高速铁路及无缝线路
无缝线路知识
无缝线路一、无缝线路㈠概述:为满足高稳定性的需求,高速铁路采用无缝线路。
无缝线路结构有两种主要型式:一种是日本铁路所采用的,在单元轨条之间设置一组正反向伸缩调节器;另一种是法国、德国等欧洲铁路所采用的超长无缝线路。
我国高速铁路无缝线路结构以超长无缝线路作为主要结构型式,但在长大桥上铺设无缝线路,为减少桥梁和轨道所受纵向力,宜设置伸缩调节器。
㈡类型:1、根据应力方式的不同:①温度应力式:是由一根焊接长钢轨及其两端2-4根标准轨组成,并采用普通接头的形式。
②放散温度应力式:分为定期放散式和自动放散式无缝线路。
2、根据长度的不同:①普通无缝线路:设缓冲区而使焊接长钢轨的长度限制在1-2km 以内的无缝线路。
②区间无缝线路:使焊接长钢轨的长度由普通无缝线路的1-2km 延长至两个相邻车站站端道岔之间长度的无缝线路。
③跨区间无缝线路:使用无缝道岔将焊接长钢轨穿越车站,从而使一条焊接长钢轨将多个区间无缝线路连接成一体的无缝线路。
㈢无缝线路的基本原理无缝线路铺设后,随着轨温的变化,长钢轨由于热胀冷缩不能实现,因而在其内部产生应力,称为温度应力,特别是在轨温很高或很低时,钢轨内将产生巨大的温度应力。
对整个钢轨断面而言,由轨温变化而产生的力,相应地称为温度力。
钢轨的自由伸缩量:一根不受任何限制可以自由伸缩的钢轨,当轨温变化时,其自由伸缩量可按下式计算:α∆l〃L〃t∆=式中:l∆——钢轨的自由伸缩量(mm);α——钢轨的线膨胀系数,α=0.0118mm/m℃,即每米长的钢轨,当轨温变化1℃时,钢轨将伸缩0.0118mm;L——钢轨长度(m);t∆——轨温变化幅度(℃)。
【例3-1】若钢轨长度为 1000m,轨温变化为 20℃,则其自由伸缩量为:l =0.0118〓1000〓20=236(mm)。
㈣位移观测桩:㈤无缝线路验收标准1、管内无砟轨道无缝线路锁定轨温是25℃;允许〒5℃;2、相邻单元轨节的锁定轨温不大于5℃;3、同一单元轨节左右股锁定轨温不大于3℃;4、同一区间内单元轨节的最高与最低实际锁定轨温之差不大于10℃;5、加焊钢轨长度:正线不小于24m,道岔侧股及到发线不得小于12m;6、线路锁定后,位移观测桩最大位移量不大于10mm或者锁定轨温变化不大于5℃。
高速铁路无缝线路技术—无缝线路基本知识
温度应力式无缝线路
无缝线路上的焊接长钢轨被充分锁定,在温度变化的情况下,
其两端长度各不足100 m的范围内少有伸缩外,中间部分不
能伸缩,因而在钢轨内夏季产生温度压力,冬季产生温度拉
力。
放散应力式
自动放散:尖轨伸缩调节器(桥上) 定期放散:一年两次放散应力(寒冷地区)
适用于年轨温差较大的地区,或温度力较大的特殊地段。
伸缩调节器
(图片来源于网络)
1.4 无缝线路的类型
普通无缝线路
பைடு நூலகம்
缓冲区2~4根
长轨条2~3 km
缓冲区2~4根
1.4 无缝线路的类型
(2)按长轨条长度分: ①普通无缝线路(温度应力式): L=2 000~3 000 m ②全区间无缝线路:L≤区间长度 ③跨区间无缝线路:L>区间长度并焊连无缝道岔
(3)按长轨条铺设位置分: ①路基无缝线路; ②桥上无缝线路; ③岔区无缝线路
跨区间无缝线路是在完善了长大桥上无缝线路、高强度胶结绝缘接头、无缝道岔等多项技术 以后,把闭塞区间的绝缘接头以及几个区间(包括道岔、桥梁、隧道等)都焊接(或胶结、冻结) 在一起,取消了缓冲区的无缝线路。
我国无缝线路发展从上世纪50年代开始,经历了五个阶段: 无缝线路技术储备阶段(1950~1970):焊接、长轨运输、设计理论 突破四大铺设禁区阶段(1970~1990) :长大桥、大坡度、小半径、寒冷地区 跨区间无缝线路试铺阶段(1990~2000) :无缝道岔、胶结绝缘接头 新线一次铺设跨区间无缝线路阶段(2000~2005):秦沈客运专线 全面推广跨区间无缝线路阶段(2005~):高速及新建铁路、长定尺钢轨
无缝线路是二十世纪轨道结构进步的标志,是与高速重载相适应的轨道结构,是轨道技 术的发展方向。
高速铁路无缝线路铺设技术课件 (一)
高速铁路无缝线路铺设技术课件 (一)高速铁路无缝线路铺设技术课件
一、无缝线路概念
无缝线路是指连续段长度达到100米或更长的铁路钢轨、钢轨支座、钢轨固定通道等构成的线路,其长度不需要进行拼接,呈现出一体化的铺设状态,达到无缝连接的效果。
二、无缝线路铺设技术
1.拼缝焊接技术
拼缝焊接技术是将两条标准长度的轨枕进行中心拼接,再用焊接工艺进行连接的技术。
通过该技术,可使两段轨枕之间的伸缩量减少,使余弦曲线等工艺曲线更加平滑,提高了线路的平顺性。
2.无缝化接头技术
无缝化接头技术是将钢轨表面进行加工,形成设计尺寸的锯齿形,再通过一定的装置扭接焊接成整块钢轨的技术。
