飞机结构设计第2章飞机的外载荷

合集下载

[交通运输]第2章 飞机的外载荷

[交通运输]第2章  飞机的外载荷


过载系数的实用意义
知道了过载系数ny→P=ny﹒G(CG处)
→各点Psj,Psj=ny﹒Gj 它是飞机设计中很重要的一个原始 参数,与飞行状态机动性密切相关 ny可由过载表测量获得
2.2 不同飞行条件下的过载


2.2.1 水平面内的定常直线飞行 2.2.2 垂直平面内的曲线飞行 2.2.3 水平面内的曲线飞行(正常布局) 2.2.4 最大过载ny max 2.2.5 非质心处质量的过载 2.2.6 突风过载 2.2.7 着陆过载
图2.4 飞行员承 受过载的能力与 过载方向和时Байду номын сангаас 的关系
图2.5 抗过载服系统
1-发动机引来的压缩空 气;2-气滤;3-调压器;4通信号灯;胶囊
图2.6高过载座舱内 的座椅
1-可倾斜座椅;2-后 撑弹簧筒

综合考虑这些因素,飞机设计中一般选取: 一类飞机:如歼击机、强击机,ny=-3~9 二类飞机:可部分完成机动飞行:如战 术轰炸机、多用途飞机,ny=-2~4 三类飞机:不作机动飞行的飞机:如战 略轰炸机、运输机,ny=-1~3
V2 cos gR
2
V2 θ =0° n y 1 gR 8.865
如限制ny≤8,则
V2 1 8 gR
V2 R 1123 .64m 7g
例:飞机以过载ny=-3作曲线飞行,同时使飞机重 心以角加速度αz=3.92rad/s2转动,转动方向如图所 示。若发动机重量GE=1000kg,其重心到全机重心 距离L=3m,发动机绕本身重心的质量惯性矩 Izo=120kg∙s2∙m,求:
V2 n y cos gR
当=0时,ny→max,
nmax

飞机结构—第二章 飞机的外载荷与设计规范

飞机结构—第二章 飞机的外载荷与设计规范

(二)典型飞行姿态的载荷系数
4.俯冲后拉起
Y V2 ny cos G gr 结论: 若飞机的速度V,航迹的曲率 半径r一定,则θ=0(最低处)时过载 最大; 若飞机的姿态、位置θ一定,则 速度V越大,半径r越小,机动性 越好,猛烈拉起),过载越大 (飞机受力越严重)。
第二章 飞机的外载荷与设计规范 ——§2 典型飞行姿态和载荷系数
ny=0,求此时飞机的飞行速度。
第二章 飞机的外载荷与设计规范 ——§2 典型飞行姿态和载荷系数
例1
如图所示,飞机进行俯冲,已知此时θ=45º ,r=1000m,测得飞机的
ny=0,求此时飞机的飞行速度。
解:
2 2 V V n cos cos 45 0 y gr 9 . 81 1000
第二章 飞机的外载荷与设计规范 ——§2 典型飞行姿态和载荷系数
(一)载荷系数
2.物理意义:
• 用倍数的概念来表示飞机实际外力同重力之间的关系,是一个相对 值。
• 表示飞机质量力与重力的比率。
第二章 飞机的外载荷与设计规范 ——§2 典型飞行姿态和载荷系数
(一)载荷系数
3.实用意义: 1) 载荷系数确定,结合有关飞行参数,可以确 定飞机结构上的各部分实际载荷的大小及方向, 便于我们对飞机结构的强度、刚度等指标进行设 计校验; 2)飞机机动性的重要指标,通过载荷系数可以了 解飞机的机动性能。
③ 载荷系数的载荷作用,不仅对结构有作用,而且对机载设备 和乘员有载荷作用,载荷系数越大,对其影响越大,要视其 承受能力而定。
第二章 飞机的外载荷与设计规范 ——§2 典型飞行姿态和载荷系数
(五)飞机设计时最大载荷系数的选取
1.影响最大载荷系数选取的因素: ④ 飞行时的载荷系数(除突风干扰外),一般来自发动机的推 力,载荷系数大,剩余推力要大,动力装置要增重。 ⑤ 载荷系数的大小应根据飞机的类型、用途来适当确定,不是 越大越好。

第2章 飞机载荷

第2章 飞机载荷

二、飞机过载和过载系数
飞机到达飞行轨迹的最低位置时, 此时,飞机的过载为
2
v ny 1 gr
飞机俯冲拉起时,升力可能大大的超过飞机的重力。飞 机机动动作越剧烈,升力大于重力越多,飞机受力越严 重,机翼翼根部位承受载荷越大。
二、飞机过载和过载系数

水平平面内机动飞行情况下飞机的过载
作水平转弯。 水平方向:升力水平分量=惯性离心力 垂直方向:升力垂直分量=重力


5.飞机水平转弯时的过载:_____。 A:与转弯半径有关。 B:与转弯速度有关。 C:随转弯坡度增大而减小。 D:随转弯坡度增大而增大。
6.n设计和n使用的实际意义分别是:_____。 A:表明飞机结构承载能力与飞机飞行中的受载限制。 B:表明飞机结构受载能力与飞机飞行中的实际受载大小。 C:表明飞机结构承载余量与飞机飞行中的实际受载大小。 D:表明飞机飞行中的受载能力与飞机结构的实际受载大小。
空间盒式结构
周缘封闭的薄壁梁
三、载荷分类及构件变形


1.飞机载荷是指:_____。 A:升力。 B:重力和气动力。 C:地面支持力。D:飞机运营时受到的所有外力。
2.飞机在水平面内作等速圆周运动,所受外力为:_____。 A:升力、重力、推力、阻力、向心力。 B:升力、重力、推力、阻力不平衡,合力提供向心力。 C:所受升力随坡度增大而增大。 D:B和C都对。


