高中数学必修1基本初等函数常考题型:幂函数
高中数学必修一《幂函数》精选习题(含详细解析)
高中数学必修一《幂函数》精选习题(含详细解析)一、选择题1.下列函数中,是幂函数的是( )A.y=2xB.y=2x3C.y=D.y=2x22.若幂函数y=(m2-3m+3)x m-2的图象不过原点,则m的取值范围为( )A.1≤m≤2B.m=1或m=2C.m=2D.m=13.函数y=x-2在区间上的最大值是( )A. B. C.4 D.-44若本题的条件不变,则此函数在区间上的最大值和最小值之和为多少?5.在下列函数中,定义域为R的是( )A.y=B.y=C.y=2xD.y=x-16函数y=|x(n∈N,n>9)的图象可能是( )7下列幂函数在(-∞,0)上为减函数的是( )A.y=B.y=x2C.y=x3D.y=8下列幂函数中过点(0,0),(1,1)且为偶函数的是( )A.y=B.y=x4C.y=x-2D.y=9.在同一坐标系内,函数y=x a(a≠0)和y=ax-的图象可能是( )二、填空题10幂函数f(x)=xα过点,则f(x)的定义域是.11若y=a是幂函数,则该函数的值域是.12若函数f(x)是幂函数,且满足=3,则f的值等于.13.设a=,b=,c=,则a,b,c的大小关系是.14已知幂函数f=(m∈Z)的图象与x轴,y轴都无交点,且关于原点对称,则函数f的解析式是.三、解答题15.比较下列各组数的大小:(1)1.10.1,1.20.1;(2)0.24-0.2,0.25-0.2;(3)0.20.3,0.30.3,0.30.2.16.已知幂函数y=x3-p(p∈N*)的图象关于y轴对称,且在(0,+∞)上为增函数,求满足条件(a+1<(3-2a的实数a的取值范围.17幂函数f的图象经过点(,2),点在幂函数g的图象上,(1)求f,g的解析式.(2)x为何值时f>g,x为何值时f<g?18已知幂函数f(x)=(m2-m-1)·x-5m-3在(0,+∞)上是增函数,又g(x)=lo(a>1).(1)求函数g(x)的解析式.(2)当x∈(t,a)时,g(x)的值域为(1,+∞),试求a与t的值.参考答案与解析1【解析】选C.由幂函数所具有的特征可知,选项A,B,D中x的系数不是1;故只有选项C中y==x-1符合幂函数的特征.2【解析】选D.由题意得解得m=1.3【解析】选C.y=x-2在区间上单调递减,所以x=时,取得最大值为4.4【解析】y=x-2在区间上单调递减,所以x=2时,取得最小值为,当x=时,取得最大值为4.故最大值和最小值的和为.5【解析】选C.选项A中函数的定义域为[0,+∞),选项B,D中函数的定义域均为(-∞,0)∪(0,+∞).6【解析】选C.因为y=|x为偶函数,所以排除选项A,B.又n>9,所以<1.由幂函数在(0,+∞)内幂指数小于1的图象可知,只有选项C符合题意.7【解析】选B.函数y=,y=x3,y=在各自定义域上均是增函数,y=x2在(-∞,0)上是减函数. 8【解析】选B.函数y=x4是过点(0,0),(1,1)的偶函数,故B正确;函数y=x-2不过点(0,0),故C 不正确;函数y=,y=是奇函数,故A,D不正确.9【解析】选C.当a<0时,函数y=ax-在R上是减函数,此时y=x a在(0,+∞)上也是减函数,同时为减的只有D选项,而函数y=ax-与y轴相交于点,此点在y轴的正半轴上,故D选项不适合.当a>0时,函数y=ax-在R上是增函数,与y轴相交于点,此点在y轴的负半轴上,只有A,C适合,此时函数y=x a在(0,+∞)上是增函数,进一步判断只有C适合.10【解析】因为幂函数f(x)过点,所以=2α,所以α=-1,所以f(x)=x-1=,所以函数f(x)的定义域是(-∞,0)∪(0,+∞).答案:(-∞,0)∪(0,+∞)11【解析】由已知y=a是幂函数,得a=1,所以y=,所以y≥0,故该函数的值域为[0,+∞).答案:[0,+∞)3,12【解析】依题意设f(x)=xα,则有=3,得α=log2则f(x)=,于是f====.答案:13【解析】因为y=在x∈(0,+∞)上递增,所以>,即a>c,因为y=在x∈(-∞,+∞)上递减,所以>,即c>b,所以a>c>b.答案:a>c>b14【解析】因为函数的图象与x轴,y轴都无交点,所以m2-1<0,解得-1<m<1;因为图象关于原点对称,且m∈Z,所以m=0,所以f=x-1.答案:f=x-115【解析】(1)由于函数y=x0.1在第一象限内单调递增,又因为1.1<1.2,所以1.10.1<1.20.1.(2)由于函数y=x-0.2在第一象限内单调递减,又因为0.24<0.25,所以0.24-0.2>0.25-0.2.(3)首先比较指数相同的两个数的大小,由于函数y=x0.3在第一象限内单调递增,而0.2<0.3,所以0.20.3<0.30.3.再比较同底数的两个数的大小,由于函数y=0.3x在定义域内单调递减,而0.2<0.3,所以0.30.3<0.30.2.所以0.20.3<0.30.3<0.30.2.16【解析】因为幂函数y=x3-p(p∈N*)的图象关于y轴对称,所以函数y=x3-p是偶函数.又y=x3-p在(0,+∞)上为增函数,所以3-p是偶数且3-p>0.因为p∈N*,所以p=1,所以不等式(a+1<(3-2a化为:(a+1<(3-2a.因为函数y=是[0,+∞)上的增函数,所以⇒⇒-1≤a<,故实数a的取值范围为.17【解析】(1)设f=xα,则()α=2,所以α=2,所以f=x2.设g=xβ,则(-2)β=,所以β=-2,所以g=x-2(x≠0).(2)从图象可知,当x>1或x<-1时,f>g;当-1<x<0或0<x<1时,f<g.18【解析】(1)因为f(x)是幂函数,且在(0,+∞)上是增函数,所以解得m=-1,所以g(x)=loga.(2)由>0可解得x<-1或x>1,所以g(x)的定义域是(-∞,-1)∪(1,+∞).又a>1,x∈(t,a),可得t≥1,设x1,x2∈(1,+∞),且x1<x2,于是x2-x1>0,x1-1>0,x2-1>0,所以-=>0, 所以>.由a>1,有loga >loga,即g(x)在(1,+∞)上是减函数.又g(x)的值域是(1,+∞),所以得g(a)=loga=1,可化为=a, 解得a=1±,因为a>1,所以a=1+,综上,a=1+,t=1.。
高一数学 人教A版:幂函数及其性质5种题型
故选:BC
【题型专练】
1.(2022·河南·济源市基础教育教学研究室高二期末(文))若函数 f (x) 是幂函数,满足 f (4) 8 f (2) ,则
f
(1)
f
1 3
_________.
【答案】 28 27
【分析】利用幂函数定义设 f (x) x ,由 f (4) 8 f (2) ,求解 3 ,从而得 f (x) 的解析式,即可求值.
③指数为常数.
函数
yx
y x2
y x3
1
y x2
y x1
图象
定义域 值域 奇偶性
单调性
公共点
R R 奇
在R上 单调递增
(1,1)
R
{y | y 0}
偶 在 ( ,0) 上 单调递减, 在 (0 ,+) 上 单调递增
R
{x | x 0}
R
{y | y 0}
奇
非奇非偶
在R上 单调递增
在 [0 ,+) 上 单调递增
当 x2 x1 0 时,
f
x1
2
f
x2
2
f
x1
2
x2
2
x1
x2
2 4
x1x2 x1 x2 2 2
x1x2 4
x1
x2
2
x1 x2 0 , 4
又
f
x 0 ,所以
f
x1
2
f
x2
f
x1 x2 2
,D
正确.
故选:ACD.
【例 4】(2021·重庆巴蜀中学高一期末)已知幂函数 f x 3m2 m 1 xm 在其定义域内不单调,则实数 m=
微专题30幂函数15种常考题型总结(解析版)-人教A版2019必修第一册高一数学习题
微专题30 幂函数15种常考题型总结题型1 幂函数的概念辨析题型2 求幂函数的解析式或值题型3 根据函数是幂函数求参数值题型4 幂函数的定义域问题题型5 幂函数的值域问题题型6 幂函数的图象及应用题型7 幂函数的图象过定点问题题型8 判断幂函数的单调性题型9 判断与幂函数相关的复合函数的单调性题型10 由幂函数的单调性求参数题型11比较幂值的大小题型12 利用幂函数的单调性解不等式题型13 幂函数的奇偶性的应用题型14 幂函数的单调性和奇偶性的综合应用题型15 幂函数性质的综合应用1、幂函数的概念一般地,函数y =x α叫做幂函数,其中x 是自变量,α是常数.幂函数的特征:(1)x α的系数是1;(2)x α的底数x 是自变量;(3)x α的指数α为常数.只有满足这三个条件,才是幂函数.对于形如y =(2x )α,y =2x 5,y =x α+6等的函数都不是幂函数.2、五个幂函数的图象与性质(1)在同一平面直角坐标系内函数(1)y =x ;(2)y =12x;(3)y =x 2;(4)y =x -1;(5)y =x 3的图象如图.注:第一象限一定有幂函数的图象,第四象限一定没有幂函数的图象.(2)五个幂函数的性质y=xy=x 2y =x 3y =12xy =x -1定义域R R R [0,+∞){x |x ≠0}值域R [0,+∞)R [0,+∞){y |y ≠0}奇偶性奇偶奇非奇非偶奇单调性增在[0,+∞)上增,在(-∞,0]上减增增在(0,+∞)上减,在(-∞,0)上减3、一般幂函数的图象特征(1)所有的幂函数在(0,+∞)上都有定义,并且图象都过点(1,1).(2)当α>0时,幂函数的图象通过原点,并且在区间[0,+∞)上单调递增.特别地,当α>1时,幂函数的图象下凸;当0<α<1时,幂函数的图象上凸.(3)当α<0时,幂函数在区间(0,+∞)上单调递减.(4)幂指数互为倒数的幂函数在第一象限内的图象关于直线y =x 对称.(5)在第一象限,作直线x =a (a >1),它同各幂函数图象相交,按交点从下到上的顺序,幂指数按从小到大的顺序排列.4、幂函数的判断及应用(1)判断一个函数是否为幂函数的依据是该函数是否为y =x α(α为常数)的形式,需满足:①指数为常数,②底数为自变量,③x α的系数为1.形如y =(3x )α,y =2x α,y =x α+5…形式的函数都不是幂函数.(2)若一个函数为幂函数,则该函数也必具有y =x α(α为常数)这一形式.5、求幂函数的定义域和值域的方法幂函数的定义域和值域要根据解析式来确定,要保证解析式有意义,值域要在定义域范围内求解.幂函数的定义域由幂指数a 确定:(1)当幂指数a 取正整数时,定义域为R ,当a 为正偶数时,值域为[0,)+¥;当a 为奇数时,值域为R .(2)当幂指数a 取零或负整数时,定义域为(,0)(0,)-¥+¥U ,当0a =时,值域为{}1;当a 为负偶数时,值域为(0,)+¥;当a 为负奇数时,值域为{}0y y ¹.(3)当幂指数a 取分数时,可以先化为根式,再利用根式有意义求定义域和值域.6、幂函数图象的画法①确定幂函数在第一象限内的图象:先根据α的取值,确定幂函数y =x α在第一象限内的图象.②确定幂函数在其他象限内的图象:根据幂函数的定义域及奇偶性确定幂函数f (x )在其他象限内的图象.7、解决与幂函数有关的综合性问题的方法首先要考虑幂函数的概念,对于幂函数y =x α(α是常数),由于α的取值不同,所以相应幂函数的单调性和奇偶性也不同.同时,注意分类讨论思想的应用.8、解决幂函数图象问题应把握的原则(1)依据图象高低判断幂指数的大小,相关结论为:①在(0,1)上,指数越大,幂函数图象越靠近x 轴(简记为指大图低);②在(1,+∞)上,指数越大,幂函数图象越远离x 轴(简记为指大图高).(2)依据图象确定幂指数α与0,1的大小关系,即根据幂函数在第一象限内的图象(类似于y =x -1或y =12y x=或y =x 3)来判断.9、比较幂值大小的方法(1)若两个幂值的指数相同或可化为两个指数相同的幂值时,则可构造函数,利用幂函数的单调性比较大小.(2)若底数、指数均不同,则考虑用中间值法比较大小,这里的中间值可以是“0”或“1”.10、利用幂函数解不等式的步骤利用幂函数解不等式,实质是已知两个函数值的大小,判断自变量的大小,常与幂函数的单调性、奇偶性等综合命题.求解步骤如下:(1)确定可以利用的幂函数;(2)借助相应的幂函数的单调性,将不等式的大小关系,转化为自变量的大小关系;(3)解不等式(组)求参数范围,注意分类讨论思想的应用.题型1 幂函数的概念辨析【例1】下列函数是幂函数的是( )A .31y x =B .2x y =C .22y x =D .1y x -=-【答案】A【解析】由幂函数的定义,形如y x a =,R a Î叫幂函数,对A ,331y x x-==,故A 正确;B ,C ,D 均不符合.故选:A .【变式1】下列函数中幂函数的是( )A .3y x =B .22y x =+C .()21y x =+D .y =【答案】D【分析】根据幂函数的定义直接得出结果.【详解】A :函数3y x =为一次函数,故A 不符合题意;B :函数22y x =+为二次函数,故B 不符合题意;C :函数22(1)21y x x x =+=++为二次函数,故C 不符合题意;D :函数12y x ==为幂函数,故D 符合题意.故选:D【变式2】现有下列函数:①3y x =;②24y x =;③51y x =+;④()21y x =-;⑤y x =,其中幂函数的个数为( )A .4B .3C .2D .1【答案】C【分析】由幂函数的定义即可求解.【详解】由于幂函数的一般表达式为:(),0y x aa =¹;逐一对比可知题述中的幂函数有①3y x =;⑤y x =共两个.故选:C.题型2 求幂函数的解析式或值【例2】已知幂函数()f x 的图象过点æççè,则14f æö=ç÷èø.【答案】8【分析】设出解析式,代入点的坐标,求出()32f x x -=,再代入求值即可.【详解】令()f x x a=,由题意得2a =,即132222222a -==,解得32a =-,故()32f x x -=,则()323212284f --æö===ç÷èø.故答案为:8【变式1】函数()2227y k k x =--是幂函数,则实数k 的值是( )A .4k =B .2k =-C .4k =或2k =-D .4k ¹且2k ¹-【答案】C【解析】由幂函数的定义知2271k k --=,即2280k k --=,解得4k =或2k =-.故选:C【变式2】设函数()121,02,0xx x f x x ìï+>=íï£î,则()(4)f f -= .【答案】54【分析】根据分段函数的知识求得正确答案.【详解】()442f --=,()()()144225(4)221214f f f ----==+=+=.故答案为:54【变式3】已知幂函数()f x 满足(6)4(2)f f =,则13f æöç÷èø的值为( )A .2B .14C .14-D .2-【答案】B【分析】设出幂函数的解析式,根据已知,求出参数的关系式,即可计算作答.【详解】依题意,设()f x x a=,则(6)634(2)2f f aa a ===,所以1111()()3334f a a ===.故选:B【变式4】若函数()log 238a y x =-+(0a >且1a ¹)的图象恒过点P ,且点P 在幂函数()f x 的图象上,则()4f = .【答案】64【分析】先找到定点P 的坐标,通过P 点坐标求解幂函数()f x x a=的解析式,从而可求()4f .【详解】对于函数log 238ay x =-+(),令231x -=,解得2x =,此时8y =,因此函数log 238ay x =-+()的图象恒过定点()2,8P ,设幂函数()f x x a=,P 在幂函数()f x 的图象上,82a \=,解得3a =.()3f x x \=.则()34464==f .故答案为:64题型3 根据函数是幂函数求参数值【例3】已知幂函数()(2)n f x m x =+的图象经过点(4,2),则m n -=( )A .3-B .52-C .2-D .32-【答案】D【分析】根据幂函数的定义求解即可》【详解】依题意可得21m +=,所以1m =-,又()nf x x =的图象经过点()4,2,所以42n =,解得12n =,所以13122m n -=--=-.故选:D.【变式1】己知幂函数()(1)af x k x =-×的图象过点12æççè,则()f k = .【分析】先根据幂函数的定义及所过的点求出函数解析式,进而可得出答案.【详解】因为函数()(1)a f x k x =-×是幂函数,所以11k -=,解得2k =,又幂函数()a f x x =的图象过点12æççè,所以12aæö=ç÷èø12a =,所以12()f x x =,所以()()2f k f ==【变式2】已知幂函数()f x k x a=×的图象过点()3,9,则k a +=( )A .5B .4C .3D .2【答案】C【分析】根据幂函数的定义,求得1k =,再由()39f =,求得2a =,即可求解.【详解】由幂函数的定义,可得1k =,又由()39f =,可得39a =,解得2a =,所以3k a +=.故选:C.【变式3】“4m =”是“()22()33m f x m m x +=--是幂函数”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【答案】A【分析】运用幂函数定义及集合包含关系即可求得结果.【详解】因为()()2233m f x m m x +=--是幂函数,所以2331m m --=,解得4m =或1m =-,故“4m =”是“()()2233m f x m m x +=--是幂函数”的充分不必要条件.故选:A.题型4 幂函数的定义域问题【例4】下列函数中定义域为R 的是( )A .12y x =B .54y x =C .23y x =D .13y x -=【答案】C【分析】将分数指数幂化为根式,再根据幂函数的图像与性质即可得到答案.【详解】12y x ==[0,)+¥,故A 错误;54y x ==[0,)+¥,故B 错误;23y x ==R ,故C 正确;13y x-=={0}x x ¹∣,故D 错误,故选:C.【变式1】函数()0=f x x 的定义域是( )A .