该技术可有效避免钢轨的接头出现脱落、裂纹等情况,提高线路运行安全。
3.无缝槽道技术
无缝槽道技术将两个相邻的钢筋混凝土箱架通过倒角、割口等加工产生的配合型式,用小型铆钉或钢丝绳固定在一起,达到无缝连接的效果。
该技术在保证线路耐久稳定性的同时,还能提高铁路线路行车平
顺性和减震能力。
三、无缝线路铺设的优势
1.提高了线路的稳定性和耐久性,减少了线路的维修成本。
2.尽可能地避免了因钢轨连接部位出现问题而引发的列车行驶不稳定
的状态。
3.提高了线路的平顺性和舒适度,并且降低了行车噪声。
四、前景展望
高速铁路无缝线路铺设技术的应用,不仅能够提高铁路线路的稳定性
和耐久性,降低维修成本,还能提高高速铁路的行车平顺性和舒适度。
未来,有必要进一步提升相关技术,推动技术创新,进一步提高高速
铁路的服务品质和安全性。
《铁道线路》 概述及无缝线路基本原理
第四章 无缝线路
二、锁定轨温 无缝线路的锁定轨温,是指钢轨在无温度力状 态时的钢轨温度,是我国工务工程界对零应力轨温 的一种习惯叫法。通常是以钢轨两端正常就位时的 钢轨平均温度作为锁定轨温。
第二节 无缝线路的基本原理
第四章 无缝线路
轨温变化幅度( △t ),是指计算钢轨温度应 力时的实测轨温与锁定轨温之差,即:
影响行车的平顺和旅客的舒适度,加速钢轨和机
车车辆的磨耗和伤损,降低了使用寿命,并增加
了养护维修费用。
第一节 概述
第一节 概述
第一节 概述
第四章 无缝线路
无缝线路是由多根长钢轨在工地焊接成长轨 条后铺设而成的线路。由焊轨厂焊接而成的较长 的钢轨称为焊接长钢轨,简称长钢轨。首先在焊 轨厂用接触焊或气压焊把未经钻眼与淬火的25m 标准轨焊接成250~500m的长钢轨,然后用专用的 长轨运输列车运至线路铺设地点,再用小型气压 焊焊接成1000~2000m或设计要求长度的长轨条, 最后按轨道结构设计要求铺设到线路上。
钢轨受力情况,无缝线路分为温度应力式和
放散温度应力式。
1、温度应力式 温度应力式无缝线路是按照设计轨温将长钢轨 锁定,使钢轨因温度变化而产生的温度力不致影响 轨道的强度和稳定。温度应力式无缝线路铺设锁定 后,当轨温发生变化时,长轨条两端约100m范围 内的伸缩区有正常的伸缩,其余为固定区,不因轨 温变化而伸缩,因而在钢轨内部产生随温度变化而 变化的温度力,其值随轨温变化而异。 第一节 概述
第二节 无缝线路的基本原理
第四章 无缝线路
二、温度应力与温度力 钢轨铺设到线路上被锁定后,由于受到接头夹 板和扣件的限制,不能随轨温变化而自由伸缩,在 钢轨内将产生温度应力。 根据虎克定律,钢轨内的温度应力值为:
铁路工程铺轨及无缝线路方案
铁路工程铺轨及无缝线路方案1.无砟轨道长轨铺设正线无砟轨道地段配备WZ500 长轨铺轨机组采用拖拉法施工;有砟轨道采用单枕法铺设。
无砟地段无缝线路采用拖拉法施工,在铺轨基地将500m长钢轨装车加固后,通过长钢轨运输车运送至铺设现场,按照施工准备→长钢轨运输→长轨推送入槽→单元轨节焊接→应力放散及无缝线路锁定→轨道精调→钢轨预打磨→轨道检测及验收的作业流程组织施工。
采用拖拉法铺设时,无砟轨道线路利用铺轨机、支架落轨小车配合,长轨直接落槽,利用调高垫板调节轨道的高低,利用轨距挡板及轨距块调节线路轨距及方向。
线路达到初期稳定后进行单元轨焊接、应力放散,随后进行线路锁定、线路精调、轨道打磨等工序,2无缝线路施工无缝线路施工拟投入2台移动式闪光焊机,百米轨在芜湖焊轨场焊接后存放在黄山北铺轨基地,待长轨铺设后,上移动式闪光焊机,将500m长钢轨焊联长1.5km-2km的单元轨节,利用长轨拉伸器进行应力放散,锁定,在联调联试前进行全线钢轨预打磨,完成无缝线路施工。
3站线轨道工程车站到发线、联络线及动车走行线等一次铺设无缝线路,其余站线为有缝线路;站线有砟道床地段铺轨均采用人工铺设,施工中底砟和面砟采用汽车运输,底砟全部上完,面砟预上部分,用机械摊铺,整平并压实,轨料采用人工配合汽车倒运至相应位置,钢筋混凝土枕用锚固架现场正锚,人工将轨枕按设计散布,粗方就位并散轨底垫板,人工配轨、上轨,联接接头配件,画轨枕间距,在钢轨腰部用白铅油打点,细方轨枕,散扣件,拧紧扣件,按线路中线拨正轨节,并检查铺设质量。
站线无砟道床地段铺轨利用机械铺设,采用“拖拉法”进行施工。
站线有砟道岔采用人工提前预铺的方法铺设,利用轨道车将岔料运至施工现场,人工配合吊车按设计位置整组拼装就位。
4长枕埋入式无砟道岔施工方案无砟高速道岔均在道岔厂内预组装验收合格后,拆成道岔组件,火车运输至新建车站临近的既有火车站,再通过汽车运输至铺设现场,采用原位法进行铺设。
京沪高速铁路无缝线路轨道铺设施工
浅谈京沪高速铁路无缝线路轨道铺设施工摘要本文结合京沪高速铁路1标无缝线路轨道铺设施工实践,就高速铁路无缝线路轨道铺设施工的关键工序和技术控制进行了简要阐述。
