北京市汇文中学2020-2021学年高二第一学期期中考试数学试卷 含答案
2020北京汇文中学高二(上)期中数学
2020北京汇文中学高二(上)期中数 学一、选择题1.已知)5,3(),3,1(B A --,则直线AB 的斜率为( )A. 2B. 1C. 21D. 不存在2. 圆心为)2,3(-且过点)1,1(-A 的圆的方程是( )A. 5)2()3(22=-+-y xB. 5)2()3(22=-++y xC. 25)2()3(22=-+-y xD. 25)2()3(22=-++y x3. 焦点在x 轴上的椭圆2213x y m +=的离心率是12,则实数m 的值是( ) A. 4 B.94 C. 1 D.344. 已知圆22:1O x y +=,直线:3430l x y +-=,则直线l 被圆O 所截的弦长为( ) A.65 B. 1 C.85D.2 5.已知抛物线x y C =2:的焦点为F ,),(00y x A 是C 上一点,045||x AF =,则0x =( ) A. 1 B. 2 C. 4 D. 86. 过点P )1,3(--的直线l 与圆122=+y x 有公共点,则直线l 的倾斜角的取值范围是( )A. ]6,0(πB. ]3,0(πC. ]6,0[πD. ]3,0[π 7.已知抛物线24y x =的动弦AB 的中点的横坐标为2,则AB 的最大值为( )A .4B .6C .8D .128.直线1:10l ax y a +-=与,x y 轴的交点分别为,A B , 直线l 与圆22:1O x y +=的交点为,C D . 给出下面三个结论:① 11,2AOB a S ∆∀≥=; ②1,||||a AB CD ∃≥<;③11,2COD a S ∆∃≥< 则所有正确结论的序号是A.①②B.②③C.①③D.①②③二、填空题9. 已知直线10x ay --=与直线y ax =平行,则实数___.a =10. 双曲线221169x y -=的渐近线方程为_________________. 11.已知过点(1,1)M 的直线l 与圆22(1)(2)5x y ++-=相切,且与直线10ax y +-=垂直,则实数a =_______;直线l 的方程为__________. 12. 已知F 为双曲线22:13x C y -=的一个焦点,则点F 到双曲线C 的一条渐近线的距离为_______. 13.设椭圆)0(1:2222>>=+b a b y a x C 的左、右焦点分别为1F ,2F ,P 为直线a x 23=上一点,△12PF F 是底角为30°的等腰三角形,则C 的离心率为___________。
高二上学期期中考试数学试卷含答案
高二级上学期期中考试题数学本试卷共8页,22小题,满分150分,考试时间120分钟。
第一部分选择题(共60分)一、单选题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知直线l 1:2x +my =2,l 2:m 2x +2y =1,且l 1⊥l 2,则m 的值为( )A .0B .-1C .0或1D .0或-12.若一个圆锥的轴截面是面积为1的等腰直角三角形,则该圆锥的侧面积为( )A.2π B .22π C .2πD .4π3.把正方形ABCD 沿对角线AC 折起,当以A ,B ,C ,D 四点为顶点的三棱锥体积最大时,直线BD 和平面ABC 所成角的大小为( )A .90°B .60°C .45°D .30°4.若过点(2,1)的圆与两坐标轴都相切,则圆心到直线230x y --=的距离为( )A B C D 5.下列命题中,正确的是( )A .任意三点确定一个平面B .三条平行直线最多确定一个平面C .不同的两条直线均垂直于同一个平面,则这两条直线平行D .一个平面中的两条直线与另一个平面都平行,则这两个平面平行6.已知M (3,23),N (-1,23),F (1,0),则点M 到直线NF 的距离为( )A. 5 B .23 C . 22D .3 37.已知各顶点都在一个球面上的正四棱柱(其底面是正方形,且侧棱垂直于底面)高为4,体积为16,则这个球的表面积是( )A .20πB .16πC .32πD .24π8.直线:20l x y ++=分别与x 轴、y 轴交于A 、B 两点,点P 在圆22(2)2x y -+=上, 则ABP △面积的取值范围是( ) A .[]26,B .[]48,C .D .⎡⎣二、多选题:本题共4小题,每小题5分,共20分.9.若220x x --<是2x a -<<的充分不必要条件,则实数a 的值可以是( ) A .1B .2C .3D .410.