(],2-¥B .()0,2C .()(),00,2-¥U D .()(],00,2-¥È【答案】C【分析】根据函数的性质,被开偶次方根的数大于等于0,分母不能为0,0的0次幂没有意义等,列出不等式组,解之即可求解.【详解】要使函数()0=f x x 有意义,则有200x x ->ìí¹î,解得:2x <且0x ¹,所以函数的定义域为(,0)(0,2)-¥U ,故选:C .【变式2】函数()112f x x x -=+的定义域为( )A .(),-¥+¥B .()(),00,¥-+¥UC .[)0,¥+D .()0,¥+【答案】D【分析】化简函数解析式,根据函数解析式有意义可得出关于x 的不等式组,由此可解得原函数的定义域.【详解】因为()1121f x x x x -=+=,则00x x ¹ìí³î,可得0x >,故函数()f x 的定义域为()0,¥+.故选:D.【变式3】已知幂函数()y f x =的图象过点()4,2,则()112f x -的定义域为 .【答案】1(,)2-¥【分析】首先求幂函数的解析式,再求函数的定义域,根据复合函数的形式,求函数的定义域.【详解】∵()y f x x a==的图象过点()4,2,∴()f x =()112f x =-x 应该满足:120x ->,即12x <,∴()112f x -的定义域为1,2æö-¥ç÷èø.故答案为:1,2æö-¥ç÷èø题型5 幂函数的值域问题【例5】下列函数中,值域为()0,¥+的是( )A .()f xB .()1(0)f x x x x=+>C .()f x =D .()11(1)f x x x=->【答案】C【分析】根据函数的定义域、幂函数的性质、以及基本不等式可直接求得选项中各函数的值域进行判断即可.【详解】由已知()f x [)0,¥+,故A 错误;()1021x f x x x x >\=+³== ,,时,等号成立,所以()1(0)f x x x x =+>的值域是[)2,+¥,B 错误;()f x =因为定义域为()1,x ¥Î-+0> ,函数值域为(0,)+¥,故C 正确;1()1(1)f x x x =->,()10,1x Î,()11,0x -Î-,所以()()0,1f x Î,故D 错误.故选:C.【变式1】下列四个幂函数:①3y x -=;②2y x -=;③23y x -=;④32y x =的值域为同一区间的是 .(只需填写正确答案的序号)【答案】②③【解析】对于①,331y x x -==,则其值域为{}0y y ¹;对于②,221y x x-==,则其值域为{}0y y >;对于③,23y x-==,则其值域为{}0y y >,对于④,332y x ==,则其值域为{}0y y ³.综上符合题意的是②③.【变式2】在下列函数中,定义域和值域不同的是( )A .13y x =B .12y x =C .53y x =D .23y x =【答案】D【解析】由13y x ==x R Î,R y Î,定义域、值域相同;由12y x ==[0,)x Î+¥,[0,)y Î+¥,定义域、值域相同;由53y x ==可知,x R Î,,定义域、值域相同R y Î;由23y x ==x R Î,[0,)y Î+¥,定义域、值域不相同.故选:D【变式3】函数213324y x x =++,其中8x -…,则其值域为.【答案】[)3,+¥/()3y y ³【分析】利用换元法将函数化为2224(1)3y t t t =++=++,结合二次函数的性质即可得出结果.【详解】设13t x =,则2224(1)3y t t t =++=++.因为8x -…,所以2t -…. 当1t =-时,min 3y =.所以函数的值域为[3)+¥,.故答案为:[3)+¥,【变式4】已知函数())2()x a f x x x a ì³ï=í<ïî,若函数()f x 的值域为R ,则实数a 的取值范围为( )A .(1,0)-B .(1,0]-C .[1,0)-D .[1,0]-【答案】D【分析】求出分段函数在各段上的函数值集合,再根据给定值域,列出不等式求解作答.【详解】函数y =[,)a +¥上单调递减,其函数值集合为(,-¥,当0a >时,2y x =的取值集合为[0,)+¥,()f x 的值域(,[0,)R -¥È+¥¹,不符合题意,当0a £时,函数2y x =在(,)a -¥上单调递减,其函数值集合为2(,)a +¥,因函数()f x 的值域为R ,则有2a ³,解得10a -££,所以实数a 的取值范围为[1,0]-.故选:D题型6 幂函数的图象及应用【例6】图中1C 、2C 、3C 为三个幂函数y x a =在第一象限内的图象,则解析式中指数a 的值依次可以是( )A .12、3、1-B .1-、3、12C .12、1-、3D .1-、12、3【答案】D【分析】利用特值验证即可区分出三个幂函数图象分别对应的指数a 的值.【详解】在题给坐标系中,作直线12x =,分别交曲线321,,C C C 于A 、B 、C 三点则A B C y y y <<,又1312111122822-æöæöæö=<=<=ç÷ç÷ç÷èøèøèø则点A 在幂函数3y x =图像上,点B 在幂函数12y x =图像上,点C 在幂函数1y x -=图像上,则曲线123,,C C C 对应的指数分别为11,,32-故选:D【变式1】如图的曲线是幂函数n y x =在第一象限内的图象.已知n 分别取112,,,222--四个值,与曲线1234C C C C 、、、相应的n 依次为( )A .112,,,222--B .112,2,,22--C .11,,2,222--D .112,,2,22--【答案】A【解析】由幂函数的单调性可知曲线1234C C C C 、、、相应的n 应为112,,,222--.故选:A【变式2】幂函数2y x -=的大致图象是( )A .B .C .D .【答案】C【分析】首先求出函数的定义域,即可判断函数的奇偶性,再判断函数的单调性,即可得解.【详解】幂函数()221y f x x x -===定义域为{}|0x x ¹,且()()()2211f x f x x x -===-,所以()2y f x x -==为偶函数,函数图象关于y 轴对称,又当()0,x Î+¥时()2y f x x -==单调递减,则()2y f x x -==在(),0¥-上单调递增,故符合题意的只有C.故选:C【变式3】下面给出4个幂函数的图像,则图像与函数大致对应的是( )A .①3y x =,②2y x =,③12y x =,④1y x -=B .①2y x =,②13y x =,③12y x =,④1y x -=C .①2y x =,②3y x =,③12y x =,④1y x -=D .①13y x =,②12y x =,③2y x =,④1y x -=【答案】A【分析】根据幂函数的图像特征,对照四个选项一一验证,即可得到答案.【详解】函数3y x =为奇函数且定义域为R ,该函数图像应与①对应;函数20y x =³,且该函数是偶函数,其图像关于y 轴对称,该函数图像应与②对应;12y x ==[)0,¥+,该函数图像应与③对应;11y x x-==,其图像应与④对应.故选:A .【变式4】函数()54f x x =的图像大致为( )A .B .C .D .【答案】C【解析】()54f x x =的定义域为R ,且()()5544f x x x f x -=-==,故()54f x x =为偶函数,排除AB ,因为514>,故函数在()0,¥+上增长速度越来越快,为下凸函数,C 正确,D 错误.故选:C 【变式5】已知函数()02,0x f x x x³ï=í<ïî,若()()g x f x =-,则函数()g x 的图象是( )A . B .C .D .【答案】C【解析】作出函数()00x f x ³=<的图象如下图所示:因为()()g x f x =-,则将函数()f x 的图象关于x 轴对称,可得出函数()g x 的图象,如下图所示:故选:C.【变式6】【多选】函数()241f x ax x =++与()ag x x =在同一直角坐标系中的图象可能为( )A .B .C .D .【答案】ABC【分析】根据各选项中二次函数图象特征确定a 的正负,再观察幂函数图象判断即得.【详解】对于A ,二次函数开口向上,则0a >,此时存在()ag x x =与图中符合,如2a =,A 可能;对于B ,二次函数开口向下,则0a <,此时存在()ag x x =与图中符合,如1a =-,B 可能;对于C ,二次函数开口向上,则0a >,此时存在()ag x x =与图中符合,如12a =,C 可能;对于D ,二次函数开口向上,则0a >,此时()ag x x =在()0,¥+为增函数,不符合,D 不可能.故选:ABC【变式7】【多选】下列幂函数中满足条件()()()121212022f x f x x x f x x ++æö<<<ç÷èø的函数是( )A .()f x x =B .()2f x x=C .()f x =D .()1f x x=【答案】BD【分析】由题意知,当0x >时,()f x 的图象是凹形曲线,据此分析各选项中的函数图像是否满足题意即可.【详解】由题意知,当0x >时,()f x 的图象是凹形曲线.对于A,函数()f x x =的图象是一条直线,则当120x x <<时,有()()121222f x f x x x f ++æö=ç÷èø,不满足题意;对于B,函数()2f x x =的图象是凹形曲线,则当120x x <<时,有()()121222f x f x x x f ++æö<ç÷èø,满足题意;对于C,函数()f x =,则当120x x <<时,有()()121222f x f x x x f ++æö>ç÷èø,不满足题意;对于D,在第一象限内,函数()1f x x =的图象是一条凹形曲线,则当120x x <<时,有()()121222f x f x x x f ++æö<ç÷èø,满足题意.故选:BD.题型7 幂函数的图象过定点问题【例7】函数()2y x aa =-为常数的图象过定点.【答案】()1,1-【分析】利用11a =求得正确答案.【详解】当1x =时,121y a =-=-,所以定点为()1,1-.故答案为:()1,1-【变式1】【多选】下列四个函数中过相同定点的函数有( )A .2y ax a =+-B .1a y x =+C .11(0,1)x y a a a -=+>¹D .log (2)1(0,1)a y x a a =-+>¹【答案】ABC【分析】根据函数解析式,结合幂指对函数的性质确定各函数所过的定点坐标,即可判断过相同定点的函数.【详解】A :(1)2y a x =-+必过(1,2);B :1a y x =+,由11a =知函数必过(1,2);C :11(0,1)x y a a a -=+>¹,由01a =知函数必过(1,2);D :log (2)1(0,1)a y x a a =-+>¹,由log 10a =知函数必过(1,1);∴A 、B 、C 过相同的定点.故选:ABC.【变式2】已知函数y x a =的图象恒过定点A ,若点A 在一次函数y mx n =+的图象上,其中0m >,0n >,则11m n+的最小值为 .【答案】4【解析】函数y x a =的图象恒过定点(1,1)A ,所以1m n += ,因为,0m n >,所以1111()()224m n m n m n m n n m +=++=++=+=,当12m n ==时,11m n+的最小值为4.【变式3】已知幂函数1()(21)a g x a x +=-的图象过函数1()(0,1)2x bf x mm m -=->¹的图象所经过的定点,则b 的值等于( )A .12±B .C .2D .2±【答案】B【分析】先根据幂函数定义得1a =,再确定()f x 的图像所经过的定点为1,2b æöç÷èø,代入()g x 解得b 的值.【详解】由于1()(21)a g x a x +=-为幂函数,则211a -=,解得:1a =,则2()g x x =;函数1()(0,1)2x bf x m m m -=->¹,当x b = 时,11()22b b f b a -=-=,故()f x 的图像所经过的定点为1,2b æöç÷èø,所以1()2g b =,即212b =,解得:b =,故选:B.【变式4】若函数()y f x =与()y g x =图象关于y x =对称,且()23af x x +=+,则()yg x =必过定点( )A .()4,0B .()4,1C .()4,2D .()4,3【答案】D【解析】()23af x x +=+ ,()()23af x x \=-+,()()33234af \=-+=,所以,函数()y f x =的图象过定点()3,4,又 函数()y f x =与()y g x =图象关于y x =对称,因此,函数()y g x =必过定点()4,3.故选:D.题型8 判断幂函数的单调性【例8】【多选】下列函数中,在区间()0,¥+单调递减的是( )A .21y x =B .()ln 1y x =+C .1y x x=+D .2xy -=【答案】AD【分析】由复合函数的单调性、指数函数、幂函数及对勾函数单调性判断各个选项即可.【详解】对于A 项,由幂函数性质知,221y x x-==在(0,)+¥上单调递减,故A 项正确;对于B 项,令1t x =+(0x >),则ln y t =(1t >),因为1t x =+在(0,)+¥上单调递增,ln y t =在在(1,)+¥上单调递增,所以ln(1)y x =+在(0,)+¥上单调递增,故B 项不成立;对于C 项,由对勾函数性质可知,1y x x=+在(0,1)上单调递减,在(1,)+¥上单调递增,故C 项不成立;对于D 项,因为12(2xx y -==,所以2x y -=在(0,)+¥上单调递减,故D 项正确.故选:AD.【变式1】【多选】下列函数中,满足“x "ÎR ,()()0f x f x --=,且1x ",2(,0)x Î-¥,都有1212()()0f x f x x x ->-”的是( )A .()51f x x =+B .3()f x x=-C .4()f x x=D .2()2022f x x =-+【答案】BD【分析】由题意得函数()f x 是偶函数,()f x 在(),0¥-上单调递增,在(0,+∞)上单调递减,然后逐个分析判断即可.【详解】由()(),0x f x f x "Î--=R ,知函数()f x 是偶函数,由()12,,0x x ¥"Î-,都有()()12120f x f x x x ->-,知()f x 在(),0¥-上单调递增,所以()f x 在(0,+∞)上单调递减.对于A :()51f x x =+不满足为偶函数,故A 错误;对于B:()333,0,0x x f x x x x ì£=-=í->î,符合题意,故B 正确;对于C :4()f x x=不满足为偶函数,故C 错误;对于D:()22022f x x =-+符合题意.故选:BD.题型9 判断与幂函数相关的复合函数的单调性A .[)2,+¥B .[)4,+¥C .(],2-¥D .(],0-¥【答案】B【分析】求出函数的定义域,利用复合函数的单调性即可判断.【详解】令24t x x =-,则y =由240x x -³,解得4x ³或0x £,故函数y ={0x x £或x ≥4}.又函数24t x x =-在(],0-¥上单调递减,在[)4,+¥上单调递增,y 在[)0,+¥上单调递增,则函数y =[)4,+¥上单调递增.故选:B.【变式1】函数y =的单调减区间为 ;【答案】(],5-¥-【分析】先求解原函数的定义域,然后根据复合函数单调性分析求解即可.【详解】解:令245u x x =+-,则y =y =与245u x x =+-复合而成的函数. 令2450u x x =+-³,得5x £-或1x ³.易知245u x x =+-在(],5-¥-上是减函数,在[)1,+¥上是增函数,而y =在[)0,¥+上是增函数,所以y =(],5-¥-.故答案为:(],5-¥-.【变式2】已知幂函数()f x 的图象过点æççè,则函数()22y f x x =+的单调递增区间为( )A .(),2¥--B .(),1¥--C .(0,+∞)D .(1,+∞)【答案】A【分析】利用待定系数法求出幂函数的解析式,然后利用复合函数的单调性得出结果.【详解】设()f x x a=,因为()f x 的图象过点æççè,所以2a=,解得12a =-,即()12f x x -=,可得()f x 在(0,+∞)上单调递减,则函数()()122222y f x x x x -=+=+=,由220x x +>,解得2x <-或0x >,则函数22y x x =+在(),2¥--上单调递减,在(0,+∞)上单调递增,所以函数()22y f x x =+的单调递增区间为(),2¥--.故选:A.【变式3】【多选】已知幂函数()n f x x =的图像经过点(9,3),则下列结论正确的有( )A .()f x 为增函数B .若120x x >>,则()()121222f x f x x x f ++æö>ç÷èøC .()f x 为偶函数D .若1x >,则()1f x >【答案】ABD【分析】根据幂函数经过点(9,3),求出幂函数的解析式,利用幂函数的性质可直接判断选 项A ,C ,D 正误;对于选项B ,根据函数解析式分别表示出()()1212(),22f x f x x x f ++,再利用不等式的性质比较大小即可.【详解】解:由幂函数()n f x x =的图像经过点(9,3),得93n =,所以12n =.12()f x x ==[0,)+¥,对于A 选项:因为102>,由幂函数的性质得A 选项正确;对于B 选项:若120x x >>,则12(2x xf +()()12221212[([]222f x f x x x x x f +++-=21204x x -=>(),所以()()122212[()][]22f x f x x xf ++>,又()()1212()0,022f x f x x x f ++=>=>,所以()()1212(22f x f x x xf ++>,故B 选项正确;对于C 选项:由于定义域不关于数字0对称,故C 选项不正确;对于D 选项:因为()f x 为增函数,若1x >,则()(1)1f x f >=,故D 选项正确;故选:ABD.