半导体物理(第七章)

合集下载

半导体物理与器件-第七章 pn结

半导体物理与器件-第七章  pn结

7.1 pn结的基本结构
冶金结:P区和n区的交界面
突变结 突变结-均匀分布,交界处突变
5
7.1 pn结的基本结构
PN结的形成
Space charge region
空间电荷区=耗尽区(没有可自由移动的净电荷,高阻区)
6
pn结的形成
Байду номын сангаас.2 零 偏
pn结能带图
7.2.1内建电势差
当两块半导体结合成pn结时,按费米能级的意义,电子将 从费米能级高的n区向费米能级低的p区,空穴则从p区流向n区 ,因而FFn不断下移,且EFp不断上移,直至时FFn = EFp为止;这 时pn结中有统一的费米能级EF,pn结处于热平衡状态。
4、对单边突变结,空间电荷区的宽度W取决于轻掺杂一侧杂质的浓度。
7.2零偏
7.2.3空间电荷区宽度
7.3 反 偏
7.3.1空间电荷区宽度与电场
反偏
与内建电场方向相同
外加偏置电压VR(以P端相对于N端电压为定义方向) 正偏:P端接正;
反偏:P端接负。
EF不再统一
n
16
7.3反偏
V=Vbi+VR
第7章 pn结
本章内容
第7章 pn结 7.1 pn结的基本结构 7.2零偏 7.3反偏 *7.4非均匀掺杂pn结 7.5小结
2
引言
PN结是几乎所有半导体器件的基本单元。除金属-半导体接触器 件外,所有结型器件都由PN结构成。PN结本身也是一种器件-整 流器。PN结含有丰富的物理知识,掌握PN结的物理原理是学习其 它半导体器件器件物理的基础。正因为如此, PN结一章在半导 体器件物理课的64学时的教学中占有16学时,为总学时的四分之 一。

半导体物理第七章金属与半导体的接触

半导体物理第七章金属与半导体的接触

eV kT
⎞ ⎟⎠
J
V<0 当e|V|>>kT J = − J ST
V
-J0
反向饱和电流JsT与外加电压无关,强烈依赖温度
热场发射理论:
适用于平均自由程较长,迁移率较高材料,如硅锗等
半导体物理
25
三. 镜像力(image force)的影响
理论与实际的偏差
当半导体中的电子到达金属-半导体的界面附近时,该 电子将在金属表面感生正电荷。由于金属表面的电力线 必须垂直于表面,因此该电子在金属表面感生电荷的总 和必定等价于金属内部与该电子镜面对称处的一大小相 等的正电荷。
P
E0
E0


Wm

EC
Ws
Wm
EC
Ws Ef

Ef
EV
EV
反阻挡层
半导体物理
阻挡层
8
表面态对接触势垒的影响
理想肖特基势垒接触: qΦB = Wm − χ
金属与半导体接触是否形成接触势垒,取决于它们的功函 数大小。
同一种半导体与不同金属接触时,形成的势垒高度同金属 的功函数成正比。
实际金-半接触: 90%的金属和半导体接触形成势垒,与功函数关系不大。
2o Wm < Ws 时仍有肖特基势垒
半导体物理
肖特基势垒
Φ BN
=
EC
− EFs =
2 Eg 3
13
势垒区的电势分布
假设: (耗尽层近似) 空间电荷区载流子全耗尽;
d 2V dx 2
=
⎪⎧− ⎨ ⎪⎩
qN D
ε 0ε r
0
0≤ x≤d x>d
E( x) = − dV = qN D (x − d )

半导体物理 第七章 电荷转移器件 图文

半导体物理 第七章 电荷转移器件 图文
(图7-2b)。存储的电荷寻求更低的电势,因而当势阱移动时它们沿着 表面移动。 3. 注意在这种结构中需要3个电极,以便于电荷存储,并且使转移只沿着一 个方向。这三个电极看成是器件的一个级或单元,称为三相CCD。
国家级精品课程——半导体器件物理与实验
第七章 电荷转移器件
§7.1 电荷转移
❖ 小结:
体表面形成由电离受主构成的负的空间电荷区。空间电荷区为耗
尽层。由于不是处于热平衡状态,耗尽层不受热平衡时的最大厚
度的限制,而直接由栅压VG的大小来决定。这时表面势也不受形 成强反型层时ψs=2φf的限制,也直接由VG 的大小来决定。在深 耗尽状态,耗尽层厚度Xd>Xdm,表面势ψs>2φf ,所以称之为深 耗尽状态。
CTD的核心是MOS电容的有序阵列(arrays)加上输 入与输出部分。在栅电极加上时钟脉冲电压时,在 半导体表面就形成了能存储少数载流子的势阱。用 光或电注入的方法把代表信号的少数载流子注入势 阱中。通过时钟脉冲的有规律变化,使势阱的深度 发生相应的变化,从而使注入势阱中的少数载流子 在半导体表面内作定向运动,再通过对少数载流子 的收集和再生得到信号的输出。
国家级精品课程——半导体器件物理与实验
第七章 电荷转移器件
§7.1 电荷转移
二、电荷耦合器件——CCD
图7-2 三相CCD动作, p+扩散用来限制沟道 1. 若在图7-2a中,电极2偏置在10V,比它附近两个电极的偏置电压(5V)高,
这样就建立了用虚线描绘的势阱,电荷存储在这个电极下边。 2. 现在让电极3偏置在15V,在电极3下边于是就建立起一个更深的势阱
第七章 电荷转移器件
Charge-Transfer Devices—CTD

