同且半径相等的圆叫做同圆;2)圆心相同,半径不相等的两个圆叫做同心圆;3)半径相等的圆叫做等圆。
圆的对称性:1)圆是轴对称图形,经过圆心的每一条直线都是它的对称轴;2)圆是以圆心为对称中心的中心对称图形。
弦的概念:连结圆上任意两点的线段叫做弦(例如:右图中的AB)。
直径的概念:经过圆心的弦叫做直径(例如:右图中的CD)。
备注:1)直径是同一圆中最长的弦。
2)直径长度等于半径长度的2倍。
⏜,弧的概念:圆上任意两点间的部分叫做圆弧,简称弧。
以A、B为端点的弧记作AB读作圆弧AB或弧AB。
等弧的概念:在同圆或等圆中,能够互相重合的弧叫做等弧。
半圆的概念:圆的任意一条直径的两个端点把圆分成两条弧,每一条弧都叫做半圆。
优弧的概念:在一个圆中大于半圆的弧叫做优弧。
劣弧的概念:小于半圆的弧叫做劣弧。
弦心距概念:从圆心到弦的距离叫做弦心距。
1.(2021秋•顺义区期末)如图,在⊙O中,如果=2,则下列关于弦AB与弦AC 之间关系正确的是()A.AB=AC B.AB=2AC C.AB>2AC D.AB<2AC 2.(2021秋•平原县期末)下列语句,错误的是()A.直径是弦B.相等的圆心角所对的弧相等C.弦的垂直平分线一定经过圆心D.平分弧的半径垂直于弧所对的弦3.(2021秋•玉林期末)如图,从A地到B地有两条路可走,一条路是大半圆,另一条路是4个小半圆.有一天,一只猫和一只老鼠同时从A地到B地.老鼠见猫沿着大半圆行走,它不敢与猫同行(怕被猫吃掉),就沿着4个小半圆行走.假设猫和老鼠行走的速度相同,那么下列结论正确的是()A.猫先到达B地B.老鼠先到达B地C.猫和老鼠同时到达B地D.无法确定考点:垂径定理垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧。
中考数学真题分类汇编 第22讲 圆的基本性质.doc
![中考数学真题分类汇编 第22讲 圆的基本性质.doc](https://img.taocdn.com/s3/m/1f7b727f4afe04a1b071dece.png)
(分类)第22讲 圆的基本性质知识点1 圆的有关概念及性质 知识点2 垂径定理及其推论 知识点3 圆心角、弧、弦之间的关系知识点4 圆周角定理及推论 知识点5 圆内接四边形的性质知识点1 圆的有关概念及性质 知识点2 垂径定理及其推论(2018襄阳)如图,点A ,B ,C ,D 都在半径为2的⊙O 上,若OA ⊥BC , ∠CDA =30°,则弦BC 的长为( D )A .4B .22C .3D .23(2018枣庄)8.如图,AB 是⊙O 的直径,弦CD 交AB 于点P ,6,2==BP AP ,030=∠APC ,则CD 的长为( C )A .15B .52C .152D .8(2018衢州)如图,AC 是⊙O 的直径,弦BD ⊥AO 于E ,连接BC ,过点O 作OF ⊥BC 于F ,若BD=8cm ,AE=2cm ,则OF 的长度是( D )A .3cmB .6cmC .2.5cmD .5cm(2018广州)7.如图4,AB是圆O的弦,OC⊥AB,交圆O于点C,连接OA,OB,BC,若∠ABC=20°,则∠AOB的度数是( D )A. 40°B. 50°C. 70°D. 80°(2018威海)10.如图,O☉的半径为5,AB为弦,点C为»AB的中点,若30ABC∠°,则弦AB的长为( D )A.12B.5C.53D.53(2018•自贡)如图,若△ABC内接于半径为R的⊙O,且∠A=60°,连接OB、OC,则边BC的长为( D )A.B.C.D.(2018武汉)10.如图,在⊙O中,点C在优弧AB⌒上,将弧BC⌒沿BC折叠后刚好经过AB的中点D.若⊙O的半径为5,AB=4,则BC的长是( D )A.32B.23C.235D.265(2018安顺)9.已知O e 的直径10CD cm =,AB 是O e 的弦,AB CD ⊥,垂足为M ,且8AB cm =,则AC 的长为( C )A .25cmB .45cmC .25cm 或45cmD .23cm 或43cm(2018遂宁)如图,在⊙O 中,AE 是直径,半径OC 垂直于弦AB 于D ,连接BE ,若,则BE 的长是(B )A 、5B 、6C 、7D 、8(2018张家界)6.