题型10 由幂函数的单调性求参数【例10】已知幂函数()()12232mf x m m x -=-满足()()23f f <,则m =.【答案】13-【分析】根据幂函数的定义,得2321m m -=,解得1m =或13m =-,分别代入()f x 判断函数单调性即可.【详解】由幂函数的定义可知,2321m m -=,即23210m m --=,解得1m =或13m =-.当1m =时,()12f x x -=在()0,¥+上单调递减,不满足()()23f f <;当13m =-时,()56f x x =在()0,¥+上单调递增,满足()()23f f <.综上,13m =-.故答案为:13-.【变式1】幂函数()()2345m f x m m x -=--在()0,¥+上为减函数,则m 的值为.【答案】2-【分析】根据幂函数定义求出m 的值,再利用单调性进行检验即得.【详解】因()()2345m f x m m x -=--是幂函数,则25=1m m --,解得:3m =或2m =-.当3m =时,5()f x x =,此时函数在()0,¥+上为增函数,舍去;当2m =-时,10()f x x -=,此时函数在()0,¥+上为减函数,符合题意.故答案为:2-.【变式2】已知幂函数()1232k y k k x-=-在区间()0,¥+上是严格增函数,则k = .【答案】1【分析】根据幂函数的定义及性质得到方程(不等式)组,解得即可.【详解】因为幂函数()1232k y k k x-=-在区间()0,¥+上是严格增函数,所以221103k k k ì-=ïí->ïî,解得1k =.故答案为:1【变式3】已知2311,,,,2,33422a ìüÎ---íýîþ,若幂函数()f x x a=在区间(),0¥-上单调递增,且其图像不过坐标原点,则a = .【答案】23-【分析】根据幂函数的性质分析求解.【详解】因为幂函数图像不过坐标原点,则0a £,当23a =-,()23f x x -==在区间(),0¥-上单调递增,符合题意;当34a =-,()34-=f x x ()0,¥+,不合题意;当12a =-,()12f x x -==的定义域为()0,¥+,不合题意;综上所述:23a =-.故答案为:23-.【变式4】已知幂函数()()21mf x m m x =+-在()0,¥+上是减函数,则11mx +<的解集为( )A .()0,1B .()(),01,-¥È+¥C .()2,0-D .()0,2【答案】A【分析】根据()f x 是幂函数且在()0,¥+上是减函数求出m 的值,再将所求不等式两边同时平方求出x 的范围.【详解】 ()()21mf x m m x =+-是幂函数,\211m m +-=,解得1m =或2m =-,当1m =时,()f x x =不满足()f x 在()0,¥+上是减函数,当2m =-时,()2f x x -=满足()f x 在()0,¥+上是减函数,\2m =-,将不等式211x -+<的两边同时平方得,24411x x -+<,解得01x <<,\11mx +<的解集为()0,1.故选:A.【变式5】已知函数2295,1()1,1a x ax x f x x x -ì-+£=í+>î,是R 上的减函数,则a 的取值范围是( )A .92,2éö÷êëøB .94,2éö÷êëøC .[]2,4D .(]9,2,2æù-¥+¥çúèûU 【答案】C【分析】根据函数的单调性列不等式,由此求得a 的取值范围.【详解】依题意,()f x 在R 上单调递减,所以2291229011511a a a a -ì³ïï-<íï-´+³+ïî,解得24a ££,所以a 的取值范围是[]2,4故选:C题型11比较幂值的大小【例11】设232555322555a b c æöæöæö===ç÷ç÷ç÷èøèøèø,,,则,,a b c 大小关系是 .【答案】a c b>>【分析】抓住同底与同指构造函数,利用单调性比较大小.【详解】因为()25f x x =在()0,¥+单调增,所以22553255æöæö>ç÷ç÷èøèø,即a c >,因为()25xg x æö=ç÷èø在(),-¥+¥单调减,所以32552255æöæö<ç÷ç÷èøèø,即,c b >综上,a c b >>.故答案为:a c b >>.【变式1】设 1.3 1.4 1.40.9,0.9,0.7a b c ===,则下列不等式中正确的是( )A .a b c <<B .c b a <<C .b a c <<D .c<a<b【答案】B【分析】利用指数函数和幂函数的性质求解即可.【详解】设()0.9xf x =,则由指数函数()0.9xf x =在R 上单调递减,得()() 1.3 1.41.3 1.40.90.9f f a b >Þ=>=,设() 1.4h x x =,则幂函数() 1.4h x x =在()0,¥+上单调递增,得()()1.41.40.90.90.70.7h b c h ==>==,所以a b c >>.故选:B【变式2】设21log 3a =,1312b æö=ç÷èø,1213c æö=ç÷èø,则( )A .c b a <<B .b a c <<C .a b c <<D .a c b<<【答案】D【分析】由对数函数、指数函数以及幂函数的单调性即可比较大小.【详解】2log x y = 在()0,+¥上是增函数,221log log 103a \=<=,12xy æö=ç÷èø在R 是减函数,12y x =在()0,¥+上是增函数,1113221110223b c æöæöæö=>>=>ç÷ç÷ç÷èøèøèø,a c b \<<.故选:D.题型12 利用幂函数的单调性解不等式【例12】不等式()()2233213x x +<-的解为 .【答案】24,3æö-ç÷èø【分析】根据幂函数的性质确定幂函数()23f x x =的奇偶性与单调性即可解不等式.【详解】解:幂函数()23f x x ==R ,且函数在[)0,¥+上单调递增,又()()f x f x -===,则()f x 为偶函数,所以()f x 在(),0¥-上单调递减,则由不等式()()2233213x x +<-可得213x x +<-,平方后整理得231080x x +-<,即()()3240x x -+<,解得243x -<<,则不等式的解集为24,3æö-ç÷èø.故答案为:24,3æö-ç÷èø.【变式1】实数a 满足3322(21)(1)a a --->+,则实数a 的取值集合为.【答案】1,22æöç÷èø【分析】首先分析出幂函数32y x -=的定义域和单调性,然后可解出不等式.【详解】32x y -=()0+¥,,且在定义域上单调递减,因为3322(21)(1)a a --->+,所以21010211a a a a ->ìï+>íï-<+î,解得122a <<故答案为:1,22æöç÷èø【变式2】已知幂函数14()f x x =,若(102)(1)f a f a -<+,则a 的取值范围是.【答案】(]3,5【解析】因为14()f x x =的定义域为[)0+,¥,且14()f x x =在[)0+,¥上单调递增,所以由(102)(1)f a f a -<+可得:1021102010a a a a -<+ìï-³íï+³î,解得:35a <£【变式3】已知函数21*()(N )m mf x xm +=Î.若该函数图象经过点 ,满足条件(2)(1)f a f a ->-的实数a 的取值范围是.【答案】31,2éö÷êëø【解析】由已知212m m +=22m m +=,又m 是正整数,故解得1m =,即12()f x x =,函数定义域是[0,)+¥,易知12()f x x =是增函数,所以由(2)(1)f a f a ->-得210a a ->-³,解得312a £<.【变式4】设函数1221,0(),0x x f x x x -ì-<ï=íï>î,如果()01f x >,则0x 的取值范围是 .【答案】()(),11,-¥-È+¥【分析】通过分00x <和00x >两种情况进行讨论,从而可求出0x 的取值范围.【详解】因为1221,0(),0x x f x x x -ì-<ï=íï>î,所以000211x x -<ìí->î或012001x x >ìïíï>î,解得01x <-或01x >,所以0x 的取值范围是()(),11,-¥-È+¥.故答案为:()(),11,-¥-È+¥.题型13 幂函数的奇偶性的应用【例13】已知幂函数()()2133a f x a a x +=-+为偶函数,则实数a 的值为.【答案】1【分析】根据幂函数定义和奇偶性直接求解即可.【详解】()f x 为幂函数,2331a a \-+=,解得:1a =或2a =;当1a =时,()2f x x =为偶函数,满足题意;当2a =时,()3f x x =为奇函数,不合题意;综上所述:1a =.故答案为:1.【变式1】若幂函数()()219mf x m m x =+-的图象关于y 轴对称,则m =( )A .5-或4B .5-C .4D .2【答案】C【分析】根据幂函数的定义与性质分析运算.【详解】若幂函数()()219mf x m m x =+-,则2191m m +-=,解得4m =或5m =-,且幂函数()f x 的图象关于y 轴对称,则m 为偶数,故4m =.故选:C .【变式2】幂函数y =223m m x --(m ∈Z )的图象如图所示,则实数m 的值为.【答案】1【分析】根据函数图象可判断单调性,进而可得2230m m --<,m 为整数,由验证是否是偶函数即可求解.【详解】有图象可知:该幂函数在()0+¥,单调递减,所以2230m m --<,解得13m -<<,m Z Î,故m 可取012,,,又因为该函数为偶函数,所以223m m --为偶数,故1m =故答案为:1题型14 幂函数的单调性和奇偶性的综合应用【例14】下列幂函数中,既在区间()0,¥+上递减,又是奇函数的是( ).A .12y x=B .13y x =C .23y x -=D .13y x -=【答案】D【分析】根据幂函数的奇偶性和单调性依次判断选项即可得到答案.【详解】对选项A ,12y x =在()0,¥+为增函数,故A 错误.对选项B ,13y x =在()0,¥+为增函数,故B 错误.对选项C ,23y x -=在()0,¥+为减函数,设()123321f x x x -æö==ç÷èø,定义域为{}|0x x ¹,()()()11332211f x f x x x éùæö-===êúç÷èø-êúëû,所以()f x 为偶函数,故C 错误.对选项D ,13y x -=在()0,¥+为减函数,设()11331f x x x -æö==ç÷èø,定义域为{}|0x x ¹,()()113311f x f x x x æöæö-==-=-ç÷ç÷-èøèø,所以()f x 为奇函数,故D 正确.故选:D【变式1】已知幂函数()223m m y x m N --*=Î的图象关于y 轴对称,且在()0,¥+上单调递减,则满足()()33132mma a --+<-的a 的取值范围为 .【答案】()23,1,32æö-¥-ç÷èøU 【分析】根据幂函数的单调性和奇偶性得到1m =,代入不等式得到()()1133132a a +<-,根据函数的单调性解得答案.【详解】幂函数()223m m y x m N --*=Î在()0,¥+上单调递减,故2230m m --<,解得13m -<<.*m N Î,故0m =,1,2.当0m =时 ,3y x -=不关于y 轴对称,舍去;当1m =时 ,4y x -=关于y 轴对称,满足;当2m =时 ,3y x -=不关于y 轴对称,舍去;故1m =,()()1133132a a --+<-,函数13y x -=在(),0¥-和()0,¥+上单调递减,故1320a a +>->或0132a a >+>-或1032a a +<<-,解得1a <-或2332a <<.故答案为:()23,1,32æö-¥-ç÷èøU 【变式2】若幂函数()22529m m f x x -++=的图象关于y 轴对称,()f x 解析式的幂的指数为整数, ()f x 在(),0¥-上单调递减,则m =( )A .19B .19或499C .13-D .13-或73【答案】D【分析】由题意知()f x 是偶函数,()f x 在(),0¥-上单调递减,可得22529m m -++为正偶数,再根据22529m m -++的范围可得答案.【详解】由题意知()f x 是偶函数,因为()f x 在(),0¥-上单调递减,所以22529m m -++为正偶数,又222534342(1)999m m m -++=--+£,∴234(1)29m --+=,解得73m =或13-.故选:D .【变式3】函数()2223()1(03,)m m f x m m x m m --=-+££ÎZ 同时满足①对于定义域内的任意实数x ,都有()()f x f x -=;②在(0,)+¥上是减函数,则f 的值为( )A .8B .4C .2D .1【答案】B【分析】由m 的值依次求出223m m --的值,然后根据函数的性质确定m ,得函数解析式,计算函数值.【详解】m ÎZ ,03m ££,0,1,2,3m =,代入223m m --分别是3,4,3,0---,在定义域内()()f x f x -=,即()f x 是偶函数,因此223m m --取值4-或0,2230m m --=时,()f x 在(0,)+¥上不是减函数,只有234-=-满足,此时1m =,4()f x x -=,444f -===.故选:B .【变式4】已知函数()333x x f x x -=+-,若2(2)(54)0f a a f a -+-<,则实数a 的取值范围为( )A .(4)(4)-¥-+¥U ,,B .(41)-,C .(1)(4)-¥-+¥U ,,D .(14)-,【答案】B【分析】首先判断()f x 的奇偶性和单调性,由此化简不等式2(2)(54)0f a a f a -+-<,从而求得a 的取值范围.【详解】()f x 的定义域为R ,()()333x x f x x f x --=-+-=-,所以()f x 为奇函数,()3133x xf x x =+-在R 上递增,由2(2)(54)0f a a f a -+-<得()2(2)(54)45f a a f a f a -<--=-,∴2245a a a -<-,2340a a +-<,()()410a a +-<解得41a -<<.故选:B题型15 幂函数性质的综合应用【例15】已知幂函数213()(22)m f x m m x -=-+.(1)求函数()f x 的解析式;(2)求函数()f x 的定义域、值域;(3)判断()f x 的奇偶性.【答案】(1)2()f x x -=(2)定义域为()(),00,¥-+¥U ,值域为(0,)+¥(3)偶函数【分析】(1)根据幂函数的定义运算求解;(2)根据幂函数解析式求定义域和值域;(3)根据偶函数的定义分析证明.【详解】(1)函数213()(22)m f x m m x -=-+为幂函数,则2221m m -+=,解得1m =,则13132m -=-=-,所以函数2()f x x -=;(2)221()f x x x-==,令20x ¹,解得0x ¹故函数2()f x x -=的定义域为(,0)(0,)A =-¥+¥U ,∵20x >,则21()0f x x =>,故函数2()f x x -=的值域为(0,)+¥;(3)任取x A Î,22()()()f x x x f x ---=-==,所以函数()f x 是定义域上的偶函数.【变式1】已知幂函数()22()55m f x m m x -=-+的图像关于点(0,0)对称.(1)求该幂函数()f x 的解析式;(2)设函数()|()|g x f x =,在如图的坐标系中作出函数()g x 的图像;(3)直接写出函数()1g x >的解集.【答案】(1)1()f x x=(2)图像见解析(3)()()1,00,1-U 【分析】(1)利用幂函数的定义求出m 值,再结合其图像性质即可得解.(2)由(1)求出函数()g x ,再借助反比例函数与偶函数的对称性作出()g x 的图像.(3)根据(2)中图像特征写出函数()g x 的单调区间.【详解】(1)因为()22()55m f x m m x -=-+是幂函数,所以2551m m -+=,解得1m =或4m =,当1m =时,函数11()f x x x-==定义域是(,0)(0,)-¥+¥U ,易得()f x 是奇函数,图像关于原点对称,则1m =满足题意;当4m =时,函数2()f x x =,易知()f x 是R 上的偶函数,其图像关于y 轴对称,关于原点不对称;综上:幂函数()f x 的解析式是11()f x x x-==.(2)因为函数()|()1|||g f x x x ==,定义域为(,0)(0,)-¥+¥U ,且()()11g x g x x x-===-,所以()g x 是(,0)(0,)-¥+¥U 上的偶函数,当0x >时,1()g x x=在(0,)+¥上单调递减,其图像是反比例函数1y x =在第一象限的图像,作出函数()g x 在第一象限的图像,再将其关于y 翻折即可得()g x 在定义域上的图像,如图,(3)观察(2)中图像可得,()1g x >的解集为()()1,00,1-U .。
高中数学人教A版必修1第二章 基本初等函数——幂函数(共14张PPT)
f(x 1 )f(x2 )x 1x2(x 1x x 2 1 )+ (x x 2 1+x2)
x1 x2 x1 + x2
方法技巧:分子有理化
因 x 1 x 2 , x 为 1 , x 2 [ 0 , + ) 所 ,x 1 x 2 以 0 ,x 1 + x 2 0 ,
所 f(x 以 1 )f(x2 )即 , 幂 f(x) 函 x在 [0 数 ,+)上 的 .