半导体物理第7章概要

半导体物理第7章概要

加反向电压时,势垒增高,从半导体到金属的电子数目 减少,金属到半导体的电子流占优势,形成一股半导体 到金属的反向电流。 由于金属中的电子要越过相当高的势垒才能到达半导体 中,因此反向电流是很小的。 金属一边的势垒不随外加电压变化,所以从金属到半导 体的电子流是恒定的。 当反向电压提高,使半导体到金属的电子流可以忽略不 计时,反向电流趋于饱和。 以上的讨论说明这样的阻挡层具有类似pn结的伏—安特 性,即有整流作用
功函数越大,电子越不容易离开金属。 金属的功函数约为几个电子伏特。 铯的功函数最低,为1.93eV 铂的最高.为5.36eV。
功函数的值与表面状况有关
金属功函数随原子序数的递增呈现周期性变化。
半导体功函数
半导体功函数
Ws E0 ( EF ) s 电子亲合能,它表示要使半导体导带底的电子逸 出体外所需要的最小能量。
1 * 2 E E c mn v 2 * dE mn vdv
带入上式,并利用 Ec E F n0 N c exp( ) k 0T
可得
* * 2 3 mn m nv 2 2 dn 4n0 ( ) v exp( )dv 2k 0T 2k 0T
7.2.2热电子发射理论
当n型阻挡层很薄,电子平均自由程远大于势垒 宽度。
起决定作用的是势垒高度而不是势垒宽度。
电流的计算归结为超越势垒的载流子数目。
由于越过势垒的电子数只占半导体总电子数很 少一部分,故半导体内的电子浓度可以视为常 数。 讨论非简并半导体的情况。
半导体单位体积能量在E~E+dE范围内的电子数
但绝大多数所处的能级都低于体外能级。要使电子从金 属中逸出,必须由外界给它以足够的能量

半导体物理_第七章_金属和半导体接触

半导体物理_第七章_金属和半导体接触
电子通过M-S接触时,能够不受势垒的阻挡,从一种材料输运到另一种 材料,即其正反偏置的电流输运特征没有差别。
2、如何实现欧姆接触?
总结
总结
总结
总结
总结
需修正:①镜像力;②隧道效应
总结
习题
习题
习题
Ehvhc6.62103470301100891.61019 1.78eV Ehvhc6.621034 40301100891.61019 3.10eV
实质上是半导体价带顶部附近的电子流向金属,填充金 属中EF以下的空能级,而在价带顶附近产生空穴。
加正向电压时,少数载流子电流与总电流值比称为少数 载流子的注入比,用 表示。对n型阻挡层而言:
7.3.2 欧姆接触
1、什么是欧姆接触?
欧姆接触应满足以下三点: 1、伏安特性近似为线性,且是对称的; 2、接触引入的电阻很小(不产生明显的附加阻抗); 3、不会使半导体内部的平衡载流子浓度发生显著改变。
空间电荷区 电子从体内到表面,势能增加,表面能带向上弯曲
2、WS >Wm 电子系统在热平衡状态时应有统一的费米能级
电子反阻挡层;低阻 ——欧姆接触
考虑价带的电子转移,留下更多的空穴,形成空间 电荷区。空穴从体内到表面,势能降低,能带向上 弯曲。
7.1.3 表面态对接触势垒的影响
金属和半导体接触前
7.2.2 热电子发射理论
1.热电子发射理论的适用范围:
——适用于薄阻挡层 ——势垒高度 >>k0T ——非简并半导体
lபைடு நூலகம் >> d
2.热电子发射理论的基本思想:
薄阻挡层,势垒高度起主要作用。 能够越过势垒的电子才对电流有贡献 ——计算超越势垒的载流子数目,从而求出电流密度。

