测量放大器的设计..
测量微弱信号的放大电路设计要点与技巧
测量微弱信号的放大电路设计要点与技巧测量微弱信号是科研领域中常见的实验任务之一,而放大电路设计则是实现这一目标的关键。
在本文中,我将探讨一些测量微弱信号的放大电路设计要点和技巧,希望能为科研工作者提供有益的指导。
首先,了解信号的性质至关重要。
微弱信号通常在低频范围内,并且很容易受到环境干扰。
因此,在设计放大电路时,要考虑选择适当的频率带宽。
一般来说,带宽应该比信号频率的两倍高,这样能够有效地避免高频噪声的干扰。
其次,选择合适的放大器是成功设计放大电路的关键。
低噪声放大器是测量微弱信号的理想选择,因为它们能够增加信号的幅度同时减少噪声的干扰。
常见的低噪声放大器包括运算放大器和差动放大器。
运算放大器广泛应用于各种测量仪器中,而差动放大器则在抵抗共模噪声方面表现出色。
此外,合理设置放大器的增益也是非常重要的。
过高的增益可能会引入更多的噪声,因此需要在信号幅度和噪声干扰之间寻找一个平衡点。
经验表明,设置适当的增益可以确保信号得到放大,同时保持噪声干扰的最低程度。
在设计放大电路时,还需要注意地线的布局和连接。
地线是将电路与外界连接的重要通道,不良的地线布局可能导致干扰信号的引入。
因此,要确保地线布线短小粗直,尽量减少环路面积,以减少可能引入的噪声干扰。
此外,选择合适的滤波器也是测量微弱信号的成功关键之一。
滤波器能够消除信号中的杂散噪声,从而提高信噪比。
常见的滤波器类型包括低通滤波器、带通滤波器和带阻滤波器。
不同的信号频率需要不同类型的滤波器,因此在设计放大电路时要仔细选择合适的滤波器。
最后,校准和调整放大电路也是设计过程中的关键环节。
由于不同的器件走线、元件容差等原因,放大电路可能存在一些偏差。
因此,需要通过校准和调整来保证放大电路的准确性和稳定性。
校准过程中需要使用特定的校准仪器和设备,例如示波器和信号发生器。
综上所述,设计测量微弱信号的放大电路需要特别关注信号性质、放大器选择、增益设置、地线布局、滤波器选择和校准调整等方面。
一种用于磁性测量的高压宽带功率放大器的设计
[ 关键 词 ] 功 率放 大 器 磁 性测 量 宽 带 [ 中图分 类号] TN 2 72 [ 文献 标识 码] A
号 的进 一步 放大 ; 率 放 大级 实 现对 信 号 的 电 流放 功 大 。直 流稳 压 电源部 分则 为 电路提供 能 量 。
普 通 电阻 由于 有一 定 的 电 感 性 存 在 , 高 频 时 , 在 电 阻 R1 0电感 性 的 强 弱 , 输 出波 形 的影 响 不 容 忽 对 视 , 了减 小 此 因 素 对 功 放 的影 响 , 功 放 中 R1 为 本 0
12 电 路 特 点 . 1负载 : t采样 电阻和 电感线 圈 。 ) 1' l
磁性 材料 在 电子 电气 工业 中有 极 广 泛 的 应 用 ,
为 了 有 效 应 用 磁 性 材 料 , 先 通 过 磁 特 性 测 量 系 统 应
获得 其磁 特 性 参 数 。功 率 放 大器 是 磁 性 测 量 系 统 的一个重 要部分 , 性 测 量 系统 要想 在 较 大 的 频 率 磁 范 围和 电压幅值 下 对 磁性 材 料 进 行 测 量 , 须 有 一 必 个高 压宽 带 功 率 放 大 器 。 目前 国 内 大 多 数 公 司生 产 的磁 性 测 量 系统 工 作 频 率 宽 度 一 般 为 5 0 k 0 Hz 左右 。本 文将 介 绍 一 种 工 作 频 率 范 围 为 5 ~ 0 Hz
1M Hz在 负 载 电 感 和 采 样 电 阻 条 件 下 有 最 大 ± ,
2 测量要 求 : 5 ~1MHz ) 在 OHz 的频 出 电 压 V2 t 幅值 逐 ()
渐 变大 。 在 图 1中, 设 当初 级 线 圈 中通 过 的 电流 为 I 假 时 , 形 样 品 中 的 磁 感 应 强 度 为 B, 表 达 式 为 : 环 其
测量晶体管放大倍数的设计与实现实验报告(非常全)
由上面的公式可设计出该部分的电路如图3所示,其中的电压比较器都用独立的元件画出。
可见其核心部分是由三个运算放大器构成的三个电压比较器。所有的运算放大器的反相输入端都与前一部分电路的三极管的集电极(或发射极)相连,作为该部分电路的输入端口。而三个运算放大器的同相输入端分别接入由串联的四个电阻分压而得到的三个不同的电平值,将这个电平值与各自的反相输入端输入的电平值进行比较,从而判断当前的Vc所对应的β所在档位。
2、电路能够检测出NPN、PNP三极管的类型;
3、电路能够将NPN型三极管放大倍数β分为大于250、200~250、150~200和小于150四个档位进行判断;
4、用发光二极管来指示被测三极管的放大倍数β值属于哪一个档位,当β超出250时二极管能够闪烁报警;
5、在电路中可以手动调节四个档位值的具体大小;
运算放大器在本电路中所起的作用为电压比较器的作用。一个最基本的电压比较器有两个输入端和一个输出端,两个输入端包括同相输入端和反相输入端,分别记为Vi+和Vi-。当同相输入端的输入电压高于反相输入端(即Vi+>Vi-)时,输出端输出为高电平;否则输出为低电平。
三极管放大倍数β档位测量电路和显示电路如图3所示
图7
图7是PNP管类型判断与放大倍数β检测电路。
总的电路实现的功能有:判断三极管的类型是NPN还是PNP,而且能对三极管放大倍数β分为大于250、200~250、150~200、小于150共四个档位进行判断,并在β值大于250的时候能够进行闪烁报警。电路中用发光二极管来指示被测三极管的β值属于哪一个档位。电路中可以手动调节四个档位值的具体大小,而且NPN、PNP三极管β档位的判断可以通过手动或自动切换。
心电图用放大器的设计注意事项
心电图用放大器的设计注意事项心电图是一种测量心脏电活动的重要工具,而放大器的设计对于心电图的准确性和可靠性起着至关重要的作用。
以下是心电图用放大器设计时需要注意的几个关键方面:1.噪声控制:心电图信号较小且容易受到噪声的干扰,因此放大器设计应具备良好的噪声控制能力。
首先,需要选择低噪声运算放大器作为信号放大的核心。