关键词高速铁路;无缝线路铺设;技术控制中图分类号 u213.91 文献标识码 a 文章编号 1673-9671-(2013)012-0026-02中铁十九局集团六公司所属客专铺架一公司承建的京沪高速铁路jhtj-1标段正线共有270多公里无缝线路需要铺设。
无缝线路平顺性和稳定性好,使用寿命长,耐久性好,维修工作少,但对铺设工艺要求也较高。
现重点介绍无缝线路铺设的关键工序和技术控制。
1 铺轨作业1)将钢轨运输列车与分轨推送车、过渡顺破车联挂,连同小车推送到位打上4~6个止轮器。
松开钢轨锁定车上要拖拉的长钢轨锁紧装置。
2)抽调首车上与要拖拉钢轨相对应的安全挡铁,将分轨装置横向调证到与要拖拉钢轨相对应的位置、同时将分轨装置上的侧向滚轮拉开最大位置。
3)调节分轨推送车和过渡顺破车上升降滚筒到合适高度,如拖拉上层钢轨,从运输车方向过来的滚筒高度应逐渐降低,使钢轨能平顺降低进入分轨装置。
4)将卷扬装置上的钢丝绳穿过引导车推送装置和分轨导框后,夹持已松开待铺的一对长钢轨的前端,打紧斜楔挡。
5)铺轨顺序:为防止所拖拉钢轨与未被拖拉钢轨檫挂与方便拆除锁轨装置,铺轨顺序为先上后下,每层钢轨具体铺设顺序为(从左到右共编1至12号钢轨):第一次:3号与10号;第二次:4号与9号;第三次:5号与8号;第四次:6号与6号;第五次:2号与11号;第六次: 1号与12号6)启动卷扬机,将长钢轨从枕轨运输车组上拖出,并通过分轨装置向车体两侧分出,待钢轨通过导框后,调证分轨导框的位置,使钢轨内宽为1435mm。
7)钢轨顺利通过推送机构前面至卷扬装置下方,取掉斜楔,松开夹钳。
推送装置夹紧油缸动作,使上下滚轮紧钢轨。
马达驱动上层主动滚轮推送钢轨,直至钢轨通过3个滚轮小车到达引导车的钢轨夹钳处。
我国高速铁路无缝线路的形成与发展
(2)在跨区间无缝线路设计指标完成后对桥上无缝线路设计,主要还是通过设计锁定轨温,通过对轨温计算求出具体区间值来做对应方案预设。这个设计过程中,主要根据《新建铁路桥上无缝线路设计规定》来做对应附加力的计算,得出其强度和稳定条件后确定锁定轨温断缝值,并进行一定检算工作。此设计过程中需要注意在强度和稳定条件所得循序轨道升温降温区间值的阶段,应做好对应的二次复检工作,避免因忽视复检而造成结果数值偏差,使后续施工受到不利影响的状况发生[1]。
(2)对五百米长轨节进行运输和铺设的过程,应对其相关运输和铺设机械设备进行全面的性能质量检查,确认无误后方可入场。同时在开始实施运输前对相关操作人员技术规范预案也应进行进一步的标准划分,避免人工导致此施工过程危险性进一步提升,继而造成安全事故的出现。铺设过程中,在长轨节推送就位后应及时选用对应钢轨拉伸器调整好轨缝,然后移出滚筒使长轨节能够完全落入底座混凝土预埋螺栓槽内,这个过程中注意对钢轨接头应做临时安装部署,以此达到长轨节与底座混凝土的临时固定,后续将轨距调整至标准轨距使长轨节完全就位,从而保证此施工过程的施工效率和施工安全。
一、我国高速铁路无缝线路的形成
1、无缝线路设计
我国高速铁路无缝线路的形成主要与当前社会经济发展,科学技术的提升有着直接关系。随着我国不断提升的专线铁路大规模建设战略的实施,无缝线路所具有的自身优势,完全满足了我国对应战略需求。
(1)高速铁路无缝线路形成,从其设计阶段开始便要做好对各环节步骤的规范性布控。在进行高速铁路无缝线路设计时对跨区间无缝线路设计应做好一定的设计锁定轨温工作,可通过区域内的天气情况、无缝线路所需温度区间进行对应方案布设,以满足无缝线路断轨或胀轨检算要求为出发点,对其相邻轨节单元锁定轨温温差进行实际结果计算,得出对应数值后,将区间路基上无缝线路设计锁定轨温设计强度条件和稳定条件,做对应注解说明,以此保证整个高速铁路跨区间无缝线路设计的科学合理性。
铁路轨道无缝线路
案例二:某重载铁路无缝线路改造工程实例
改造背景
01
针对既有重载铁路线路的老化、磨损等问题,进行无缝线路改
造以提高运输效率和安全性。
技术挑战
02
克服重载铁路轨道变形大、维护困难等技术难题,采用高强度
扣件、优化轨道结构等措施提高轨道稳定性。
实施效果
03
通过改造工程,显著提高了重载铁路的运输能力和安全性,减
无缝线路的施工技术和施工质量控制;
研究内容:本文将从以下几个方面对铁路轨道无缝线路 进行研究 无缝线路的设计理论和设计方法;
无缝线路的养护方法和养护标准。
02
铁路轨道无缝线路概述
定义与分类
定义
铁路轨道无缝线路是指将多根钢轨焊 接成一根长钢轨,铺设在铁路线路上 ,以消除或减少轨道接头,提高列车 运行平稳性和安全性的轨道结构。
在施工区域设置明显的安全警示 标志和防护设施,如安全网、安 全带等,防止意外事故发生。
应急预案
制定针对可能出现的紧急情况的 应急预案,如火灾、触电等,确 保在紧急情况下能够迅速采取有 效措施进行处置。