已知,αβ是两个不重合的平面,,m n 是两条不重合的直线,则下列命题正确的是( ) A .若//m n m α⊥,,则n α⊥ B .若//,m n ααβ⋂=,则//m n C .若m α⊥,m β⊥,则//αβ D .若,//,m m n n αβ⊥⊥,则//αβ 11.若直线过点(1,2)A ,且在两坐标轴上截距的绝对值相等,则直线l 方程可能为( ) A .10x y -+=B .30x y +-=C .20x y -=D .10x y --=12.已知四棱锥P ABCD -,底面ABCD 为矩形,侧面PCD ⊥平面ABCD ,BC =CD PC PD ===.若点M 为PC 的中点,则下列说法正确的为( )A .BM ⊥平面PCDB .//PA 面MBDC .四棱锥M ABCD -外接球的表面积为36π D .四棱锥M ABCD -的体积为6第二部分非选择题(90分)三、填空题:本题共4小题,每小题5分,共20分.13.命题“20210x x x ∃<-->,”的否定是______________.14.已知直线l 1的方程为23y x =-+,l 2的方程为42y x =-,直线l 与l 1平行且与l 2在y 轴上的截距相同,则直线l 的斜截式方程为________________.15.若直线:l y kx =与曲线:1M y =+有两个不同交点,则k 的取值范围是________________.16.已知三棱锥S -ABC 的所有顶点都在球O 的球面上,SC 是球O 的直径.若平面SCA ⊥平面SCB ,SA =AC ,SB =BC ,三棱锥S -ABC 的体积为9,则球O 的体积为____________.四、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.17.(本小题满分10分)已知直线l 1的方程为x +2y -4=0,若l 2在x 轴上的截距为32,且l 1⊥l 2.(1)求直线l 1与l 2的交点坐标;(2)已知直线l 3经过l 1与l 2的交点,且在y 轴上的截距是在x 轴上的截距的2倍,求l 3的方程.18.(本小题满分12分)四棱锥P-ABCD 的底面ABCD 为直角梯形,AB ∥CD ,AB ⊥AD ,AB =12CD =1,P A ⊥平面ABCD ,P A =AD = 3.(1)求证:PD ⊥AB ;(2)求四棱锥P-ABCD 的体积.19.(本小题满分12分)已知圆C 的圆心坐标为(a ,0),且圆C 与y 轴相切. (1)已知a =1,M (4,4),点N 是圆C 上的任意一点,求|MN |的最小值;(2)已知a <0,直线l 的斜率为43,且与y 轴交于点20,3⎛⎫- ⎪⎝⎭.若直线l 与圆C 相离,求a 的取值范围.20.(本小题满分12分)在直三棱柱ABC-A 1B 1C 1中,AB =5,AC =3,BC =4,点D 是线段AB 上的动点.(1)当点D 是AB 的中点时,求证:AC 1∥平面B 1CD ;(2)线段AB 上是否存在点D ,使得平面ABB 1A 1⊥平面CDB 1?若存在,试求出AD 的长度;若不存在,请说明理由.21. (本小题满分12分) 如图,多面体ABCDEF 中,四边形ABCD 是菱形,060ABC ∠=,FA ⊥平面ABCD ,//,2 2.FA ED AB FA ED ===求二面角F BC A --的大小的正切值;求点E 到平面AFC 的距离;求直线FC 与平面ABF 所成的角的正弦值.22. (本小题满分12分)已知圆22+=9:O x y ,过点()0,2P -任作圆O 的两条相互垂直的弦AB 、CD ,设M 、N 分别是AB 、CD 的中点,(1)直线MN 是否过定点? 若过,求出该定点坐标,若不过,请说明理由; (2)求四边形ACBD 面积的最大值,并求出对应直线AB 、CD 的方程.高二级上学期期中考试题 数学答案及说明一、选择题:1.D ,2.A ,3.C ,4.B ,5.C ,6.B ,7.D ,8.A ,9.BCD ,10.ACD ,11.ABC ,12.BC.二、填空题:13.0x ∀<,2210x x --≤;14.y =-2x -2;15.13,24⎡⎫⎪⎢⎣⎭;16.36π.题目及详细解答过程:一、单选题(本题共8小题,每小题5分,共40分)1.已知直线l 1:2x +my =2,l 2:m 2x +2y =1,且l 1⊥l 2,则m 的值为( ) A .0 B .-1 C .0或1 D .0或-1 解析:因为l 1⊥l 2,所以2m 2+2m =0,解得m =0或m =-1. 答案:D2.