课堂小结
(1) 幂函数的定义; (2)五个基本幂函数的图像画法及特征; (3) 幂函数的性质。
作业:P79习题2.3: 1,2,3。
谢谢指导
不知道自己缺点的人,一辈子都不会想要改善。成功的花,人们只惊慕她现时的明艳!然而当初她的芽儿,浸透了奋斗的泪泉,洒遍了牺牲的血雨。成功的条件在于勇气和 信乃是由健全的思想和健康的体魄而来。成功了自己笑一辈子,不成功被人笑一辈子。成功只有一个理由,失败却有一千种理由。从胜利学得少,从失败学得多。你生而有 前进,形如蝼蚁。你一天的爱心可能带来别人一生的感谢。逆风的方向,更适合飞翔。只有承担起旅途风雨,才能最终守得住彩虹满天只有创造,才是真正的享受,只有拚 活。知识玩转财富。志不立,天下无可成之事。竹笋虽然柔嫩,但它不怕重压,敢于奋斗、敢于冒尖。阻止你前行的,不是人生道路上的一百块石头,而是你鞋子里的那一 爱,不必呼天抢地,只是相顾无言。最值得欣赏的风景,是自己奋斗的足迹。爱的力量大到可以使人忘记一切,却又小到连一粒嫉妒的沙石也不能容纳。生活不可能像你想 不会像你想的那么糟。时间告诉你什么叫衰老,回忆告诉你什么叫幼稚。不要总在过去的回忆里缠绵,昨天的太阳,晒不干今天的衣裳。实现梦想往往是一个艰苦的坚持的 到位,立竿见影。那些成就卓越的人,几乎都在追求梦想的过程中表现出一种顽强的毅力。世界上唯一不变的字就是“变”字。事实胜于雄辩,百闻不如一见。思路决定出 细节决定成败,性格决定命运虽然你的思维相对于宇宙智慧来说只不过是汪洋中的一滴水,但这滴水却凝聚着海洋的全部财富;是质量上的一而非数量上的一;你的思维拥 所有过不去的都会过去,要对时间有耐心。人总会遇到挫折,总会有低潮,会有不被人理解的时候。如果你希望成功,以恒心为良友,以经验为参谋,以小心为兄弟,以希 个人不知道他要驶向哪个码头,那么任何风都不会是顺风。沙漠里的脚印很快就消逝了。一支支奋进歌却在跋涉者的心中长久激荡。上天完全是为了坚强你的意志,才在道 碍。拥有资源不能成功,善用资源才能成功。小成功靠自己,大成功靠团队。炫耀什么,缺少什么;掩饰什么,自卑什么。所谓正常人,只是自我防御比较好的人。真正的 防而又不受害。学习必须如蜜蜂一样,采过许多花,这才能酿出蜜来态度决定高度。外在压力增加时,就应增强内在的动力。我不是富二代,不能拼爹,但为了成功,我可 站在万人中央成为别人的光。人一辈子不长不短,走着走着,就进了坟墓,你是要轰轰烈烈地风光下葬,还是一把骨灰撒向河流山川。严于自律:不能成为自己本身之主人 他周围任何事物的主人。自律是完全拥有自己的内心并将其导向他所希望的目标的惟一正确的途径。生活对于智者永远是一首昂扬的歌,它的主旋律永远是奋斗。眼泪的存 伤不是一场幻觉。要不断提高自身的能力,才能益己及他。有能力办实事才不会毕竟空谈何益。故事的结束总是满载而归,就是金榜题名。一个人失败的最大原因,是对自 的信心,甚至以为自己必将失败无疑。一个人炫耀什么,说明内心缺少什么。一个人只有在全力以赴的时候才能发挥最大的潜能。我们的能力是有限的,有很多东西飘然于 之外。过去再优美,我们不能住进去;现在再艰险,我们也要走过去!即使行动导致错误,却也带来了学习与成长;不行动则是停滞与萎缩。你的所有不甘和怨气来源于你 你可以平凡,但不能平庸。懦弱的人只会裹足不前,莽撞的人只能引为烧身,只有真正勇敢的人才能所向披靡。平凡的脚步也可以走完伟大的行程。平静的湖面锻炼不出精 生活打造不出生活的强者。人的生命似洪水在奔流,不遇着岛屿、暗礁,难以激起美丽的浪花人生不怕重来,就怕没有将来。人生的成败往往就在于一念之差。人生就像一 为你在看别人耍猴的时候,却不知自己也是猴子中的一员!人生如天气,可预料,但往往出乎意料。人生最大的改变就是去做自己害怕的事情。如果不想被打倒,只有增加 你向神求助,说明你相信神的能力;如果神没有帮助你,说明神相信你的能力。善待自己,不被别人左右,也不去左右别人,自信优雅。活是欺骗不了的,一个人要生活得 象这杯浓酒,不经三番五次的提炼呵,就不会这样一来可口!生命不止需要长度,更需要宽度。时间就像一张网,你撒在哪里,你的收获就在哪里。世上最累人的事,莫过于 你感到痛苦时,就去学习点什么吧,学习可以使我们减缓痛苦。当世界都在说放弃的时候,轻轻的告诉自己:再试一次。过错是暂时的遗憾,而错过则是永远的遗憾!很多 结果,但是不努力却什么改变也没有。后悔是一种耗费精神的情绪后悔是比损失更大的损失,比错误更大的错误所以不要后悔。环境不会改变,解决之道在于改变自己。积 成功者的最基本要素。激情,这是鼓满船帆的风。风有时会把船帆吹断;但没有风,帆船就不能航行。即使道路坎坷不平,车轮也要前进;即使江河波涛汹涌,船只也航行 粹取出来的。浪费时间等于浪费生命。老要靠别人的鼓励才去奋斗的人不算强者;有别人的鼓励还不去奋斗的人简直就是懦夫。不要问别人为你做了什么,而要问你为别人 遥远的梦想和最朴素的生活,即使明天天寒地冻,金钱没有高贵,低贱之分。金钱在高尚人的手中,就会变得高尚;金钱在庸俗人手中,就会变得低级庸俗。涓涓细流一旦 大海也就终止了��
高中数学必修1 必修一幂函数专项练习题
必修一幂函数专项练习题1. 下列命题中正确的是( )A. 当α=0时,幂函数y =x α的图象是一条直线B. 幂函数的图象都经过(0,0)、(1,1)两点C. 若幂函数y =x α的图象关于原点对称,则在定义域内y 随x 的增大而增大D. 幂函数的图象不可能在第四象限 2. 幂函数y =x 43,y =x 31,y =x -43的定义域分别是M 、N 、P ,则( )A. M ⊂N ⊂PB. N ⊂M ⊂PC. M ⊂P ⊂ND. A 、B 、C 都不对3. (湖南高考,文)函数f (x )=x 21-的定义域是( ) A. (-∞,0] B. [0,+∞) C. (-∞,0) D. (-∞,+∞)4. (唐山十县联考)函数y =(-21+x )-21的定义域是( ) A. (-∞,-1) B. (-∞,-1] C. (1,+∞) D. [1,+∞) 5. (江西高考,理)已知实数a 、b 满足等式(21)a =(31)b ,下列五个关系式: ①0<b<a ;②a<b<0;③0<a<b ;④b<a<0;⑤a =b ,其中不可能成立的有( )A. 1个B. 2个C. 3个D. 4个6. 下列函数中,是幂函数的为( ) A. y =x x B. y =3x 21 C. y =x 21+1 D. y =x 2-7. 若T1=(21)32,T 2=(51)32,T 3=(21)31,则下列关系式正确的是( ) A. T 1<T 2<T 3 B. T 3< T 1< T 2 C. T 2< T 3< T 1 D. T 2< T 1<T 38. (经典回放)对于幂函数f (x )=x 54,若0<x 1<x 2,则f (221x x +),x x f x f )()(21+的大小关系是( )A. f (221x x +)>x x f x f )()(21+ B. f (221x x +)<x x f x f )()(21+C. f (221x x +)=x x f x f )()(21+D. 无法确定9. 已知函数f (x )=x a +m 的图象经过点(1,3),又其反函数图象经过点(10,2),则f (x )的解析式为_________。
高中数学必修一同步练习题库:幂函数(简答题:一般)
幂函数(简答题:一般)1、已知幂函数的图象经过点.(1)求函数的解析式,并画出图象;(2)证明:函数在上是减函数.2、已知幂函数为偶函数.(1)求的解析式;(2)若函数在区间(2,3)上为单调函数,求实数的取值范围.3、比较大小:1.20.5,1.20.6,0.51.2,0.61.2.4、若,求a的取值范围.5、已知幂函数f(x)=x (m∈N*).(1)试确定该函数的定义域,并指明该函数在其定义域上的单调性;(2)若该函数还经过点(2,),试确定m的值,并求满足条件f(2-a)>f(a-1)的实数a的取值范围.6、点(,2)与点分别在幂函数f(x),g(x)的图象上,问:当x为何值时,有:①f(x)>g(x)?②f(x)=g(x)?③f(x)<g(x)?7、计算下列各式:(1)(2)8、已知幂函数为偶函数.(1)求的解析式;(2)若函数在区间上为单调函数,求实数的取值范围.9、已知,且。
求满足的实数的取值范围。
10、已知函数的图象与x、y轴都无公共点,且关于y轴对称,求p的值,并画出图象。
11、已知函数为幂函数,且为奇函数.(1)求的值;(2)求函数在的值域.12、已知幂函数在上是增函数,又(),(1)求函数的解析式;(2)当时,的值域为,试求与的值.13、已知幂函数为偶函数,且在区间上是单调递增函数。
(Ⅰ)求函数的解析式;(Ⅱ)设,若能取遍内的所有实数,求实数的取值范围.14、已知幂函数f(x)=,其中−2<m<2,m∈Z,满足:(1)f(x)是区间(0,+∞)上的增函数;(2)对任意的x∈R,都有f(−x) +f(x)=0.求同时满足条件(1)、(2)的幂函数f(x)的解析式,并求x∈[0,3]时,f(x)的值域.15、已知点在幂函数f(x)的图象上,点在幂函数g(x)的图象上,问当x为何值时,(1)f(x)>g(x);(2)f(x)=g(x);(3)f(x)<g(x).16、已知函数f(x)=−且f(4)=.(1)求的值;(2)判定f(x)的奇偶性;(3)判断f(x)在(0,+∞)上的单调性,并给予证明.17、已知幂函数为偶函数.(1)求的解析式;(2)若函数在区间上为单调函数,求实数的取值范围.18、如图,幂函数的图象关于轴对称,且与轴,轴均无交点,求此函数的解析式及不等式的解集.19、已知函数()是偶函数,且(1)求的解析式;(2)若(,)在区间上为增函数,求实数的取值范围20、已知(是常数)为幂函数,且在第一象限单调递增.(1)求的表达式;(2)讨论函数在上的单调性,并证之.21、已知函数y= (n∈Z)的图像与两坐标轴都无公共点,且其图像关于y轴对称,求n的值,并画出函数图像.22、(本题满分12分)已知幂函数在上单调递增,函数.(1)求的值;(2)当时,记、的值域分别为集合、,若,求实数的取值范围.23、(本小题满分10分)已知幂函数在上单调递增,函数(1)求的值;(2)当时,记的值域分别为,若,求实数的取值范围.24、已知命题P:若幂函数过点,实数满足。
高一幂函数的试题及答案
高一幂函数的试题及答案一、选择题1. 下列哪个函数是幂函数?- A. \( y = x^2 + 1 \)- B. \( y = \sqrt{x} \)- C. D. \( y = \frac{1}{x} \)2. 幂函数 \( y = x^3 \) 的图像通过哪个点?- A. (0, 1)- B. (1, 1)- C. (-1, 1)- D. (0, 0)3. 如果幂函数 \( y = x^n \) 的图像关于y轴对称,那么 \( n \) 的值是多少?- A. 1- B. 2- C. -1- D. 任意实数二、填空题4. 幂函数 \( y = x^2 \) 的图像是一个_________。
5. 当 \( n > 0 \) 时,幂函数 \( y = x^n \) 的图像在第一象限内随着 \( x \) 值的增加而_________。
三、解答题6. 已知幂函数 \( y = x^n \) 通过点 (3, 27),请确定 \( n \) 的值。
7. 讨论幂函数 \( y = x^n \) 图像的变化趋势,并说明 \( n \) 的不同取值对图像的影响。
四、计算题8. 计算幂函数 \( y = x^{-2} \) 在 \( x = 2 \) 处的导数。
9. 假设幂函数 \( y = x^n \) 的图像经过点 (2, 8),求 \( n \)的值,并描述其图像的特点。
答案一、选择题1. 正确答案:B. \( y = \sqrt{x} \)(因为 \( \sqrt{x} = x^{1/2} \))2. 正确答案:C. (-1, 1)3. 正确答案:B. 2二、填空题4. 幂函数 \( y = x^2 \) 的图像是一个抛物线。
5. 当 \( n > 0 \) 时,幂函数 \( y = x^n \) 的图像在第一象限内随着 \( x \) 值的增加而增加。
三、解答题6. 由于 \( y = x^n \) 通过点 (3, 27),我们有 \( 27 = 3^n \)。
幂函数 高中数学例题课后习题详解
第三章函数的概念与性质3.3幂函数例证明幂函数()f x =是增函数.证明:函数的定义域是[0,)+∞.1x ∀,2[0,)x ∈+∞,且12x x <,有()()12f x f x -===.因为120x x -<0>,所以()()12f x f x <,即幂函数()f x =是增函数.练习1.已知幂函数y x α=的图象过点,试求出这个函数的解析式.【答案】12y x =【解析】【分析】直接带点计算即可.2α=,得12α=,即12y x =.2.利用幂函数的性质,比较下列各题中两个值的大小:(1)3(1.5)-,3(1.4)-;(2)11.5-,11.4-.【答案】(1)33(1.5)(1.4)-<-;(2)111.5 1.4>--.【解析】【分析】(1)根据3()f x x =的单调性比较大小;(2)根据1()g x x=在(,0)-∞上的单调性比较大小.【详解】解:(1)设3()f x x =,则()f x 在R 上为增函数.1.5 1.4-<- ,33(1.5)(1.4)∴-<-.(2)设1()g x x=,则()g x 在(,0)-∞上为减函数,1.5 1.40-<-< ,111.5 1.4∴>--.【点睛】本题考查幂函数的单调性的应用,属于基础题.3.根据单调性和奇偶性的定义证明函数3()f x x =的单调性和奇偶性.【答案】证明见解析.【解析】【分析】根据函数奇偶性的定义判断,利用定义法证明函数的单调性,按照:设元、作差、变形、判断符号、下结论的步骤完成即可.【详解】证明:3()f x x =的定义域为R.任取12,R x x ∈,且12x x <,则()()()()33221212121122f x f x x x x x x x x x -=-=-++()22121221324x x x x x ⎡⎤⎛⎫=-++⎢⎥ ⎪⎝⎭⎢⎥⎣⎦.12,R x x ∈ ,且12x x <,120x x ∴-<,2212213024x x x ⎛⎫++> ⎪⎝⎭.()()120f x f x ∴-<,即()()12f x f x <.3()f x x ∴=在R 上为增函数.又33()()()f x x x f x -=-=-=- ,3()f x x ∴=为奇函数.【点睛】本题考查幂函数的单调性及奇偶性的证明,属于基础题.习题3.3复习巩固4.画出函数y =的图象,并判断函数的奇偶性,讨论函数的单调性.【答案】图像见解析,偶函数,讨论见解析【解析】【分析】将绝对值去掉,将函数解析式写出分段函数的形式,再根据幂函数的性质及图象画出函数图象,从而可以判断函数的奇偶性和单调性.【详解】解:xyx==<y∴=设()f x y==()f x的定义域为R.()()f x f x-===,()y f x∴==.当[0,)x∈+∞时,y=为增函数,证明如下:设任意的12,[0,)x x∈+∞,且12x x<,则12y y-=12,[0,)x x∈+∞,且12,0x x<>12120,0,0x x y y+>-<∴-<即12yy<.y∴=在[0,)+∞上为增函数.当(,0]x∈-∞时,y=为减函数,证明如下:设任意的12,(,0]x x∈-∞,且12x x<,则12y y-=.12,(,0]x x∈-∞,且12,0x x<>,21120.0x x y y->∴->即12yy>. y∴=在(,0]-∞上是减函数.【点睛】本题考查分段函数及幂函数的图象及性质,属于中档题.综合运用5.在固定压力差(压力差为常数)下,当气体通过圆形管道时,其流量速率v ,(单位:3/cm s )与管道半径r (单位:cm )的四次方成正比.(1)写出气体流量速率v ,关于管道半径r 的函数解析式;(2)若气体在半径为3cm 的管道中,流量速率为3400/cm s ,求该气体通过半径为r 的管道时,其流量速率v 的表达式;(3)已知(2)中的气体通过的管道半径为5cm ,计算该气体的流量速率(精确到31/cm s ).【答案】(1)4v kr =;(2)440081v r =;(3)33086/cm s 【解析】【分析】(1))设比例系数为k ,由题意可得:4v kr =.(2)代入可得k .(3)利用(2)的表达式即可得出.【详解】解:(1)设比例系数为k ,气体的流量速率v 关于管道半径r 的函数解析式为4v kr =.(2)将3r =与400v =代入4v kr =中,有44003k =⨯.解得40081k =,所以,气体通过半径为r 的管道时,其流量速率v 的表达式为440081v r =.(3)当=5r 时,43400250000530868181/s v cm =⨯=≈.所以,当气体81通过的管道半径为5cm 时,该气体的流量速率约为33086/cm s .【点睛】本题考查了正比例函数的解析式及幂函数其应用,考查了推理能力与计算能力,属于中档题.6.试用描点法画出函数2()f x x -=的图象,求函数的定义域、值域;讨论函数的单调性、奇偶性,并证明.【答案】图像见解析,定义域:{|0}x x ≠,值域:{|0}y y >,讨论见解析,证明见解析【解析】【分析】函数221()f x x x -==,可得0x ≠.可得定义域,2x >,可得210x >,可得值域;在求解奇偶性,并作出其大致图象,利用定义证明单调性即可;【详解】解:21()f x x =.列表:x…-3-2-1123…()f x …1914111419…描点,连线.图象如图所示.定义域:{|0}x x ≠,值域:{|0}y y >.2()f x x -=在(,0)-∞上是增函数,在(0,)+∞上是减函数.证明如下:设任意的12,(,0)x x ∈-∞,且12x x <.则()()()()222121211222222212121211x x x x x x f x f x x x x x x x +---=-==.22121212210,0,0,0x x x x x x x x <<∴+<>-> .()()120f x f x ∴-<,即()()12f x f x <,2()f x x -∴=在(,0)-∞上是增函数.设任意的12,(0,)x x ∈+∞,且12x x <,则()()()()2121122222121211x x x x f x f x x x x x +--=-=.120x x << ,222112210,0,0x x x x x x ∴+>>->()()120f x f x ∴->,即()()12f x f x >.2()f x x -∴=在(0,)+∞上是减函数.22()()()f x x x f x ---=-== 2()f x x -∴=是偶函数.【点睛】本题考查幂函数的图象及性质,单调性的证明,属于中档题.。
必修一幂函数(含答案)