05
铁路轨道无缝线路运营维 护管理
运营维护管理原则和目标
安全第一
确保无缝线路的安全性和稳定性,防止发生 安全事故。
THANKS
感谢观看
铁路轨道无缝线路
目录
• 引言 • 铁路轨道无缝线路概述 • 铁路轨道无缝线路设计原理 • 铁路轨道无缝线路施工技术
目录
• 铁路轨道无缝线路运营维护管理 • 铁路轨道无缝线路案例分析 • 结论与展望
01
引言
背景与意义
铁路运输的重要性
铁路运输作为一种主要的陆上交通方式,具有运量大、成本 低、节能环保等优点,在国民经济和社会发展中占据重要地 位。
《高速铁路无缝线路》课件
沪昆高铁无缝线路的应用
沪昆高铁连接了上海和昆明,全 长2266公里,设计时速350公里
。
无缝线路技术在沪昆高铁中发挥 了重要作用,减少了线路的维护 工作量和成本,提高了线路的使
用寿命。
沪昆高铁的无缝线路采用了高强 度、耐磨损的材料,确保了线路 的耐久性和稳定性,为列车的快 速、安全运行提供了有力支持。
无缝线路的优势与特点
优势
无缝线路消除了普通轨道接头处的阻力,减少了列车的振动和噪音,提高了列 车的运行平稳性和舒适性。同时,无缝线路还具有耐久性好、维护成本低等优 点。
特点
无缝线路需要采用高精度和高稳定性的轨道材料和施工工艺,以确保轨道的平 顺性和稳定性。此外,无缝线路还需要进行定期的检查和维护,以确保其安全 性和可靠性。
机遇
随着高速铁路的快速发展,无缝线路技术的应用将更加广泛,为相 关产业带来巨大的发展机遇。
对未来高速铁路无缝线路的期许与展望
优化设计
未来应进一步优化无缝线路的设计,提高其适应性和稳定性。
创新技术
鼓励技术创新,研发更加高效、智能的无缝线路施工和维护技术。
扩大应用范围
随着高速铁路网络的不断扩展,无缝线路技术的应用范围也将不断 扩大。
02
无缝线路采用长轨条连接,具有更高的结构强度和稳定性,能
够承受高速列车的运行压力。
提高旅客舒适度
03
无缝线路减少了轨道不平顺,降低了列车颠簸,提高了旅客乘
坐的舒适度。
高速铁路无缝线路的挑战与机遇
技术要求高
无缝线路的施工和维护需要高精度的技术和设备,对技术人员的 专业素质要求较高。
投资成本高
无缝线路的建设和维护成本相对较高,需要大量的资金投入。
无缝线路的设计与施工
《高速铁路无缝线路》考试试题及答案
《高速铁路无缝线路》考试试题及答案一、填空题1.高速铁路正线应采用(跨区间)无缝线路,到发线应采用无缝线路。
无缝线路应具有足够的强度和稳定性。
2.无缝线路相邻单元轨节之间锁定轨温之差不应大于(5)℃。
3.无缝线路同一区间内单元轨节最高与最低锁定轨温之差不应大于(10)℃4.无缝线路左右股钢轨锁定轨温之差不应大于(3)℃。
5.钢轨厂焊应采用(固定闪光)焊。
6.钢轨现场焊应优先采用(移动闪光)焊。
7.道岔内接头及道岔、调节器两端接头及断轨处理可采用(铝热)焊。
8.无缝线路左右两股钢轨绝缘接头应相对铺设,且绝缘接头轨缝绝缘端板距钢轨支承位置不宜小于(100)mm。
9.胶接绝缘接头宜采用现场胶接,胶接时插入钢轨长度不应短于20m。
困难条件下,道岔间因胶接插入钢轨长度不得短于(12.5)m。
10.无缝线路维修管理应以一次锁定的(轨条)为管理单元。
11.无缝道岔应以单组或相邻多组一次锁定的道岔及其前后(200)m线路为管理单元。
12.可采用钢轨应力检测仪等检测设备测量无缝线路(锁定轨温)13.应做好无缝线路钢轨位移观测,位移观测可采用仪器观测或弦线测量。
累计位移量出现异常时,即锁定轨温变化超过(5)℃,工务段应及时查明原因,采取相应措施。
14.应加强隧道口前后(100)m线路检查,采取措施防止线路出现碎弯。
15.无缝线路应力放散时,每隔5~10m将长轨条搁置在(滚筒)上,并辅助反复撞轨,15.无缝线路应力放散时,若为提高(锁定轨温)而放散应力,则应在长轨条一端或两端使用钢轨液压拉伸器张拉钢轨,并辅助撞轨。
16.应力放散后,及时将应力放散日期、时间、放散轨温、重新锁定的轨温记入(技术档案),并及时重设纵向位移观测标记。
17.短隧道内无缝线路设计锁定轨温与相邻单元轨节的锁定轨温应(一致)。
18.长大隧道内距洞口(200)m范围无缝线路设计锁定轨温宜与洞外无缝线路设计锁定轨温一致。
19.在跨度超过40m的桥梁,宜在梁端(5~20)m范围设置小阻力扣件。
铁路无缝线路知识大全
无缝线路知识大全一、发展无缝线路的意义无缝线路是把标准长度的钢轨焊接而成的长钢轨线路,又称焊接长钢轨线路。
它是当今轨道结构的一项重要新技术,世界各国竞相发展。
在普通线路上,钢轨接头是轨道的薄弱环节之一,由于接缝的存在,列车通过是发生冲击和振动,并伴随有打击噪声,冲击力可达到非接头区的三倍以上。
接头冲击力影响行车的平稳和旅客的舒适,并促使道床破坏、线路状况恶化、钢轨及连接零件的使用寿命缩短、维修劳动费用的增加。