8.哪个方向的突风对机体影响最大:_____。 A:水平突风。 B:垂直突风。 C:侧向突风。 9.飞机结构中的空间薄壁结构可以承受何种载荷:_____。 A:集中力。 B:分布力。 C:剪力。 D:空间任意方向力。 10.飞机结构中薄板类构件可以承受的载荷为:_____。 A:集中力。 B:分布力。 C:板平面内的分布力。

飞机机翼载荷计算

飞机机翼载荷计算

飞机机翼载荷计算简介本文档旨在介绍飞机机翼载荷计算的方法和步骤。

载荷计算是飞机设计过程中的重要环节,它能确保机翼在不同飞行阶段和条件下的安全运行。

载荷种类飞机机翼所承受的载荷主要包括以下几种:1. 静载荷:包括重力、惯性力等。

2. 动载荷:主要指在飞行过程中由于气流或风荷载导致的荷载。

3. 疲劳载荷:由于不断的飞行循环,机翼会受到循环荷载的作用。

载荷计算方法飞机机翼载荷的计算通常分为以下几个步骤:1. 飞机重量计算:首先需要计算飞机的重量,包括空机重量、燃油重量、载客及货物重量等。

2. 集中载荷计算:根据飞机设计要求和运营需求,确定机翼所受的集中载荷,如起落架重量、引擎重量等。

3. 分布载荷计算:根据飞行阶段和条件,计算机翼所受的不同位置的分布载荷,如气流力、风荷载等。

4. 结构载荷计算:根据机翼结构设计要求,计算机翼所受的结构载荷,如弯曲力、剪切力等。

5. 疲劳载荷计算:根据机翼使用寿命和循环次数要求,计算机翼所受的疲劳载荷。

注意事项在进行机翼载荷计算时,需要注意以下几点:- 计算所使用的载荷数据应为可靠的数据,不能引用无法确认的内容。

- 选择适当的计算方法和模型,确保计算精度和可靠性。

- 定期检查和评估机翼的结构状态,防止疲劳破坏和结构失效。

- 遵循相关的飞机设计规范和法规要求,确保机翼的安全性和合规性。

结论飞机机翼载荷计算是飞机设计中的重要环节,它能保证机翼在不同飞行条件下的安全运行。

通过合理选择计算方法和模型,并注意相关的注意事项,可以确保机翼承受的载荷在安全范围内。

飞机载荷和机体结构

飞机载荷和机体结构

1.平飞 飞机对称等速水平直线飞行
∑Fx=0 ∑Fy=0 P=X Y=G
Z=0 ∑M=0
§1-1 飞机飞行载荷与过载
航空器系统与动力装置
1.1.1 几种典型飞行状态载荷
2.垂直平面内曲线飞行
G v2 man = = Y − G cos θ g R
Gv Y = G cos θ + g R
2
§1-1 飞机飞行载荷与过载
Cy-升力系数 Cx-阻力系数
阻力 侧向力
1 2 X = Cx × ρ v × S 2 1 2 Z = Cz × ρ v × S 2
Cz-侧力系数
航空器系统与动力装置
§1-1 飞机飞行载荷与过载
1.1 飞机载荷与载荷系数 升力系数曲线
§1-1 飞机飞行载荷与过载
航空器系统与动力装置
1.1.1 几种典型飞行状态载荷
§1-1 飞机飞行载荷与过载 航空器系统与动力装置
1.1.3 载荷、变形、应力、强度和刚度
4.强度和刚度
强度(structure strength):结构抵抗破坏的能力。 刚度(structure rigidity):结构抵抗变形的能力。 结构强度和结构刚度是衡量飞机结构承载能力大 小的基本标志。
1.1.2 飞机载荷系数
3.限制载荷系数、极限载荷系数 极限载荷系数n极限:
设计、审定飞机时规定的最大载荷系数,又称设 计载荷系数n设计。
限制载荷系数n限制:
正常飞行中允许使用的最大载荷系数。又称使用 载荷系数n使用
使用限制:n ≤ n使用 < n设计
§1-1 飞机飞行载荷与过载
航空器系统与动力装置
§1-1 飞机飞行载荷与过载
航空器系统与动力装置

飞机结构设计

飞机结构设计

飞机结构设计•相关推荐飞机结构设计飞机结构设计南京航空航天大学飞机设计技术研究所2005.9一、本课程的特点注重基础理论概念的实用化、感性化以及工程化注重综合运用知识概念权衡复杂问题分析,抓住主要矛盾寻找解决问题途径的基本设计理念大量工程结构实例的剖析注重培养自行分析、动手设计的主观能力以及工程实用化的实践能力具体要求:注意定性分析,要求概念清楚;实践性强,要求常去机库观察实物;理性推理较差,要求认真上课。

二、基本内容和基本要求内容:飞机的外载荷;飞机结构分析与设计基础不同类型飞机结构的分析;飞机结构的传力分析;飞机结构主要元构件设计原则;内容要求:①掌握飞机结构分析和设计的基本手段——传力分析;②能够正确解释飞机结构元件的布置;③能够正确地分析和设计飞机结构的主要元件。

第1章绪论飞机结构设计将飞机构思变为飞机的技术过程;成功的结构设计离不开科学性与创造性;结构设计有其自身的原理和规律,不存在唯一正确答案,需要不断的探索和完善。

1.1 飞机结构设计在飞机设计中的位置飞机功用及技术要求空-空:军用空-地:截击、强击、轰炸. 战术技术要求运输:客运民用货运使用技术要求运动,……技术要求技术要求:Vmax,升限,航程/作战半径,起飞着陆距离,载重/起飞重量,机动性指标(加速,最小盘旋,爬升),使用寿命;非定量要求:全天候,机场要求,维护要求;趋势:V ,Hmax ,载重,航程;苏-30阵风F-117第四代战斗机(俄罗斯称之为第五代战斗机)更着重强调同时具备隐身技术、超音速巡航、过失速机动和推力矢量控制、近距起落和良好的维修性等性能。