必修⼀幂函数(含答案)2.7幂函数⼀、幂函数定义的应⽤〖例1〗已知函数f(x)=(m 2-m-1)x -5m-3,m 为何值时,f(x): (1)是幂函数;(2)是幂函数,且是(0,+∞)上的增函数; (3)是正⽐例函数; (4)是反⽐例函数.〖例2〗已知y=(m 2+2m-2)·211m x -+(2n-3)是幂函数,求m 、n 的值.⼆、幂函数的图象与性质〖例1〗已知点在幂函数()f x 的图象上,点124?-,,在幂函数()g x 的图象上.定义()()()()()()()≤??=?>??f x f xg x h x g x f x g x ,,,.试求函数h(x)的最⼤值以及单调区间.〖例2〗已知函数2245()44x x f x x x ++=++(1)求()f x 的单调区间;(2)⽐较()f π-与(2f -的⼤⼩(⼆)幂函数的性质与应⽤【例1】(1)试⽐较0.40.2,0.20.2,20.2,21.6的⼤⼩.(2)已知幂函数y=x 3m-9(m ∈N *)的图象关于y 轴对称,且在(0,+∞)上函数值随x 的增⼤⽽减⼩,求满⾜() ()--+<-m m 33a 132a 的a 的取值范围.三、幂函数中的三类讨论题〖例1〗已知函数223()()m m f x xm -++=∈Z 为偶函数,且(3)(5)f f <,求m 的值,并确定()f x 的解析式.例2已知函数2()f x x =,设函数()[()](21)()1g x qf f x q f x =-+-+,问是否存在实数(0)q q <,使得()g x 在区间(]4--,∞是减函数,且在区间(40)-,上是增函数?若存在,请求出来;若不存在,请说明理由.例3讨论函数2221()kk y k k x--=+在0x >时随着x 的增⼤其函数值的变化情况.【⾼考零距离】(2010陕西⽂数)7.下列四类函数中,个有性质“对任意的x >0,y >0,函数f (x )满⾜f (x +y )=f (x )f (y )”的是[]()幂函数()对数函数()指数函数()余弦函数【考点提升训练】⼀、选择题(每⼩题6分,共36分)1.(2012·西安模拟)已知幂函数y=f(x)通过点,则幂函数的解析式为( ) ()y=212x()y=12x ()y= 32x()y=521x 22.函数y=1x-x 2的图象关于( ) ()y 轴对称 ()直线y=-x 对称 ()坐标原点对称()直线y=x 对称3.已知(0.71.3)m<(1.30.7)m,则实数m 的取值范围是( ) ()(0,+∞)()(1,+∞) ()(0,1) ()(-∞,0)4.已知幂函数f(x)=x m的部分对应值如表,则不等式f(|x|)≤2的解集为( )(){x|0){x|0≤x ≤4} (){x|x ){x|-4≤x ≤4}5.设函数f(x)=x1()7,x 02,x 0?-?≥<若f(a)<1,则实数a 的取值范围是( )()(-∞,-3) ()(1,+∞) ()(-3,1) ()(-∞,-3)∪(1,+∞) 6.(2012·漳州模拟)设函数f(x)=x 3,若0≤θ≤2π时,f(mcos θ)+f(1-m)>0恒成⽴,则实数m 的取值范围为( )()(-∞,1) ()(-∞, 12) ()(-∞,0) ()(0,1)⼆、填空题(每⼩题6分,共18分)7.(2012·武汉模拟)设x∈(0,1),幂函数y=x a的图象在直线y=x的上⽅,则实数a的取值范围是__________.8.已知幂函数f(x)=12x-,若f(a+1)<f(10-2a),则a的取值范围是_______.9.当0三、解答题(每⼩题15分,共30分)10.(2012·宁德模拟)已知函数f(x)=x m-2x且f(4)=72.(1)求m的值;(2)判定f(x)的奇偶性;(3)判断f(x)在(0,+∞)上的单调性,并给予证明.11.(易错题)已知点(2,4)在幂函数f(x)的图象上,点(12,4)在幂函数g(x)的图象上.(1)求f(x),g(x)的解析式;(2)问当x取何值时有:①f(x)>g(x);②f(x)=g(x);③f(x)<g(x).【探究创新】(16分)已知幂函数y=f(x)=2p3p22x-++(p∈Z)在(0,+∞)上是增函数,且是偶函数.(1)求p的值并写出相应的函数f(x);(2)对于(1)中求得的函数f(x),设函数g(x)=-qf(f(x))+(2q-1)f(x)+1.试问:是否存在实数q(q<0),使得g(x)在区间(-∞,-4]上是减函数,且在(-4,0)上是增函数;若存在,请求出来,若不存在,说明理由.答案解析1.【解析】选.设y=x α,则由已知得,α,即322=2α,∴α=32,∴f(x)= 32x .2.【解析】选.因为函数的定义域为{x|x ≠0},令y=f(x)=1x-x 2, 则f(-x)=1x -(-x)2=1x-x 2=f(x), ∴f(x)为偶函数,故选.3.【解析】选.因为0<0.71.3<0.70=1, 1.30.7>1.30=1,∴0<0.71.3<1.30.7.⼜(0.71.3)m <(1.30.7)m,∴函数y=x m在(0,+∞)上为增函数,故m >0.4.【解题指南】由表中数值,可先求出m 的值,然后由函数的奇偶性及单调性,得出不等式,求解即可.【解析】选.由(12)m m=12,∴f(x)= 12x ,∴f(|x|)=12x ,⼜∵f(|x|)≤2,∴12x ≤2,即|x|≤4,∴-4≤x ≤4.5.【解题指南】分a <0,a ≥0两种情况分类求解. 【解析】选.当a <0时,(12)a-7<1, 即2-a<23,∴a >-3,∴-3<a <0.当a ≥01,∴0≤a <1,综上可得:-3<a <1.6.【解题指南】求解本题先由幂函数性质知f(x)=x 3为奇函数,且在R 上为单调增函数,将已知不等式转化为关于m 与cos θ的不等式恒成⽴求解.【解析】选.因为f(x)=x 3为奇函数且在R 上为单调增函数,∴f(mcos θ)+f(1-m)>0? f(mcos θ)>f(m-1)? mcos θ>m-1?mcos θ-m+1>0恒成⽴,令g(cos θ)=mcos θ-m+1, ⼜0≤θ≤2π,∴0≤cos θ≤1, 则有:()()g 00g 10>,>即m 10m m 10-+??-+?>,>解得:m <1. 7.【解析】由幂函数的图象知a ∈(-∞,1).答案:(-∞,1) 8.【解析】由于f(x)= 12x-在(0,+∞)上为减函数且定义域为(0,+∞),则由f(a+1)<f(10-2a)得a 10102a 0,a 1102a +??-??+-?>>>解得:3<a <5. 答案:(3,5)9.【解题指南】在同⼀坐标系内画出三个函数的图象,数形结合求解. 【解析】画出三个函数的图象易判断f(x)答案:f(x)72,所以4m -24=72.所以m=1. (2)因为f(x)的定义域为{x|x ≠0},关于原点对称, ⼜f(-x)=-x-2x - =-(x-2x)=-f(x),所以f(x)是奇函数. (3)⽅法⼀:设x 1>x 2>0,则f(x 1)-f(x 2)= x 1-12x -(x 2-22x )=(x 1-x 2)(1+122x x ),[来源:/doc/7210e201581b6bd97e19ea07.html ]因为x 1>x 2>0,所以x 1-x 2>0,1+122x x >0. 所以f(x 1)>f(x 2).所以f(x)在(0,+∞)上为单调递增函数. ⽅法⼆:∵f(x)=x-2x,∴f ′(x)=1+22x >0在(0,+∞)上恒成⽴,∴f(x)在(0,+∞)上为单调递增函数.11.【解析】(1)设f(x)=x α, ∵点(2,4)在f(x)的图象上,∴4=2α,∴α=2,即f(x)=x 2. 设g(x)=x β,∵点(12,4)在g(x)的图象上,∴4=(12)β,∴β=-2,即g(x)=x -2. (2)∵f(x)-g(x)=x 2-x -2=x 2-21x=()()222x 1x 1x-+(*)∴当-1<x <1且x ≠0时,(*)式⼩于零,即f(x)<g(x);当x=±1时,(*)式等于零,即f(x)=g(x);当x >1或x <-1时,(*)式⼤于零,即f(x)>g(x). 因此,①当x >1或x <-1时,f(x)>g(x);②当x=±1时,f(x)=g(x);③当-1<x <1且x ≠0时,f(x)<g(x).【误区警⽰】本题(2)在求解中易忽视函数的定义域{x|x ≠0}⽽失误.失误原因:将分式转化为关于x 的不等式时,忽视了等价性⽽致误.【探究创新】【解析】(1)∵幂函数y=x α在(0,+∞)上是增函数时,α>0,∴-12p 2+p+32>0,即p 2-2p-3<0,解得-1<p <3,⼜p ∈Z,∴p=0,1,2. 当p=0时,y=32x 不是偶函数;当p=1时,f(x)=x 2是偶函数;当p=2时,f(x)=32x 不是偶函数,∴p=1,此时f(x)=x 2.(2)由(1)得g(x)=-qx 4+(2q-1)x 2+1,设x 1<x 2,则g(x 1)-g(x 2)=q(4421x x -)+(2q-1)·(2212x x -)=(2221x x -)[q(2212x x +)-(2q-1)].若x 1<x 2≤-4,则2221x x -<0且2212x x +>32,要使g(x)在(-∞,-4]上是减函数,必须且只需q(2212x x +)-(2q-1)<0恒成⽴. 即2q-1>q(2212x x +)恒成⽴. 由2212x x +>32且q <0,得q(2212x x +)<32q ,只需2q-1≥32q 成⽴,则2q-1>q(2212x x +)恒成⽴.∴当q ≤-130时,g(x)在(-∞,-4]上是减函数,同理可证, 当q ≥-130时,g(x)在(-4,0)上是增函数, ∴当q=-130时,g(x)在(-∞,-4]上是减函数,在(-4,0)上是增函数.[来源:学科⽹ZXXK]。
考点11 幂函数【考点通关】高一数学题型归纳与解题策略(必修第一册)(原卷版)
考点11幂函数1、幂函数的判断及应用判断一个函数是否为幂函数的依据是该函数是否为y x α=(α是常数)的形式,即满足:(1)指数为常数;(2)底数为自变量;(3)系数为1.只有同时满足这三个条件的函数才是幂函数,对于形如(2),2,6y x y x y x ααα===+等函数都不是幂函数。
2、幂函数的图象及应用(1)幂函数图象的画法①确定幂函数在第一象限内的图象:先根据α的取值,确定幂函数y x α=在第一象限内的图象.②确定幂函数在其他象限内的图象:根据幂函数的定义域及奇偶性确定幂函数f(x)在其他象限内的图象.(2)要牢记幂函数的图象,并能灵活运用.由幂函数的图象,我们知道:①所有的幂函数在(0,+∞)上都有定义,并且图象都过点(1,1).②任何幂函数的图象与坐标轴最多只有一个交点(原点);任何幂函数的图象都不经过第四象限.③当α>0时,幂函数的图象通过原点,并且在区间[0,+∞)上是增函数.特别地,当α>1时,幂函数的图象上抛;当0<α<1时,幂函数的图象右抛.④当α<0时,幂函数的图象在区间(0,+∞)上是减函数.⑤幂指数互为倒数的幂函数在第一象限内的图象关于直线y =x 对称.⑥在第一象限,作直线x =a (a >1),它同各幂函数图象相交,按交点从下到上的顺序,幂指数按从小到大的顺序排列.3、解决与幂函数有关的综合性问题的方法首先要考虑幂函数的概念,对于幂函数y x α=(α∈R),由于α的取值不同,所以相应幂函数的单调性和奇偶性也不同.同时,注意分类讨论思想的应用.考点一幂函数的定义(一)求幂函数的值或解析式1.(2022·甘肃庆阳·高一期末)已知幂函数()f x 的图象过点13,3⎛⎫⎪⎝⎭,则此函数的解析式为______.2.(2022·内蒙古·赤峰二中高一期末(文))已知点(a ,2)在幂函数()(3)b f x a x =-的图象上,则函数f (x )的解析式是()A .12()f x x =B .12()2f x x =C .3()f x x =D .1()f x x -=3.(2022·甘肃·甘南藏族自治州合作第一中学高一期末)幂函数()y f x =的图象经过点(14,2),则1(4f =____.4.(2022·全国·高一课时练习)若函数()f x 是幂函数,满足(4)8(2)f f =,则1(1)3f f ⎛⎫+= ⎪⎝⎭_________.5.(2022·北京市第五中学高一期末)已知幂函数()a f x x =过点(28),,若0()5f x =-,则0x =________.6.(2022·上海中学高一期末)某厂商计划投资生产甲、乙两种商品,经市场调研发现,如图所示,甲、乙商品的投资x 与利润y (单位:万元)分别满足函数关系11ay k x =与22ay k x =.(1)求1k ,1a 与2k ,2a 的值;(2)该厂商现筹集到资金20万元,如何分配生产甲、乙商品的投资,可使总利润最大?并求出总利润的最大值.(二)根据函数是幂函数求参数值7.【多选】(2022·广东茂名·高一期末)若函数()225y k k x =--是幂函数,则实数k 的值可能是()A .3k =B .3k =-C .2k =-D .2k =8.【多选】(2022·广东·韶关市田家炳中学高一期末)如果幂函数()22233mm y m m x --=-+的图象不过原点,则实数m 的取值为()A .0B .2C .1D .无解9.(2022·湖南郴州·高一期末)已知幂函数()f x kx α=的图象过点()2,4,则k α+=__________.考点二幂函数的定义域和值域(一)幂函数的定义域10.(2022·江苏·高一)若()342x --有意义,则实数x 的取值范围是()A .[)2,+∞B .(],2-∞C .()2,+∞D .(),2-∞11.(2022·山西吕梁·高一期末)已知幂函数()f x 的图象过点(,则()f x 的定义域为()A .RB .()0,∞+C .[)0,∞+D .()(),00,∞-+∞U12.(2022·黑龙江绥化·高一期末)函数4()(1)f x x =-+)A .()1,∞+B .(2,)-+∞C .()()211∞-⋃+,,D .R13.(2022·全国·高一专题练习)设α∈11,132⎧⎫-⎨⎬⎩⎭,,则使函数y =xα的定义域为R 的所有α的值为()A .1,3B .-1,1C .-1,3D .-1,1,314.(2022·内蒙古·赤峰红旗中学松山分校高一期末)已知幂函数()1*4n y x n N -=∈的定义域为()0,∞+,且单调递减,则n =________.(二)幂函数的值域15.(2022·全国·高一专题练习)幂函数a y x =中a 的取值集合C 是11,0,,1,2,32⎧⎫-⎨⎬⎩⎭的子集,当幂函数的值域与定义域相同时,集合C 为()A .11,0,2⎧⎫-⎨⎬⎩⎭B .1,1,22⎧⎫⎨⎬⎩⎭C .11,,32⎧⎫-⎨⎬⎩⎭D .1,1,2,32⎧⎫⎨⎬⎩⎭16.(2022·全国·高一专题练习)函数213324y x x =++,其中8x - ,则其值域为___________.17.(2022·广东·广州六中高一期末)幂函数()y f x =的图象过点(,则函数()y x f x =-的值域是()A .(),-∞+∞B .1,4⎛⎫-∞ ⎪⎝⎭C .1,4⎡⎫-+∞⎪⎢⎣⎭D .1,4⎛⎫-+∞ ⎪⎝⎭18.(2022·上海师大附中高一期末)已知函数()()()2151Z m f x m m x m +=-+∈为幂函数,且为奇函数.(1)求m 的值,并确定()f x 的解析式;(2)令()()g x f x =,求()y g x =在1,12x ⎡⎤∈-⎢⎥⎣⎦的值域.19.(2022·贵州·六盘水市第五中学高一期末)已知幂函数()()1221m f m x m x -=--在()0,∞+上为增函数.(1)求实数m 的值;(2)求函数()()2345g x f x x =--+的值域.20.(2022·湖北黄石·高一期中)已知函数())2()x a f x x x a ⎧≥⎪=⎨<⎪⎩,若函数()f x 的值域为R ,则实数a 的取值范围为()A .(1,0)-B .(1,0]-C .[1,0)-D .[1,0]-考点三幂函数的图象和性质(一)幂函数的图象(1)依据图象高低判定幂指数大小21.(2022·全国·高一课时练习)图中1C ,2C ,3C 分别为幂函数1y x =α,2y x =α,3y x α=在第一象限内的图象,则1α,2α,3α依次可以是()A .12,3,1-B .1-,3,12C .12,1-,3D .1-,12,322.(2022·全国·高一课时练习)幂函数a b c d y x y x y x y x ====,,,在第一象限的图像如图所示,则a b c d ,,,的大小关系是()A .a b c d >>>B .d b c a >>>C .d c b a>>>D .b c d a>>>23.(2022·全国·高一课时练习)如图所示是函数mn y x =(*N m n ∈、且互质)的图象,则()A .m n 、是奇数且1mn<B .m 是偶数,n 是奇数,且1m n>C .m 是偶数,n 是奇数,且1m n<D .m n 、是偶数,且1m n>24.(2022·四川凉山·高一期末)如图,①②③④对应四个幂函数的图像,其中①对应的幂函数是()A .3y x =B .2y x =C .y x=D .58y x =(2)图象的识别25.(2022·全国·高一单元测试)下列四个图像中,函数34y x =的图像是()A .B .C .D .26.(2022·上海·高一单元测试)已知幂函数的图象经过点14,2P ⎛⎫⎪⎝⎭,则该幂函数的大致图象是()A .B .C .D .27.(2022·全国·高一单元测试)如图为某体育赛事举重成绩与运动员体重之间关系的折线图,下列模型中,最能刻画举重成绩y (单位:千克)和运动员体重x (单位:千克)之间的关系的是()A .y =()0m >B .y mx n =+()0m >C .2y mx n =+()0m >D .x y ma n =+(0m >,0a >且1a ≠)(二)幂函数的性质(1)由幂函数的单调性求参数28.(2022·广东广州·高一期末)函数()22211mm y m m x --=--是幂函数,且在()0,x ∈+∞上是减函数,则实数m =__________.29.(2022·河南开封·高一期末)已知函数()22my m m x =+幂函数,且在其定义域内为单调函数,则实数m =()A .12B .1-C .12或1-D .12-30.(2022·云南德宏·高一期末)“当()0,x ∈+∞时,幂函数()22231mm y m m x --=--为减函数”是“1m =-或2”的()条件A .既不充分也不必要B .必要不充分C .充分不必要D .充要31.(2022·江西省铜鼓中学高一期末)已知函数()()()2,16,(1a a x x f x x x ⎧+≤=⎨->⎩)是减函数,则实数a 的取值范围是()A .[)7,2--B .(),2-∞-C .(),7-∞-D .()7,2--(2)由幂函数的单调性解不等式32.(2022·上海中学高一期末)不等式()()2021202142x x --->-的解为______.33.(2022·海南鑫源高级中学高一期末)已知幂函数()af x x =的图象经过点(.(1)求幂函数()f x 的解析式;(2)试求满足()()13f a f a +>-的实数a 的取值范围.34(2022·上海金山·高一期末)已知幂函数()y f x =在其定义域上是严格增函数,且()22mm f x x -=(m Z ∈).(1)求m 的值;(2)解不等式:()()32f x f x-<.(3)由幂函数的单调性比较大小35.(2022·重庆九龙坡·高一期末)已知111333332,,555a b c -⎛⎫⎛⎫⎛⎫=== ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,则,,a b c 的大小关系为()A .a b c<<B .b c a<<C .c a b<<D .a c b<<36.(2022·青海·大通回族土族自治县教学研究室高一期末)幂函数()()22251mm f x m m x +-=--在区间()0,∞+上单调递增,且0a b +>,则()()f a f b +的值()A .恒大于0B .恒小于0C .等于0D .无法判断(4)幂函数奇偶性的应用37.(2022·全国·高一课时练习)求出下列函数的定义域,并判断函数的奇偶性:(1)22()f x x x -=+;(2)23()3f x x x =+;(3)133()f x x x =+;(4)142()2f x x x -=+.38.(2022·全国·高一专题练习)已知幂函数()2()1mf x m m x =--的图象关于y 轴对称,则()f m =___________.39.(2022·重庆九龙坡·高一期末)已知幂函数()21()55m f x m m x +=-+为奇函数,则m =___________.40.(2022·山东济宁·高一期末)已知()y f x =是奇函数,当0x ≥时,()()23f x x m m =+∈R ,则()8f -=______.(5)幂函数的单调性和奇偶性的综合应用41.(2022·河南开封·高一期末)下列函数中,既是奇函数,又是增函数的是()①1y x=-;②y =||y x x =;④3y x x =+.A .①②B .①④C .②③D .③④42.(2022·云南玉溪·高一期末)幂函数22m m y x +-=()03,m m Z ≤≤∈的图象关于y 轴对称,且在(0,)+∞上是增函数,则m 的值为()A .0B .2C .3D .2和343.(2022·重庆巫山·高一期末)若幂函数()f x 过点()2,8,则满足不等式()()310f a f a -+-≤的实数a 的取值范围是______44.(2022·湖北·高一期末)已知函数()53352f x x x x =+++,若()()214f a f a +->,则实数a 的取值范围是()A .1,3⎛⎫+∞ ⎪⎝⎭B .1,3⎛⎫-∞ ⎪⎝⎭C .(),3-∞D .()3,+∞45.(2022·黑龙江·大庆实验中学高一期末)已知幂函数()223m m y xm N --*=∈的图象关于y 轴对称,且在()0,∞+上单调递减,则满足()()33132mma a --+<-的a 的取值范围为________.(6)幂函数性质的综合应用46.(2022·全国·高一)已知幂函数a y x =(a 是常数),则()A .()f x 的定义域是RB .()f x 在()0,∞+单调递增C .()f x 过定点()1,1D .()f x 可能过定点()1,3-47.【多选】(2022·广西玉林·高一期末)已知函数()a f x x =的图象经过点1,33⎛⎫ ⎪⎝⎭则()A .()f x 的图象经过点(3,9)B .()f x 的图象关于y 轴对称C .()f x 在(0,)+∞上单调递减D .()f x 在(0,)+∞内的值域为(0,)+∞48.【多选】(2022·广东揭阳·高一期末)已知幂函数()y f x =的图象经过点(9,3),则下列结论正确的有()A .()f x 为偶函数B .()f x 为增函数C .若1x >,则()1f x >D .若210x x >>,则()()121222f x f x x x f ++⎛⎫> ⎪⎝⎭。