养护线路接头区的费用占养护总经费的35%以上;钢轨因轨端损坏而抽换的数量较其他部位大2-3倍;重伤钢轨60%发生在接头区。
随着列车轴重、行车速度和密度的不断增长,上述缺点更加突出,更不能适应现代高速重载运输的需要。
为了改善钢轨接头的工作状态,人们从本世纪三十年代开始至今,一直致力于这方面的研究与实践,采用各种方法将钢轨焊接起来构成无缝线路。
这中间首先遇到了接头焊接质量问题;其次就是长轨在列车动力和温度力共同作用下的强度和稳定问题;还有无缝线路设计、长轨运输、铺设施工、养护维修等一系列理论和技术问题。
随着上述一系列问题的逐步解决,无缝线路在世界各国得到了广泛的运用。
无缝线路由于消灭了大量的接头,因而具有行车平稳、旅客舒适,同时机车车辆和轨道的维修费用减少,使用寿命延长等一系列优点。
有资料表明,从节约劳动力和延长设备寿命方面计算,无缝线路比有缝线路可节约维修费用30%~70%。
在桥梁上铺设无缝线路,可以减轻列车车论对桥梁的冲击,改善列车和桥梁的运营条件,延长设备使用寿命,减少养护维修工作量。
这些优点在行车速度提高时尤为显著。
二、无缝线路的类型无缝线路根据处理钢轨内部温度应力方式的不同,可分为温度应力式和放散温度应力式两种。
温度应力事无缝线路是由一根焊接长钢轨及其端2~4根标准轨组成,并采用普通接头的形式。
无缝线路铺设锁定后,焊接长钢轨因受线路纵向阻力的抵抗,两端自由伸缩受到一定的限制,中间部分完全不能伸缩,因而在钢轨内部产生很大的温度力,其值随轨温变化而异。
高速铁路长大桥梁无砟轨道无缝线路设计理论及方法研究
一、无砟轨道的介绍和应用
无砟轨道是一种不依赖道砟提供承载能力的轨道结构,主要由轨道板、混凝土 底座、凸形挡台等组成。与有砟轨道相比,无砟轨道具有结构连续性好、线路 稳定性高、使用寿命长等优点。在高速铁路长大桥梁中,无砟轨道可以实现更 高的列车速度,提供更舒适的乘坐体验,同时降低线路维护成本。
二、高速铁路长大桥梁的需求和 特点
五、回归主题道无缝线路的设计理论及方法进行了详细 研究。首先介绍了无砟轨道的优点及其在高速铁路长大桥梁中的应用,接着分 析了长大桥梁的需求和特点,阐述了无缝线路设计的原则和方法,最后通过案 例分析和比较,展示了该设计的优势和可靠性。
本次演示的研究表明,高速铁路长大桥梁无砟轨道无缝线路设计是实现高速、 平稳、安全行车的重要保障。无砟轨道和无缝线路的联合应用能够显著提高长 大桥梁的行车性能和维护效率。未来的研究可以进一步探索长大桥梁无砟轨道 无缝线路设计的优化方法和维护技术,为我国高速铁路的持续发展提供更加坚 实的支撑。
高速铁路无砟轨道监测技术是指利用各种传感器和监测设备对高速铁路无砟轨 道进行实时监测,以获取轨道几何尺寸、道砟状况、车辆运行状态等数据,为 列车的安全运行提供可靠的保障。无砟轨道监测技术具有高精度、高速度、高 可靠性等特点,能够有效提高列车的运行效率和乘坐舒适度。
高速铁路无砟轨道监测技术的工作原理是利用各种传感器和监测设备对轨道进 行实时监测,包括轨道几何尺寸、道砟状况、车辆运行状态等数据。其中,轨 道几何尺寸监测主要是监测轨道的平直度、高低差、轨距等参数,道砟状况监 测主要是监测道砟的分布、道砟颗粒的大小和形状等参数,车辆运行状态监测 主要是监测列车的速度、加速度、轮重等参数。这些数据通过数据处理中心进 行分析和处理,为列车的安全运行提供可靠的保障。
铁路无缝线路知识大全
铁路无缝线路知识大全一、内容概要无缝线路基本概念:介绍了铁路无缝线路的定义、发展历程、主要特点及其在现代铁路交通中的重要作用。
无缝线路结构设计:详细阐述了无缝线路的结构设计原理,包括轨道结构、扣件系统、跨区间无缝线路设计等。
无缝线路施工与养护:介绍了无缝线路的施工流程、施工方法以及施工中的注意事项,同时阐述了无缝线路的养护标准、检测方法以及维修策略。
无缝线路应力管理:讲解了无缝线路应力分布、计算及调整方法,以及应力对线路性能的影响。
无缝线路的力学行为:分析了无缝线路在运营过程中的力学行为,包括轨道几何形变、钢轨疲劳、温度应力等。
无缝线路的材料与设备:介绍了无缝线路所使用的材料,如钢轨、扣件、轨道板等,以及相关的设备,如焊接设备、检测设备等。
无缝线路的未来发展:展望了铁路无缝线路的未来发展趋势,包括新技术、新材料的应用以及智能化、自动化等方面的进步。
本书内容全面、系统,既适合从事铁路无缝线路设计、施工、养护的工程技术人员阅读,也适合作为高等院校相关专业的教材,供师生参考学习。
1. 铁路无缝线路的概念及发展历程铁路无缝线路,也被称为无砟轨道或连续焊接钢轨线路,是现代化铁路建设的重要发展方向。
它是通过将若干段钢轨进行焊接,形成一条连续、无缝的轨道,从而大大提高铁路的运行效率和安全性。