半导体物理第七章金属和半导体的接触

半导体物理第七章金属和半导体的接触
半导体
半导体的导电性能介于金属和绝缘体 之间。其内部存在一个或多个能隙, 使得电子在特定条件下才能跃迁到导 带。常见的半导体材料有硅、锗等。
接触的物理意义
01
金属和半导体的接触在电子器件 中具有重要应用,如接触电阻、 欧姆接触等。
02
理解金属和半导体的接触性质有 助于优化电子器件的性能,如减 小接触电阻、提高器件稳定性等 。
03
肖特基结模型适用于描述金属 和p型半导体之间的接触。
06
金属和半导体的接触实验 研究
实验设备和方法
实验设备
高真空镀膜系统、电子显微镜、 霍尔效应测量仪等。
实验方法
制备金属薄膜,将其与半导体材 料进行接触,观察接触表面的形 貌、电子输运特性等。
实验结果分析
接触表面的形貌分析
通过电子显微镜观察接触表面的微观结构, 了解金属与半导体之间的相互作用。
详细描述
当金属与半导体相接触时,由于金属和半导体的功函数不同,会产生电子的转移。这种电子的转移会 导致在接触区域形成一个势垒,阻碍电子的流动,从而产生接触电阻。接触电阻的大小与金属和半导 体的性质、接触面的清洁度、温度等因素有关。
热导率
总结词
热导率是指材料传导热量的能力,金属 和半导体的热导率差异较大,这会影响 它们之间的热交换效率。
详细描述
欧姆接触的形成需要满足一定的条件,包括金属与半导体之间要有良好的化学相容性和冶金相容性,以及半导体 内部载流子浓度要足够高。欧姆接触在集成电路和电子器件中具有广泛应用。
隧道结
总结词
隧道结是指金属和半导体之间形成的 具有隧道传输特性的结,当外加电压 达到一定阈值时,电流可以通过隧道 效应穿过势垒。
2
这个接触势垒会影响金属和半导体之间的电流传 输和热传导,进而影响电子器件的性能。

半导体物理第七章总结复习_北邮分析

半导体物理第七章总结复习_北邮分析

第七章一、基本概念1.半导体功函数: 半导体的费米能级E F 与真空中静止电子的能量E 0的能量之差。

金属功函数:金属的费米能级E F 与真空中静止电子的能量E 0的能量之差2.电子亲和能: 要使半导体导带底的电子逸出体外所需的最小能量。

3. 金属-半导体功函数差o: (E F )s-(E F )m=Wm-Ws4. 半导体与金属平衡接触平衡电势差: q W W V sm D -=5.半导体表面空间电荷区 : 由于半导体中自由电荷密度的限制,正电荷分布在表面相当厚的一层表面层内,即空间电荷区。

表面空间电荷区=阻挡层=势垒层6.电子阻挡层:金属功函数大于N 型半导体功函数(Wm>Ws )的MS 接触中,电子从半导体表面逸出到金属,分布在金属表层,金属表面带负电。

半导体表面出现电离施主,分布在一定厚度表面层内,半导体表面带正电。

电场从半导体指向金属。

取半导体内电位为参考,从半导体内到表面,能带向上弯曲,即形成表面势垒,在势垒区,空间电荷主要有带正电的施主离子组成,电子浓度比体内小得多,因此是是一个高阻区域,称为阻挡层。

【电子从功函数小的地方流向功函数大的地方】7.电子反阻挡层:金属功函数小于N 型半导体功函数(Wm<Ws )的MS 接触,电子从金属流向半导体,半导体表面带负电,金属表面带正电,电场方向指向半导体。

从半导体内到表面,能带下弯曲,半导体表面电子浓度比体内高(N 型反阻挡层)。

8.半导体表面势垒(肖特基势垒)高度:s m s D W W qV qV -=-=9.表面势垒宽度:10.半导体表面势: 取半导体体内为参考电位,半导体表面的势能Vs 。

11 .表面态: 在半导体表面处的禁带中存在着表面态,对应的能级称为表面能级。

表面态一般分为施主型和受主型两种。

若能级被电子占据时呈中性,施放电子后呈正电性,成为施主型表面态;若能级空着的时候为电中性,接收电子后带负电,则成为受主型表面态。

《半导体物理》胡礼中第七章 半导体的接触现象

《半导体物理》胡礼中第七章 半导体的接触现象

第七章 半导体的接触现象半导体的接触现象主要有半导体与金属之间的接触(肖特基结和欧姆接触)、半导体与半导体之间的接触(同质结和异质结)以及半导体与介质材料之间的接触。

这一章主要介绍前两种接触现象。

§7-1 外电场中的半导体无外加电场时,均匀掺杂半导体中的空间电荷处处等于零。

当施加外电场时,在半导体中引起载流子的重新分布,从而产生密度为)(r ρ的空间电荷和强度为)(r ∈的电场。

载流子的重新分布只发生在半导体的表面层附近,空间电荷将对外电场起屏蔽作用。

图7-1a 表示对n 型半导体施加外电场时的电路图。

在图中所示情况下,半导体表面层的电子密度增大而空穴密度减小(见图7-1b 、c ),从而产生负空间电荷。

这些空间电荷随着离开样品表面的距离的增加而减少。

空间电荷形成空间电场s ∈,在半导体表面s ∈达到最大值0s ∈(见图7-1d )。

空间电场的存在将改变表面层电子的电势和势能(见图7-1e 、f ),从而改变样品表面层的能带状况(见图7-1g )。

电子势能的变化量为)()(r eV r U -=,其中)(r V 是空间电场(也称表面层电场)的静电势。

此时样品的能带变化为)()(r U E r E c c += (7-1a ))(r E v =)(r U E v + (7-1b )本征费米能级变化为 )()(r U E r E i i += (7-2a )杂质能级变化为 )()(r U E r E d d += (7-2b )由于半导体处于热平衡状态,费米能级处处相等。