(数学)基本初等函数-幂函数
基本初等函数——幂函数1.幂函数(1)定义:形如a y x =(a ∈R )的函数称为幂函数,其中底数x 是自变量,a 为常数.常见的五类幂函数为y x =,2y x =,3y x =,12y=x ,1y x -=.(2)五种幂函数的图象(3)性质①幂函数在(0,+∞)上都有定义;②当0a >时,幂函数的图象都过点(1,1)和(0,0),且在(0,+∞)上单调递增; ③当0a <时,幂函数的图象都过点(1,1),且在(0,+∞)上单调递减. 2.二次函数(1)二次函数解析式的三种形式 ①一般式:()2f x ax bx c ++=(0a ≠). ②顶点式:()2()f x a x m n −+=(0a ≠). ③零点式:()12()()f x a x x x x −−=(0a ≠). (2)二次函数的图象和性质12y=x题型1 幂函数的图象与性质1.(2020春•沈河区校级月考)设1234a ⎛⎫= ⎪⎝⎭,1443b ⎛⎫= ⎪⎝⎭,3423c ⎛⎫= ⎪⎝⎭,则a ,b ,c 的大小顺序是( ) A .c a b <<B .c b a <<C .a c b <<D .b c a <<【分析】先判断1b >,再化a 、c ,利用幂函数的性质判断a 、c 的大小. 【解答】解:1124391416a ⎛⎫⎛⎫==< ⎪ ⎪⎝⎭⎝⎭,14413b ⎛⎫=> ⎪⎝⎭, 3144281327c ⎛⎫⎛⎫==< ⎪ ⎪⎝⎭⎝⎭; 且89012716<<<,函数14y x =在(0,+∞)上是单调增函数,所以1144892716⎛⎫⎛⎫< ⎪ ⎪⎝⎭⎝⎭,所以a c <; 综上知,c a b <<. 故选:A .2.(2019秋•杨浦区校级期末)幂函数()()()2231,mm f x a x a m −−=−∈N 为偶函数,且在(0,+∞)上是减函数,则a m += .【分析】先利用幂函数的定义和单调性求出a 的值和m 的范围,再结合偶函数确定m 的值,即可求出结果.【解答】解:∵幂函数()()()2231,m m f x a x a m −−=−∈N ,在(0,+∞)上是减函数,∴11a −=,且2230m m −−<, ∴2a =,13m −<<, 又∵m ∈N ,∵0,1,2m =, 又∵幂函数()f x 为偶函数,∵1m =,∵3a m +=, 故答案为:3.3.已知幂函数223()(22)()nnf x n n x n −=+−∈Z 的图象关于y 轴对称,且在(0,+∞)上是减函数,则n 的值为( )A .3−B .1C .2D .1或2【分析】本题考查幂函数的性质,根据幂函数的性质即可求解. 【解析】∵幂函数223()(22)nnf x n n x −=+−在(0,+∞)上是减函数,∴22221,30,n n n n ⎧+−=⎨−<⎩∴1n =,又1n =时,()2f x x -=的图象关于y 轴对称,故1n =.故选B.★幂函数的性质与图象特征的关系(1)幂函数的形式是()a y x a ∈R =,其中只有一个参数a ,因此只需一个条件即可确定其解析式.(2 )判断幂函数()a y x a ∈R =的奇偶性时,a 是分数时,一般将其先化为根式,再判断. (3)若幂函数a y x =在(0,+∞)上单调递增,则0a >,若在(0,+∞)上单调递减,则0a <. 题型2 二次函数的解析式1 .(2019秋•道里区校级月考)已知二次函数()()230f x ax bx a =++≠图象过点()3,0A −,对称轴为1x =.(1)求()y f x =的解析式;(2)若函数()y g x =满足()()21g x f x +=,求函数()y g x =的解析式.【分析】(1)根据条件即可得出933012a b b a−+=⎧⎪⎨−=⎪⎩,从而可解出12,55a b =−=,这样即可得出()212355f x x x =−++;(2)可根据题意得出()21221355g x x x +=−++,从而可设21x t +=,解出12t x −=,带入()21221355g x x x +=−++即可得出()2131120104g t t t =−++,t 换上x 即可得出()y g x =的解析式.【解答】解:(1)根据题意得,933012a b b a−+=⎧⎪⎨−=⎪⎩,解得1515a b ⎧=−⎪⎪⎨⎪=⎪⎩,∴∴()212355f x x x =−++;(2)由题意得,()21221355g x x x +=−++,设21x t +=,则12t x −=,∴()()()22111311320520104g t t t t t =−−+−+=−++, ∴()2131120104g x x x =−++.2.(一题多解)已知二次函数()f x 满足()21f −=,()11f −-=,且()f x 的最大值是8,试确定此二次函数的解析式. 【解】 法一:(利用一般式)设()()20f x ax bx c a =++≠. 由题意得2421,1,48,4a b c a b c ac b a⎧⎪++=⎪⎪−+=−⎨⎪−⎪=⎪⎩解得447.a b c =−⎧⎪=⎨⎪=⎩所以所求二次函数的解析式为()2447f x x x −++=. 法二:(利用顶点式)设()2()()0f x a x m n a −+≠=. 因为()(2)1f f −=, 所以抛物线的对称轴为()21122x +−==. 所以1=2m .又根据题意函数有最大值8,所以8n =,所以21()82f x a x ⎛⎫=−+ ⎪⎝⎭.因为f ()(2)1f f −=,所以2128=12a ⎛⎫−+− ⎪⎝⎭,解得4a =−,所以221()=48=4472f x x x x ⎛⎫−−+−++ ⎪⎝⎭.法三:(利用零点式)由已知()10f x +=的两根为12x =,21x =−, 故可设()())1(12f x a x x +=−+, 即()221f x ax ax a =−−−. 又函数有最大值8,即()2421=84a a a a−−.解得4a =−或0a =(舍去),所以所求函数的解析式为()2447f x x x −++=.3.(2019秋•贺州期中)已知一个二次函数()f x ,()04f =,()20f =,()40f =.求这个函数的解析式.【分析】先设出函数的表达式,再将函数值代入得到方程组,求出即可. 【解答】解:设()2f x ax bx c =++,∴44201640c a b v a b c =⎧⎪++=⎨⎪++=⎩,解得:124a b c ⎧=⎪⎪=−⎨⎪=⎪⎩,∴∴()21342f x x x =−+. ★求二次函数解析式的方法根据已知条件确定二次函数的解析式,一般用待定系数法,但所给条件不同选取的求解方法也不同,选择规律如下:题型3 二次函数的图象与性质1.已知0abc >,则二次函数()2f x ax bx c =++的图象可能是( )AB【解析】 A 项,因为0a <,02ba−<,所以0b <. 又因为0abc >,所以0c >,而()00f c =<,故A 错. B 项,因为0a <,02ba−>,所以0b >. 又因为0abc >,所以0c <,而()00f c =>,故B 错. C 项,因为0a >,02ba−<,所以0b >.又因为0abc >, 所以0c >,而()00f c =<,故C 错. D 项,因为0a >,02ba−>,所以0b <,因为0abc >,所以0c <,而()00f c =<,故选D.2 .(2019秋•庐江县期末)函数223y x x =−+在闭区间[]0,m 上有最大值3,最小值为2,m 的取值范围是( )A .(],2−∞B .[]0,2C .[]1,2D .[)1,+∞【分析】本题利用数形结合法解决,作出函数()f x 的图象,如图所示,当1x =时,y 最小,最小值是2,当2x =时,3y =,欲使函数223y x x =−+在闭区间[]0,m 上的上有最大值3,最小值2,则实数m 的取值范围要大于等于1而小于等于2即可. 【解答】解:作出函数()f x 的图象,如图所示, 当1x =时,y 最小,最小值是2,当2x =时,3y =,函数2()23f x x x =−+在闭区间[]0,m 上上有最大值3,最小值2, 则实数m 的取值范围是[]1,2. 故选:C .CD3.(2019秋•吉安期末)函数()()22213f x x a x =−−++在区间[]2,3上是增函数,则a 的取值范围是( )A .13,2⎛⎤−∞− ⎥⎝⎦B .13,2⎛⎤−∞ ⎥⎝⎦C .13,2⎡⎫−+∞⎪⎢⎣⎭D .13,2⎡⎫+∞⎪⎢⎣⎭【分析】函数2()2(21)3f x x a x =−−++的对称轴214a x +=−,从而2134a +−≥,由此能求出a 的取值范围.【解答】解:函数()()22213f x x a x =−−++在区间[]2,3上是增函数,函数()()22213f x x a x =−−++的对称轴214a x +=−, ∴2134a +−≥, 解得132a −≤.∴a 的取值范围是13,2⎛⎤−∞− ⎥⎝⎦.故选:A .4.(2019秋•宜昌期末)函数221y x x =−−在闭区间[]0,3上的最大值与最小值的和是( )A .1−B .0C .1D .2【分析】函数221y x x =−−是一条以1x =为对称轴,开口向上的抛物线,在闭区间[]0,3上y先减后增,所以当1x =时,函数取最小值;当3x =时,函数取最大值,代入计算即可 【解答】解:()222112y x x x =−−=−− ∴当1x =时,函数取最小值2−, 当3x =时,函数取最大值2 ∴最大值与最小值的和为0 故选:B .5.(2019秋•长春期末)已知函数()()22f x x x a x =++∈R .(1)若函数()f x 的值域为[)0,+∞,求实数a 的值;(2)若()0f x >对任意的[)1,x ∈+∞成立,求实数a 的取值范围. 【分析】(1)根据函数的值域可知0=△,解出a 即可;(2)利用分离参数法表示出22a x x >−−,求出22x x −−的取值范围即可. 【解答】解:(1)函数()()22f x x x a x =++∈R 的值域为[)0,+∞,∴22410a =−⨯⨯=△, ∴1a =.(2)∵()0f x >对任意的[)1,x ∈+∞成立, ∴220x x a ++>对任意的[)1,x ∈+∞成立, ∴22a x x >−−对任意的[)1,x ∈+∞成立, 又当[)1,x ∈+∞时,()22max21213x x −−=−−⨯=−,∴3a >−.即所求实数的取值范围是()3,−+∞.★1.识别二次函数图象应学会“三看”★2.二次函数的单调性问题(1)对于二次函数的单调性,关键是看图象的开口方向与对称轴的位置,若开口方向或对称轴的位置不确定,则需要分类讨论求解.(2)利用二次函数的单调性比较大小,一定要将待比较的两数通过二次函数的图象的对称性转化到同一单调区间上比较.★3.二次函数的最值问题(1)二次函数在闭区间上的最值主要有三种类型:轴定区间定、轴动区间定、轴定区间动.不论哪种类型,解题的关键都是对称轴与区间的位置关系,当含有参数时,要依据对称轴与区间的位置关系进行分类讨论.(2)二次函数的单调性问题主要依据二次函数图象的对称轴进行分类讨论求解.★4.由不等式恒成立求参数取值范围的思路及关键(1)一般有两个解题思路:一是分离参数;二是不分离参数.(2 )两种思路都是将问题归结为求函数的最值,至于用哪种方法,关键是看参数是否已分离.这两个思路的依据是:()a f x ≥恒成立()max a f x ⇔≥,()a f x ≤恒成立()min a f x ⇔≤.1.(2020春•本溪月考)已知幂函数()()()22421mm f x m x m −+=−∈R ,在()0,+∞上单调递增.设5log 4a =,15log 3b =,0.20.5c −=,则()f a ,()f b ,()f c 的大小关系是( )看函数选象上的一些特殊点,如函数选象与y 选的交点、与x 选的交点、函数选象的最高点或最低点等看选称选和最选。
3.3幂函数11题型分类(学生版) 2024-2025学年高一数学同步知识题型讲义(人教必修第一册)
3.3幂函数11题型分类一、幂函数的概念一般地,函数y=xα叫做幂函数,其中x是自变量,α是常数.注意:幂函数的特征(1)xα的系数是1;(2)xα的底数x是自变量;(3)xα的指数α为常数.只有满足这三个条件,才是幂函数.对于形如y=(2x)α,y=2x5,y=xα+6等的函数都不是幂函数.二、一些常用幂函数的图象同一坐标系中,幂函数y=x,y=x2,y=x3,y=x-1,y=x的图象(如图).三、一些常用幂函数的性质函数特征性质y=x y=x2y=x3y =x y=x-1定义域R R R[0,+∞){x|x≠0}值域R[0,+∞)R[0,+∞){y|y≠0}奇偶性奇函数偶函数奇函数非奇非偶函数奇函数在[0,+∞)上单调递增在(0,+∞)上单调递减单调性在(-∞,+∞)上单调递增在(-∞,0]上单调递减在(-∞,+∞)上单调递增在[0,+∞)上单调递增在(-∞,0)上单调递减注意:幂函数的性质(1)所有的幂函数在(0,+∞)上都有定义,并且图象都过点(1,1);(2)如果α>0,那么幂函数的图象过原点,并且在区间[0,+∞)上单调递增;(3)如果α<0,那么幂函数的图象在区间(0,+∞)上单调递减,在第一象限内,当x从右边趋向于原点时,图象在y轴右方无限接近y轴,当x从原点趋向于+∞时,图象在x轴上方无限接近x轴;(4)在(1,+∞)上,随幂指数的逐渐增大,图象越来越靠近y轴.(一)幂函数的概念判断一个函数是否为幂函数的方法判断一个函数是否为幂函数的依据是该函数是否为y=xα(α为常数)的形式,即函数的解析式为一个幂的形式,且需满足:(1)指数为常数;(2)底数为自变量;(3)系数为1.C .3D .132-4.(2024·浙江·模拟预测)已知()f x 是幂函数,且满足:①()()f x f x -=;②()f x 在()0,+¥上单调递增,请写出符合上述条件的一个函数()f x =.2-5.(2024高一上·安徽合肥·期末)已知幂函数()f x x a = (α是常数)的图象经过点()2,4,那么f (−2)=( )A .4B .-4C .14D .-14题型3:根据幂函数求参数3-1.(24-25高一上·上海·单元测试)函数()12122m y m m x -=+-是幂函数,则m =.3-2.(2024高一上·湖北孝感·阶段练习)函数()2227y k k x =--是幂函数,则实数k 的值是( )A .4k =B .2k =-C .4k =或2k =-D .4k ¹且2k ¹-3-3.(2024高一下·上海杨浦·开学考试)已知幂函数()()22325m m f x m m x--=+-×的图像不经过原点,则实数m =.(二)幂函数的图象及应用依据图象高低判断幂指数大小,相关结论为:在(0,1]上,指数越大,幂函数图象越靠近x 轴(简记为指大图低);在[1,+∞)上,指数越大,幂函数图象越远离x 轴(简记为指大图高).题型4:幂函数过定点问题4-1.(2024高一上·广东东莞·期中)函数()2y x a a =-为常数的图象过定点.4-2.(2024高一上·上海浦东新·阶段练习)幂函数a y x =的图象不可能在第四象限,但所有图象过定点,定点坐标为.题型5:幂函数的图象及应用5-1.(2024·新疆阿勒泰·三模)已知函数则函数2,0,()()()1,0,x xf xg x f xxxì³ï==-í<ïî,则函数()g x的图象大致是()A.B.C.D.5-2.(2024·全国·模拟预测)函数()11 3x xf xx --=的图象大致为()A.B.C.D.5-3.(2024高三·全国·对口高考)已知幂函数p qy x=(,p q ZÎ且p与q互质)的图像如图所示,则()A .p 、q 均为奇数且0p q<B .p 为奇数,q 为偶数且0p q <C .p 为奇数,q 为偶数且0p q>D .p 为偶数,q 为奇数且0p q<5-4.(2024高一上·福建泉州·期中)已知幂函数()()2231mm f x m m x+-=--,其图像与坐标轴无交点,则实数m的值为 .5-5.(2024高一上·黑龙江哈尔滨·期末)若点()4,2P 在幂函数()f x 的图象上,则()f x 的图象大致是( )A .B .C .D .5-6.(2024高三·全国·对口高考)给定一组函数解析式:①34y x =;②23y x =;③32y x -=;④23y x -=;⑤32y x =;⑥13y x -=;⑦13y x =.如图所示一组函数图象.图象对应的解析式号码顺序正确的是( )A .⑥③④②⑦①⑤B .⑥④②③⑦①⑤C .⑥④③②⑦①⑤D .⑥④③②⑦⑤①(三)求幂函数的定义域和值域幂函数的定义域和值域要根据解析式来确定,要保证解析式有意义,值域要在定义域范围内求解.幂函数的定义域由幂指数a 确定:①当幂指数取正整数时,定义域为R ;②当幂指数取零或负整数时,定义域为(一∞,0) U (0,+∞);③当幂指数取分数时,可以先化成根式(在第四章会学到),再根据根式的要求求定义域.题型6:求幂函数的定义域6-1.(2024高一·全国·课后作业)若幂函数()f x 的图象经过点(25,5),求()f x 的定义域.6-2.(2024·上海杨浦·一模)函数()12f x x -=的定义域为.6-3.(2024高一上·浙江·期末)已知幂函数3y x a a =-,则此函数的定义域为.题型7:求幂函数的值域(四)利用幂函数的性质比较大小(1)比较幂大小的三种常用方法:(2)利用幂函数单调性比较大小时要注意的问题:比较大小的两个实数必须在同一函数的同一个单调区间内,否则无法比较大小.(五)幂函数的性质综合应用利用幂函数解不等式的步骤利用幂函数解不等式,实质是已知两个函数值的大小,判断自变量的大小,常与幂函数的单调性、奇偶性等综合命题.求解步骤如下:(1)确定可以利用的幂函数;(2)借助相应的幂函数的单调性,将不等式的大小关系,转化为自变量的大小关系;(3)解不等式(组)求参数范围,注意分类讨论思想的应用.题型10:利用幂函数解不等式10-1.(2024高三上·四川遂宁·阶段练习)若12()f x x =,则不等式()(816)f x f x >-的解集是( )A .162,7éö÷êëøB .(]0,2C .16(,)7-¥D .[2,+∞)10-2.(2024高一上·安徽·期中)已知幂函数()f x 的图象经过点1,93æöç÷èø,且()()12f a f +<,则a 的取值范围为( )A .(),1-¥B .()1,+¥C .()3,1-D .()(),31,-¥-+¥U 10-3.(2024高三上·四川绵阳·阶段练习)“1122(1)(32)a a +<-”是“223a -<<”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件10-4.(2024高一上·上海浦东新·期中)不等式()()3355252x x --+<-的解集为 .10-5.(2024高一上·江苏盐城·阶段练习)函数12()f x x -=,则不等式(21)(1)f x f x ->+的解集为.题型11:利用幂函数的单调性、奇偶性及其应用11-1.