这种线路的主要特点是钢轨之间无缝隙,减少了列车行驶时的接缝冲击,提供了更为平稳、高速的行车环境。
铁路无缝线路的发展历史可以追溯到19世纪末期。
早期的铁路线路由于钢轨长度的限制和连接技术的落后,存在着大量的接缝,这不仅影响了列车的运行速度,也增加了运营维护的难度。
随着工业技术的进步,钢轨制造和焊接技术得到了飞速的发展,为铁路无缝线路的建设提供了技术支撑。
20世纪XX年代起,随着高强度钢轨的出现和焊接技术的成熟,无缝线路开始得到广泛应用。
最初的无缝线路主要在短距离、高密度的城市地铁或轻轨中出现,随着技术的发展和工程实践的不断积累,无缝线路逐渐应用到更长距离、更高速度的干线铁路中。
铁道概论--铁路线路(2)
高速铁路的轨道结构
由目前世界上高速铁路的运营情况可知,高速铁路轨道结构主 要有两种类型:有碴轨道和无碴轨道。从实践经验看,两种轨道都 可以运行时速300 km的高速列车。当行车速度大于300 km/h时, 采用无碴轨道可以较好地保持轨道的平顺性,有利于高速行车;虽 然目前无碴轨道结构在改善轨道弹性方面作了大量的工作,但在 300 km/h以下的行车速度时,旅客行车感觉仍然是有碴轨道略好 于无碴轨道。 1.有碴轨道 有碴轨道是铁路传统的轨道结构,它具有弹性好、造价低、更 换与维修养护方便、噪声较小等优点。缺点是随着速度的提高,有 碴轨道不均匀下沉越来越严重,轨道平顺性差,轨,道破损加剧, 从而使维修工作量显著增加,维修周期明显缩短。高速铁路有碴轨 道在结构上与普通线路有碴道没有本质区别,只是在部件性能与维 修标准上要求更高、更严。我国高速铁路有碴轨道结构可采用铺设 跨区间无缝线路、高弹性扣件及垫层、I级碎石道碴、Ⅲ号混凝土轨 枕、60 kg/m钢轨、符合车速要求的大号码道岔和可动心轨辙叉。
线路作业的机械化
线路作业是一项既费时费工,又极为繁重的体力劳动,它需要占用大量的人力、物力和财力。线路 结构大范围地实现了重型化、快速化,这对铁道线路的维修手段提出了更高的要求。为了改变人工作业 的落后面貌,提高维修质量和作业效率,节约劳动力和维修费用,世界各国都在努力研制各种养路机具。 为了加快发展步伐,在工务段普遍设立了机械化工队和养路工区,配备了以单项、小型为主的养路 机械,如小型液压捣固机、锯轨机、钢轨钻孔机等,在一定程度上减轻了劳动强度,提高了作业效率。 20世纪80年代中期以后,开始引进少量国外先进的大型养路机械试用,在取得一定使用经验和效果 后,引进国外先进的大型养路机械技术,在消化吸收的基础上实现了自行生产,比如08—32型、09—32 型自动抄平起道拨道捣固车,RM80清筛机,动力稳定车,配碴整形车,钢轨探伤车,钢轨打磨车,道 岔捣固车等产品,并装备了19个大型养路机械化线路段,基本形成了综合生产能力。 目前养路机械已由小型到大型、由低级到高级、由单机到联合机械,逐步发展到采用先进技术设备 的大型、高效、多功 能的机械。例如,08—32型自动抄平起道拨道捣固车,每小时可以捣固线路1 000~1 300 m;RM80清筛机每小时可清筛道碴650m’;线路大修列车能够完成拆卸旧轨排直到铺设新 轨排的全部作业,每小时作业进度为200 m以上等。实践证明,通过大型养路机械的技术引进和取得的 突破性进展,为提速扩能,保证繁忙干线和快速线路的运输安全,实现养路机械的现代化,做出了巨大 的成绩。 根据铁道部《铁路科技发展“十五”计划和2015年长期规划纲要》中明确指出到“十五”末期,繁 忙干线养护维修实现大型养路机械化。机械化维修机具比较笨重,综合作业时占用线路的时间较久,往 往需要封锁线路。《铁路主要技术政策》明确规定繁忙干线应在列车运行图上安排工务、电务、供电等 设备综合维修“天窗”。“天窗”时间:采用中、小型养路机械的区段90一120rain;采用大型养路机械 的区段150~180rain。双线区段的设备维修“天窗”应按上、下行设置,施工时可组织反向行车。 目前,各国都在着重研究如何进一步强化线路结构的型式,以减少线路的维修作业量。床
3 高速铁路与无缝线路
世界各国高铁营业里程(2010)
中国高速铁路:
•
中国是世界上高速铁路发展最快、系统技术最全、集成能力最强、 运营里程最长、运营速度最高、在建规模最大的国家。
中国高速铁路的建设始于2004年的中国《中长期铁路网规划》
做好道床的夯拍工作,以提高、加强设备整修,提高线路阻力
道床必须保持饱满,坚实、清洁、无翻浆冒泥、无坍塌松
散现象。道床断面应符合标准,并加强夯拍,对线路薄弱 地段应重点补充道碴。
增加道床横向阻力可采用增加道床肩宽,特种道床断面和 轨枕两端部设置挡板等辅助措施。对暗坑、吊板处所应加 强捣固,消灭失效枕木群。
“四纵四横”客运专线
中国高铁发展历程
预备阶段