因此费米能级与能带之间的距离在表面层附近发生变化。

无外电场时这个距离为(f c E E -)和(v f E E -) (7-3)而外场存在时则为[]f c E r U E -+)( 和-f E [)(r U E v +] (7-4)比较(7-3)和(7-4)式则知,如果E c 和E f 之间的距离减少)(r U ,E f 与E v 之间的距离则增加)(r U 。

半导体物理学第七章

半导体物理学第七章

J = J m → s + J s →m
qφns qV = A T exp(− )[exp( ) − 1] k0T k0T
∗ 2
qV = J sT [exp( ) − 1] k0T
与扩散理论得到的J-V形式上是一样的,所不同的是JsT与外加电压无 关,却是一个更强烈依赖于温度的函数。
3、镜像力和隧道效应的影响
接触电阻定义为零偏压下的微分电阻,即
∂I Rs = ∂V V =0
−1
下面估算一下以隧道电流为主时的接触电阻。讨论金属和n型半导体接触的 势垒贯穿问题。将导带底选为电势能的零点。
qN D V ( x) = − ( x − d0 )2 2ε r ε 0
电子的势垒为:
q2 ND −qV ( x) = ( x − d0 )2 2ε r ε 0
2
半导体内电场为零,因而
E ( xd ) = − dV dx
x = xd
=0
金属费米能级除以-q作为电势零点,则有 势垒区中
V (0) = −φns
dV ( x) qN D E ( xd ) = − = ( x − xd ) dx ε rε 0 1 2 V ( x) = ( xxd − x ) − φns ε rε 0 2 qN D
2、接触电势差
设想有一块金属和n型半导体, 它们有共同的真空静止能级。 假定
Wm > Ws
接触前,未平衡的能级
平衡状态的能级
q(Vs' − Vm ) = Wm − Ws Ws − Wm Vms = Vm − V = q
' s
接触电势差
紧密接触
忽略间隙 当 Vms 很小时,接触电势差绝大部分 落在空间电荷区。 金属一边的势垒高度是

半导体物理学第七章知识点

半导体物理学第七章知识点

第7章 金属-半导体接触本章讨论与pn 结特性有很多相似之处的金-半肖特基势垒接触。

金-半肖特基势垒接触的整流效应是半导体物理效应的早期发现之一:§金属半导体接触及其能级图一、金属和半导体的功函数1、金属的功函数在绝对零度,金属中的电子填满了费米能级E F 以下的所有能级,而高于E F 的能级则全部是空着的。

在一定温度下,只有E F 附近的少数电子受到热激发,由低于E F 的能级跃迁到高于E F 的能级上去,但仍不能脱离金属而逸出体外。

要使电子从金属中逸出,必须由外界给它以足够的能量。

所以,金属中的电子是在一个势阱中运动,如图7-1所示。

若用E 0表示真空静止电子的能量,金属的功函数定义为E 0与E F 能量之差,用W m 表示: FM M E E W -=0它表示从金属向真空发射一个电子所需要的最小能量。

W M 越大,电子越不容易离开金属。

金属的功函数一般为几个电子伏特,其中,铯的最低,为;铂的最高,为 eV 。

图7-2给出了表面清洁的金属的功函数。

图中可见,功函数随着原子序数的递增而周期性变化。

2、半导体的功函数和金属类似,也把E 0与费米能级之差称为半导体的功函数,用W S 表示,即FS S E E W -=0因为E FS 随杂质浓度变化,所以W S 是杂质浓度的函数。

与金属不同,半导体中费米能级一般并不是电子的最高能量状态。

如图7-3所示,非简并半导体中电子的最高能级是导带底E C 。

E C 与E 0之间的能量间隔C E E -=0χ被称为电子亲合能。

它表示要使半导体导带底的电子逸出体外所图7-1 金属中的电子势阱图7-2 一些元素的功函数及其原子序数图7-3 半导体功函数和电子亲合能需要的最小能量。

利用电子亲合能,半导体的功函数又可表示为)(FS C S E E W -+=χ式中,E n =E C -E FS 是费米能级与导带底的能量差。

表7-1 几种半导体的电子亲和能及其不同掺杂浓度下的功函数计算值 (eV)二、有功函数差的金属与半导体的接触把一块金属和一块半导体放在同一个真空环境之中,二者就具有共同的真空静止电子能级,二者的功函数差就是它们的费米能级之差,即W M -W S =E FS -E FM 。

半导体物理学第七章知识点

半导体物理学第七章知识点

第7章 金属-半导体接触本章讨论与pn 结特性有很多相似之处得金-半肖特基势垒接触。

金-半肖特基势垒接触得整流效应就是半导体物理效应得早期发现之一:§7、1金属半导体接触及其能级图一、金属与半导体得功函数1、金属得功函数在绝对零度,金属中得电子填满了费米能级E F 以下得所有能级,而高于E F 得能级则全部就是空着得。