若一个圆锥的轴截面是面积为1的等腰直角三角形,则该圆锥的侧面积为( ) A.2π B .22π C .2π D .4π 解析:设底面圆的半径为r ,高为h ,母线长为l ,由题可知,r =h =22l ,则12(2r )2=1,r =1,l =2.所以圆锥的侧面积为πrl =2π. 答案:A3.把正方形ABCD 沿对角线AC 折起,当以A ,B ,C ,D 四点为顶点的三棱锥体积最大时,直线BD 和平面ABC 所成角的大小为( )A .90°B .60°C .45°D .30°解析:当三棱锥D ABC 体积最大时,平面DAC ⊥平面ABC .取AC 的中点O ,则∠DBO 即为直线BD 和平面ABC 所成的角.易知△DOB 是等腰直角三角形,故∠DBO =45°.答案:C4.若过点(2,1)的圆与两坐标轴都相切,则圆心到直线230x y --=的距离为( )A B C D 【答案】B【解析】由于圆上的点()2,1在第一象限,若圆心不在第一象限, 则圆与至少与一条坐标轴相交,不合乎题意,所以圆心必在第一象限, 设圆心的坐标为(),a a ,则圆的半径为a ,圆的标准方程为()()222x a y a a -+-=.由题意可得()()22221a a a -+-=,可得2650a a -+=,解得1a =或5a =,所以圆心的坐标为()1,1或()5,5,圆心到直线的距离均为121132555d ⨯--==; 圆心到直线的距离均为22553255d ⨯--== 圆心到直线230x y --=的距离均为22555d -==; 所以,圆心到直线230x y --=25. 故选:B .5.下列命题中,正确的是( ) A .任意三点确定一个平面 B .三条平行直线最多确定一个平面C .不同的两条直线均垂直于同一个平面,则这两条直线平行D .一个平面中的两条直线与另一个平面都平行,则这两个平面平行 解析:由线面垂直的性质,易知C 正确. 答案:C6.已知M (3,23),N (-1,23),F (1,0),则点M 到直线NF 的距离为( ) A. 5 B .23 C . 22D .3 3解析:易知NF 的斜率k =-3,故NF 的方程为y =-3(x -1),即3x +y -3=0. 所以M 到NF 的距离为|33+23-3|(3)2+12=2 3. 答案:B7.已知各顶点都在一个球面上的正四棱柱(其底面是正方形,且侧棱垂直于底面)高为4,体积为16,则这个球的表面积是( )A .20πB .16πC .32πD .24π解析:由题意知正四棱柱的底面积为4,所以正四棱柱的底面边长为2,正四棱柱的底面对角线长为22,正四棱柱的对角线为2 6.而球的直径等于正四棱柱的对角线,即2R =2 6.所以R = 6.所以S 球=4πR 2=24π. 答案:D8.直线:20l x y ++=分别与x 轴、y 轴交于A 、B 两点,点P 在圆22(2)2x y -+=上,则ABP △面积的取值范围是( ) A .[]26,B .[]48,C .232⎡⎤⎣⎦,D .2232⎡⎤⎣⎦,【答案】A 【解析】直线20x y ++=分别与x 轴,y 轴交于A ,B 两点,()()2,0,0,2A B ∴--,则22AB =.点P 在圆22(2)2x y -+=上,∴圆心为(2,0),则圆心到直线的距离1202222d ++==.故点P 到直线20x y ++=的距离2d 的范围为2,32⎡⎤⎣⎦,则[]22122,62ABP S AB d d ==∈△.故答案为A.二、多选题(每题5分,共20分)9.若220x x --<是2x a -<<的充分不必要条件,则实数a 的值可以是( ) A .1B .2C .3D .4【答案】BCD【解析】:由220x x --<,解得12x -<<.又220x x --<是2x a -<<的充分不必要条件,(1∴-,2)(2-,)a ,则2a .∴实数a 的值可以是2,3,4.故选:BCD .10.已知,αβ是两个不重合的平面,,m n 是两条不重合的直线,则下列命题正确的是( ) A .若//m n m α⊥,,则n α⊥ B .若//,m n ααβ⋂=,则//m n C .若m α⊥,m β⊥,则//αβ D .若,//,m m n n αβ⊥⊥,则//αβ 【答案】ACD 【解析】若m α⊥,则,a b α∃⊂且a b P =使得m a ⊥,m b ⊥,又//m n ,则n a ⊥,n b ⊥,由线面垂直的判定定理得n α⊥,故A 对; 若//m α,n αβ=,如图,设m AB =,平面1111D C B A 为平面α,//m α,设平面11ADD A 为平面β,11A D n αβ⋂==,则m n ⊥,故B 错;垂直于同一条直线的两个平面平行,故C 对;若,//m m n α⊥,则n α⊥,又n β⊥,则//αβ,故D 对; 故选:ACD .11.