如图,AB 是⊙O 的直径,弦CD ⊥AB 于点E ,cm CD cm OC 8,5==,则=AE ( A ) A cm 8 B cm 5 C cm 3 D cm 2(2018毕节)19.如图,AB 是⊙O 的直径,C 、D 为半圆的三等分点,CE ⊥AB 于点E,∠ACE 的度数为__30°____.(2018龙东地区)答案5(2018玉林)(2018嘉兴)14.如图,量角器的O 度刻度线为AB .将一矩形直尺与量角器部分重叠、使直尺一边与量角器相切于点C ,直尺另一边交量角器于点D A ,,量得cm AD 10=,点D 在量角器上的读数为︒60.则该直尺的宽度为335cm(2018绍兴、义乌)13.如图,公园内有一个半径为20米的圆形草坪,A ,B 是圆上的点,O 为圆心,120AOB =∠°,从A 到B 只有路»AB ,一部分市民为走“捷径”,踩坏了花草,走出了一条小路AB .通过计算可知,这些市民其实仅仅少走了_______15_____步(假设1步为0.5米,结果保留整数).(参考数据:3 1.732≈,π取3.142)(2018宜宾)15.如图,AB 是半圆的直径,AC 是一条弦,D 是AC 的中点,DE ⊥AB 于点E 且DE 交AC 于点F ,DB 交AC 于点G ,若EF AE =34, 则CGGB = 5DC(2018孝感)答案:2或14(2018·金华/丽水).如图1是小明制作的一副弓箭, 点A ,D 分别是弓臂BAC 与弓弦BC 的中点,弓弦BC =60cm.沿AD 方向拉弓的过程中,假设弓臂BAC 始终保持圆弧形,弓弦不伸长.如图2,当弓箭从自然状态的点D 拉到点D 1时,有AD 1=30cm, ∠B 1D 1C 1=120°.(1)图2中,弓臂两端B 1,C 1的距离为 303 cm.(2)如图3,将弓箭继续拉到点D 2,使弓臂B 2AC 2为半圆,则D 1D 2的长为 10-510 cm.【解答】(1)如图2,连结B 1C 1 , B 1C 1与AD 1相交于点E ,∵D 1是弓弦B 1C 1的中点, ∴AD 1=B 1D 1=C 1D 1=30cm ,由三点确定一个圆可知,D 1是弓臂B 1AC 1的圆心, ∵点A 是弓臂B 1AC 1的中点, ∴∠B 1D 1D=,B 1E=C 1E ,AD 1⊥B 1C 1 ,在Rt △B 1D 1E 中,B 1E= cm ,则 B 1C 1=2B 1E=30 cm 。
2025年中考数学考点分类专题归纳之 圆
![2025年中考数学考点分类专题归纳之 圆](https://img.taocdn.com/s3/m/15e4ad96f71fb7360b4c2e3f5727a5e9856a27d6.png)
2025年中考数学考点分类专题归纳圆知识点一、圆的定义、性质及与圆有关的角1.圆的定义(1)线段OA绕着它的一个端点O旋转一周,另一个端点A所形成的封闭曲线,叫做圆.(2)圆是到定点的距离等于定长的点的集合.备注:①圆心确定圆的位置,半径确定圆的大小;确定一个圆应先确定圆心,再确定半径,二者缺一不可;②圆是一条封闭曲线.2.圆的性质(1)旋转不变性:圆是旋转对称图形,绕圆心旋转任一角度都和原来图形重合;圆是中心对称图形,对称中心是圆心.在同圆或等圆中,两个圆心角,两条弧,两条弦,两条弦心距,这四组量中的任意一组相等,那么它所对应的其他各组分别相等.(2)轴对称:圆是轴对称图形,经过圆心的任一直线都是它的对称轴.(3)垂径定理及推论:①垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.②平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧.③弦的垂直平分线过圆心,且平分弦对的两条弧.④平分一条弦所对的两条弧的直线过圆心,且垂直平分此弦.⑤平行弦夹的弧相等.备注:在垂经定理及其推论中:过圆心、垂直于弦、平分弦、平分弦所对的优弧、平分弦所对的劣弧,在这五个条件中,知道任意两个,就能推出其他三个结论.(注意:“过圆心、平分弦”作为题设时,平分的弦不能是直径)3.与圆有关的角(1)圆心角:顶点在圆心的角叫圆心角.圆心角的性质:圆心角的度数等于它所对的弧的度数.