在一定温度下,只有E F 附近得少数电子受到热激发,由低于E F 得能级跃迁到高于E F 得能级上去,但仍不能脱离金属而逸出体外。

要使电子从金属中逸出,必须由外界给它以足够得能量。

所以,金属中得电子就是在一个势阱中运动,如图71所示。

若用E 0表示真空静止电子得能量,金属得功函数定义为E 0与E F 能量之差,用W m 表示:它表示从金属向真空发射一个电子所需要得最小能量。

W M 越大,电子越不容易离开金属。

金属得功函数一般为几个电子伏特,其中,铯得最低,为1、93eV;铂得最高,为5、36 eV 。

图72给出了表面清洁得金属得功函数。

图中可见,功函数随着原子序数得递增而周期性变化。

2、半导体得功函数与金属类似,也把E 0与费米能级之差称为半导体得功函数,用W S 表示,即因为E FS 随杂质浓度变化,所以W S 就是杂质浓度得函数。

与金属不同,半导体中费米能级一般并不就是电子得最高能量状态。

如图73所示,非简并半导体中电子得最高能级就是导带底E C 。

E C 与E 0之间得能量间隔被称为电子亲合能。

它表示要使半导体导带底得电子逸出体外所需要得最小能量。

利用电子亲合能,半导体得功函数又可表示为式中,E n =E C -E FS 就是费米能级与导带底得能量差。

表71 几种半导体得电子亲与能及其不同掺杂浓度下得功函数计算值 材料 (eV) W S (eV)图71 金属中得电子势阱图7-2 一些元素得功函数及其原子序数 图73 半导体功函数与电子亲合能二、有功函数差得金属与半导体得接触把一块金属与一块半导体放在同一个真空环境之中,二者就具有共同得真空静止电子能级,二者得功函数差就就是它们得费米能级之差,即W M-W S =E FS-E FM。

半导体物理学第七章知识点

半导体物理学第七章知识点

第7章 金属-半导体接触本章讨论与pn 结特性有很多相似之处的金-半肖特基势垒接触。

金-半肖特基势垒接触的整流效应是半导体物理效应的早期发现之一:§金属半导体接触及其能级图一、金属和半导体的功函数1、金属的功函数在绝对零度,金属中的电子填满了费米能级E 以下的所有能级,而高于E 的能级则全部是空着的。

在一定温度下,只有E 附近的少数电子受到热激发,由低于E 的能级跃迁到高于E 的能级上去,但仍不能脱离金属而逸出体外。

要使电子从金属中逸出,必须由外界给它以足够的能量。

所以,金属中的电子是在一个势阱中运动,如图7-1所示。

若用E 表示真空静止电子的能量,金属的功函数定义为E 与E 能量之差,用W 表示:FM M E E W -=0它表示从金属向真空发射一个电子所需要的最小能量。

W M 越大,电子越不容易离开金属。

金属的功函数一般为几个电子伏特,其中,铯的最低,为;铂的最高,为 eV 。

图7-2给出了表面清洁的金属的功函数。

图中可见,功函数随着原子序数的递增而周期性变化。

2、半导体的功函数和金属类似,也把E 与费米能级之差称为半导体的功函数,用W 表示,即FS S E E W -=0因为E FS 随杂质浓度变化,所以W 是杂质浓度的函数。

与金属不同,半导体中费米能级一般并不是电子的最高能量状态。

如图7-3所示,非简并半导体中电子的最高能级是导带底E 。

E 与E 之间的能量间隔C E E -=0χ被称为电子亲合能。

它表示要使半导体导带底的电子逸出体外所需要的最小能量。

利用电子亲合能,半导体的功函数又可表示为)(FS C S E E W -+=χ式中,E n =E C -E FS 是费米能级与导带底的能量差。

图7-1 金属中的电子图7-2 一些元素的功函数及其原子序数图7-3 半导体功函数和电子亲表7-1 几种半导体的电子亲和能及其不同掺杂浓度下的功函数计算值(eV)二、有功函数差的金属与半导体的接触把一块金属和一块半导体放在同一个真空环境之中,二者就具有共同的真空静止电子能级,二者的功函数差就是它们的费米能级之差,即W -W =E FS -E FM 。

半导体物理学第七章知识点

半导体物理学第七章知识点

第7章 金属-半导体接触本章讨论与pn 结特性有很多相似之处的金-半肖特基势垒接触。

金-半肖特基势垒接触的整流效应是半导体物理效应的早期发现之一:§7.1金属半导体接触及其能级图一、金属和半导体的功函数1、金属的功函数在绝对零度,金属中的电子填满了费米能级E F 以下的所有能级,而高于E F 的能级则全部是空着的。

在一定温度下,只有E F 附近的少数电子受到热激发,由低于E F 的能级跃迁到高于E F 的能级上去,但仍不能脱离金属而逸出体外。

要使电子从金属中逸出,必须由外界给它以足够的能量。

所以,金属中的电子是在一个势阱中运动,如图7-1所示。

若用E 0表示真空静止电子的能量,金属的功函数定义为E 0与E F 能量之差,用W m 表示:FM M E E W -=0它表示从金属向真空发射一个电子所需要的最小能量。