此外,还可采取隔离、滤波和屏蔽等措施来减少噪声的干扰。
2.带宽要求:心电图信号的带宽通常在0.05Hz至100Hz之间,因此放大器必须具备足够的带宽来传输这些信号。
通常情况下,放大器的带宽应大于信号最高频率的两倍。
3.阻抗匹配:放大器的输入和输出阻抗必须能够与心电图采集设备相匹配,以避免信号损失和阻抗不匹配引起的偏差。
一般来说,输入阻抗应大于10MΩ,输出阻抗应小于100Ω。
4.增益控制:放大器的增益应具备一定的可调节范围,以便根据实际需要选择适当的放大倍数。
增益过高可能导致信号饱和和失真,增益过低则会使信号变得难以辨识。
5.安全考虑:心电图放大器设计时必须注意电源和地线的绝缘,以防止电击等安全问题发生。
此外,在输入端和输出端都应添加适当的保护电路,以避免静电、电压过载和电流过大等问题。
6.线性度和准确性:心电图信号的准确性对于诊断和分析非常重要,因此放大器设计应具备良好的线性度和准确性。
线性度方面,放大器应具备宽动态范围和低非线性失真。
准确性方面,应尽可能减小系统误差,如偏移电压、漂移和失调。
7.低功耗:心电图放大器通常需要长时间连续工作,因此低功耗设计至关重要。
采用低功耗的运算放大器和设计合理的电源管理措施,可延长电池寿命、减少能源消耗,同时降低设备温升和噪声。
8.抗干扰能力:心电图信号容易受到外界的干扰,如电源噪声、高频干扰和交叉干扰等。
放大器设计时应添加合适的抗干扰电路,如滤波器、隔离器和屏蔽,以分离并抑制这些干扰源。
总之,心电图用放大器的设计需要充分考虑信号质量、噪声控制、带宽要求、阻抗匹配、增益控制、安全和可靠性等因素。
温度测量放大电路的设计
温度测量放大电路的设计概述:温度测量是工业生产、实验研究和日常生活中常见的一项任务。
温度测量放大电路是用来增强传感器输出信号的弱电流和电压的放大器电路。
本文将对温度测量放大电路的设计进行详细的介绍。
设计目标:设计一个温度测量放大电路,实现以下目标:1.准确测量温度,并将温度信号放大到合适的幅度。
2.提供稳定、可靠的放大功能,同时保持低噪声3.能够适应不同类型的温度传感器4.电路设计简单,成本低廉5.能够工作在较宽的温度范围内温度传感器:温度传感器是测量温度的核心设备。
常见的温度传感器有热电偶、热敏电阻和半导体温度传感器。
本设计将以热敏电阻为例进行介绍。
电路设计:为了准确测量温度,我们需要将热敏电阻的变化转换为电压信号。
热敏电阻的电阻值随温度的变化而改变,这样可以通过将热敏电阻串联在一个已知电阻上,利用电阻分压原理将电阻值转换为电压信号,然后将该信号放大。
在这里,我们选择了运算放大器(Op Amp)作为放大电路的关键元件。
运算放大器具有高放大度、低噪声和稳定性好的特点,非常适合温度测量放大电路的设计。
具体的电路设计步骤如下:1.选择适当的运算放大器:根据设计要求选择适合的运算放大器。
常见的运算放大器有:LM741、LM358、TL071等。
选择时需要考虑输入和输出电压范围、增益带宽积、噪声等参数。
2.确定电源电压:根据运算放大器的工作电压范围确定电源电压。
一般地,运算放大器的电源电压为正负15V,也有一些运算放大器可以在单电源供电下工作。
3.设计电阻分压网络:根据热敏电阻的特性和测量范围选择合适的电阻值。
通过将热敏电阻串联在一个已知电阻上,利用电阻分压原理将电阻值转换为电压信号。
根据设计要求确定电阻值,并进行串联连接。
4.设计反馈电阻:为了放大电路中的信号,需要设计一个反馈电阻。
反馈电阻的值决定了放大倍数。
一般地,反馈电阻的值越大,放大倍数越高。
通过选择合适的反馈电阻可以实现所需要的放大倍数。
5.添加输入和输出保护:为了保护运算放大器和其他部件,可以添加输入和输出保护电路。
测量放大器的静态工作点的测量方法
一、概述测量放大器的静态工作点是放大器设计和分析中的重要参数,它直接影响到放大器的线性度、功耗和稳定性。
准确地测量静态工作点对于放大器的设计和调试至关重要。
二、测量放大器的静态工作点的重要性1. 静态工作点的定义及其对放大器性能的影响放大器的静态工作点是指在没有输入信号的情况下,放大器的直流工作状态。
它通常表示为静态电流和静态电压的值。
静态工作点的选择会直接影响放大器的线性度和功耗。
如果静态工作点选择不当,会出现信号失真、功耗增大等问题。
2. 静态工作点的测量方法静态工作点的测量方法一般有直流测量法和交流测量法两种。
三、直流测量法1. 实验装置概述直流测量法主要通过连接电流表、电压表等仪器测量放大器的静态工作点。
2. 测量步骤1) 电压放大器的静态工作点的测量a) 将电流表连接到电源端,通过电流表测量输入端的静态电流。
b) 将电压表连接到输出端,通过电压表测量输出端的静态电压。
2) 电流放大器的静态工作点的测量a) 将电流表连接到输入端,通过电流表测量输入端的静态电流。
b) 将电压表连接到负载端,通过电压表测量负载端的静态电压。
3. 实验结果分析直流测量法可以较为准确地测量放大器的静态工作点,但在实际应用中需要注意避免对放大器的工作状态造成干扰。
四、交流测量法1. 实验装置概述交流测量法主要通过连接示波器、信号源等仪器,测量放大器的静态工作点。
2. 测量步骤1) 通过信号源输入一个直流电压,使其通过放大器。
2) 通过示波器观察输出端信号的直流偏置情况。
3) 调整输入直流电压的大小,直到输出信号的直流偏置为零。
3. 实验结果分析交流测量法可以观察到放大器输出端信号的直流偏置情况,从而间接得到放大器的静态工作点。
五、总结通过直流测量法和交流测量法,可以较为准确地测量放大器的静态工作点。
在实际工程应用中,根据实际情况选择合适的测量方法,可以更好地指导放大器的设计和调试工作。
静态工作点的准确测量可以保证放大器性能的稳定和可靠。
测量放大器的原理
测量放大器的原理测量放大器是一种用于放大电阻传感器、电容传感器或者其他传感器输出信号的设备。
它可以将传感器输出的微小电信号放大到可以进行后续处理或者测量的适当范围内。
测量放大器通常用于工业自动化、科学实验、医学设备等领域。
测量放大器的工作原理主要涉及到增益、输入电阻、带宽和噪声等方面。