由于各种飞机的用途和设计要求不同,会带来飞机气动布局和结构设计上的差别;飞机设计的基本概念、设计原理和设计方法是一致的;本课程将对典型结构型式进行分析的基础上,将主要介绍飞机设计的基本概念、设计原理和方法。

1.1.1飞机研制过程技术要求飞机设计过程飞机制造过程试飞定型1.拟订技术要求通常可由飞机设计单位和订货单位协商后共同拟订出新飞机的战术技术要求或使用技术要求。

第三讲飞机的外载荷和设计情况

第三讲飞机的外载荷和设计情况

24
飞机转动时的过载
如果 i 点处物体的重力为Gi ,则质量力为 Gi cos +mi ai (见图38b)。 i 点处的过载 ni 为 z xi z Gi cos m i a i an ni cos ny xi Gi g g g ni 随飞机各处 xi 的不同而不同, xi 有正有负,附加力矩有一 定方向性,因而旋转惯性力及其附加的旋转过载也有正有负。 由上式可以方便地计算某一处局部的过载或外载。
图3-1
Pn
Pm
Pf
此时飞机既有平移运动,又有旋转运动,总的平衡关系为
∑Fx = 0, T - X = max = Nx ∑Fy = 0, Yw - Yt = m ( g+ ay ) = G +Ny
式中 Iz — 飞机绕Z轴的 质量惯性矩 ; z — 飞机绕Z轴的 角加速度; 其它符号见图3-1所示。
q= HV0 2 / 2
22
H uV0 u 1 S H V0 2 KC S y V0 2 2
则飞机平飞时遇突风过载ny 为
ny Y0 Y H uV0 1 KC y G 2p
式中
Cy—升力系数增量;
Cy—升力线斜率; p = G/S —翼载荷;
—迎角增量;
计的一个重要参数。设计时如能正确选取过载的极限,则
既能使飞机满足机动性要求,又能使飞机满足结构的重量 要求。 过载大小要考虑飞行员的承受能力,大过载会使飞行员出 现黑视。
19
四、进入俯冲情况 飞机在此情况下
GV2 Y G cos g r
Y V2 n y cos G gr
图3-4 进入俯冲情况
升力 Y(L) 阻力 X (D)

简述机翼外载荷的大小

简述机翼外载荷的大小

简述机翼外载荷的大小机翼外载荷是指施加在飞机机翼表面的各种力和力矩。

这些外载荷的大小是设计和运行飞机的重要参数,需要合理估计和控制。

机翼外载荷主要包括飞行气动载荷、结构载荷和操纵力载荷。

飞行气动载荷飞行气动载荷是由于空气动力学效应而产生的机翼外载荷。

它主要包括升力、阻力、侧力和俯仰力矩。

升力升力是机翼支持飞机重量的主要力量。

它的大小与机翼形状、迎角、飞行速度等因素有关。

一般来说,升力随着飞行速度的增加而增加,与机翼的迎角密切相关。

阻力阻力是飞机飞行时需要克服的阻碍前进的力量。

它的大小与机翼形状、迎角、飞行速度等因素有关。

一般来说,阻力随着飞行速度的增加而增加。

侧力侧力是作用在飞机机翼侧面的力量,它的大小与飞机的横向稳定性和操纵性有关。

俯仰力矩俯仰力矩是指作用在飞机机翼上的使飞机产生俯仰运动的力矩。

它的大小与飞机的重心位置、机翼的形状和迎角等因素有关。

结构载荷结构载荷是由飞机自身重量和外部载荷施加在机翼上的载荷。

它的大小与飞机的重量、外载荷的位置和重量分布、机翼的结构强度等因素有关。

飞机自身重量飞机自身重量是指飞机的构件、设备、燃料等各部分的重量总和。

这部分载荷主要通过飞机的结构进行传递。

外部载荷外部载荷是指飞机上的货物、油料、武器装备等外部附加负载。

这部分载荷主要通过机翼进行支持和传递。

操纵力载荷操纵力载荷是由于飞行员操纵操作所施加在机翼上的载荷。

它的大小与飞行员操纵杆的力量和动作有关。

飞行员通过操纵杆控制飞机的姿态和航向。

机翼外载荷的大小估计估计机翼外载荷的大小是飞机设计和运行过程中的重要任务之一。

一般采用飞行试验、数值模拟和模型试验等方法。

飞行试验是最直接的方法,通过在真实飞行中测量机翼上的载荷,来估计机翼外载荷的大小。

数值模拟方法基于计算流体力学和结构力学的理论和方法,通过数值模拟飞机飞行过程中的气动效应和结构响应,来估计机翼外载荷的大小。

模型试验方法是通过制作飞机的缩比模型,并在气动试验台上进行模拟飞行试验,来估计机翼外载荷的大小。

飞机构造之结构(参考文章)

飞机构造之结构(参考文章)

第一章 飞机结构1.1 概 述 1.2 飞机载荷 1.3 载荷、变形和应力的概念 1.4 机翼结构 1.5 机身结构1.6 尾翼和副翼1.7 机体开口部位的构造和受力分析1.8 定位编码系统1.1.概述固定机翼飞机的机体由机身、机翼、安定面、飞行操纵面和起落架五个主要部件组成。