(2024高一下·黑龙江齐齐哈尔·开学考试)已知幂函数()()22322mm f x x m ,m --+=-<<ÎΖ在区间()0,¥+上单调递增.请从如下2个条件:①对任意的x ÎR ,都有()()f x f x -=;②对任意的x ÎR ,都有()()0f x f x -+=中任选1个作为已知条件,求解下列问题.(1)求()f x 的解析式;(2)在(1)问的条件下,当[]3,3x Î-时,求()f x 的值域.(注:如果选择多个条件分别解答,按第一个解答计分.)11-2.(2024高一·全国·课后作业)已知函数:①2y x -=,②43y x =,③35y x =,④45y x -=,既是偶函数,又在(,0)-¥上为增函数的是.11-3.(2024高一上·上海杨浦·期末)已知112,1,,,1,2,322a ìüÎ---íýîþ,若幂函数()f x x a =奇函数,且在()0,¥+上为严格减函数,则a =.11-4.(2024高一上·安徽马鞍山·期中)已知幂函数()()()2157R m f x m m xm --=-+Î为奇函数.(1)求12f æöç÷èø的值;(2)若()()21f a f a +>,求实数a 的取值范围.一、单选题1.(2024高一上·四川成都·期末)函数()f x )A .B .C .D .2.(2024高一上·青海西宁·期末)已知点()3,2a 在幂函数()()1b f x a x =-的图象上,则( )A .()1f x x-=B .()122f x x =C .()3f x x=D .()13f x x =3.(2024高一上·内蒙古包头·期末)已知幂函数()f x 的图象过点(,则12f æöç÷èø等于( )A B C D .144.(2024·海南·模拟预测)已知()()25mf x m m x =+-为幂函数,则( ).A .()f x 在(),0-¥上单调递增B .()f x 在(),0-¥上单调递减C .()f x 在()0,¥+上单调递增D .()f x 在()0,¥+上单调递减5.(2024高三下·上海浦东新·阶段练习)设R m Î,若幂函数221m m y x -+=定义域为R ,且其图像关于y 轴成轴对称,则m 的值可以为( )A .1B .4C .7D .106.(2024高二下·陕西咸阳·期末)现有下列函数:①3y x =;②12xy æö=ç÷èø;③24y x =;④51y x =+;⑤()21y x =-;⑥y x =;⑦(1)x y a a =>,其中幂函数的个数为( )A .1B .2C .3D .47.(2024高一·全国·课后作业)已知幂函数()2133m y m m x +=-+的图像关于y 轴对称,则m 等于( )A .1B .2C .1或2D .38.(2024高三上·上海浦东新·阶段练习)如图所示是函数mn y x =(,m n 均为正整数且,m n 互质)的图象,则( )A .,m n 是奇数且1mn<B .m 是偶数,n 是奇数,且1m n<C .m 是偶数,n 是奇数,且1m n>D .,m n 是奇数,且1m n>9.(24-25高二下·福建莆田·期中)如图所示,图中的曲线是幂函数n y x =在第一象限的图象,已知n 取2±,12±四个值,则相应于1C ,2C ,3C ,4C 的n 依次为( )A .2-,12-,12,2B .2,12,12-,2-C .12-,2-,2,12D .2,12,2-,12-10.(2024高一上·安徽·期末)若幂函数()()224122m m f x m m x-+=--在区间()0,¥+上单调递减,则m =( )A .3B .1C .1-或3D .1或3-11.(2024高一上·重庆九龙坡·期末)已知111333332,,555a b c -æöæöæö===ç÷ç÷ç÷èøèøèø,则,,a b c 的大小关系为( )A .a b c <<B .b c a <<C .c a b <<D .a c b<<12.(2024高一·全国·课后作业)已知()21f x x =,若01a b <<<,则下列各式中正确的是( )A .()()11f a f b f f a b æöæö<<<ç÷ç÷èøèøB .()()11f f f b f a a b æöæö<<<ç÷ç÷èøèøC .()()11f a f b f f b a æöæö<<<ç÷ç÷èøèøD .()()11f f a f f b a b æöæö<<<ç÷ç÷èøèø13.(2024高一下·辽宁本溪·阶段练习)若幂函数()()224122m m f x m m x-+=--在区间()0,¥+上单调递增,则m =( )A .1-B .3C .1-或3D .1或3-14.(2024高一上·浙江杭州·期末)已知幂函数()()22222n nf x n n x-=+-×在()0,¥+上是减函数,则n 的值为( )A .3-B .1C .3D .1或3-15.(2024高一上·江西萍乡·期末)已知幂函数()f x 的图像过点()64,4,则()8f 的值为( )A .2B .3C .4D .516.(2024高一上·云南德宏·期末)下列函数既是幂函数又是奇函数的是( )A .y =B .21y x =C .22y x =D .1y x x=+17.(2024高一上·全国·课后作业)如图,下列3个幂函数的图象,则其图象对应的函数可能是( )A .①1y x -=,②12y x =,③13y x =B .①1y x -=,②13y x =,③12y x =C .①13y x =,②12y x =,③1y x-=D .①13y x =,②1y x -=,③12y x =18.(2024高一下·内蒙古呼和浩特·开学考试)已知幂函数()y f x =的图象过()4,32点,则()2f =( ).A .B .4C .D .8二、多选题19.(2024高一下·山西忻州·开学考试)已知幂函数()()23m x m x f =-的图象过点12,4æöç÷èø,则( )A .()f x 是偶函数B .()f x 是奇函数C .()f x 在(),0-¥上为减函数D .()f x 在()0,¥+上为减函数20.(2024高一上·宁夏银川·期末)幂函数()()211m f x m m x --=+-,m ∈N ∗,则下列结论正确的是( )A .1m =B .函数()f x 是偶函数C .()()23f f -<D .函数()f x 的值域为()0,¥+21.(2024高一上·重庆长寿·期末)下列函数既是幂函数,又在(),0-¥上单调递减的是( )A .y x =-B .2y x -=C .1y x -=D .2y x =22.(2024高一上·云南红河·期末)已知幂函数()f x 的图象经过点(8,,则下列说法正确的是( )A .函数()f x 为增函数B .函数()f x 为偶函数C .当4x ³时,()2f x ³D .当120x x <<时,()()121222f x f x x x f ++æö<ç÷èø三、填空题23.(2024高一·全国·课后作业)幂函数()()2732351t t f x t t x+-=-+是偶函数,且在(0,)+¥上为增函数,则函数解析式为 .24.(2024高一上·宁夏吴忠·期中)若()f x 是幂函数,且()124f =,则13f æö=ç÷èø25.(2024高一下·江苏南京·阶段练习)请写出一个满足条件①和②的幂函数()f x ,条件:①()f x 是偶函数;②()f x 为()0,¥+上的减函数.则()f x =.26.(2024高一上·广东肇庆·期中)已知幂函数()f x 的图象过点()3,3和()m,2,则实数m = .27.(2024高一·全国·课后作业)幂函数()21N nn y x n ++=Î的图像一定经过第象限28.(2024高一上·江苏徐州·阶段练习)若幂函数()f x 过点()42,,则满足不等式()()21f a f a ->-的实数a 的取值范围是.29.(2024高一上·陕西咸阳·期末)已知幂函数()()222m f x m m x =--满足()()23f f <,则m = .30.(2024·宁夏银川·二模)已知函数()()22221m m f x m m x--=--是幂函数,且为偶函数,则实数m = .31.(2024高一上·辽宁·期末)已知幂函数()()231m f x m m x =++在第一象限单调递减,则()f m = .32.(2024高三上·河南许昌·期末)已知函数()()21m f x m m x =+-是幂函数,且在()0,¥+上是增函数,则实数m 的值为 .33.(2024高三下·上海杨浦·阶段练习)已知幂函数()y f x =的图像过点(9,3),则(2)f 的值为.34.(2024高一上·江西赣州·期中)幂函数f (x )=(m 2−2m−2)x 2m−1在()0,¥+上为减函数,则m 的值为 .35.(2024高三下·上海·阶段练习)已知函数()13f x x =,则关于t 的表达式()()222210f t t f t -+-<的解集为 .36.(2024高一上·全国·课后作业)已知幂函数1101 ()f x x æö=ç÷èø,若f (a−1)<f (8−2a ),则a 的取值范围是.37.(2024高一上·浙江宁波·期中)已知幂函数()f x 过点,则满足(2)(1)f a f a ->-的实数a 的取值范围是 .38.(2024高二下·陕西宝鸡·期末)幂函数()()226633m m f x m m x-+=-+在()0,¥+上单调递减,则m 的值为 .四、解答题39.(2024高一上·四川眉山·期末)已知幂函数()y f x =的图象经过点1,22æöç÷èø.(1)求()f x 的解析式,并指明函数()f x 的定义域;(2)设函数()()g x x f x =+,用单调性的定义证明()g x 在()1,+¥单调递增.40.(2024高一·全国·课后作业)比较下列各组数的大小:(1)()32--,()32.5--;(2)788--,7819æö-ç÷èø;(3)3412æöç÷èø,3415æöç÷èø,1412æöç÷èø.41.(2024高一·全国·课后作业)求不等式()()2233131x x ->+的解.42.(2024高三·全国·课后作业)已知幂函数()223mm f x x --=(m 为正整数)的图像关于y 轴对称,且在()0,¥+上是严格减函数,求满足()()33132mma a --+>-的实数a 的取值范围.43.(2024高一上·福建龙岩·期末)已知幂函数()21()2910m f x m m x -=-+为偶函数,()()(R)kg x f x k x =+Î.(1)若(2)5g =,求k ;(2)已知2k £,若关于x 的不等式21()02g x k ->在[1,)+¥上恒成立,求k 的取值范围.44.(2024高一下·四川广安·阶段练习)已知幂函数()()()215R m f x m m x m +=+-Î在()0,¥+上单调递增.(1)求m 的值及函数()f x 的解析式;(2)若函数()21g x ax a =+-在[]0,2上的最大值为3,求实数a 的值.45.(2024高一上·辽宁辽阳·期末)已知幂函数()()25af x a a x =+-为奇函数.(1)求()f x 的解析式;(2)若正数,m n 满足31250m n a ++=,若不等式91b m n+³恒成立.求b 的最大值.46.(2024高一上·山东枣庄·期末)已知幂函数()()215m f x m m x -=--的图像关于y 轴对称.(1)求m 的值;(2)若函数()()g x f x =-()g x 的单调递增区间.。
高一数学幂函数习题及答案
高一数学幂函数习题及答案高一数学幂函数习题及答案在高一数学课程中,幂函数是一个非常重要的概念。
幂函数是指形如f(x) =ax^b的函数,其中a和b是常数,x是自变量。
在本文中,我们将探讨一些关于幂函数的习题,并提供相应的答案。
1. 习题一:已知函数f(x) = 2x^3,求f(2)的值。
解答:将x替换为2,得到f(2) = 2(2)^3 = 2(8) = 16。
因此,f(2)的值为16。
2. 习题二:已知函数g(x) = 4x^2,求g(0)的值。
解答:将x替换为0,得到g(0) = 4(0)^2 = 4(0) = 0。
因此,g(0)的值为0。
3. 习题三:已知函数h(x) = 5x^-2,求h(1)的值。
解答:将x替换为1,得到h(1) = 5(1)^-2 = 5(1/1^2) = 5(1/1) = 5。
因此,h(1)的值为5。
4. 习题四:已知函数k(x) = x^4 + 2x^3 - 3x^2 + x - 1,求k(-1)的值。
解答:将x替换为-1,得到k(-1) = (-1)^4 + 2(-1)^3 - 3(-1)^2 + (-1) - 1 = 1 - 2 - 3 - 1 - 1 = -5。
因此,k(-1)的值为-5。
5. 习题五:已知函数m(x) = (1/2)x^2 - 3x + 2,求m(3)的值。
解答:将x替换为3,得到m(3) = (1/2)(3)^2 - 3(3) + 2 = (1/2)(9) - 9 + 2 = 4.5 - 9 + 2 = -2.5。
因此,m(3)的值为-2.5。
通过以上习题,我们可以看到幂函数的计算方法。
对于给定的函数,我们只需将自变量替换为相应的值,然后按照幂函数的定义进行计算即可。
在实际应用中,幂函数常常用于描述各种变化规律,如物体的增长、衰减等。
除了计算习题,我们还可以通过绘制幂函数的图像来更好地理解其特点。
下面是几个常见的幂函数图像:1. 当b>0时,函数f(x) = ax^b的图像呈现出从左下方向右上方递增的趋势。
高一数学幂函数试题及答案
高一数学幂函数试题及答案一、选择题(每题4分,共40分)1. 函数y=x^3的图象是()A. 一条直线B. 一个平面C. 一个曲面D. 一个曲线答案:D2. 函数y=x^2的图象是()A. 一条直线B. 一个平面C. 一个曲面D. 一个曲线答案:D3. 函数y=x^(-1)的图象是()A. 一条直线B. 一个平面C. 一个曲面D. 一个曲线答案:D4. 函数y=x^2+1的图象是()A. 一条直线B. 一个平面C. 一个曲面D. 一个曲线答案:D5. 函数y=x^3-3x+2的图象是()A. 一条直线B. 一个平面C. 一个曲面D. 一个曲线答案:D6. 函数y=x^2+2x+1的图象是()A. 一条直线B. 一个平面C. 一个曲面D. 一个曲线答案:D7. 函数y=x^(-2)+3的图象是()A. 一条直线C. 一个曲面D. 一个曲线答案:D8. 函数y=x^3-6x^2+11x-6的图象是()A. 一条直线B. 一个平面C. 一个曲面D. 一个曲线答案:D9. 函数y=x^4-4x^2+4的图象是()A. 一条直线B. 一个平面C. 一个曲面答案:D10. 函数y=x^5-5x^3+10x的图象是()A. 一条直线B. 一个平面C. 一个曲面D. 一个曲线答案:D二、填空题(每题4分,共20分)11. 函数y=x^2的图象关于____对称。
答案:y轴12. 函数y=x^3的图象关于____对称。
答案:原点13. 函数y=x^(-1)的图象在第一象限和第三象限。
答案:正确14. 函数y=x^2+1的图象与x轴无交点。
答案:正确15. 函数y=x^3-3x+2的图象有一个拐点。
答案:正确三、解答题(每题10分,共40分)16. 求函数y=x^2-4x+4的最小值。
解:函数y=x^2-4x+4=(x-2)^2,当x=2时,函数取得最小值0。
答案:017. 求函数y=x^3-3x+2的零点。
解:令y=0,得到x^3-3x+2=0,解得x=1或x=-2。
高一数学幂函数试题答案及解析
高一数学幂函数试题答案及解析1.若函数是幂函数,则的值为()A.B.C.D.【答案】A【解析】由题意,得,解得.【考点】幂函数的解析式.2.计算等于()A.B.C.D.【答案】B【解析】。
故选B。
【考点】指数幂的运算点评:本题运用指数幂的运算公式:,。
3.已知幂函数的图象过点 .【答案】3【解析】幂函数形式为,其过点,则,求得,。
【考点】幂函数点评:幂函数的形式是。
本题需先确定幂函数的解析式。
4.当时,幂函数为减函数,则实数( )A.m=2B.m=-1C.m=2或m=-1D.【答案】A【解析】因为,当时,幂函数为减函数,所以或,解得,m=2,故选B。
【考点】本题主要考查幂函数的概念及其性质。
点评:简单题,注意形如为常数)的函数是幂函数。
5.(本小题12分)已知函数是幂函数且在上为减函数,函数在区间上的最大值为2,试求实数的值。
【答案】【解析】解:因为函数是幂函数且在上为减函数,所以有,解得,——————————5’①当是的单调递减区间,————————7’②当,解得——————————9’③,解得————————11’综合①②③可知————————12’【考点】幂函数与二次函数点评:解决的关键是对于常见的基本初等函数性质的熟练运用,属于基础题。
6.已知幂函数在增函数,则的取值范围 .【答案】(0,10)【解析】根据已知表达式可知,幂函数在增函数,首先分析对数式y=lga中真数大于零,即a>0,同时要满足在增函数,说明了幂指数为正数,即1-lga>0,得到lga<1=lg10,a<10,这样结合a>0,可知实数a的取值范围是(0,10)。
【考点】本试题主要是考查了幂函数的单调性与幂指数的正负之间的关系的应用,属于基础题。
点评:解决该试题关键是理解幂函数在y轴右侧的单调性是增,说明了幂指数为正,如果在y轴右侧为减,说明幂指数为负数。
同时对数真数大于零是易忽略点。
7.幂函数的图象过点(2, ), 则它的单调递增区间是()A.(-∞, 0)B.[0, +∞)C.(0, +∞)D.(-∞, +∞)【答案】A【解析】因为幂函数过点(2, ),所以=,即。
(完整版)高一数学幂函数题型复习总结,推荐文档
知识点一、幂的运算法则
初中知识点:(1) am an
(2) am n
指数幂与根式的互化: n am
1
练习: x3
例:计算
5 x2
am an
am bm
1 n am
x
2 3
an
1 4 x3
练习:
1
知识点二、幂函数图象
画图注意事项 1 定义域:偶次方根被开方数 0 ,奇次方根被开方数 R ,分母 0 . 2 奇偶性:判断 f (x) 与 f (x) 相等?相反数? 3 闲着描描点!极限情况靠想象!快快慢慢!增增减减!秒悟! 1、初级练场:常见幂函数图象:
1
(8) y x 4
3
(9) y x 2
总结:横看成岭侧成峰!
3
(1) (2)
4
5
3
3
2
练习:画函数图象 y x 3 , y x 2 , y x 5 , y x 4 , y x 5
知识点三、幂函数图象性质的应用
1、幂函数的定义
4
2、幂函数的图像
3、幂函数比较大小
1
1
例 1、(1)1.52
3、 4、比较大小 5、
7
“
”
“
”
At the end, Xiao Bian gives you a passage. Minand once said, "people who learn to learn are very happy people.". In every wonderful life, learning is an eternal theme. As a professional clerical and teaching position, I understand the importance of continuous learning, "life is diligent, nothing can be gained", only continuous learning can achieve better self. Only by constantly learning and mastering the latest relevant knowledge, can employees from all walks of life keep up with the pace of enterprise development and innovate to meet the needs of the market. This document is also edited by my studio professionals, there may be errors in the document, if there are errors, please correct, thank you!