1. 增益:测量放大器的主要功能之一是放大输入信号,其增益决定了放大倍数。
增益可以通过电路中的运算放大器或者放大器电路来实现,其中放大器电路通常采用晶体管、运算放大器、仪表放大器等。
2. 输入电阻:测量放大器需要具有较高的输入电阻,以保证输入信号的稳定性。
较高的输入电阻可以减少由于传感器输出电流引起的电流失真,同时也可以减少由于输入信号与放大电路之间的电压分压引起的误差。
3. 带宽:测量放大器的带宽是指放大器能够处理的频率范围。
带宽的大小取决于放大器的设计和组件的特性。
较宽的带宽可以支持处理较高频率的输入信号,而较窄的带宽则适用于低频信号的处理。
4. 噪声:测量放大器中的噪声是指在放大过程中引入的信号干扰。
噪声可以由电源杂散、放大器内部电子元件的热噪声以及输入信号本身的噪声引起。
降低噪声对于保证测量信号的准确性和精度至关重要。
在测量放大器的设计中,需要综合考虑上述因素以及其他一些技术要求,如输入输出接口、电源供应、保护电路等。
此外,还需注意:1. 信号输入范围:测量放大器一般有一定的信号输入范围,超出该范围的输入信号可能引起放大器的非线性失真。
因此,在设计选择时需根据实际需要选择适当的放大器。
2. 校准和线性度:放大器在使用过程中可能会存在一定的误差,因此需要进行校准以确保输出的准确性。
此外,线性度也是一个重要的指标,它描述了输入信号和输出信号之间的关系是否为线性关系。
总之,测量放大器是一种关键的信号处理设备,它可以将微小的传感器输出信号放大到适当的范围,以进行后续处理或者测量。
在设计和选择测量放大器时,需要考虑增益、输入电阻、带宽、噪声等多个因素,并根据实际需要进行校准和线性度测试。
电子电路中的放大器设计与调试方法
电子电路中的放大器设计与调试方法放大器是电子电路中非常重要的器件之一,它能够将输入信号放大,并输出到外部设备或驱动其他器件。
在电子设备、通信系统等领域中,放大器的设计和调试是一个常见的任务。
本文将详细介绍电子电路中放大器的设计和调试步骤,帮助读者更好地掌握这一技术。
一、放大器设计的基本原理1. 放大器的分类:放大器可分为分立元件放大器和集成电路放大器。
前者通常由晶体管、电阻、电容等离散器件组成,后者则集成在单个芯片中。
2. 放大器的工作原理:放大器主要依靠电流、电压或功率的增加来放大信号。
其中,共集、共基、共射三种基本放大电路是最常见的。
二、放大器设计的步骤1. 确定需求:首先,我们需要明确自己的需求,包括输出信号的幅值范围、带宽、失真要求等。
这一步对放大器设计至关重要,因为不同的需求将影响到放大器的电路设计。
2. 选择放大器的类型:基于对需求的了解,选择适合的放大器类型,如晶体管放大器、运算放大器等。
根据需求和电路复杂度的考量,可以选择分立元件放大器或集成电路放大器。
3. 确定放大器的工作状态:根据需求和放大器类型,确定放大器的工作状态,如放大器的偏置状态、电源电压等。
4. 电路设计:根据前面的确定,开始进行电路设计。
首先,绘制电路原理图,包括输入端、输出端、电源等部分。
然后,根据放大器的工作状态和性质,选择合适的电阻、电容等元件值,并进行电路计算。
5. 电路仿真:利用电子电路仿真软件,对设计的电路进行仿真。
通过仿真结果,可以分析电路的工作情况,如电压增益、频率响应、相位延迟等。
6. PCB设计:根据电路设计和仿真结果,进行PCB(Printed Circuit Board)设计。
这一步主要包括布线、焊接等工作。
7. 制作和组装:根据PCB设计,制作电路板,并进行元件的焊接和检查。
三、放大器调试的步骤1. 功率限制:在放大器调试之前,需要保证功率限制在安全范围内。
尤其是高功率放大器,过大的功率可能会损坏元件或导致其他问题。
电子课程设计报告(测速表、测量放大器)
北京工业大学电子课程设计报告学号:姓名:学院:电控学院专业:自动化指导教师:数电课设自行车速度表第一章设计要求设计任务根据车轮周长、辐条数和车轮转数等参考设计、调试完成一个进行车用速度表,要求具有根据不同的车型随时进行调整的功能,以保证速度表显示的正确。
1.显示数字为三位,精度为0.1公里,即(00.0-99.9公里)。
2.数码管要有小数点显示,即个位于十分位之间的小数点要亮起来。
3.标明你所设计的条件,(轮周长、辐条数等)。
给出根据不同车型进行调整的依据。
4.结构简单、所用器件尽量少、便于调整、成本低。
5.所用芯片、元件等在参考元器件范围内选择(实验室没有的需自行解决)。
一、设计参考方案通过测量在单位时间内通过红外光电传感器的轮辐数,折算出车轮走过的距离,即每秒通过多少根辐条等于1公里每小时的速度。
时速值按十进制由多位数码管显示。
假定车速为1公里/小时,那么车轮每秒走过的距离为100000厘米/3600秒≈27.8厘米/秒。
因测得的是每秒通过光电传感器的辐条数,故须将27.8厘米/秒化作多少根辐条/秒,两根辐条间的车周长=轮周长/辐条数。
对于每小时一公里的速度,相当于每秒通过的辐条数为27.8厘米/辐条间轮周长(即门控脉冲的频率),此数的倒数即为每通过一条辐条所需要的时间(秒)。
如果在此时间内通过1根辐条即表示速度为1公里/小时,数码管显示01.0,若通过20根辐条,则车速为20公里/小时,速度表(数码管)就显示20.0。
第二章设计与说明设计方案的选择根据分析,我们将测速仪分为四个模块:信号输入模块,锁存和复位模块,计数器驱动模块,显示模块。
信号输入模块由红外线传感器和施密特组成,红外线传感器用于产生信号,施密特用于波形整形。
此模块没有可选性。
计数器驱动模块用计数器CD4553和译码器CD4543或CD4511组成。
两者从功能上并无本质区别。
CD4553用于对输入信号基数,译码器用于驱动三位数码管。
实验负反馈放大器的设计与测试
实验四负反馈放大器的设计与测试一.实验目的1.加深理解放大器中引入负反馈的方法和负反馈对放大器各项性能指标的影响。
2.学会根据给定的技术指标要求设计两级负反馈放大器。
3.进一步熟悉放大器各项性能指标的测量方法。