(2)圆周角:顶点在圆上,两边都和圆相交的角叫做圆周角.4.圆周角的性质:①圆周角等于它所对的弧所对的圆心角的一半.②同弧或等弧所对的圆周角相等;在同圆或等圆中,相等的圆周角所对的弧相等.③90°的圆周角所对的弦为直径;半圆或直径所对的圆周角为直角.④如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形.⑤圆内接四边形的对角互补;外角等于它的内对角.备注:(1)圆周角必须满足两个条件:①顶点在圆上;②角的两边都和圆相交.(2)圆周角定理成立的前提条件是在同圆或等圆中.知识点二、与圆有关的位置关系1.判定一个点P是否在⊙O上设⊙O的半径为,OP=,则有点P在⊙O 外;点P在⊙O 上;点P在⊙O 内.备注:点和圆的位置关系和点到圆心的距离的数量关系是相对应的,即知道位置关系就可以确定数量关系;知道数量关系也可以确定位置关系.2.判定几个点A1,A2……A n在同一个圆上的方法当A1O=A2O=……=A n O=R时,A1,A2……A n在⊙O 上.3.直线和圆的位置关系设⊙O 半径为R,点O到直线的距离为.(1)直线和⊙O没有公共点直线和圆相离.(2)直线和⊙O有唯一公共点直线和⊙O相切.(3)直线和⊙O有两个公共点直线和⊙O相交.4.切线的判定、性质(1)切线的判定:①经过半径的外端并且垂直于这条半径的直线是圆的切线.②到圆心的距离等于圆的半径的直线是圆的切线.(2)切线的性质:①圆的切线垂直于过切点的半径.②经过圆心作圆的切线的垂线经过切点.③经过切点作切线的垂线经过圆心.(3)切线长:从圆外一点作圆的切线,这一点和切点之间的线段的长度叫做切线长.(4)切线长定理:从圆外一点作圆的两条切线,它们的切线长相等,这一点和圆心的连线平分两条切线的夹角.5.圆和圆的位置关系设的半径为,圆心距.(1)和没有公共点,且每一个圆上的所有点在另一个圆的外部外离.(2)和没有公共点,且的每一个点都在内部内含(3)和有唯一公共点,除这个点外,每个圆上的点都在另一个圆外部外切.(4)和有唯一公共点,除这个点外,的每个点都在内部内切.(5)和有两个公共点相交.知识点三、三角形的外接圆与内切圆、圆内接四边形与外切四边形1.三角形的内心、外心、重心、垂心(1)三角形的内心:是三角形三条角平分线的交点,它是三角形内切圆的圆心,在三角形内部,它到三角形三边的距离相等.(2)三角形的外心:是三角形三边中垂线的交点,它是三角形外接圆的圆心,锐角三角形外心在三角形内部,直角三角形的外心是斜边中点,钝角三角形外心在三角形外部,三角形外心到三角形三个顶点的距离相等.(3)三角形重心:是三角形三边中线的交点,在三角形内部;它到顶点的距离是到对边中点距离的2倍,通常用G表示.(4)垂心:是三角形三边高线的交点.备注:(1) 任何一个三角形都有且只有一个内切圆,但任意一个圆都有无数个外切三角形;(2) 解决三角形内心的有关问题时,面积法是常用的,即三角形的面积等于周长与内切圆半径乘积的一半,即(S为三角形的面积,P为三角形的周长,r为内切圆的半径).(3) 三角形的外心与内心的区别:2.圆内接四边形和外切四边形(1)四个点都在圆上的四边形叫圆的内接四边形,圆内接四边形对角互补,外角等于内对角.(2)各边都和圆相切的四边形叫圆外切四边形,圆外切四边形对边之和相等.知识点四、圆中有关计算1.圆中有关计算圆的面积公式:,周长.圆心角为、半径为R的弧长.圆心角为,半径为R,弧长为的扇形的面积.弓形的面积要转化为扇形和三角形的面积和、差来计算.圆柱的侧面图是一个矩形,底面半径为R,母线长为的圆柱的体积为,侧面积为,全面积为.圆锥的侧面展开图为扇形,底面半径为R,母线长为,高为的圆锥的侧面积为,全面积为,母线长、圆锥高、底面圆的半径之间有.备注:(1)对于扇形面积公式,关键要理解圆心角是1°的扇形面积是圆面积的,即;(2)在扇形面积公式中,涉及三个量:扇形面积S、扇形半径R、扇形的圆心角,知道其中的两个量就可以求出第三个量.(3)扇形面积公式,可根据题目条件灵活选择使用,它与三角形面积公式有点类似,可类比记忆;(4)扇形两个面积公式之间的联系:.1.(2024•贺州)如图,AB是⊙O的直径,且经过弦CD的中点H,已知sin∠CDB,BD=5,则AH的长为()A.B.C.D.2.