1998.5 广深铁路电气化提速改造完成,设计最高时速为 200公里 1998.6 韶山8型电力机车于京广铁路的区段试验中达到了 时速 240 公里的速度,创下了当时的“中国铁路第一速”, 是为中国第一种高速铁路机车。
中国高铁发展历程
过渡阶段
6、加强检查和观测 高温季节应增加检查班次。严格执行“三测”(测轨温、 测轨缝、测爬行)制度,把观察轨向作为重点,发现轨向 不良,用长10米弦检查轨向偏差,当平均值达到10mm时, 必须设置慢行信号,并采取夯拍道床、填满枕盒道碴和堆 高碴肩等措施。当两股钢轨的轨向偏差平均值达到12mm时 ,在轨温不变情况下过车后线路弯曲变形突然扩大,必须 立即设置停车信号,及时通知车站,并采用钢轨降温等紧 急措施,消除故障后放行列车。
4、正确掌握锁定轨温
无缝线路(铁路、高铁培训)-129页文档资料
长轨条
标准长度钢轨
长轨条
缓冲区
跨区间无缝线路:为了最大限度减少钢轨接头, 延长轨条长度,把区间无缝线路的长轨条延长 与车站道岔焊接在一起,成为跨区间无缝线路, 是当今无缝线路的发展方向。目前,我国无缝 线路在京广线上最长一段140km,京沪上最长 一段104km,此外长20~60km的无缝线路数量 更多,据统计我国现有跨区间无缝线路的数量 约7000km。
6.2.1 完全约束的长钢轨温度力
L TL
钢 轨 的 线 膨 胀 1系 1.81数 06/, 0C
t Et E L LET
E钢轨钢的弹性模量 E 2 .1 1 1 N 0 1 /m 2 2 .1 1 7 N 0 /c2m
TTs -T
试验表明,扣件阻力随钢轨纵向位移的增加而 增大,并与扣件的类型及其扣压力有关,如图 6-3所示。
扣件阻力扣(件阻力 k(N/组 组)) 2.0
1.5 1.0 0.5
Ⅲ型
Ⅱ型 150 N·m
Ⅰ型 150 N·m
0 0.5 1.0 1.5 2.0 f(mm)
图6-3 扣件阻力图
弹条型扣件阻力
从理论上说,无缝线路的长度可以是无限长,但实 际上,由于理论计算、结构设备及施工、养护技术 地限制,无缝线路地轨条长度是逐步加长的。无缝 线路的发展经历了三个阶段:
普通无缝线路:无缝线路的轨条长度不长,考虑自 动闭塞区段绝缘接头的设置、桥梁、隧道、道岔衔 接及施工养护维修的方便,其长轨长度一般为1- 2km,两端铺2-4对标准轨组成的“缓冲区”。
简述中国高速铁路无缝线路技术特点
简述中国高速铁路无缝线路技术特点下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!而且本店铺为大家提供各种类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!In addition, this shop provides you with various types of practical materials, such as educational essays, diary appreciation, sentence excerpts, ancient poems, classic articles, topic composition, work summary, word parsing, copy excerpts, other materials and so on, want to know different data formats and writing methods, please pay attention!中国高速铁路无缝线路技术特点。
一、引言高速铁路作为现代交通的重要组成部分,在中国得到了迅猛发展,其无缝线路技术是保障高速铁路安全、舒适、高效运行的关键之一。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
中西部铁路建设掀起高潮,营业里程达到8万公里,占全 国铁路营业总里程的62.3%。
三、高速铁路的优势与维修管理模式
1、高速铁路的优势
速度快,省时间,安全系数高,乘坐空间大,舒适方便 现代高科技成果,线路平顺性好,阻力小,行车平稳 ✓ 轨道全封闭技术 ✓ 无缝线路技术 运输能力大,污染小
2010年12月3日京沪高铁(枣庄至蚌埠)创造了481公里/小时的纪录
发展阶段
2013年,宁杭、杭甬、盘营高铁以及向莆铁路相继开通, 高铁总里程达到12000公里,“四纵”干线基本成型。
2014年11月25日,中国北车CRH5A型动车组进入“5000公 里正线试验”的最后阶段。这是国内首列实现牵引电传 动系统和网络控制系统完全自主创新的高速动车组
缺点 冬夏产生较大的温度应力,不易保持必要的强度和稳定性。
无缝线路分类
按结构划分: 温度应力式无缝线路 放散温度应力式无缝线路
法国第一条高铁 1983 巴黎至里昂
德国第一条高铁 1991 曼海姆至斯图加特(全国共4条高铁,800km)