W M 越大,电子越不容易离开金属。

金属的功函数一般为几个电子伏特,其中,铯的最低,为1.93eV ;铂的最高,为5.36 eV 。

图7-2给出了表面清洁的金属的功函数。

图中可见,功函数随着原子序数的递增而周期性变化。

2、半导体的功函数和金属类似,也把E 0与费米能级之差称为半导体的功函数,用W S 表示,即FS S E E W -=0因为E FS 随杂质浓度变化,所以W S 是杂质浓度的函数。

与金属不同,半导体中费米能级一般并不是电子的最高能量状态。

如图7-3所示,非简并半导体中电子的最高能级是导带底E C 。

E C 与E 0之间的能量间隔C E E -=0χ被称为电子亲合能。

它表示要使半导体导带底的电子逸出体外所需要的最小能量。

利用电子亲合能,半导体的功函数又可表示为)(FS C S E E W -+=χ式中,E n =E C -E FS 是费米能级与导带底的能量差。

图7-1 金属中的电子势阱图7-2 一些元素的功函数及其原子序数图7-3 半导体功函数和电子亲合能表7-1 几种半导体的电子亲和能及其不同掺杂浓度下的功函数计算值二、有功函数差的金属与半导体的接触把一块金属和一块半导体放在同一个真空环境之中,二者就具有共同的真空静止电子能级,二者的功函数差就是它们的费米能级之差,即W M -W S =E FS -E FM 。

31_半导体物理学(第四版)第七章(教材)

31_半导体物理学(第四版)第七章(教材)

–若
,金属和n型半导体接触可形成反阻挡层;

时,金属和p型半导体接触也能形成反阻挡层,
反阻挡层没有整流作用,可实现欧姆接触
– 实际生产中利用隧道效应的原理,把半导体一侧重掺杂 形成金属—n+n或金属—p+p结构,从而得到理想的欧姆 接触
27
28
29
30
31
pn结一般为0.7V
7.3 少数载流子的注入和欧姆接触
23
24
欧姆接触应满足一下三点: 1.伏安特性近似为线性,且是对称的 2.接触引入的电阻很小 3. 在接触区附近,载流子浓度等于热 平衡的值,即,没有少子注入
25
欧姆接触
• 欧姆接触
– 不产生明显的附加阻抗,而且不会使半导体内部的平衡 载流子浓度发生显著的改变,为非整流接触
10
表面态密度极高,半导体和 金属接触时,只转移表面态 中的电子就可以使整个系 统达到平衡. 即接触前后,半导体一侧的 空间电荷不发生变化,表面 势垒不变,称为钉扎效应或 锁定效应
11
12
7.2 M—S接触的整流理论
13
14
15
16
17
极管的比较
第七章金属和半导体的接触
7.1 M—S接触的势垒模型 7.2 M—S接触的整流理论 7.3 少数载流子的注入和欧姆接触
本章重点: 势垒模型, 整流理论的概念 欧姆接触的性质及特点
1
为什么研究金属与半导体接触? 什么是M-S接触?
2
7.1 M—S接触的势垒模型
3
E0:真空能级
4
5
6
7
8
9
• 相同点
– 单向导电性
• 不同点
– 正向导通时,pn结正向电流由少数载流子的扩散运动 形成,而肖特基势垒二极管的正向电流由半导体的多数 载流子发生漂移运动直接进入金属形成,因此后者比前 者具有更好的高频特性

半导体物理学——半导体与金属的接触

半导体物理学——半导体与金属的接触
n0 = Nce k0T
( ) NC =
2mn*k0T 3/2
4π 3/2h3
23
半导体物理学 黄整
第七章 金属和半导体的接触
或者
dn′
=
n0
⎛ ⎜ ⎝
mn*
2π k0T
3
⎞2 ⎟ ⎠

mn*
(
vx2
+v
2 y
+vz2
)
e 2k0T dvxdvydvz
换一种思路,考虑动量空间
dn =
An e dp dp dp −
第七章 金属和半导体的接触
达到界面的电子要越过势垒,必须满足
1 2
mn*vx2

−q
⎡⎣(Vs
) 0
+V
⎤⎦
所需要的x方向的最小速度
1
1 2
mn*vx20
=
−q
⎡⎣(Vs
) 0
+V
⎤⎦
vx0
=
⎧⎪⎨− ⎪⎩
2q
⎡⎣(Vs
) 0
mn*
+V
⎤⎦
⎫⎪ ⎬
⎭⎪
2
规定电流的正方向是从金属到半导体,则从
2qN
D
ε
VD
rε0
−V
⎫2 ⎬ ⎭
− qVD
e k0T
⎛ qV ⎝⎜⎜ e k0T
⎞ −1⎠⎟⎟
金属半导体接 触伏安特性
21
半导体物理学 黄整
第七章 金属和半导体的接触
热电子发射理论
当n型阻挡层很薄,电子平均自由程远大于势 垒宽度。起作用的是势垒高度而不是势垒宽 度。电流的计算归结为超越势垒的载流子数 目。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
En Ec ( EF )s
亲和能χ是固定 的,功函数与掺 杂有关。
其中
7.1.2 接触电势差
金属与 n 型半导体接触为例(假设 Wm>Ws ) , 假 设有共同的真空静止电子能级。 接触前