(2024•张家界)如图,AB是⊙O的直径,弦CD⊥AB于点E,OC=5cm,CD=8cm,则AE=()A.8cm B.5cm C.3cm D.2cm3.(2024•襄阳)如图,点A,B,C,D都在半径为2的⊙O上,若OA⊥BC,∠CDA=30°,则弦BC的长为()A.4 B.2C.D.24.(2024•衢州)如图,AC是⊙O的直径,弦BD⊥AO于E,连接BC,过点O作OF⊥BC于F,若BD=8cm,AE=2cm,则OF的长度是()A.3cm B.cm C.2.5cm D.cm5.(2024•枣庄)如图,AB是⊙O的直径,弦CD交AB于点P,AP=2,BP=6,∠APC=30°,则CD的长为()A.B.2C.2D.86.(2024•安顺)已知⊙O的直径CD=10cm,AB是⊙O的弦,AB⊥CD,垂足为M,且AB=8cm,则AC的长为()A.2cm B.4cm C.2cm或4cm D.2cm或4cm7.(2024•临安区)如图,⊙O的半径OA=6,以A为圆心,OA为半径的弧交⊙O于B、C点,则BC=()A.B.C.D.8.(2024•乐山)《九章算术》是我国古代第一部自成体系的数学专著,代表了东方数学的最高成就.它的算法体系至今仍在推动着计算机的发展和应用.书中记载:“今有圆材埋在壁中,不知大小,以锯锯之,深一寸,锯道长一尺,问径几何?”译为:“今有一圆柱形木材,埋在墙壁中,不知其大小,用锯去锯这木材,锯口深1寸(ED=1寸),锯道长1尺(AB=1尺=10寸)”,问这块圆柱形木材的直径是多少?”如图所示,请根据所学知识计算:圆柱形木材的直径AC是()A.13寸B.20寸C.26寸D.28寸9.(2024•日照)如图,边长为1的小正方形构成的网格中,半径为1的⊙O的圆心O在格点上,则∠BED 的正切值等于()A.B.C.2 D.10.(2024•巴中)如图,⊙O中,半径OC⊥弦AB于点D,点E在⊙O上,∠E=22.5°,AB=4,则半径OB 等于()A.B.2 C.2D.311.(2024•赤峰)如图,AB是⊙O的直径,C是⊙O上一点(A、B除外),∠AOD=130°,则∠C的度数是()A.50°B.60°C.25°D.30°12.(2024•盘锦)如图,⊙O中,OA⊥BC,∠AOC=50°,则∠ADB的度数为()A.15°B.25°C.30°D.50°13.(2024•陕西)如图,△ABC是⊙O的内接三角形,AB=AC,∠BCA=65°,作CD∥AB,并与⊙O相交于点D,连接BD,则∠DBC的大小为()A.15°B.35°C.25°D.45°14.(2024•柳州)如图,A,B,C,D是⊙O上的四个点,∠A=60°,∠B=24°,则∠C的度数为()A.84°B.60°C.36°D.24°15.(2024•铜仁市)如图,已知圆心角∠AOB=110°,则圆周角∠ACB=()A.55°B.110°C.120°D.125°16.(2024•通辽)已知⊙O的半径为10,圆心O到弦AB的距离为5,则弦AB所对的圆周角的度数是()A.30°B.60°C.30°或150°D.60°或120°17.(2024•咸宁)如图,已知⊙O的半径为5,弦AB,CD所对的圆心角分别是∠AOB,COD,若∠AOB与∠COD互补,弦CD=6,则弦AB的长为()A.6 B.8 C.5D.518.(2024•陇南)如图,⊙A过点O(0,0),C(,0),D(0,1),点B是x轴下方⊙A上的一点,连接BO,BD,则∠OBD的度数是()A.15°B.30°C.45°D.60°19.(2024•盐城)如图,AB为⊙O的直径,CD是⊙O的弦,∠ADC=35°,则∠CAB的度数为()A.35°B.45°C.55°D.65°20.(2024•邵阳)如图所示,四边形ABCD为⊙O的内接四边形,∠BCD=120°,则∠BOD的大小是()A.80°B.120°C.100°D.90°21.(2024•泰安)如图,⊙M的半径为2,圆心M的坐标为(3,4),点P是⊙M上的任意一点,PA⊥PB,且PA、PB与x轴分别交于A、B两点,若点A、点B关于原点O对称,则AB的最小值为()A.3 B.4 C.6 D.822.(2024•牡丹江)如图,△ABC内接于⊙O,若sin∠BAC,BC=2,则⊙O的半径为()A.3B.6C.4D.223.