直升机的机体由机身、旋翼及其相关的减速器、尾桨(单旋翼直升机才有)和起落架组成。

机体各部件由多种材料组成,并通过铆钉、螺栓、螺钉、焊接或胶接而联接起来。

飞机各部件由不同构件构成。

飞机各构件用来传递载荷或承受应力。

单个构件可承受组合应力。

对某些结构,强度是主要的要求;而另一些结构,其要求则完全不同。

例如,整流罩只承受飞机飞行过程中的局部空气动力,而不作为主要结构受力件。

1.2.飞机载荷飞行中,作用于飞机上的载荷主要有飞机重力,升力,阻力和发动机推力(或拉力)。

飞行状态改变或受到不稳定气流的影响时,飞机的升力会发生很大变化。

飞机着陆接地时,飞机除了承受上述载荷外,还要承受地面撞击力,其中以地面撞击力最大。

飞机承受的各种载荷中,以升力和地面撞击力对飞机结构的影响最大。

1.2.1.平飞中的受载情况飞机在等速直线平飞时,它所受的力有:飞机重力G、升力Y、阻力X和发动机推力P。

为了简便起见,假定这四个力都通过飞机的重心,而且推力与阻力的方向相反。

则作用在飞机上的力的平衡条件为:升力等于飞机的重力,推力等于飞机的阻力。

即:Y = GP = X图1 - 1 平飞时飞机的受载飞机作不稳定的平飞时,推力与阻力是不相等的。

推力大于阻力,飞机就要加速;反之,则减速。

由于在飞机加速或减速的同时,飞行员减小或增大了飞机的迎角,使升力系数减小或增大,因而升力仍然与飞机重力相等。

平飞中,飞机的升力虽然总是与飞机重力相等,但是,飞行速度不同时,飞机上的局部气动载荷(局部空气动力)是不相同的。

飞机以小速度平飞时,迎角较大,机翼上表面受到吸力,下表面受到压力,这时的局部气动载荷并不很大;而当飞机以大速度平飞时,迎角较小,对双凸型翼型机翼来说,除了前缘要受到很大压力外,上下表面都要受到很大的吸力。

第二讲:飞机结构设计思想和方法

第二讲:飞机结构设计思想和方法
飞机在满足静强度设计准则的基础上还应满足以下准则
☆ 结构变形设计准则:
f max f d
☆ 气动弹性设计准则:
vd vcr min( v f
vd--- 设计速度 Vcr --- 气动弹性临界速度
f f , vs
f s , va
fa )
vf , vs ,va --- 分别为颤振速度、翼面发散速度与副翼失效速度 ff , fs , fa --- 分别为其对应的安全系数
安全系数 f 在强度规范中规定 飞机结构必须通过地面静强度试验
5
静强度设计
外载荷 结构参数 结构有限元分析 工作应力σ 结构强度设计准则 工作应力可以达到很 高的计算精度
1
稳定性许用应力 计算误差很大
许用应力 受拉许用应力 疲劳/损伤容限设计

受压许用应力 结构稳定性设计
6
静强度和刚度
全机有限元计算模型 机翼、机身计算模型
影响有限元法计
算精度的因素
它是一种近似数值分析方法,因 为其求解的基本方程是一个代数方程 组,而不是描述真实连续体场变量的 微分方程组。
单 元 单元的形式可以区分为
(1)按几何形状:一维、二维或三维;
(2)按节点参数: Lagrange族(只包含场函数的节点值)
H
ηfa 破损安全系数; ηe 使用剩余强度系数; ηd 设计剩 余强度系数;Nex,fa 破损安全试验寿命;H 检查间隔期限 20
强度、刚度、损伤容限和耐久性设计
③耐久性(经济寿命)设计(20世纪80年代末开始)
设计准则:
Nec Ne N ex,en n
其中:Nex,en 为耐久性试验寿命;Nec为经济寿命;Ne 为使用寿命;n 为分散系数,一般取2

2飞机的载荷

2飞机的载荷
飞机在飞行过程中,经常需要连续地在不同 的平面内作曲线飞行,例如水平转弯、水平 盘旋、筋斗、横滚或俯冲拉起等动作,这样 的飞行称作“机动飞行”。下图为飞机在垂 直平面内作机动飞行。飞机作机动飞行时的 受载情况要比飞机水平等速直线飞行时的受 载情况复杂得多。
飞机在垂直平面内机动飞行
2.4 水平平面内机动飞行情况下飞机的过载
最大过载;情况 C 为偏转副翼俯冲,速度对应 于强度极限速压,过载为零时;情况 D 为飞机 进入俯冲;情况 D 为飞机以负迎角飞行。
图1 与飞行包线相应的飞行状态
3.3 突风过载飞行包线
我国自1987年实施“中国民用航空条例第25 部,运输类飞机适航标准”。在制订我国民 用航空条例时,为了与国际民用航空接轨, 主要参考目前国际上应用最广泛的美国适航 标准。《美国联邦航空局联邦航空条例[FAR]》 “第25部运输类飞机适航性标准”中给出突风 飞行包线(如下图所示),规定了三种不同速度 下遇到的突风飞行包线,规定了三种不同速 度下遇到的突风速度,如下表所列。
突 风 载 荷 包 线
4 设计载荷与安全系数
4.1使用载荷 使用载荷是指飞机在正常使用中所允许达到
的最大载荷,或称为限制载荷(limit load)。在 使用载荷作用下,各元件的应力临近材料的 比例极限强度,但未出现永久变形。如果超 过该载荷时,结构可能发生有害的永久变形。 在整个使用过程中,使用载荷可能不止一次 地遇到,所以飞机遇到使用载荷后不能有残 余变形,否则就会影响下次的使用。
飞机结构是个复杂的、超静定的以及多传力通道的受力结构,并大量采用弹塑 性材料,当某一结构元件在使用载荷下达到比例极限或在设计载荷下某元件达到破 坏强度时,该元件不能承受更大载荷,但其他元件仍能承担更大的载荷。各结构元 件间所承担的载荷将重新分配,直到最主要的或较多的受力构件破坏时,整个结构 才破坏。因此,按设计载荷来进行设计,可充分发挥超静定结构的承载能力。 另外,飞机结构强度试验时,很难测准结构是否出现了永久变形,而较容易准确测