接触前: ( EF ) s ( EF ) m

金属和半导体间距离D远大于原子间距,电势 差主要落在界面间隙中。
7.1.1 金属和半导体的功函数

半导体功函数 Ws E0 EF s
电子亲和能 (指将一个电子从导带
底转移到真空能级所需的能量。它因 材料的种类而异,决定于材料本身的 性质,和其它外界因素无关)
E0 Ec

Ws [ Ec ( EF ) s ] En 对半导体,电子

平衡时,空穴的扩散运动和由于内电场产生的漂 移运动相等,净电流为零。
加正压时,势垒降低,除了前面所提到的电子形 成的电子流以外,空穴的扩散运动占优,形成自金 属向半导体内部的空穴流,形成的电流与电子电流 方向一致,因此总的正向电流包含电子流和少数载 流子空穴流。 空穴电流大小,取决于阻挡层的空穴浓度和空穴 进入半导体内扩散的效率。
电场
Ws Wm Vms Vs q
VS是半导体表面与内部之间存 在的电势差,即为表面势。
半导体表面 出现空间电 荷区

若D小到可以与原子间距相比较,电势差全部落在半 导体表面的空间电荷区内。
Ws Wm Vs VD q
电场 VS<0
(一) 金属与n型半导体接触的情形
1. n型(或电子)阻挡层的形成 (Wm Ws )

平衡时,如果接触面处有
[ EF Ev (0)] ( Ec EF )
势垒中空穴和电子所处的 情况几乎完全相同,只是空 穴的势垒顶在阻挡层的内边 界。
此时若有外加电压,空穴电流的贡 献就很重要了。

加正电压时,势垒两 边界处的电子浓度将 保持平衡值,而空穴 先在阻挡层内界形成 积累,然后再依靠扩 散运动继续进入半导 体内部。

存在表面态时,当与金属接触 (仍假设金属功函数大的情况), 电子会由半导体流向金属,但电 子不是来自半导体体内,而是由 受主型表面态供给。若表面态积 累的负电荷足够多时,平衡时, 半导体表面的正电荷等于表面态 上剩余的负电荷与金属表面负电 荷之和,半导体表面势垒高度几 乎不变。
因此,当半导体的表面态密度很高时,可以屏蔽金 属接触的影响,使半导体内的势垒高度和金属的功 函数几乎无关,而由半导体表面性质决定。
qV J J sT [exp( ) 1] k0T
J sT
q ns A T exp( ) k0T
* 2
* 2 4 qm * n k0 A h3
其中理查逊常数
Ge、Si、GaAs有较高的载流子迁移率,有较大 的平均自由程,因此在室温下主要是多数载流子的 热电子发射。

两种理论结果表示的阻挡层电流与外加电压变 化关系基本一致,体现了电导非对称性——正 向电压,电流随电压指数增加;反向电压,电 流基本不随外加电压而变化
qns Wm
Ws Wm
(三) 总结:n型与p型阻挡层的形成条件
n型
p型
Wm Ws
Wm Ws
阻挡层
反阻挡层
反阻挡层
阻挡层
7.1.3 表面态对接触电势的影响

从前面的推导可以看出,金属一侧的势垒高度
应当随不同金属而变化
qns Wm
实验表明:不同金属的功函数虽然相差很大,但与 半导体接触时形成的势垒高度却相差很小。 原因:半导体表面存在表面态。
2. n型(或电子)反阻挡层的形成 (Wm Ws )
(二) 金属与p型半导体接触的情形
该情形下,形成阻挡层或反阻挡层的条件正好与n型的相反:
1. p型(或空穴)反阻挡层的形成 (Wm Ws )
qns Wm qV W W D m s
2. p型(或空穴)阻挡层的形成 (Wm Ws )
7.3 少数载流子的注入和欧姆接触 7.3.1 少数载流子的注入

n 型阻挡层,体内电子浓度为 n0,接触面处的电子浓度是
qVD n(0) n0 exp( ) k 0T
电子的阻挡层就是空穴积累层。
在势垒区,空穴的浓度在表面处最 大。体内空穴浓度为 p0,则表面浓 度为 qVD p(0) p0 exp( ) k 0T

金属功函数 (表示一个起始能量等于费米能级
的电子,由金属内部逸出到真空中所需的最小能 量。)
Wm E0 ( EF ) m
金属中的电子虽然能在金属中自由运动,但绝大多数所处
的能级都低于体外能级。要使电子从金属中逸出,必须由 外界给它以足够的能量。所以,金属内部的电子是在一个 势阱中运动。
金属中的电子势阱
* 2
7.3.2