(2024•自贡)如图,若△ABC内接于半径为R的⊙O,且∠A=60°,连接OB、OC,则边BC的长为()A.B.C.D.24.(2024•湘西州)已知⊙O的半径为5cm,圆心O到直线l的距离为5cm,则直线l与⊙O的位置关系为()A.相交B.相切C.相离D.无法确定25.(2024•湘西州)如图,直线AB与⊙O相切于点A,AC、CD是⊙O的两条弦,且CD∥AB,若⊙O的半径为5,CD=8,则弦AC的长为()A.10 B.8 C.4D.426.(2024•福建)如图,AB是⊙O的直径,BC与⊙O相切于点B,AC交⊙O于点D,若∠ACB=50°,则∠BOD等于()A.40°B.50°C.60°D.80°27.(2024•宜昌)如图,直线AB是⊙O的切线,C为切点,OD∥AB交⊙O于点D,点E在⊙O上,连接OC,EC,ED,则∠CED的度数为()A.30°B.35°C.40°D.45°28.(2024•重庆)如图,已知AB是⊙O的直径,点P在BA的延长线上,PD与⊙O相切于点D,过点B作PD的垂线交PD的延长线于点C,若⊙O的半径为4,BC=6,则PA的长为()A.4 B.2C.3 D.2.529.(2024•海南)如图,在平面直角坐标系中,点A的坐标是(20,0),点B的坐标是(16,0),点C、D 在以OA为直径的半圆M上,且四边形OCDB是平行四边形,则点C的坐标为_______.30.(2024•烟台)如图,方格纸上每个小正方形的边长均为1个单位长度,点O,A,B,C在格点(两条网格线的交点叫格点)上,以点O为原点建立直角坐标系,则过A,B,C三点的圆的圆心坐标为_________.31.(2024•孝感)已知⊙O的半径为10cm,AB,CD是⊙O的两条弦,AB∥CD,AB=16cm,CD=12cm,则弦AB和CD之间的距离是______cm.32.(2024•广元)如图是一块圆环形玉片的残片,作外圆的弦AB与内圆相切于点C,量得AB=8cm、点C 与的中点D的距离CD=2cm.则此圆环形玉片的外圆半径为___cm.33.(2024•舟山)如图,量角器的0度刻度线为AB,将一矩形直尺与量角器部分重叠,使直尺一边与量角器相切于点C,直尺另一边交量角器于点A,D,量得AD=10cm,点D在量角器上的读数为60°,则该直尺的宽度为________cm.34.(2024•毕节市)如图,AB是⊙O的直径,C、D为半圆的三等分点,CE⊥AB于点E,∠ACE的度数为_____.35.(2024•随州)如图,点A,B,C在⊙O上,∠A=40度,∠C=20度,则∠B=____度.36.(2024•黑龙江)如图,AC为⊙O的直径,点B在圆上,OD⊥AC交⊙O于点D,连接BD,∠BDO=15°,则∠ACB=_____.37.(2024•吉林)如图,A,B,C,D是⊙O上的四个点,,若∠AOB=58°,则∠BDC=____度.38.(2024•北京)如图,点A,B,C,D在⊙O上,,∠CAD=30°,∠ACD=50°,则∠ADB=_____.39.(2024•绥化)如图,△ABC是半径为2的圆内接正三角形,则图中阴影部分的面积是________(结果用含π的式子表示).40.(2024•常州)如图,△ABC是⊙O的内接三角形,∠BAC=60°,的长是,则⊙O的半径是___.41.(2024•新疆)如图,△ABC是⊙O的内接正三角形,⊙O的半径为2,则图中阴影部分的面积是__.42.(2024•临沂)如图.在△ABC中,∠A=60°,BC=5cm.能够将△ABC完全覆盖的最小圆形纸片的直径是______cm.43.(2024•内江)已知△ABC的三边a,b,c,满足a+b2+|c﹣6|+28=410b,则△ABC的外接圆半径=_.44.(2024•益阳)如图,在圆O中,AB为直径,AD为弦,过点B的切线与AD的延长线交于点C,AD=DC,则∠C=____度.45.(2024•枣庄)如图,在Rt△ACB中,∠C=90°,AC=3cm,BC=4cm,以BC为直径作⊙O交AB于点D.(1)求线段AD的长度;(2)点E是线段AC上的一点,试问:当点E在什么位置时,直线ED与⊙O相切?请说明理由.46.(2024•徐州)如图,AB为⊙O的直径,点C在⊙O外,∠ABC的平分线与⊙O交于点D,∠C=90°.(1)CD与⊙O有怎样的位置关系?请说明理由;(2)若∠CDB=60°,AB=6,求的长.。