若直线过点(1,2)A ,且在两坐标轴上截距的绝对值相等,则直线l 方程可能为( ) A .10x y -+= B .30x y +-= C .20x y -= D .10x y --=【答案】ABC【解析】:当直线经过原点时,斜率为20210k -==-,所求的直线方程为2y x =,即20x y -=; 当直线不过原点时,设所求的直线方程为x y k ±=,把点(1,2)A 代入可得12k -=,或12k +=,求得1k =-,或3k =,故所求的直线方程为10x y -+=,或30x y +-=; 综上知,所求的直线方程为20x y -=、10x y -+=,或30x y +-=. 故选:ABC .12.已知四棱锥P ABCD -,底面ABCD 为矩形,侧面PCD ⊥平面ABCD ,23BC =,26CD PC PD ===.若点M 为PC 的中点,则下列说法正确的为( )A .BM ⊥平面PCDB .//PA 面MBDC .四棱锥M ABCD -外接球的表面积为36π D .四棱锥M ABCD -的体积为6 【答案】BC【解析】作图在四棱锥P ABCD -中:为矩形,由题:侧面PCD ⊥平面ABCD ,交线为CD ,底面ABCDBC CD ⊥,则BC ⊥平面PCD ,过点B 只能作一条直线与已知平面垂直,所以选项A错误;连接AC 交BD 于O ,连接MO ,PAC ∆中,OM ∥PA ,MO ⊆面MBD ,PA ⊄面MBD ,所以//PA 面MBD ,所以选项B 正确;四棱锥M ABCD -的体积是四棱锥P ABCD -的体积的一半,取CD 中点N ,连接PN ,PN CD ⊥,则PN平面ABCD ,32PN =,四棱锥M ABCD -的体积112326321223M ABCD V -=⨯⨯⨯⨯=所以选项D 错误.矩形ABCD 中,易得6,3,3AC OC ON ===,PCD 中求得:16,2NM PC ==在Rt MNO 中223MO ON MN =+=即: OM OA OB OC OD ====,所以O 为四棱锥M ABCD -外接球的球心,半径为3, 所以其体积为36π,所以选项C 正确, 故选:BC三、填空题(每题5分,共20分)13.命题“20210x x x ∃<-->,”的否定是______. 【答案】0x ∀<,2210x x --≤【解析】因为特称命题的否定是全称命题,所以,命题20210x x x ∃<-->,, 则该命题的否定是:0x ∀<,2210x x --≤ 故答案为:0x ∀<,2210x x --≤.14.已知直线l 1的方程为23y x =-+,l 2的方程为42y x =-,直线l 与l 1平行且与l 2在y 轴上的截距相同,则直线l 的斜截式方程为________________.解析:由斜截式方程知直线l 1的斜率k 1=-2,又l ∥l 1,所以l 的斜率k =k 1=-2.由题意知l 2在y 轴上的截距为-2,所以l 在y 轴上的截距b =-2.由斜截式方程可得直线l 的方程为y =-2x -2.答案:y =-2x -215.若直线:l y kx =与曲线()2:113M y x =+--有两个不同交点,则k 的取值范围是________________.解析:曲线M :y =1+1-(x -3)2是以(3,1)为圆心,1为半径的,且在直线y =1上方的半圆.要使直线l 与曲线M 有两个不同交点,则直线l 在如图所示的两条直线之间转动,即当直线l 与曲线M 相切时,k 取得最大值34;当直线l 过点(2,1)时,k 取最小值12.故k 的取值范围是13,24⎡⎫⎪⎢⎣⎭. 答案:13,24⎡⎫⎪⎢⎣⎭16.已知三棱锥S -ABC 的所有顶点都在球O 的球面上,SC 是球O 的直径.若平面SCA ⊥平面SCB ,SA =AC ,SB =BC ,三棱锥S -ABC 的体积为9,则球O 的体积为____________.解析:如图,连接OA ,OB .由SA =AC ,SB =BC ,SC 为球O 的直径,知OA ⊥SC ,OB ⊥SC .又由平面SCA ⊥平面SCB ,平面SCA ∩平面SCB =SC ,知OA ⊥平面SCB . 设球O 的半径为r ,则OA =OB =r ,SC =2r ,所以三棱锥S ABC 的体积为311323r V SC OB OA ⎛⎫=⨯⋅⋅= ⎪⎝⎭,即r 33=9.所以r =3.