二.实验原理所谓负反馈,就是以某种方式从输出端取出信号,再以一定的方式加到输入回路中,并且是所加信号极性与原输入极性相反。
根据取出信号和加到输入回路联结方式的不同,负反馈可分为四大类:电压串联负反馈、电压并联负反馈、电流串联负反馈和电流并联负反馈。
在实际应用中,判断负反馈的类型,可通过考察反馈信号的取得和与输入的联接方式来进行。
若反馈信号直接取自输出电压,则为电压负反馈;若反馈信号直接取自输出电流,则为电流负反馈;若反馈信号直接加到输入端,则为并联负反馈;若反馈信号与输入信号是串联在输入回路中,则为串联负反馈。
负反馈在电子电路中的应用非常广泛,虽然它使放大器的放大倍数降低,但能在众多方面改善放大器的性能指标,如稳定放大倍数、改变输入电阻和输出电阻、减少非线性失真和展宽通频带等。
具体的性能影响如下:降低放大倍数:A f=A/(1+FA),当|1+AF| 》1时,A f≈1/F;改变输入电阻:对于串联负反馈,提高了|1+AF|倍,r if=r i|1+AF| ;对于并联负反馈,降低了|1+AF|倍,r if=r i/ |1+AF| ;改变输出电阻:对于电压负反馈,降低了|1+AF|倍:r of =r o / |1+A'F|,A'=A |R L=∞;对于电流负反馈,提高了|1+A "F|倍,r of=r o / |1+A "F|,A "=A |R L =0;稳定放大器倍数:负反馈放大倍数的稳定性提高了(1+AF)倍,△A f / A f=(△A f/A)/( 1+AF)减少了非线形失真:输出产生非线形失真的谐波信号降低了|1+AF|倍。
1.实验的负反馈放大器如图4-1所示,它是一个两级阻容耦合电压串联负反馈放大器,各电路参数由实验者根据给定技术指标要求自行设计。
OP37放大器
OP37/OP07运算放大器在没有更好的测量运算放大器的情况下,实现测量放大器的最好的解决方案就是应用通用集成运算放大器中的精密集成运算放大器OP07/PO37。
为了充分发挥OP07/OP37的性能,要将OP37/OP07的调零电路包括在测量放大器的电路之内。
实际的测量放大器电路如图:为了改善集成运算放大器的电源阻抗,在没个集成运算放大器的正、负电源端,对地均接有用于旁路的2.2uf 的陶瓷贴片电容器;为了能达到1~1000倍的增益可调并且是精确调节,增益调节电阻由三只不同阻值的可调电阻串联而成。
一、元器件参数的选取和确定集成运算放大器选用OP07/OP37,但是不同厂家生产的OP07/OP37的具体参数略有不同,如MAXIM的OP07/OP37就比TI的OP07/OP37性能好一点。
因此应将所有的OP07生产厂家的OP07技术数据全部收集起来,仔细分析,再决定采用那个厂商的OP07/OP37。
当然,如果没有非常特殊的要求,则所有的OP07均可以满足性能要求。
测量放大器中所有电阻的选择方法如下。
差动放大器的输入电阻、反馈电阻和匹配电阻均应选择0.1%的精度,如果选择1%~5%精度的电阻,则其共模抑制比将大大衰减。
非常幸运的是,当时我们手头刚好有误差环为蓝环,即精度为0.2%的10K电阻,这是能够获得高共模抑制比的非常有利的条件,否则要在成百上千只误差为1%的的电阻中精选出四只容差只能达到0.1%以内的电阻。
其工作量、所需要的测试仪器以及测试条件可想而知。
信号转换电路选用的电阻的精度为1%。
在设置匹配电阻时,通过精选,选择出阻值容差接近0.2%的电阻。
目的就是要尽可能的确保信号变换的对称性,尽可能的减少共模噪声的混入。
稳压电源电路选择1%精度的电阻,利用多只辅助电阻调节正、负输出电压的精度与容差。
由于在电子设计竞赛中仅仅是制作单个样品,所以上述措施是切实可行的。
但在大批量生产时,通过精选电阻的容差将是不可取的。
晶体管放大器的设计与调测实验报告学生[1]
晶体管放大器的设计与调测实验报告(学生)[1]晶体管放大器的设计与调测实验报告一、实验目的1.学习和掌握晶体管放大器的基本原理和设计方法。
2.通过实际操作,掌握放大器的调测技巧和注意事项。
3.培养分析问题、解决问题的能力,提高实验技能。
二、实验原理晶体管放大器是利用晶体管的放大效应实现对输入信号进行放大的电子器件。
通过合理设计晶体管、电阻、电容等元件的参数,可以实现信号的线性放大、阻抗变换等功能。
根据放大器的工作频率、带宽、增益等性能指标,可以将其分为低频放大器、高频放大器、宽频带放大器等不同类型。
三、实验步骤1.确定放大器的性能指标:根据实验要求,确定放大器的增益、带宽、输出功率等性能指标。
2.选择合适的晶体管:根据性能指标和实际条件,选择合适的晶体管型号和规格。
3.设计电路:根据晶体管的特点和性能指标,设计合适的电路形式和元件参数。
4.搭建电路:按照设计好的电路图,搭建晶体管放大器电路。
5.调测电路:通过调整元件参数和观察波形,实现对放大器的调测和优化。
6.数据记录与分析:记录实验数据,分析误差原因,提出改进措施。
7.撰写实验报告:整理实验数据和结果,撰写实验报告。
四、实验结果与分析1.数据记录:在实验过程中记录了以下数据:输入信号幅度Vim=1mV,输入信号频率f=1kHz,晶体管放大器增益G=20dB,输出信号幅度Voc=2V,输出信号频率f=1kHz。
2.结果分析:通过对实验数据的分析,我们发现该晶体管放大器的增益为20dB,能够实现对输入信号的放大。
同时,输出信号的幅度和频率与输入信号相同,说明放大器具有较好的线性放大特性。
但是,实验中存在一定的误差,如温度变化、元件参数误差等,导致放大器的性能受到一定影响。
为了提高放大器的性能,可以采取以下措施:选用高品质的晶体管和元件;对元件进行精确测量和筛选;优化电路设计等。
五、结论与展望通过本次实验,我们了解了晶体管放大器的基本原理和设计方法,掌握了放大器的调测技巧和注意事项。
测量放大器实验报告
测量放大器实验报告一、系统功能及性能指标500~1A VD = V 10U 0±= f =0~10HZ ΩM R id 2≥id U =V V 5.7~5.7-+时,510>CMR K 500=VD A 时,噪声电压峰峰值< 1V电路类型:测量放大器二、实验目的本实验是学习测量放大器的设计方法和掌握测量放大器的调试方法。