全国中考数学真题分类汇编第22讲圆的基本性质
![全国中考数学真题分类汇编第22讲圆的基本性质](https://img.taocdn.com/s3/m/b050143b856a561253d36f4f.png)
(分类)第22讲 圆的基本性质知识点1 圆的有关概念及性质 知识点2 垂径定理及其推论 知识点3 圆心角、弧、弦之间的关系知识点4 圆周角定理及推论 知识点5 圆内接四边形的性质知识点1 圆的有关概念及性质 知识点2 垂径定理及其推论(xx 襄阳)如图,点A ,B ,C ,D 都在半径为2的⊙O 上,若OA ⊥BC , ∠CDA =30°,则弦BC 的长为( D )A .4B .22C .3D .23(xx 枣庄)8.如图,AB 是⊙O 的直径,弦CD 交AB 于点P ,6,2==BP AP ,030=∠APC ,则CD 的长为( C )A .15B .52C .152D .8(xx 衢州)如图,AC 是⊙O 的直径,弦BD ⊥AO 于E ,连接BC ,过点O 作OF ⊥BC 于F ,若BD=8cm ,AE=2cm ,则OF 的长度是( D )A .3cmB .6cmC .2.5cmD .5cm(xx 广州)7.如图4,AB 是圆O 的弦,OC ⊥AB,交圆O 于点C ,连接OA,OB,BC,若∠ABC=20°,则∠AOB 的度数是( D )A. 40°B. 50°C. 70°D. 80°(xx 威海)10.如图,O ☉的半径为5,AB 为弦,点C 为AB 的中点,若30ABC =∠°,则弦AB 的长为( D )A.12B.5C.532D.53(xx•自贡)如图,若△ABC 内接于半径为R 的⊙O ,且∠A=60°,连接OB 、OC ,则边BC 的长为( D )A .B .C .D .(xx 武汉)10.如图,在⊙O 中,点C 在优弧AB ⌒ 上,将弧BC ⌒ 沿BC 折叠后刚好经过AB 的中点D .若⊙O 的半径为5,AB =4,则BC 的长是( D )A .32B .23C .235 D .265(xx 安顺)9.已知O 的直径10CD cm =,AB 是O 的弦,AB CD ⊥,垂足为M ,且8AB cm =,则AC 的长为( C )A .25cmB .45cmC .25cm 或45cmD .23cm 或43cm(xx 遂宁)如图,在⊙O 中,AE 是直径,半径OC 垂直于弦AB 于D ,连接BE ,若,则BE 的长是(B )A 、5B 、6C 、7D 、8(xx 张家界)6.如图,AB 是⊙O 的直径,弦CD ⊥AB 于点E ,cm CD cm OC 8,5==,则=AE ( A ) A cm 8 B cm 5 C cm 3 D cm 2(xx 毕节)19.如图,AB 是⊙O 的直径,C 、D 为半圆的三等分点,CE ⊥AB 于点E,∠ACE 的度数为__30°____.(xx 龙东地区)答案5(xx 玉林)(xx 嘉兴)14.如图,量角器的O 度刻度线为AB .将一矩形直尺与量角器部分重叠、使直尺一边与量角器相切于点C ,直尺另一边交量角器于点D A ,,量得cm AD 10=,点D 在量角器上的读数为︒60.则该直尺的宽度为 335cm(xx 绍兴、义乌)13.如图,公园内有一个半径为20米的圆形草坪,A ,B 是圆上的点,O 为圆心,120AOB =∠°,从A 到B 只有路AB ,一部分市民为走“捷径”,踩坏了花草,走出了一条小路AB .通过计算可知,这些市民其实仅仅少走了_______15_____步(假设1步为0.5米,结果保留整数).(参考数据:3 1.732≈,π取3.142)(xx 宜宾)15.如图,AB 是半圆的直径,AC 是一条弦,D 是AC 的中点,DE ⊥AB 于点E 且DE 交AC 于点F ,DB 交AC 于点G ,若EF AE =34, 则CGGB = 5(xx 孝感)答案:2或14(xx ·金华/丽水).如图1是小明制作的一副弓箭, 点A ,D 分别是弓臂BAC 与弓弦BC 的中点,弓弦BC =60cm.沿F G E D COAD 方向拉弓的过程中,假设弓臂BAC 始终保持圆弧形,弓弦不伸长.