所以3344336.33=O V r πππ=⨯=球答案:36π四、解答题(每题5分,共70分)17.(本小题满分10分)已知直线l 1的方程为x +2y -4=0,若l 2在x 轴上的截距为32,且l 1⊥l 2.(1)求直线l 1与l 2的交点坐标;(2)已知直线l 3经过l 1与l 2的交点,且在y 轴上的截距是在x 轴上的截距的2倍,求l 3的方程. 解:(1)设l 2的方程为2x -y +m =0,..........1分因为l 2在x 轴上的截距为32,所以3-0+m =0,m =-3,即l 2:2x -y -3=0.....3分联立⎩⎪⎨⎪⎧x +2y -4=0,2x -y -3=0,得⎩⎪⎨⎪⎧x =2,y =1.所以直线l 1与l 2的交点坐标为(2,1)...........5分 (2)当l 3过原点时,l 3的方程为y =12x ..........6分当l 3不过原点时,设l 3的方程为12x y a a +=...........7分 又直线l 3经过l 1与l 2的交点,所以2112a a+=, 得52a =,l 3的方程为2x +y -5=0...........8分 综上,l 3的方程为y =12x 或2x +y -5=0...........10分18.(本小题满分12分)四棱锥P-ABCD 的底面ABCD 为直角梯形,AB ∥CD ,AB ⊥AD ,AB =12CD =1,PA ⊥平面ABCD ,PA =AD = 3.(1)求证:PD ⊥AB ;(2)求四棱锥P-ABCD 的体积.18.解:(1)证明:因为PA ⊥平面ABCD ,AB ⊂平面ABCD ,所以PA ⊥AB ,..........1分又因为AB ⊥AD ,AD ∩PA =A ,..........3分 所以AB ⊥平面PAD ,..........4分又PD ⊂平面PAD ,..........5分所以AB ⊥PD ...........6分 (2)解:S 梯形ABCD =12(AB +CD )·AD =332,.......8分又PA ⊥平面ABCD ,..........9分所以V 四棱锥P-ABCD =13×S 梯形ABCD ·PA =13×332×3=32...........12分19.(本小题满分12分)已知圆C 的圆心坐标为(a ,0),且圆C 与y 轴相切. (1)已知a =1,M (4,4),点N 是圆C 上的任意一点,求|MN |的最小值; (2)已知a <0,直线l 的斜率为43,且与y 轴交于点20,3⎛⎫- ⎪⎝⎭.若直线l与圆C 相离,求a 的取值范围.19.解:(1)由题意可知,圆C 的方程为(x -1)2+y 2=1...........2分又|MC |=(4-1)2+(4-0)2=5,..........4分 所以|MN |的最小值为5-1=4...........5分(2)因为直线l 的斜率为43,且与y 轴相交于点20,3⎛⎫- ⎪⎝⎭,所以直线l 的方程为y =43x -23.即4x -3y -2=0..........7分因为直线l 与圆C 相离,所以圆心C (a ,0)到直线l 的距离d >r . 则224243a a ->+.........9分又0a <,所以245a a ->-,解得2a >-..........11分 所以a 的取值范围是(-2,0)..........12分20.(本小题满分12分)在直三棱柱ABC-A 1B 1C 1中,AB =5,AC =3,BC =4,点D 是线段AB 上的动点. (1)当点D 是AB 的中点时,求证:AC 1∥平面B 1CD ;(2)线段AB 上是否存在点D ,使得平面ABB 1A 1⊥平面CDB 1?若存在,试求出AD 的长度;若不存在,请说明理由.20.解:(1)证明:如图,连接BC 1,交B 1C 于点E ,连接DE ,则点E 是BC 1的中点,又点D 是AB 的中点,由中位线定理得DE ∥AC 1,.........1分 因为DE ⊂平面B 1CD ,.........2分AC 1⊄平面B 1CD ,.........3分所以AC 1∥平面B 1CD ..........4分(2)解:当CD ⊥AB 时,平面ABB 1A 1⊥平面CDB 1........5分 证明:因为AA 1⊥平面ABC ,CD ⊂平面ABC , 所以AA 1⊥CD ..........6分又CD ⊥AB ,AA 1∩AB =A ,.........7分所以CD ⊥平面ABB 1A 1,因为CD ⊂平面CDB 1,.........8分 所以平面ABB 1A 1⊥平面CDB 1,.........9分故点D 满足CD ⊥AB 时,平面ABB 1A 1⊥平面CDB 1......10分 因为AB =5,AC =3,BC =4,所以AC 2+BC 2=AB 2, 故△ABC 是以角C 为直角的三角形, 又CD ⊥AB ,所以AD =95..........12分22. (本小题满分12分) 如图,多面体ABCDEF 中,四边形ABCD 是菱形,060ABC ∠=,FA ⊥平面ABCD ,//,2 2.FA ED AB FA ED ===求二面角F BC A --的大小的正切值;求点E 到平面AFC 的距离;求直线FC 与平面ABF 所成的角的正弦值.21.