高一数学幂函数专项练习(含答案)
高一数学幂函数专项练习(含答案)高一数学幂函数专项练习幂函数专项练习1.下列幂函数为偶函数的是()A.y=x12B.y=3xC.y=x2D.y=x-1解析:选C.y=x2,定义域为R,f(-x)=f(x)=x2.2.若a0,则0.5a,5a,5-a的大小关系是()A.5-a0.5aB.5a5-aC.0.5a5aD.5a0.5a解析:选B.5-a=(15)a,因为a0时y=xa单调递减,且155,所以5a5-a.3.设{-1,1,12,3},则使函数y=x的定义域为R,且为奇函数的所有值为()A.1,3B.-1,1C.-1,3D.-1,1,3解析:选A.在函数y=x-1,y=x,y=x12,y=x3中,只有函数y=x和y=x3的定义域是R,且是奇函数,故=1,3.4.已知n{-2,-1,0,1,2,3},若(-12)n(-13)n,则n=________. 解析:∵-12-13,且(-12)n(-13)n,y=xn在(-,0)上为减函数.又n{-2,-1,0,1,2,3},n=-1或n=2.答案:-1或21.函数y=(x+4)2的递减区间是()A.(-,-4)B.(-4,+)C.(4,+)D.(-,4)解析:选A.y=(x+4)2开口向上,关于x=-4对称,在(-,-4)递减.2.幂函数的图象过点(2,14),则它的单调递增区间是()A.(0,+)B.[0,+)C.(-,0)D.(-,+)解析:选C.幂函数为y=x-2=1x2,偶函数图象如图.3.给出四个说法:①当n=0时,y=xn的图象是一个点;②幂函数的图象都经过点(0,0),(1,1);③幂函数的图象不可能出现在第四象限;④幂函数y=xn在第一象限为减函数,则n0.其中正确的说法个数是()A.1B.2C.3D.4解析:选B.显然①错误;②中如y=x-12的图象就不过点(0,0).根据幂函数的图象可知③、④正确,故选B.4.设{-2,-1,-12,13,12,1,2,3},则使f(x)=x为奇函数且在(0,+)上单调递减的的值的个数是()A.1B.2C.3D.4解析:选A.∵f(x)=x为奇函数,=-1,13,1,3.又∵f(x)在(0,+)上为减函数,=-1.5.使(3-2x-x2)-34有意义的x的取值范围是()A.RB.x1且x3C.-3解析:选C.(3-2x-x2)-34=143-2x-x23,要使上式有意义,需3-2x-x20,解得-36.函数f(x)=(m2-m-1)xm2-2m-3是幂函数,且在x(0,+)上是减函数,则实数m=()A.2B.3C.4D.5解析:选A.m2-m-1=1,得m=-1或m=2,再把m=-1和m=2分别代入m2-2m-30,经检验得m=2.7.关于x的函数y=(x-1)(其中的取值范围可以是1,2,3,-1,12)的图象恒过点________.解析:当x-1=1,即x=2时,无论取何值,均有1=1,函数y=(x-1)恒过点(2,1).答案:(2,1)8.已知2.42.5,则的取值范围是________.解析:∵02.5,而2.42.5,y=x在(0,+)为减函数.答案:09.把(23)-13,(35)12,(25)12,(76)0按从小到大的顺序排列____________________.解析:(76)0=1,(23)-13(23)0=1,(35)121,(25)121,∵y=x12为增函数,(25)12(35)12(76)0(23)-13.答案:(25)12(35)12(76)0(23)-1310.求函数y=(x-1)-23的单调区间.解:y=(x-1)-23=1x-123=13x-12,定义域为x1.令t=x-1,则y=t-23,t0为偶函数.因为=-230,所以y=t-23在(0,+)上单调递减,在(-,0)上单调递增.又t=x-1单调递增,故y=(x-1)-23在(1,+)上单调递减,在(-,1)上单调递增.11.已知(m+4)-12(3-2m)-12,求m的取值范围.解:∵y=x-12的定义域为(0,+),且为减函数.原不等式化为m+403-2m3-2m,解得-13m的取值范围是(-13,32).12.已知幂函数y=xm2+2m-3(mZ)在(0,+)上是减函数,求y 的解析式,并讨论此函数的单调性和奇偶性.解:由幂函数的性质可知m2+2m-3(m-1)(m+3)-3又∵mZ,m=-2,-1,0.当m=0或m=-2时,y=x-3,定义域是(-,0)(0,+).∵-30,y=x-3在(-,0)和(0,+)上都是减函数,又∵f(-x)=(-x)-3=-x-3=-f(x),y=x-3是奇函数.当m=-1时,y=x-4,定义域是(-,0)(0,+).∵f(-x)=(-x)-4=1-x4=1x4=x-4=f(x),函数y=x-4是偶函数.∵-40,y=x-4在(0,+)上是减函数,又∵y=x-4是偶函数,y=x-4在(-,0)上是增函数.。
人教版高中数学必修第一册知识点及题型总结----幂函数与函数零点
目录幂函数与函数零点 (2)模块一:幂函数 (2)考点1:幂函数的图像与性质 (3)模块二:函数的零点 (4)考点2:函数的零点判断 (4)课后作业: (6)幂函数与函数零点模块一:幂函数1.幂函数:一般地,形如的函数称为幂函数,其中为常数.2.幂函数的图象当分别为,,,,时,幂函数图象如下图:3.幂函数的性质⑴所有的幂函数在都有定义,并且图象都通过点;⑵如果,则幂函数的图象通过原点,并且在区间上是增函数;⑶如果,则幂函数在区间上是减函数.在第一象限内,当从右边趋向于原点时,图象在轴右方无限地逼近轴.当趋于时,图象在轴上方无限地逼近轴.⑷幂函数的奇偶性决定幂函数过的象限.奇函数过一、三象限;偶函数过一、二象限;非奇非偶函数只过第一象限.⑸ 当为负奇数时,幂函数为奇函数,图象在第一、三象限,但不过原点;⑹ 当为正分数时,设为(,是互质的正整数).①如果,都是奇数,幂函数为奇函数,图象过第一、三象限及原点;如②如果是偶数,为奇数,幂函数为非奇非偶函数,图象在第一象限及过原点;如()y xαα=∈Rαα1-12123(0)+∞,()11,α>[0)+∞,α<(0)+∞,xy y x+∞x x ααnmm nm n53y x==mn34y x==③如果为奇数,为偶数,幂函数为偶函数,图象过第一、二象限及原点.如是偶函数,图象为:⑺ 当为负分数时,设为(,是互质的正整数). ①如果,都是奇数,幂函数为奇函数,图象在第一、三象限; ②如果为偶数,为奇数,幂函数的图象只在第一象限; ③如果为奇数,为偶数,幂函数为偶函数,图象在第一、二象限.如是偶函数,图象为考点1:幂函数的图像与性质例1.(1)已知是幂函数,求的值.【解答】332m n =-=, (2)幂函数2223()(1)m m f x m m x +-=--在(0,)+∞上为增函数,则m 的取值是( )A .2m =或1m =-B .1m =-C .2m =D .31m -【解答】解:幂函数2223()(1)m m f x m m x +-=--在(0,)+∞上为增函数,则2211230m m m m ⎧--=⎨+->⎩,解得2m =.故选:C .模块二:函数的零点1.函数的零点(1)一般地,如果函数()y f x =在实数α处的值等于零,即()0f α=,则a 叫做这个函数的零点.mn 23y x ==αnm-m n m n m n mn 23y x -==()21212223my m m x n -=+-+-m n,要点诠释:①函数的零点是一个实数,当函数的自变量取这个实数时,其函数值等于零; ②函数的零点也就是函数)(x f y =的图象与x 轴交点的横坐标; ③函数)(x f y =的零点就是方程0)(=x f 的实数根.④零点都是指变号零点(函数图象通过零点时穿过x 轴,则称这样的零点为变号零点). 归纳:方程0)(=x f 有实数根⇔函数)(x f y =的图象与x 轴有交点⇔函数)(x f y =有零点.考点2:函数的零点判断例1.(1)设3()2x f x x =-.则在下列区间中,使函数()f x 有零点的区间是( ) A .(1,0)-B .(0,1)C .(1,2)D .(2,3)【解答】解:f (1)2110=-=>,f (2)23224840=-=-=-<, f (1)f (2)0<,则在(1,2)内函数()f x 存在零点, 故选:C .例2.(1)已知函数262,0()1,0x x x f x x x⎧-⎪=⎨<⎪⎩,若函数()()3g x f x x m =-+有3个零点,则实数m 的取值范围为( )A .9(,0]8-B .9[0,)8C .9[0,)4D .9(,0]4-【解答】解:函数()()3g x f x x m =-+有3个零点,即函数()y f x =的图象与3y x m =-的图象有3个交点. 如图,由图可知,当直线3y x m =-过原点O 时,满足题意; 联立2362y x m y x x=-⎧⎨=-⎩,得2230x x m --=. 由△980m =+=,得98m =-.∴若函数()()3g x f x x m =-+有3个零点,则实数m 的取值范围为9(8-,0].故选:A .(2)设函数22,1(),1x x f x log x x ⎧⎪=⎨>⎪⎩,()()2g x f x x a =++.若()g x 存在两个零点,则a 的取值范围是 .【解答】解:由题意可得()2f x x a =--有两个不同的实根, 即函数()f x 的图象与直线2y x a =--有两个交点, 作出()y f x =的图象和直线2y x a =--,当直线经过点(1,0)时,可得20a --=,即2a =-; 当直线经过点(1,2)可得22a --=,即4a =-, 可得42a -<-时,直线和()f x 的图象有两个交点, 故答案为:[4-,2)-.例3.已知()1||f x lgx =-,则函数22()3()1y f x f x =-+的零点个数为 . 【解答】解:根据题意,函数22()3()1y f x f x =-+, 若22()3()10y f x f x =-+=,解可得()1f x =或12, 若()1f x =,即1||1lgx -=,即0lgx =,解可得1x =,若1()2f x =,即11||2lgx -=,即12lgx =±,解可得x =,则函数22()3()1y f x f x =-+有3个零点; 故答案为:3课后作业:1.函数1()2xf x lgx =-的零点所在区间为( ) A .(0,1)B .(1,2)C .(2,3)D .(3,4)【解答】解:函数1()2xf x lgx =-是增函数, f (1)110022=-=-<,f (2)1204lg =->, f ∴(1)f (2)0<, 1()2xf x lgx ∴=-的零点所在区间为(1,2). 故选:B .2.函数22,0()26,0x x f x x lgx x ⎧-=⎨-+>⎩的零点的个数为( )A .0B .1C .2D .3【解答】解:当0x 时,2()2f x x =-,令()0f x =,解得x =当0x >时,()26f x x lgx =-+,则()0f x =的解等价于函数62y x =-与y lgx =图象在0x >时的交点的横坐标,作出函数62y x =-与y lgx =图象如下:由图可知,此时两图象有一个交点,故0x >时,()0f x =有一个解, 综上()f x 共两个零点. 故选:C . 3.函数2||()()4x f x kx k R x =-∈+的零点个数最多是( ) A .2B .3C .4D .5【解答】解:函数2||()()4x f x kx k R x =-∈+的零点的个数, 即为函数2y kx =与||4x y x =+的图象交点个数, 在同一坐标系内分别作出函数2y kx =与||4x y x =+的图象, 知两函数图象最多有4个交点,即函数2||()()4x f x kx k R x =-∈+的零点个数最多是4. 故选:C .4.已知幂函数221()(33)mm f x m m x --=-+在(0,)+∞上单调递增,则m 值为 .【解答】解:幂函数221()(33)m m f x m m x --=-+在(0,)+∞上单调递增,2331m m ∴-+=,且210m m -->,解得2m =, 故答案为:2.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
D.4
m
1
x m2
2m
3
,求此幂函数的解析式,并指出定义域.
(1)[ 解析 ] ②⑦为指数函数,③中系数不是 量本身,所以只有①⑥是幂函数,故选 B.
1,④中解析式为多项式,⑤中底数不是自变
[ 答案 ] B
(2)[ 解]
∵y= m2
m
1
x m2
2m
3
为幂函数,
∴ m2- m- 1= 1,解得 m= 2 或 m=- 1. 当 m= 2 时, m2- 2m- 3=- 3,则 y =x- 3,且有 x≠0; 当 m=- 1 时, m2- 2m- 3= 0,则 y =x0,且有 x≠0. 故所求幂函数的解析式为 y =x -3, {x|x ≠0或} y= x0, {x|x ≠0.} 【类题通法】
偶函数
在 (- ∞, 0]上
在 (- ∞,+ ∞) 单调递减,在
上单调递增
(0 ,+ ∞)上单
调递增
奇函数
奇函数
在 (- ∞, 0)上
在 (- ∞,+ ∞) 单调递减,在
上单调递增
(0,+ ∞)上单
调递减
非奇非偶函数
在 [0,+ ∞)上 单调递增
定点
(1,1)
3.幂函数的性质 (1) 所有的幂函数在区间 (0,+ ∞)上都有定义,并且图象都过点
轴正半轴.
【常考题型】
题型一、幂函数的概念
【例 1】
x
(1) 下列函数:① y= x 3;② y= 1 ;③ y= 4x 2;④ y= x5+ 1;⑤ y= (x - 1)2; 2
⑥ y = x ;⑦ y= ax(a>1) .其中幂函数的个数为 (
)
A.1
B.2
C.3
(2) 已知幂函数 y= m2
【知识梳理】
1.幂函数的概念
幂函数
一般地,函数 y= x 叫做幂函数.其中 x 是自变量, α是常数.
2.常见幂函数的图象与性质
解析式
y= x
y= x2
y= x3
1 y=x
1
y= x2
图象
定义域
R
R
R
{x|x ≠0}
[0,+ ∞)
值域
R
[0,+ ∞)
R
{y|y ≠0}
[0,+ ∞)
奇偶性 单调性
奇函数
或
y=
x2
或
3
y= x )来判断.
(类似于 y
【对点训练】
已知函数 y = x a , y= xb , y= xc 的图象如图所示,则 a, b, c 的大小关系为 (
)
A . c<b<a
B .a<b<c
C . b<c<a
D. c<a<b
解析:选 A 由幂函数的图象特征知, c<0, a>0, b>0.
23,
2
2
2
3
∴
3
3
>
2
3
,∴
33 24
>
.
4
3
4
3
【类题通法】
比较幂值大小的方法
(1) 若指数相同,底数不同,则考虑幂函数;
(2) 若指数不同,底数相同,则考虑指数函数;
(3) 若指数与底数都不同, 则考虑插入中间数, 使这个数的底数与所比较数的一个底数相同, 指数与另一个数的指数相同,那么这个数就介于所比较的两数之间,进而比较大小.
题型二、幂函数的图象
【例 2】 (1) 如图, 图中曲线是幂函数 y= x 在第一象限的大致图
象,已知 α取- 2,- 12, 12, 2 四个值,则相应于曲线 C1, C2,C3, C4
的 α的值依次为 ( )
A .-
2,-
1, 1, 2 22
B .2, 1,- 1,- 2 22
C .-
12,-
又 25>13,∴
0.5
2
0.5
1
>
.
5
3
(2) ∵幂函数 y= x 1在 (- ∞, 0)上是单调递减的,
又-
2 3<
-
3,∴ 5
1
2
>
3
1
3
.
5
x
2
(3) ∵函数 y1=
3
为 R 上的减函数,又 34>23,
2
3
∴
23
>
24
.
3
3
2
又∵函数
y 2= x 3 在 (0,+ ∞)上是增函数,且
3 4>
故相应于曲线
C1, C2,C3, C4 的 α值依次为
2, 1,- 1,- 2.故选 B. 22
(2) 此类题有一简捷的解决办法,在 指数大 ”.如图, 0<m<1 ,n<- 1.
(0,1) 内取 x0,作直线 x= x 0,与各图象有交点,则 “点低
[ 答案 ] (1)B (2)B 【类题通法】
解决幂函数图象问题应把握的两个原则
判断一个函数是否为幂函数的方法
判断一个函数是否为幂函数的依据是该函数是否为
y= x ( α为常数 )的形式,即函数的解
析式为一个幂的形式,且需满足: (1)指数为常数; (2) 底数为自变量; (3) 系数为 1.反之,若一个
函数为幂函数,则该函数应具备这一形式,这是我们解决某些问题的隐含条件.
【对点训练】
2,2
,
1 2
D
.
2,
12,-
2,-
1 2
(2) 如图是幂函数 y= x m 与 y= xn 在第一象限内的图象,则 (
)
A .- 1<n<0<m<1
B .n< - 1,0<m<1
C.- 1<n<0, m>1
D. n< - 1,m>1
[ 解析 ]
(1)令
x=2,则
2
2>2
1 2>2
-
1 2
>2
-
2,
(1,1) .
(2) α >时0 ,幂函数的图象通过原点,并且在区间 特别地,当 α>1时,幂函数的图象下凸; 当 0<α<1时,幂函数的图象上凸.
[0,+ ∞)上是增函数.
(3) α <时0 ,幂函数的图象在区间 (0,+ ∞)上是减函数.在第一象限内,当 x 从右边趋向原 点时, 图象在 y 轴右方无限地逼近 y 轴正半轴; 当 x 趋于+ ∞时, 图象在 x 轴上方无限地逼近 x
(1) 依据图象高低判断幂指数大小,相关结论为:在
(0,1) 上,指数越大,幂函数图象越靠近
x 轴 (简记为指大图低 );在 (1,+ ∞)上,指数越大,幂函数图象越远离 x 轴( 简记为指大图高 ).
(2) 依据图象确定幂指数 α与 0,1 的大小关系,即根据幂函数在第一象限内的图象
1
= x -1
由幂函数的性质知, 当 x>1,幂指数大的幂函数的函数值就大, 则 a>b.综上所述, 可知 c<b<a.
题型三、利用幂函数的性质比较大小
【例 3】 比较下列各组数中两个数的大小.
0.5
0.5
2
1
(1)
与
;
5
3
1
1
2
3
(2)
与
;
3
5
3
2
(3)
2
4
与
33
.
3
ห้องสมุดไป่ตู้
4
[ 解 ] (1) ∵幂函数 y= x0.5 在 (0,+ ∞)上是单调递增的,
函数 f(x) = m2 m 1 xm2 m 3是幂函数,且当 x∈ (0,+ ∞)时, f(x) 是增函数,求 f(x) 的
解析式. 解:根据幂函数的定义得 m2- m- 1= 1.解得 m= 2 或 m=- 1. 当 m= 2 时, f(x) =x3 在 (0,+ ∞)上是增函数; 当 m=- 1 时, f(x) = x -3 在 (0,+ ∞)上是减函数,不符合要求. 故 f(x) = x3.