飞机的载荷

飞机的载荷

4.3 安全系数
突 风 载 荷 包 线
4 设计载荷与安全系数
4.1使用载荷 使用载荷是指飞机在正常使用中所允许达到 的最大载荷,或称为限制载荷(limit load)。在 使用载荷作用下,各元件的应力临近材料的 比例极限强度,但未出现永久变形。如果超 过该载荷时,结构可能发生有害的永久变形。 在整个使用过程中,使用载荷可能不止一次 地遇到,所以飞机遇到使用载荷后不能有残 余变形,否则就会影响下次的使用。
2.3 垂直平面内机动飞行情况下飞机的过载
飞机在飞行过程中,经常需要连续地在不同
的平面内作曲线飞行,例如水平转弯、水平 盘旋、筋斗、横滚或俯冲拉起等动作,这样 的飞行称作“机动飞行”。下图为飞机在垂 直平面内作机动飞行。飞机作机动飞行时的 受载情况要比飞机水平等速直线飞行时的受 载情况复杂得多。
飞机在垂直平面内机动飞行
2.4 水平平面内机动飞行情况下飞机的过载
飞机在水平平面内机动飞行
过载的几点总结
在不同的飞行状态下,飞
机重心过载的大小往往不 一样。过载可能大于1、小 于1、等于1、等于零甚至 是负值,这决定于曲线飞 行时升力的大小和方向。 飞机平飞时,升力等于飞 ny 1; 机的重量,过载等于 曲线飞行时,升力经常不 等于1。 飞行员柔和推杆使飞机由 平飞进入下滑的过程中, 升力比飞机重量稍小一些, 过载就小于1;
图1 与飞行包线相应的飞行状态
3.3 突风过载飞行包线
我国自1987年实施“中国民用航空条例第25
部,运输类飞机适航标准”。在制订我国民 用航空条例时,为了与国际民用航空接轨, 主要参考目前国际上应用最广泛的美国适航 标准。《美国联邦航空局联邦航空条例[FAR]》 “第25部运输类飞机适航性标准”中给出突风 飞行包线(如下图所示),规定了三种不同速度 下遇到的突风飞行包线,规定了三种不同速 度下遇到的突风速度,如下表所列。

飞行器结构设计第二章新

飞行器结构设计第二章新
小型机动型 过载特点 大型弹道型
三、动力载荷综合设计
叠 加 抑 制
四、静动载荷综合设计
卫星、弹头载荷的综合设计
2.6 使用载荷和设计载荷、安全系数
一、什么是“使用载荷” 使用载荷——正常使用状态下,在飞行器或其部件上可能承 受的最大载荷,又称限制载荷(Limit Load)。
注:由设计情况导出的最严重情况下的使用载荷。
N尾 0
M尾 0
五、导弹、火箭的动载荷
自学2.4节。
2.5 飞行器载荷综合设计
一、什么是“载荷综合设计”
原因:飞行器在各种工作环境中某一时刻可能同时会受到静力、动 力和热载荷源的联合作用。各种载荷之间有时有抑制作用,有时某 种载荷对其他载荷又会有激励作用。
载荷综合
内力综合
二、静力载荷综合设计
稳态载荷 热载荷 瞬态载荷 电载荷 磁载荷 物理载荷
2.2 过载系数
一、过载系数的三种定义
过载系数(Overload Coefficient),简称过载。
——为什么引入过载?
定义一:
飞行器所承受的全部表面力的合力与飞行器的瞬时质量在地面上的 称重之比。
F F n
i
i
mg0
G0
要点: 1. 过载是矢量,根据坐标轴的方向决、定正负。 2. 若将飞行器简化为质点,上式给出质心处过载。
三、 “破坏载荷法”——设计方法 设计载荷法或破坏(极限)载荷法——核心思想:飞行器的强 度按设计载荷计算,在设计载荷作用下结构不能破坏。 目的:保证结构在任何情况下可靠承载,具有足够的强度。
Pu Pdes [ ]b d ,max
对比——许用应力法: 在使用载荷下飞行器及其部件不允许产生妨碍正 常工作的永久变形,即

飞机结构设计 第2章 飞机的外载荷

飞机结构设计 第2章  飞机的外载荷

2.2.5 非质心处质量的过载
n y = n y 0 ± Δn y = n y 0 ± Δa y / g = n y 0 ± ε z x g nx = nx 0 ± Δnx = nx 0 ± Δax / g = nx 0 ± ϖ x g
2 z
图2.7与飞机质心不重合的各点上的过载
图2.7与飞机质心不重合的各点上的过载
垂直俯冲
T − X − (G − N x ) N x − G = = nx = G G G
特例:自由坠落情况
2.2.3 水平面内的曲线飞行(正常布局)
如知道γ
∑Fn=0
G V 2 ⋅ Y sin γ = N = g R
∑Fv=0
Y cos γ = G
Y 1 ny = = G cos γ
1 如果用过载仪测出ny,也就知道γ,cos γ = ny
⎡ V 2 ⎤2 n y = ⎢1 + ⎥ ⎣ gR ⎦
1
2.2.4 最大过载ny max
n y max
Ymax ρ HV = = c y max 2 G
2 max
1 G/S
1 = f (c y max , H , Vmax , ) p
式中:p=G/S
Cymax 1.2
0.4
M
H
Vmax
V
最大过载nmax的选取与飞机性能、设备 性能和人的生理机能等均有关 nmax愈大,机动性愈好;但nmax增大使 结构受力增大,结构重量也增加,反过来又 影响整个飞机的性能 nmax↑,各种设备的惯性力↑,而很多 设备对惯性力的承受也有限度,∴nmax↑对 设备的要求也相应提高 人对nmax的承受能力也有限
第2章
飞机的外载荷
南京航空航天大学 飞机设计技术研究所