其中,测量放大器称为仪表放大器或数据放大器,是对微信号进行测量,主要通过运用集成运放组成测量放大电路实现对微弱电压信号的放大,要求有较高的输入电阻来减少测量的误差和被测电路的影响。
通过实验,熟悉OP07的参数和应用,掌握电路设计调试的基本流程和方法,通过分析和计算完成实验的内容。
三、实验要求图(1)1、差模电压放大倍数500A=,可手动调节;1~VD2、最大输出电压为±10V,非线性误差< 0.5%;3、在输入共模电压+7.5V~-7.5V范围内,共模抑制5K;>10CMR4、在500=A时,输出端噪声电压的峰-峰值小于1V;VD4、通频带0~10Hz;5、直流电压放大器的差模输入电阻≥2MΩ(可不测试,由电路设计予以保证)。
四、方案论证在测量放大器的设计中,第一级应采用两个集成运放OP07同向并联接入,组成同相的差动放大器,因为这样可以增强共模抑制能力。
其中,要求两个运放的输入阻抗,共模抑制比,开环增益一致,这样才能保证具有差模和共模电阻大,还能保证使两运放的共模增益和失调及漂移产生的误差相互的抵消。
在第二级中,为了阻止共模信号的传递,差分放大电路在同向并联电路之后再接上一个OP07,从而使双端输出变成单端输出。
在输出端接一个电位器,使得电压放大倍数改变,实现放大倍数500A1~=可调,从而完成本实验的要求。
VD六、OP07芯片手册OP07简介:OP07芯片是一种低噪声,非斩波稳零的双极性运算放大器集成电路。
具有低失调、低漂移、低噪声、偏置电流小等优点。
实验三、运算放大器参数测量与基本应用
实验三、运算放大器参数测量及基本应用一、实验目的1.认识运算放大器的基本特性,通过仿真和测试了解运放基本参数,理解参数的物理含义,学会根据实际需求选择运放;2.掌握由运放构成的基本电路和分析方法;3.熟悉仿真软件Multisim的使用,掌握基于软件的电路设计和仿真分析方法;4.熟悉便携式虚拟仿真实验平台,掌握利用其进行实验的使用方法。
二、实验预习1. 复习运放的理想化条件,了解集成运算放大器的主要技术指标和含义;2. 复习运放应用的各种基本电路结构;3. 熟悉运放LM358L(因multisim元器件库中没有LM358L,所以仿真用LM358J来做,而实际电路用LM358L,它们DIP封装引脚排列是一样的)的性能参数及管脚布局,管脚布局如图3.1所示,并根据图3.2所示的内部原理图理解电路结构和工作原理。
图3.1 LM358L管脚LM358J为单片集成的双运放,采用DIP-8封装,INPUT1(-)为第一个运放的反相端输入,INPUT1(+)为同相端输入,OUTPUT1为输出,第二个运放命名原则相同。
Vcc为正电源输入端,V EE/GND可以接地,也可以接负电压。
双电源(±1.5-±16V)。
图3.2 LM358J内部原理图LM358L主要由输入差分对放大器、单端放大器、推挽输出级以及偏置电路构成。
三、实验设备便携式虚拟仿真实验平台(PocketLab、元器件)。
四、实验内容(一)仿真实验1. 运放基本参数仿真测量(用LM358J 代替LM358L) (1) 电压传输特性根据图3.3所示电路,采用正负电源供电,运放反相端接地,同相端接直流电压源V 3,在-150μV~150μV 范围内扫描V 3电压,步进1μV ,得到运放输出电压(节点3)随输入电压V 3的变化曲线,即运放电压传输特性,根据仿真结果给出LM358J 线性工作区输入电压范围,根据线性区特性估算该运放的直流电压增益A vd 。
50欧姆阻抗匹配交流测量放大器
测量放大器调试报告题目:测量放大器Measuring amplifier design and commissioning reports学校:西北师范大学学院:物理与电子工程学院姓名:马云目录前言...................................................................................... 错误!未定义书签。
测量放大器简述 ............................................................................................................................ 错误!未定义书签。
设计任务........................................................................................................................................... 错误!未定义书签。
1.测量放大器的设计 .............................................................................................................. 错误!未定义书签。
1.1 设计内容及要求...................................................................................... 错误!未定义书签。
1.3设计方案及实现 ................................................................................... 错误!未定义书签。
集成运放同相放大器的带宽测量(设计与仿真)实验报告
集成运放同相放大器的带宽测量(设计与仿真)实验报告一、实验目的1、熟悉放大器幅频特性的测量方法。
2、掌握集成运算放大器的带宽与电压放大倍数的关系。
3、了解掌握Proteus 软件的基本操作与应用。
二、实验线路及原理1、实验原理(1)同相放大器同相放大器又称同相比例运算放大器,其基本形式如图2.1所示。
输入信号U i 经R 2加至集成运放的同相端。
R f 为反馈电阻,输出电压经R f 及R 1组成的分压电路,取R 1上的分压作为反馈信号加至运放的反相输入端,形成了深度的电压串联负反馈。