世界各国高铁营业里程(2010)
中国高速铁路:
• 中国是世界上高速铁路发展最快、系统技术最全、集成能力最强、 运营里程最长、运营速度最高、在建规模最大的国家。
中国高速铁路的建设始于2004年的中国《中长期铁路网规划》 引进先进技术,联合设计生产,打造中国品牌 研制了时速350公里和250公里两种速度等级的高速动车组
项目三 高速铁路与无缝线路
cit500
一、高速铁路的定义及特点
根据UIC(国际铁道联盟)的定义,高速铁路是指营运速率达每小 时200(或250)公里的铁路系统。
特点:高平顺性;高稳定性;高精度,小残变,少维修;宽大, 独行的线路空间;高标准的环境保护;开通运行之日即以设计速 度运行;运行中,实行科学的轨道管理及严密的防灾安全监控。
“四纵四横”客运专线
中国高铁发展历程
预备阶段
1998.5 广深铁路电气化提速改造完成,设计最高时速为 200公里
1998.6 韶山8型电力机车于京广铁路的区段试验中达到了 时速240公里的速度,创下了当时的“中国铁路第一速”, 是为中国第一种高速铁路机车。
中国高铁发展历程
过渡阶段
2008年8月1日,中国第一条具有完全自主知识产权、世界一流水平的高速 铁路京津城际铁路通车运营。
2009年12月26日,世界上一次建成里程最长、工程类型最复杂时速350公 里的武广高铁开通运营。
2010年2月6日,世界首条修建在湿陷性黄土地区,连接中国中部和西部时 速350公里的郑西高速铁路开通运营。
2012年12月1日,世界上第一条地处高寒地区的高铁线路——哈大高铁正 式通车运营。
截至2012年底,高速铁路总里程达9356公里。
2、高速铁路的维修管理模式
专门用于旅客快速运输的新建线路:日本、法国,白天行车, 夜间维修
新建高铁双线,客货共线:意大利 新建与部分既有线混合运行:德国 客货 既有线路上使用摆式列车运行:欧洲 美国
摆式列车是一种车体转弯 时可以侧向摆动的列车。
大型养路机械组:状态检修,预防相较维于修普通列车,摆式列 车通过一般弯道时会以更 高速度行驶,可以节省行 驶时间。
2015年底,中国高速铁路营业里程达1.9万公里(而快速铁路 网达4万公里),中国已经拥有全世界最大规模、最高运营速 度的高速铁路网。
“四纵”干线基本成型。中国高速铁路运营里程约占世界高铁 运营里程的50%,稳居世界高铁里程榜首。
高铁规划
2004年《中长期铁路网规划》提出,到2020年,全国铁 路营业里程达到10万公里,主要繁忙干线实现客货分线, 建设高速铁路1.2万公里以上。
无缝线路
将标准长度的钢轨焊接成为长钢轨的轨道。我国一般采 用25 m的钢轨先在焊轨厂焊成250~500 m的长轨条,然后再 运到铺轨地点,再焊成1 000~2000 m的长轨条或按设计长 度进行铺设。
优点
⑴行车平稳,减少了噪音,旅客舒适度提高; ⑵节省了接头材料,降低了维修费用; ⑶减少了行车阻力,提高了行车速度; ⑷延长了线路设备和机车车辆的使用寿命。
摆式列车
四、无缝线路、温度力、温度应力与锁定轨温
Байду номын сангаас
1、无缝线路
有缝线路的弊端:
车轮跨越轨缝接头产生很大的撞击声,引起列车振动,乘 客不适
车轮冲击钢轨端部,产生巨大冲击力 ✓ 钢轨和车轮磨损 ✓ 轨下基础低陷和夹板折断 ✓ 不利行车安全
发展概况: 1926年,德国铺设了世界最早的一条无缝线路,当时 长轨条长120m。 我国于1957年开始铺设,现最长一条长轨条达 303km,在我国的沪宁线上。
2008年修订的《中长期铁路网规划(2008年调整)》确 定到2020年,全国铁路营业里程达到12万公里以上,建 设高速铁路1.6万公里以上。
2011年《十二五规划》提出,建成“四纵四横”客运专 线,建设城市群城际轨道交通干线,建设兰新铁路第二 双线、郑州至重庆等区际干线,基本建成快速铁路网, 营业里程达到4.5万公里,基本覆盖50万以上人口城市。
速度
类型
小于140km/h 常速铁路
140--200km/h 准高速铁路
200--400km/h 高速铁路
超过400km/h 超高速铁路
世界高速铁路的发展
1964年10月1日,最高时速达210公里的日本东海道新干线开通, 标志着真正意义的高速铁路诞生。
法国、德国、意大利等国相继开工建设高速铁路,促成了高速铁路建 设的第一次高潮。到20世纪90年代初,建成3216公里高速铁路。高速 铁路运营取得了明显的社会经济效益,促使欧洲在20世纪90年代再次 形成了高速铁路的建设热潮。欧洲还批准了泛欧高速铁路网的规划, 规划新建线路12500公里,改造既有线14000公里,形成连接欧洲所 有主要城市的高速铁路网。到90年代中期,高速铁路在经济、节能、 环保等方面的优势得到了各国政府的认可,开始大力发展。