飞机的外载荷概述

飞机的外载荷概述

Y(升力)
Y (升力)
P (推力)
X (阻力)
G (重力)
G(重力)
飞机在等速直线水平飞行时的外载荷
什么是飞机的外载荷?着陆时,作用 在飞机上的外载荷有哪些?
飞机在起飞、飞行、着 陆及地面停放等过程中,作 用在飞机上的外力称为飞机 的外载荷。着陆时,作用在 飞机上的外载荷包括重力, 升力,及地面的反作用力。
这两处Y方向过载等于重心过载加上附加过载; A处过载大于重心过载,B处过载小于重心过载。
❖ 当飞机绕重心有一个抬头的角加速度 z 时,在
机身上某一点 i处,就会产生一个线加速度:
这个附加的线加速度 a yi 将产生一个附加的过载 n i ,即
n ag g x i ni
ay,i g
z xi
当飞机绕Z轴加速转动时,为什么距重心 越远产生的Y方向附加过载值越大?
重心外各点的附加线加速度等于 角加速度与此点到重心距离的乘 积,距离越远,附加线加速度越 大,附加过载就越大。
1.2.3 飞机着陆时的过载
❖ 飞机着陆接地时的速度可分解为水平分速和垂 直分速。由于水平分速是在着陆滑跑过程中逐 渐消失的,因此飞机沿水平方向的受力不大; 垂直分速是在飞机与地面相对撞击后很短的时 间内消失的,故飞机沿垂直方向的撞击力较大。 飞机着陆接地时承受的载荷,主要就是作用于 起落架的垂直撞击力。飞机接地时垂直方向的 过载,为作用于起落架上的垂直撞击力与飞机 重量的比值。
当驾驶员猛推杆使飞机进入下滑时,为什 么飞机Y方向的过载可能为负值?
驾驶员猛推杆可能使飞机的迎角 减小过大,产生负的升力。
四、过载的过荷载(意表除义示重飞力机外的)外与载飞 机 重力的关系。这
种关系用倍数来表示, 是一个相对值。

飞行器结构设计 第二章PPT课件

飞行器结构设计 第二章PPT课件

主要疲劳载荷,机动飞行的种类,飞行次数等;
3.增压载荷:气密压舱一个飞行起落中,压力的变化,增压载 荷的变化规律,作用次数等统计;
4.着陆撞击载荷:一个起落一次撞击,撞击载荷的强度;
10.08.2020
34
2.3 复杂载荷情况
⑤ 地面滑行载荷:指地面滑行飞机颠簸所受到的载荷,与飞 机跑道的质量、飞机的重量等有关;
④ 规范中的过载系数可供选择 (飞行包线上给定)。
10.08.2020
32
2.3 复杂载荷情况
飞机是一种反复使用的运载工具或作战武器。 服役期内会遇到各种载荷。
设计中,不仅应掌握典型设计状态中的极限 载荷及其对结构作用的分析方法,(以作为飞机 结构极限能力的设计依据);还应把握这些载荷 的变化规律,作用次数等统计规律,因为这些虽 未达到极限状态,但长期作用仍对结构有破坏作 用,这就是通常所说的疲劳载荷。
⑥ 发动机动力装置的热反复载荷;
⑦ 地-空-地循环载荷:飞行地面滑行时的1g载荷变化到空中 飞行的1g载荷,这种均值载荷的变化也是疲劳载荷;
⑧ 其他:机翼尾流p 对尾翼的周期性作用
10.08.2020
t
35
2.3 复杂载荷情况
作 用:
① 设备工作的影响; ② 人员的不适; ③ 结构疲劳导致缺陷生长成裂纹并不断发展,最终导致断裂 ④ 疲劳载荷是飞机设计中最重要的考虑因素,是定寿的基本依据。 二、其他特殊情况载荷 1、非正常状态载荷: 单发停车、尾旋、单轮着地、打地转、机头碰地、飞
Hale Waihona Puke 空气动力噪音:附面层压力波动、尾流、激波振荡
武器发射噪音:机炮、导弹、火箭发射
5、瞬时的响应载荷
起飞助推、外挂物投放、弹射等对飞机结构作用