解: 作于点G ,连接FG , 四边形ABCD 是菱形,,,为等边三角形,,-----1分平面ABCD ,平面ABCD ,,又,,平面AFG ,BC FG ∴⊥-----2分 G∴为二面角的平面角,------3分----------------------------4分连接AE ,设点E 到平面AFC 的距离为h , 则, ----------------------5分即,也就是,--------------------6分解得:; ------------------------------------------------7分(3)作CH AB ⊥于点H ,连接FH ,ABC ∆为等边三角形,H ∴为AB 的中点,221,3,5,AH CH FH FA AH ===+= FA ⊥平面ABCD ,CH ⊂平面ABCD ,FA CH ∴⊥,----8分 又,CH AB AB AF A ⊥⋂=,CH ∴⊥平面ABF ,-----9分CFH ∴∠为直线FC 与平面ABF 所成的角,-------10分36sin 422CH CFH CF ∴∠===.-----------------12分 22.(本小题满分12分)已知圆22+=9:O x y ,过点()0,2P -任作圆O 的两条相互垂直的弦AB 、CD ,设M 、N 分别是AB 、CD 的中点,(1)直线MN 是否过定点?若过,求出该定点坐标,若不过,请说明理由; (2)求四边形ACBD 面积的最大值,并求出对应直线AB 、CD 的方程.22.解:(1)当直线AB CD 、的斜率存在且不为0,设直线AB 的方程为:()()()112220,,,,y kx k A x y B x y =-≠------------1分由2229+=y kx x y =-⎧⎨⎩得:()221450k x kx +--=--------------------2分 点()0,2P -在圆内,故0∆>. 又 1212222422,21211M M Mx x k k x x x y kx k k k +∴+=∴===-=-+++ 即 2222,11kM k k ⎛⎫- ⎪++⎝⎭--------------------3分AB CD ⊥以1k -代换k 得22222,11k k N k k ⎛⎫-- ⎪++⎝⎭22222222111.22211MNk k k k k k k k k k -+-++∴==+++---------------4分∴直线MN 的方程为:222212121k k y x k k k -⎛⎫+=- ⎪++⎝⎭化简得2112k y x k-=-,故直线MN 恒过定点()01-,--------------------5分 当直线AB CD 、的斜率不存在或为0时,显然直线MN 恒过定点()01-, 综上,直线MN 恒过定点()01-,--------------------.6分 (2) 解法一:圆心O 到直线AB的距离1d =AB ==分 (或由第(1)问得:21AB x =-==以1k -代换k 得CD =)AB CD ⊥∴以1k -代换k 得:CD =分12ACBD S AB CD ∴=⋅==分14=≤= 当且仅当221,1k k k==±时,取等号,故四边形ACBD 面积的最大值为14,--------------------11分对应直线AB 、CD 分别为2,2y x y x =-=--或2,2y x y x =--=-----------12分 解法二:设圆心O 到直线AB 、CD 的距离分别为12,d d 、则22222211229,9AB r d d CD r d d =-=-=-=---------------------7分AB CD ⊥222124d d OP ∴+==--------------------8分()()()2222121221991821818414ACBD S AB CD d d d d OP ∴=⋅=≤-+-=-+=-=-=--------------------10分当且仅当12d d =,即1k =±时,取等号,故四边形ACBD 面积的最大值为14,--------------------11分对应直线AB 、CD 分别为2,2y x y x =-=--或2,2y x y x =--=---------12分。