如图2,当弓箭从自然状态的点D 拉到点D 1时,有AD 1=30cm, ∠B 1D 1C 1=120°.(1)图2中,弓臂两端B 1,C 1的距离为 303 cm.(2)如图3,将弓箭继续拉到点D 2,使弓臂B 2AC 2为半圆,则D 1D 2的长为 10-510 cm.【解答】(1)如图2,连结B 1C 1 , B 1C 1与AD 1相交于点E ,∵D 1是弓弦B 1C 1的中点, ∴AD 1=B 1D 1=C 1D 1=30cm ,由三点确定一个圆可知,D 1是弓臂B 1AC 1的圆心, ∵点A 是弓臂B 1AC 1的中点, ∴∠B 1D 1D=,B 1E=C 1E ,AD 1⊥B 1C 1 ,在Rt△B 1D 1E 中,B 1E= cm ,则 B 1C 1=2B 1E=30 cm 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
C. 130° D . 200°
图5
6.( 20XX 年六盘水)如图 6,在⊙ O 中, AB 是弦, OC⊥ AB,垂足为 C,
若 AB=6 , OC=4,则⊙ O 的半径等于(
)
A.4 3
B.5
C.6
D.8
图6
7.(20XX 年常德 ) 如图 7,⊙ O的直径 CD 过弦 EF 的中点 G ,
EOD 40 ,则 DCF
( 2)若 AC BC ,求证: AD BD 2CD .
图 28
则⊙ O半径为 ____________.
8 , AB
10 ,
图 12
图 13
图 14
图 15
3(. 2007 山东淄博) 如图 13,已知:△ ABC 是⊙ O 的内接三角形, AD ⊥ BC 于 D 点,且 AC=5,
DC=3, AB= 4 2 ,则⊙ O 的直径等于
。
4.( 2007 重庆市)已知,如图 14: AB 为⊙ O 的直径, AB =AC ,BC 交⊙ O 于点 D ,AC 交 ⊙O 于点 E,∠ BAC =450。给出以下五个结论: ①∠ EBC = 22.50,;② BD = DC;③ AE = 2EC;
∠C ∠ D ∠E ,则 ∠ A ∠B
o.
9.( 20XX 年常德)如图 19,⊙ O 的直径 CD 过弦 EF 的中点 G , EOD 40 ,
则 DCF
.
10.( 20XX 年遵义) 如图 20, C 是⊙ O 上一点, O 是圆心,
若 ∠ AOB 80 ,则 ∠A ∠B
.
图 20
图 21
图 22
.
图7
8. (20XX 年天津 ) 已知,如图 8, BC 与 AD 的度数之差为 20°,
弦 AB 与 CD 交于点 E,∠ CEB=60 °,则∠ CAB 等于(
)
A. 50 °
B. 45°
C. 40°
D. 35 °
图8
初中精品资料
欢迎下载
9.( 20XX 年太原) 如图 9, CD 是⊙ O 的直径, A、 B 是⊙ O 上的两点, 若∠ ABD =20°,则∠ ADC 的度数为( ).
(1) 试判断 DE 与 BD 是否相等,并说明理由; (2) 如果 BC= 6, AB= 5,求 BE 的长.
5.( 2007 山东德州)如图 28, △ ABC 是⊙ O 的内接三角形, AC 上一点,延长 DA 至点 E ,使 CE CD . ( 1)求证: AE BD ;
图 27
BC , D 为⊙ O 中 AB
4. ( 2007 福建福州)如图 4,⊙ O 中,弦 AB 的长为 6 cm,圆心 O 到 AB 的距离为 4cm,
则⊙ O的半径长为( )
A . 3cm
B. 4cm
C. 5cm
D. 6cm
5.( 2007 浙江义乌)如图 5,已知圆心角∠ BOC=100 °,
则圆周角∠ BAC 的大小是(
)
A . 50° B .100°
则 ∠ AOB 的度数为(
)
A . 34
B . 56
C. 60
D . 68
O
C
A
B
图1
图2
图3
图4
3. (20XX 年上海 ) 小明不慎把家里的圆形玻璃打碎了, 其中四块碎片如图 5 所示, 为配到与
原来大小一样的圆形玻璃,小明带到商店去的一块玻璃碎片应该是(
)
A .第①块
B .第②块
C.第③块
D .第④块
EF
.
13.(2007 年宁夏 )如图 23,⊙ O 的半径为 5,弦 AB 5 3, C 是圆上一点,
则 ACB
.