R 2为平衡电阻,其值为R 2=R 1//R f 。
电压放大倍数为R R U U A f i uf 101+==。
输出电压与输入电压相位相同,大小成比例关系。
比例系数(即电压放大倍数)等于1+R f /R 1,与运放本身的参数无关。
图2.1 同相放大器 图2.2 某放大电路的幅频特性(2)基本概念 1)带宽运放的带宽是表示运放能够处理交流小信号的能力。
运放的带宽简单来说就是用来衡量一个放大器能处理的信号的频率围,带宽越高,能处理的信号频率越高,高频特性就越好,否则信号就容易失真。
图2.2所示为某放大电路的幅频响应,中间一段是平坦的,即增益保持不变,称为中频区(也称通带区)。
在f L 和f H 两点增益分别下降3dB ,而在低于f L 和高于f H 的两个区域,增益随频率远离这两点而下降。
在输入信号幅值保持不变的条件下,增益下降3dB 的频率点,其输出功率约等于中频区输出功率的一半,通常称为半功率点。
一般把幅频响应的高、低两个半功率点间的频率定义为放大电路的带宽或通频带,即BW=f H -f L 。
式中f H 是频率响应的高端半功率点,也称为上限频率,而f L 则称为下限频率。
通常有f L <<f H ,故有BW≈f H 。
2)单位增益带宽运放的闭环增益为1倍条件下,将一个频率可变恒幅正弦小信号输入到运放的输入端,随着输入信号频率不断变大,输出信号增益将不断减小,当从运放的输出端测得闭环电压增益下降3db(或是相当于运放输入信号的0.707)时,所对应的信号频率乘以闭环放大倍数1所得的增益带宽积。
心电信号放大器设计
心电信号放大器设计一、设计用于检测人体心电信号的放大器,要求如下:1、输入阻抗≥10MΩ。
2、共模抑制比≥80dB。
3、电压放大倍数1000倍。
4、频带宽度为0.5Hz~100Hz。
5、放大器的等效输入噪声(包括50Hz交流干扰)≤200μV。
二、设计方案分析1、心电信号的特点及检测人体的各种生理参数如心电、脑电、肌电等生物电信号都是属于强噪声背景下微弱的低频信号,是由复杂的生命体发出的不稳定的自然信号。
心电信号是人类最早研究并应用于临床医学的生物电信号之一,与其他生物电信号相比,该信号也比较容易检测同时具有直观的规律性。
一般人体心电信号的幅值约20μV~5mV,频带宽度为0.05Hz~100Hz,由于心电信号取自于活体,所以信号源内阻较高,且存在着较强的背景噪声和干扰。
在检测人体生物电信号时,需要采用所谓的生物电测量电极,又称引导电极来实现的,通过引导电极将生物电信号引入到放大器的输入端。
对于心电信号的检测,临床上为了统一和便于比较所获得心电信号波形,对测定心电信号(ECG)的电极和引线与放大器的联接方式有严格的统一规定,称之为心电图的导联系统。
目前国际上均采用标准导联,即将电极捆绑在手腕或脚腕的内侧面,并通过较长的屏蔽导线与心电放大器相连接。
标准导联有Ⅰ、Ⅱ、Ⅲ。
其具体联接方法如图。
LAⅠ导联Ⅱ导联Ⅲ导联图1 标准导联联线方法2、心电信号放大器设计要求及组成根据心电信号的特点,对心电信号放大器的要求是高输入阻抗、高增益、高共模抑制比、低噪声、低漂移、合适的通频带宽度和输出较大的动态范围等。
典型的心电信号放大器的组成如图所示,主要有前置放大、高通滤波、低通滤波、50Hz陷波器、电压放大等电路。
图2 心电信号放大器组成框图三、 主要单元电路参考设计 1、 心电信号输入电极电极(导联)对心电信号放大器的质量影响很大,采用的电极应该具有贴附力强、透 气性好、吸汗、电极导电性能好、极化电压低的优质电极。
表面肌电信号检测电路的放大器设计与噪声分析
表面肌电信号检测电路的放大器设计与噪声分析对于表面肌电信号的检测电路来说,放大器的设计和噪声分析是非常重要的方面。
本文将介绍表面肌电信号检测电路放大器的设计原理和噪声分析方法。
我们将深入探讨这两个方面,并提供一些实际案例和技术指导,以帮助读者更好地理解和应用。
一、放大器设计放大器是表面肌电信号检测电路中的关键部件之一。
它的主要作用是将微弱的肌电信号放大到适合测量和分析的范围内。
在进行放大器设计时,我们需要考虑以下几个关键因素:1. 频率响应:表面肌电信号的频率范围一般在10Hz到500Hz之间。
放大器必须能够在这个频率范围内保持相对平坦的增益响应,以确保准确的信号放大。
2. 噪声特性:由于表面肌电信号是微弱的生物电信号,放大器必须具有很低的噪声水平。
低噪声放大器可以帮助提高信号的信噪比,从而更好地提取有用的生物电信号。
3. 输入阻抗:放大器的输入阻抗应该足够高,以确保信号源不被放大器本身的阻抗所影响。
一般来说,输入阻抗应该在100兆欧姆以上,以满足表面肌电信号检测的要求。
4. 输出阻抗:放大器的输出阻抗应该尽可能低,以便有效地传输信号和减少干扰引入。
基于以上要求,我们可以选择一些常用的放大器电路拓扑结构,如差分放大器、运放放大器等。
根据具体需求,我们可以做出适当的选择和调整。
在进行实际电路设计时,还需要注意电源噪声的抑制和电路的稳定性,以避免产生不必要的干扰和失真。
二、噪声分析噪声是表面肌电信号检测电路中的一个常见问题。
噪声可以来自各种各样的源,如电源、电路元件和环境。
因此,在进行噪声分析时,我们需要从源头入手,逐个分析和优化。
首先,电源噪声是一个重要的噪声源。
当设计电源供电电路时,我们应该选择低噪声的电源,例如线性稳压器或低噪声开关稳压器。
此外,还可以采用滤波电容和地线设计来有效地抑制电源噪声的传播。
其次,电路元件本身也会引入噪声。
例如,运放引入的噪声主要来自其输入电压噪声和电流噪声。
在选择运放时,我们应该注重其噪声指标,尽量选择低噪声的运放器件。
测量放大电路的基本要求
一,测量放大电路的基本要求与类型: 1模拟式测量电路的基本组成增量码数字式测量电路的基本组成: 测量电路的要求:1. 精度高:低噪声和高抗干扰能力,低漂移,高稳定性,线性与保证度好2. 动态性能好:响应快,动态失真小3. 高的识别和分辨能力4. 转换灵活:信号的处理与运算量程变化,电量参数转换,模数与数模转换5. 有合适的输入和输出阻抗6. 可靠性高7. 经济性好隔离放大电路:1.抗干扰 2防止漏电,确保安全 3保护低电压测量电路低漂移集成运算放大电路:1.输出稳定。