欧姆接触
金属与半导体形成的非整流接触,这种接触不 产生明显的附加阻抗,而且不会使半导体内部 的平衡载流子浓度发生显著的变化。理想欧姆 接触的接触电阻与半导体样品或器件相比应当 很小。
实现 反阻挡层没有整流作用,选用合适的金属 材料,可能得到欧姆接触。但由于常见半导体 材料一般都有很高的表面态密度,因此很难用 选择金属材料的办法来获得欧姆接触。
7.2 金属半导体接触整流理论 7.2.1 金属半导体接触整流特性
电导的非对称性(整流特性) 在某一方向电压作用下的电导与反方向电压作用下 的电导相差悬殊的器件特性 首要条件:金属-半导体接触时,必须形成半导体表 面的阻挡层(形成多子的势垒)


(1)V=0 半导体接触表面能带向上弯,形成n型阻 挡层,阻挡层由电离施主组成,载流子浓度较 低。当阻挡层无外加电压作用,从半导体流向 金属的电子与从金属流向半导体的电子数量相 等,处于动态平衡,因而没有净的电子流流过 阻挡层。
JSD与外加电压有关;JST与外加电压无关,强烈
依赖温度T。当温度一定,JST随反向电压增加 处于饱和状态,称之为反向饱和电流。
隧道效应的影响 微观粒子要越过一个势垒时,能量超过势垒高 度的微粒子,可以越过势垒,而能量低于势垒高 度的粒子也有一定的概率穿过势垒,其他的则被 反射。这就是所谓微粒子的隧道效应。
内电场方向

(2)V>0
若金属接电源正极,n型半导体接电源负极, 则外加电压主要降落在阻挡层上,外电压方向 由金属指向半导体,外加电压方向和接触表面 势方向(半导体表面空间电荷区内电场)相反, 使势垒高度下降,电子顺利的流过降低了的势 垒。
从半导体流向金属的电子数超过从金属流向半导体 的电子数,形成从金属流向半导体的正向电流。
金属功函数随原子序数的递增呈现周期性变化,功 函数的大小显示出金属中电子离开金属表面成为自由 电子的难以程度,功函数大的金属稳定性也较强。
关于功函数的几点说明:
① 对金属而言, 功函数Wm可看作是固定的. 功函 数Wm标志了电子在金属中被束缚的程度. 对半导体而言, 功函数与掺杂有关. ② 功函数与表面有关. ③ 功函数是一个统计物理量
内电场方向
外电场方向
7.2.2 金属半导体整流接触电流电压方程

⑴扩散理论 当势垒宽度大于电子的平均自由程,电子通过 势垒要经过多次碰撞,这样的阻挡层称为厚阻 挡层。扩散理论适用于厚阻挡层的理论。
针对n型阻挡层,电流J与外加电压V的关系
qV J J sD [exp( ) 1] k 0T

表面态分为施主型和受主型。 表面能级在半导体表面禁带 中呈现一定分布,表面处存 在一个靠近价带顶的 EFS0 能 级。
电子正好填满 EFS0 以下所有
的表面态时,表面呈电中性, 若 EFS0 以下表面态为空,表 面带正电,呈现施主型; EFS0 以上表面态被电子填充, 表面带负电,呈现受主型。 对于大多数半导体, EFS0 越 为禁带宽度的三分之一。
目前,实际生产中,主要利用隧道效应的原理在半导 体上制造欧姆接触。

重掺杂的半导体与金属接触时,则势垒宽度变得 很薄,电子通过隧道效应贯穿势垒产生大隧道电 流,甚至超过热电子发射电流而成为电流的主要 成分,即可形成接近理想的欧姆接触。
常常是在n型或p型半导体上制作一层重掺杂区域 + + 后再与金属接触,形成金属-n 或金属-p型结构。

综上,在金属和 n 型半导体的整流接触上加正向 电压时,就有空穴从金属流向半导体,这种现象 称为少数载流子的注入。
加正向电压时,少数载流子电流与总电流值比称为
少数载流子的注入比,用γ表示。对n型阻挡层而言.
J P DP J p / J J P /( J P J n ) J n LP qni2 qnS N D A T exp k T 0
J sD 2qN D VD V r 0
1/ 2
qVD exp( ) k0T

当V>0时,若qV>>k0T,则
J J sD

qV exp( ) k 0T
当V<0时,若|qV|>>k0T,则
J J sD
该理论是用于迁移率较小,平均自由程较短的半 导体,如氧化亚铜。
内电场方向 外电场方向

(3)V<0
当金属接负极,半导体接正极,外加电压方向和 接触表面势方向(空间电荷区的内电场)相同,势垒 高度上升,从半导体流向金属的电子数减少,而金属 流向半导体的电子数占优势,形成从半导体流到金属 的反向电流。 金属中的电子要越过相当高的势垒才能到达半导 体,因此反向电流是很小的。由于金属一侧的势垒不 随外加电压变化,从金属到半导体的电子流是恒定的, 所以当反向电压增大时,反向电流将趋于饱和。 注意:正向电流都是相应于多子由半导体到金属 形成的电流。
相关文档
最新文档