图 23
三、解答题
1. ( 2007 山东枣庄)如图 24, AB 是⊙ O 的直径, BC 是弦, OD⊥ BC
于 E,交 BC 于 D.
(1) 请写出五个不同类型的正确结论;
(2) 若 BC=8,ED = 2,求⊙ O 的半径.
11. (20XX 年东营 )如图 21,△ ABC 内接于⊙ O,∠BAC= 120 °,AB= AC,BD 为⊙ O 的直径,( 20XX 年江西) 如图 22,点 A, B 是⊙ O 上两点, AB 10 ,点 P 是⊙ O 上的动点 ( P
与 A, B 不重合) ,连结 AP, PB ,过点 O 分别作 OE AP 于 E , OF PB 于 F ,则
论)
图 25
3. ( 20XX 年梅州)如图 26,点 C 在以 AB 为直径的 O 上, CD AB 于 P , 设 AP a,PB b . (1)求弦 CD 的长; (2)如果 a b 10 ,求 ab 的最大值,并求出此时 a,b 的值.
图 26
4. (20XX 年柳州 ) 如图 27, AB=AC,AB 为⊙ O 的直径, AC、BC 分别交⊙ O 于 E、 D,连 结 ED、 BE.
图 11
13.( 20XX 年达州)如图, OA 是 ⊙ O的半径, BC 是 ⊙O的弦,
若∠ AOB=46 0,则∠ ADC 为(
)
0
A.44
0
B.46
0
C.23
0
D.88
OA⊥ BC,
二、填空题 1.(20XX 年黑龙江农垦总局 ) 在圆内接⊿ ABC 中,∠ C=900, AB=12 ,
则此圆的半径为 ____________. 2.(20XX 年南京 )如图 12, ⊙O是⊿ ABC 的外接圆 , ∠ C=30 0, AB= 2 ㎝
初中精品资料
欢迎下载
历年中考数学试题分类汇编(圆的基本性质)
姓名 _________
一、选择题
1.( 2007 浙江温州)如图 1,已知
则圆心角 AOB 是( )
A . 40
B. 50
ACB 是⊙ O的圆周角, ACB
C. 80
D. 100
50 ,
2.( 2007 浙江金华)如图 2,点 A,B,C 都在 O 上,若 ∠ C 34 ,
④劣弧 AE 是劣弧 DE 的 2 倍;⑤ AE = BC。其中正确结论的序号是
。
5. ( 2007 山东枣庄)如图 15,△ ABC 内接于⊙ O,∠ BAC=120°, AB=AC, BD 为 ⊙ O 的
直径, AD=6,则 BC=
。
6.( 2007 双柏县)如图 16,⊙ O 是等边三角形 ABC 的外接圆,
图 24
初中精品资料
欢迎下载
2.( 20XX 年定西)如图 25,点 A 、B 、 D、 E 在⊙ O 上,弦 AE 、BD 的延长线相交于点 C。 若 AB 是⊙ O 的直径, D 是 BC 的中点。 (1)试判断 AB 、 AC 之间的大小关系,并给出证明; (2)在上述题设条件下, ⊿ ABC 还需满足什么条件, 点才一定是 AC 的中点? (直接写出结
A , B 两点到直线 CD 的距离之和为(
)
A.1 2 ㎝
B. 10 ㎝
C. 8 ㎝
D. 6 ㎝
图 10
12.( 20XX 年滨州) 如图 11, AB 是⊙ O的直径, C 是⊙ O上的一点, 若 AC
OD BC 于点 D ,则 BD 的长为( )
3 A. cm
2
B. 3cm C. 5cm D. 6cm
A、 40°
B、 50°
C、 60°
D、 70°
图9
10. (20XX 年怀化 )圆的半径为 13cm ,两弦 AB∥ CD , AB 24cm ,
CD 10cm ,则两弦 AB, CD 的距离是(
)
A. 7cm
B. 17cm
C. 12cm
D. 7cm 或 17cm
11.(20XX 年日照)如图 10, AB 是 ⊙ O的直径, CD 是弦,若 AB=1 0 ㎝, CD=8 ㎝,那么
点 D 是⊙ O 上一点,则∠ BDC =
.
图 16
初中精品资料
欢迎下载
7. ( 2007 福建晋江)如图 17,点 P 是半径为 5 的⊙ O 内的一点,且 OP= 3,设 AB 是过 P 的⊙ O 内的弦,且 AB⊥ OP,则弦 AB 长是 ________。
图 17
图 18
图 19
8. (20XX 年 威 海 ) 如 图 18 , AB 是 ⊙ O 的 直 径 , 点 C, D, E 都 在 ⊙ O 上 , 若