两个放大器轮换工作,总有一个进行放大输出。
优于由通用运放组成的电路 2.共模抑制能力不强 (减小运算放大器的失调和低频干扰引起的零点漂移)高共模抑制比放大电路:(用来抑制传感器输出共模电压(包括干扰电压)的放大电路称为高共模抑制比放大电路。
)1来自传感器的信号通常伴有较大的共模电压2采用差动输入的方法可以抑制共模信号3一般运放的共模抑制比为80db 左右,4采用若干个运放可以构成具有更高的共模抑制比的放大电路传感器量程切换电路放大器解调器信号分离电路运算电路模数转换电路计算机显示执行机构振荡器电源电路传 感 器显示执行机构计算机锁存器计数 器变换电路脉冲当量放大 器整形电路细分电路辨向电路指令传感器电路手动采样锁 存指令高输入阻抗电路:某些传感器的输出阻抗很高,如电容式、压电式,达到108Ω。
自举式组合高输入阻抗电路:Ri=(R 1R)/(R - R 1)(当R=R1时输入阻抗无穷大) U O = - R 2/R 1(U i ) 电桥放大电路:由传感器电桥和运算放大器组成的放大电路或由传感器和运算放大器构成的电桥都称为电桥放大电路应用场合:应用于电参量式传感器,如电感式、电阻应变式、电容式传感器等,经常通过电桥转换电路输出电压或电流信号,并用运算放大器作进一步放大,或由传感器和运算放大器直接构成电桥放大电路,输出放大了的电压信号。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
课程设计(论文)题目名称测量放大器的设计课程名称综合电子课程设计学生姓名学号系、专业指导教师年月日目录一、概述 (1)二、方案设计与论证 (2)1、设计任务和要求 (2)2、设计原理 (2)3、设计方案及实 (4)三、直流电压放大器 (5)四、放大器性能测试 (6)五、仿真结果和分析 (7)1、各部分的仿真结果 (7)六、主要电路参数计算 (13)1、放大倍数计算 (10)七、结论与心得 (10)八、参考文献 (11)摘要本设计主要是测量放大器,测量放大器主要是实现对微信号的测量,主要通过运用集成运放组成测量放大电路实现对微弱电信号的放大,要求有较高的输入电阻,从而减少测量的误差及对被测电路的影响,并要求放大器的放大倍数可调以实现对比较大的范围的被测信号的测量,因而测量放大器的前级主要采用差分输入的方式,然后经过双端信号到单端信号的转换,最后经比较放大器进行放大。
关键词:放大器;频率;电源;电桥一、概述随着电子技术的飞速发展,运算放大电路也得到广泛的应用。
测量放大器专门精密差分电压放大器,它源于运算放大器,且优于运算放大器。
测量放大器把关键元件集成在放大器内部,其独特的结构使它具有高共模抑制比、高输入阻抗、低噪声、低线性误差、低失调漂移增益设置灵活和使用方便等特点,使其在数据采集、传感器信号放大、高速信号调节、医疗仪器和高档音响设备等方面倍受青睐。
测量放大器是一种具有差分输入和相对参考端单端输出的闭环增益组件,具有差分输出和相对参考端的单端输出。
与运算放大器不同之处是运算放大器的闭环增益是由反相输出端与输出端之间连接的外部电阻决定,而测量放大器则使用与输入端隔离的内部反馈电阻网络。
测量放大器的 2 个差分输入端施加输入信号,其增益即可由内部预置,也可由用户通过引脚内部设置或者通过与输入信号隔离的外部增益电阻置。
本次设计通过采用仪用放大器的改造来实现设计一测量放大器及其所用的稳压电源,并满足其高输入阻抗和高共模抑制比及高通频带的要求.。
测量放大器主要实现对微信号的测量,主要通过运用集成运放组成测量放大电路实现对微弱信号的放大,要求有较高的共模抑制能力及较高的输入电阻,减少测量的误差及对被测电路的影响,并要求放大器的放大倍数可调已实现对比较大的范围的被测信号的测量。
测量放大器前级主要用差分输入,经过双端信号到单端信号的转换,最终经比例放大进行放大二、方案设计与论证1、设计任务和要求设计并制作一个测量放大器及所用的直流稳压电源。
参见图1。
输入信号V I 取自桥式测量电路的输出。
当R1=R2=R3=R4时,V I=0。
R2改变时,产生V I ≠0的电压信号。
测量电路与放大器之间有1米长的连接线。
a. 差模电压放大倍数A VD=1~500,可手动调节;b. 最大输出电压为± 10V,非线性误差< 0.5%;c. 在输入共模电压+7.5V~-7.5V范围内,共模抑制比K CMR >105 ;d. 在A VD=500时,输出端噪声电压的峰-峰值小于1V;e. 通频带0~10Hz ;f.直流电压放大器的差模输入电阻≥2MW (可不测试,由电路设计予以保证)。
2、设计原理原理概述放大器是电子系统的重要组成部分,了解和掌握放大器对于学习和应用电子系统有很大的帮助。
信号检测中的放大电路有很多种类型,实际系统中常采用的有测量放大器和隔离放大器。
测量放大器又称为数据放大器或仪表放大器,常用于热电偶,应变电桥.流量计,生物电测量以及其他有较大共模干扰的支流缓变微弱信号的检测。
测量放大器是一种高增益、直流耦合放大器,它具有差分输入、单端输出、高输入阻抗和高共模抑制比等特点,因此得到广泛的应用。
差分放大器和测量放大器所采用的基础部件(运算放大器)基本相同,它们在性能上与标准运算放大器有很大的不同。
标准运算放大器是单端器件,其传输函数主要由反馈网络决定;而差分放大器和测量放大器在有共模信号条件下能够放大很微弱的差分信号,因而具有很高的共模抑制比(CMR)。
它们通常不需要外部反馈网络。
测量放大器的第一级只对差摸信号有一定的放大作用,而对共模信号几乎没有抑制作用,对共模信号几乎没有抑制作用主要由第二级电路来完成,而且放大器的共摸抑制比约为第一级电路的差摸电压增和第二级电路的共摸抑制比的乘积。
在工业自动控制等领域中,常需要对远离运放的多路信号进行测量,由于信号远离运放,两者地电位不统一,不可避免地存在长线干扰和传输网络阻抗不对称引人的误差。
为了抑制干扰,运放通常采用差动输人方式。