第二部分第二章飞机飞行中的主要载荷及过载案例

第二部分第二章飞机飞行中的主要载荷及过载案例

第二部分第二章飞机飞行中的主要载荷及过载案例飞机在飞行过程中承载了各种主要载荷,包括重力载荷、升力载荷、推力载荷、阻力载荷和惯性载荷。

这些载荷对飞机的结构和性能都有着重要影响。

同时,由于各种原因,飞机在飞行过程中可能会遭受过载,即超过了设计载荷的力的作用。

下面将分别介绍飞机飞行中的主要载荷和一些过载案例。

1.重力载荷:重力是指地球对飞机的作用力。

重力载荷主要通过机身结构承受,并从机身传递到翼面和机翼。

当飞机升空时,由于重力的作用,机翼需要产生升力来平衡重力。

重力载荷的大小与飞机的质量相关。

2.升力载荷:升力是指飞机在空中飞行时产生的垂直向上的力。

升力载荷主要通过机翼承载,并从机翼传递到机身结构。

升力的大小与飞机的速度、密度和机翼的形状等因素有关。

3.推力载荷:推力是指飞机发动机产生的向前的力。

推力载荷主要通过发动机座舱和机身传递到起落架和机翼。

推力的大小与发动机的功率相关。

4.阻力载荷:阻力是指飞机在飞行中受到的空气阻力。

阻力载荷主要通过机翼、机身和机尾传递到飞机结构。

阻力的大小与飞机的速度、气动外形和空气密度等因素有关。

阻力产生的载荷会导致飞机的速度下降或者加速度增加,从而加大其他载荷的作用。

5.惯性载荷:惯性载荷是指飞机在运动过程中由于加速度变化而产生的力。

惯性载荷主要通过飞机结构承受。

当飞机进行加速、减速、转弯和爬升等操作时,惯性力会对飞机产生作用,对飞机结构造成影响。

在飞行中,由于各种原因,飞机可能会遭遇过载,即承受超过设计载荷的力。

这种过载可能会导致飞机结构的损坏或破坏,从而造成事故。

以下是一些过载案例:1.气象引起的过载:飞机在恶劣气象条件下飞行,比如强风、大雨、雷暴等,可能会遭遇突然的气流变化,导致飞机遭受过载。

例如,飞机在下降过程中遭遇下行气流,可能会急剧下降并承受过大的载荷。

2.操纵失误引起的过载:飞行员在操纵飞机时的失误可能导致过载。

例如,飞行员在起降或者急转弯时过度操作飞机,导致飞机承受过大的载荷。

现代飞机结构综合设计课后题答案

现代飞机结构综合设计课后题答案

第二章习题答案2.飞机由垂直俯冲状态退出,沿半径为r的圆弧进入水平飞行。

若开始退出俯冲的高度H 1=2000 m,开始转入水干飞行的高度H 2=1000 m,此时飞行速度v=720 km/h,(题图2.3),求(1)飞机在2点转入水平飞行时的过载系数n y ;(2)如果最大允许过载系数为n ymax =8,则为保证攻击的突然性,可采用何种量级的大速度或大机动飞行状态?(即若r不变,V max 可达多少? 如果V不变,r min 可为多大?解答(1)(2)3.某飞机的战术、技术要求中规定:该机应能在高度H=1000m处,以速度V=520Km/h和V’=625km/h(加力状态)作盘旋半径不小于R=690m和R’=680m(加力状态)的正规盘旋(题图2.4)。

求;(1) 该机的最大盘旋角和盘旋过载系数ny(2) 此时机身下方全机重心处挂有炸弹,重G=300kg,求此时作用在炸弹钩上的载荷大小及b方向(1kgf=9.8N)。

解答:(1)①②由①与②得(非加力)(加力)(2)6.飞机处于俯冲状态,当它降到H=2000m时(=0.103kg/m3。

)遇到上升气流的作用(题图。

已知飞机重量G=5000kg,机翼面积S=20 m2,。

此时的飞行速2.7),求此时飞机的ny度V=540 km/h,航迹半径r=8.00m,y轴与铅垂线夹角600,上升气流速度u=10 m/s ,突风缓和因子K=0.88。

解答:①② ===3 0.125KN③==G④=-3作曲线飞行,同时绕飞机重心以角加速度 3.92rad/s2转动,转动方向7.飞机以过载ny=1000kg,发动机重心到全机重心距离l=3m,发动机绕本如(题图2.8)所示。

若发动机重量GE身重心的质量惯性矩I=1200 N·m·s2,求Z0(1) 发动机重心处过载系数nyE(2) 若发动机悬挂在两个接头上,前(主)接头位于发动机重心处,后接头距发动机重心0.8m,求此时发动机作用于机身结构接头上的质量载荷(大小、方向)。

第二章 飞机机翼

第二章 飞机机翼

(弯矩)缘条 壁板 根部接头机身隔框
(蒙皮+桁条)
2.3.2 后掠机翼的结构受力分析
#: 大中型民航旅客机大都采用在机身侧边转折的单块式后掠 #1: 根部ΔABC (受力)和 后掠效应
#2: 斜撑梁式后掠机翼根部结构受力分析
#2-1:主要受力构件: 主梁(斜撑梁)(3-1)、 前梁(3-2)、后梁(4-1) 加强翼肋(4-3)
蒙皮 #4:机翼结构 骨架
纵向骨架
桁条 翼梁 纵墙
接头
横向骨架
普通翼肋 加强翼肋
2.2.1 梁式机翼 →(单梁式和双梁式)
#1:1--2根翼梁,蒙皮薄, 桁条
#2:翼梁缘条M弯 轴向力 #3:主要受力构件:翼梁 #4:便于开舱口;机身连
接比较简单;生存力
#:指出图示梁式机翼主要的结构组成、受力及特点
#2-2 翼肋将载荷传给翼梁腹板和蒙皮 *1: 蒙皮+桁条翼肋Q(压力中心) Q(钢心) +M扭。
Q 腹板 Q 1+ Q2= Q 剪流q→ q1= Q1/H1 & q2= Q2/H2 (H1,H2 前后梁腹板高度)
*2: M扭翼肋绕钢心转动。 封闭的合围框具有较大的抗扭刚度 阻止翼肋转动 作用在翼肋上的M扭→剪流q扭的形式经铆钉传给合围框 勃立特公式 q扭= M扭/2F围 (F围:蒙皮合围框包围面积)
属片和夹芯层组成→目前应用较多的是蜂窝夹层壁板
#2:整体结构机翼:
由整体板件连接而 成→把蒙皮,桁条 和缘条等构件合并 成一块整体的板件。
2.2.4 机翼的主要构件
#1:翼梁 → 缘条+腹板
缘条M弯轴向力 腹板Q剪
腹板式翼梁
#2:翼肋→ 普通 & 加强 普通翼肋: 保持翼形→把q气腹板&把扭矩全围框 & 蒙皮桁条腹板 稳定 加强翼肋: 普通翼肋+承受和传递集中载荷&机翼开口边缘→扭矩→集中力→翼梁
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