对测量电路的基本要求是:①高输人阻抗,以抑制信号源与传输网络电阻不对称引人的误差。
②高共模抑制比,以抑制各种共模干扰引人的误差。
③高增益及宽的增益调节范围,以适应信号源电平的宽范围。
以上这些要求通常采用多运放组合的电路来满足,典型的组合方式有以下几种:同相串联式高阻测量放大器,同相并联式高阻测量放大器,高共模抑制测量放大器用分离元件构建测量放大器需要花费很多的时间和精力,而采用集成运放放大器或差分放大器则是一种简便而又可行的替换方案。
用集成运算放大器放大信号的主要优点:(1)电路设计简化,组装调试方便,只需适当配外接元件,便可实现输入输出的各种放大关系.(2)由于运放得开环增益都很高,用其构成的防大电路一般工作的深度负反馈的闭环状态,则性能稳定,非线性失真小。
(3)运放的输入阻抗高,失调和漂移都很小,故很适合于各种微弱信号的放大。
又因其具有很高的共模抑制比,对温度的变化,电源的波动以及其他外界干扰独有很强的抑制能力。
运算放大器组成的放大电路,按电路的性质可分为反相放大器,同相放大器和差分放大器三种。
按输入信号性质又可分为直流放大器和交流放大器两类。
差分放大器分为(1)单端输入、单端输出(2)双端输入、单端输出(3)单端输入、双端输出三种,而双端输入、单端输出型差动放大器常用于多级差分放大电路的中间极或末极。
测量放大器系统组成的框图如下图所示。
系统包括桥式电路、信号变换放大器电路,直流电压放大器和直流稳压电源。
图1测量放大器系统各个组成部分作用和指标:桥式电路:提供差动电压用来测试直流电压放大器的主要性能指标。
信号变换放大器:把函数发生器单端输出信号经信号变换放大器变换为直流电压放大器的双端输入信号。
直流电压放大器:要求差动输入的直流电压放大器,具有高的差模电压增益,并具有低漂移,低噪声输出及高共模抑制比等特性。
测试其差模放大倍数、共模放大倍数、共模抑制比、输出噪声电压峰峰值、通频带。
直流稳压电源:该电源由单相 220V 交流电压供电,输出±15V 直流电压,作为整个系统的电源。
图中K 置2 的位置,测直流电压放大器频率特性;K 置1 的位置,测直流电压放大器的其他性能指标。
3、设计方案及实现同相并联式高阻抗测量放大器电路具有输入阻抗高、增益调节方便、漂移互相补偿、双端变单端以及输出不包括共模信号等优点。
线路前级为同相差动放大结构,要求两运放的性能完全相同,这样,线路除具有差模、共模输人电阻大的特点外,两运放的共模增益、失调及其漂移产生的误差也相互抵消,因而不需精密匹配电阻。
后级的作用是抑制共模信号,并将双端输出转变为单端放大输出,以适应接地负载的需要,后级的电阻精度则要求匹配。
增益分配一般前级取高值,后级取低值。
图一该测量放大器由运放U1和U2按同相输入接法组成第一级差分放大电路,运放U3组成第二级差分放大电路。
三、直流电压放大器差模电压增益Avd=(1+2 R7/(R11+ R5))R6/ R4若取 R3 =R7= R8= R4= (R9+R10)=R6=10kΩ,Avd=1+2 R7/(R11+ R5)取R11=0 时,Avd=1+2*10*1000/(0+40)=501取R11 为最大时,Avd=1+2*10*1000/(100*1000+40)=1.2R10 是调零电位器。
集成运算放大器U1、U2、U3、U4、U5 采用OP07 其共模抑制比高、低噪声、高精度。
图三四、放大器性能测试放大器性能测试:首先调零,将输入端短接,即将输入信号置零,调节各个电位器的调零电阻,直至输入电压为零,完成调零操作,然后将电桥加电压,用万用表测电桥的输出电压,手动调节可变电位器,直至电桥的输出电压为5mv,然后用1米长的导线将电桥与放大器连接,用示波器观察测量放大器的输出波形。
对于测量放大器放大倍数的测量,设置放大倍数然后用万用表测电桥的输出电压及测量放大器放大后的输出电压,求出实际电压放大倍数,然后与设置的电压放大倍数比较。
测量放大器的频率响应测试:首先对信号变换电路进行调零,同样是将输入短接,即输入端直接接地,然后调节用函数信号发生器产生信号源,然后将输出信号通过信号变换电路将单端输出转变成双端输出,再将信号变换器的输出信号接到测量放大器的输入端合理设置输出电压及测量放大器的放大倍数,然后用交流毫伏表测量放大器和信号变换电路的输出电压,并改变函数信号发生器的输出频率,得到不同频率下的放大倍数。
五、仿真结果和分析1、各部分的仿真结果图四、直流电压放大器仿真原理图图五、R11为0时的输出波形仿真图图六、R11为最大时的输出波形图七、电路总图六、主要电路参数计算1、放大倍数计算差模电压增益Avd=(1+2 R7/(R11+ R5))R6/ R4若取 R3 =R7= R8= R4= (R9+R10)=R6=10kΩ,Avd=1+2 R7/(R11+ R5)取R11=0 时,Avd=1+2*10*1000/(0+40)=501取R11 为最大时,Avd=1+2*10*1000/(100*1000+40)=1.22、仿真中遇到的问题在放大器仿真中,当输入电压比较大时,输出电压仍然按原有的倍数进行放大。
如输入为5V时,在放大倍数为250倍时,输出电压可达1.25V。
在实际应用中,输出电压由于受到运放的电轨影响,它只能输出比运放电压少。
例如运放运行电压为±15V时,在比较好的运放中,输出电压可达14.8V。
但UA741运放在效果上稍差,大概输出电压为13.8V。
所以这种不受限制的放大只能在仿真软件的理想状况下出现。
七、结论与心得通过本次设计,我明白了只有将书本上的知识做到详细的了解加上融会贯通才能够通过本来的原理运用到实际,设计出符合一定要求的电子电路,即使是电路中的每一个小元件,都要考虑到其对整体电路的影响,甚至有时对电路细微部分的改动都可能得到意想不到的结果,所以设计电路不仅需要掌握比较全面的知识,还需要考虑到每个细节,考虑全局。
不仅要被高要求,还要自主高要求。
任何事情都不是一蹴而就的,只有走好每一步,才能够对自己知识的不足之处有更加深入地了解,在学习的过程中去弥补自己的不足,想要学好一个方面的专业知识仅仅依靠一本教科书是不够的,我们需要在任何时候都留心积累。