=
Y G
=
1
cos γ
如果用过载仪测出ny,也就知道γ,cosγ
=
1 ny
z 如知道V和R:
1
Y=
G2
+ N2
=
G

⎡ ⎢1 ⎣
+
V2 gR
⎤ ⎥ ⎦
2
1
ny
=
⎡ ⎢1
+

V 2 ⎤2
gR
⎥ ⎦
ny
=
Y G
=
1
cos γ
1
ny
=
⎡ ⎢1
+

V2 ⎤2
gR
⎥ ⎦
Y sin γ = N = G ⋅ V 2
2.2.1 水平面内的匀速直线飞行
图2.2 匀速水平飞行
∑Fx=0 ∑Fy=0
T=X Y=G
nx
=
T
−X G
=0
nz
=
Z G
=
0
ny
=
Y G
=1
等速平直倒飞:ny= -1
2.2.2 垂直平面内的曲线飞行
进入俯冲
∑Fx =0:
T − X + G sin θ = N x
∑Fy=0:
Y + N y − G cos θ = 0
过载系数的实用意义
知道了过载系数ny→P=ny﹒G(CG处)→ 各点Psj,Psj=ny﹒Gj
z 它是飞机设计中很重要的一个原始参 数,与飞行状态机动性密切相关
z ny可由过载表测量获得
2.2 不同飞行条件下的过载
2.2.1 水平面内的定常直线飞行 2.2.2 垂直平面内的曲线飞行 2.2.3 水平面内的曲线飞行(正常布局) 2.2.4 最大过载ny max 2.2.5 非质心处质量的过载 2.2.6 突风过载 2.2.7 着陆过载
很明显,此时将产生相当大的
载荷系数。
2.2.4 最大过载ny max
ny max
= Ymax G
= cy max
ρ H Vm2ax
2
1 G/S
=
1
f
(cy max , H ,Vmax ,
) p
式中:p=G/S
Cymax 1.2
0.4 M
H
Vmax
V
最大过载nmax的选取与飞机性能、设备 性能和人的生理机能等均有关
2.1 飞机结构上的主要载荷 2.2 不同飞行条件下的过载 2.3 其它载荷情况 2.4 疲劳载荷 2.5 飞机设计规范简介
2.1 飞机结构上的主要载荷
飞机在飞行、起飞、着陆、地面维护等使 用过程中,作用在飞机上的外力称为飞机 的外载荷
(1)飞行时的外载荷。 (2)起飞、着陆时的外载荷。
R为飞机运动轨迹的曲率半径

nx
=
P cos(α + ϕ ) − X
G
= sinθ
+
1 g
dV dt
ny
=
Y
+
P sin(α
G
+ϕ)
=
cosθ
+
1 g
V2 R
2.1.2 过载与加速度的关系
n = Rf m = a Gg m
nx
=
sinθ
+
aτ g
ny
=
cosθ
+
an g
过载的物理意义:
1.过载系数表示了作用于飞机重心处(坐标 原点)飞机所受的实际外力与飞机重力的关 系。
Θ
Ny
=
m ⋅ay
=
G g
⋅V 2 R
∴ny
=
Y G
=

1 g
⋅V 2 R
+ cosθ
=
cos θ

V2 gR
nx
=T−X G
=
Nx G
− sin θ
=
1 ⋅ ∂V g ∂t
− sin θ
俯冲后拉起
∑Fy=0 Y = Ny + G
n y = cos θ
当θ=0时,ny→max,

cosθ =
+V2 gR

起飞着陆时作用在前、 力
主起落架的地面反力
Pn 、 Pm
2.1.1 过载的概念
定义:飞机所受除重力之外的表面力总和与 飞机重量之比称为过载系数n,简称 过载。
n = Rf /G
n = nxi + ny j + nz k
n=
n
2 x
+
n
2 y
+
n
2 z
过载系数可正,可负;与坐标轴方向一致 为正,反之为负
习惯上将过载系数称为过载;平时所说的 过载是指ny,∵一般地nx和nz均很小,且x方 向的强度、刚度一般较好
Θ 平衡方程
P cos(α + ϕ ) − X = G sinθ + maτ ; aτ = dV / dt Y + P sin(α + ϕ ) = G cosθ + man; an = V 2 / R
gR
盘 旋 倾 斜 角 越 大 , ny 越 大 。 当γ=75º~80º时, ny=4~6。
当飞行速度增大时,如仍
1
ny
=
⎡ ⎢1 ⎣
+Байду номын сангаас
V2 gR
⎤ ⎥ ⎦
2
需作小半径盘旋,则需要采用
大迎角飞行以产生大的升力,
同时,需要克服升力增加所引
起的阻力增大,还需要大的倾
斜角,以产生作此盘旋所需的
升力的水平分量(向心力)。
第2章
飞机的外载荷
南京航空航天大学 飞机设计技术研究所
飞机作为运载工具要求反复使用,可能经历各 样的复杂载荷历程。最主要、最基本的有哪些? 对结构的影响作用是什么?这是设计师们关心的基 本问题;其次是不同载荷形态与主要载荷的差异以 及这些载荷的变化规律(包括大气气象规律的统 计)。 学习要点:
① 主要载荷形式; ② 主要载荷分类; ③ 作用于结构如何分析。
2.飞机的过载来源于加速度。如果飞行加速 度为0,则 n y =1。
就Y方向而言,过载系数又表示了飞机实 际的质量力情况:
ny=质量力/G 质量力与飞机所受的外力大小相等,但方
向相反(它们是平衡力系);
因此,如以质量力来决定过载的方向,就 应该是与飞机坐标轴正方向相反为正,反 之为负。
机体坐标系
速度坐标系
载荷分类
1.质量力Rm—与飞机的质量和加速度有关的 力,如:重力G;惯性力Nx等
2.表面力Rf —由物 体之间直接接触
作用而产生的作
用在飞机表面上
的力,如:气动 力 Y 、 Yt ; 发 动 机 推力T;地面支反 力等
升力 Y(L)
阻力 X (D)
动力装置产生的推力 表
T (F)
2-气滤;3-调压器; 4-通信号灯;胶囊
n max
V2 G
gR =1+
+ G cosθ
V2 gR
垂直俯冲
nx
=T
−X G
=
− (G − N x ) G
=
Nx −G G
特例:自由坠落情况
2.2.3 水平面内的曲线飞行(正常布局)
z 如知道γ
∑Fn=0
Y sin γ = N = G ⋅ V 2
∑Fv=0
gR
Y cos γ = G
ny
nmax愈大,机动性愈好;但nmax增大使 结构受力增大,结构重量也增加,反过来又 影响整个飞机的性能
nmax ↑,各种设备的惯性力↑,而很多 设备对惯性力的承受也有限度,∴nmax↑对 设备的要求也相应提高
人对nmax的承受能力也有限
飞行员承受过载的能力与过载方向和时间的关系
图2.5 抗过载服系统 1-发动机引来的压缩空气;
相关文档
最新文档