北京市汇文中学2020-2021学年高二上学期期中考试数学试卷含答案
北京汇文中学2020-2021上学期期中考试高二数学一、选择题1.已知)5,3(),3,1(B A --,则直线AB 的斜率为()A.2B.1C.21 D.不存在2.圆心为)2,3(-且过点)1,1(-A 的圆的方程是()A.5)2()3(22=-+-y x B.5)2()3(22=-++y x C.25)2()3(22=-+-y x D.25)2()3(22=-++y x 3.焦点在x 轴上的椭圆2213x ym +=的离心率是12,则实数m 的值是()A.4B.94C.1D.344.已知圆22:1O x y +=,直线:3430l x y +-=,则直线l 被圆O 所截的弦长为()A.65B.1C.85D.25.已知抛物线x y C =2:的焦点为F,),(00y x A 是C 上一点,045||x AF =,则0x =()A.1B.2C.4D.86.过点P )1,3(--的直线l 与圆122=+y x 有公共点,则直线l 的倾斜角的取值范围是()A.6,0(π B.3,0(π C.]6,0[π D.]3,0[π7.已知抛物线24y x =的动弦AB 的中点的横坐标为2,则AB 的最大值为()A .4B .6C .8D .128.直线1:10l ax y a+-=与,x y 轴的交点分别为,A B ,直线l 与圆22:1O x y +=的交点为,C D .给出下面三个结论:①11,2AOB a S ∆∀≥=;②1,||||a AB CD ∃≥<;③11,2COD a S ∆∃≥<则所有正确结论的序号是A.①②B.②③C.①③D.①②③二、填空题9.已知直线10x ay --=与直线y ax =平行,则实数___.a =10.双曲线221169x y -=的渐近线方程为_________________.11.已知过点(1,1)M 的直线l 与圆22(1)(2)5x y ++-=相切,且与直线10ax y +-=垂直,则实数a =;直线l 的方程为.12.已知F 为双曲线22:13x C y -=的一个焦点,则点F 到双曲线C 的一条渐近线的距离为_______.13.设椭圆)0(1:2222>>=+b a by a x C 的左、右焦点分别为1F ,2F ,P 为直线a x 23=上一点,△12PF F 是底角为30°的等腰三角形,则C 的离心率为___________。
2020北京汇文中学高二(上)期中数学含答案
2020北京汇文中学高二(上)期中数 学一、选择题1.已知)5,3(),3,1(B A --,则直线AB 的斜率为( )A. 2B. 1C.21 D. 不存在2. 圆心为)2,3(-且过点)1,1(-A 的圆的方程是( )A. 5)2()3(22=-+-y xB. 5)2()3(22=-++y xC. 25)2()3(22=-+-y xD. 25)2()3(22=-++y x3. 焦点在x 轴上的椭圆2213x y m +=的离心率是12,则实数m 的值是( )A. 4B.94 C. 1 D.344. 已知圆22:1O x y +=,直线:3430l x y +-=,则直线l 被圆O 所截的弦长为( )A.65 B. 1 C.85D.2 5.已知抛物线x y C =2:的焦点为F ,),(00y x A 是C 上一点,045||x AF =,则0x =( ) A. 1B. 2C. 4D. 86. 过点P )1,3(--的直线l 与圆122=+y x 有公共点,则直线l 的倾斜角的取值范围是( )A. ]6,0(πB. ]3,0(πC. ]6,0[πD. ]3,0[π7.已知抛物线24y x =的动弦AB 的中点的横坐标为2,则AB 的最大值为( )A .4B .6C .8D .12 8.直线1:10l ax y a+-=与,x y 轴的交点分别为,A B , 直线l 与圆22:1O x y +=的交点为,C D . 给出下面三个结论:① 11,2AOB a S ∆∀≥=; ②1,||||a AB CD ∃≥<;③11,2COD a S ∆∃≥<则所有正确结论的序号是A.①②B.②③C.①③D.①②③ 二、填空题9. 已知直线10x ay --=与直线y ax =平行,则实数___.a =10. 双曲线221169x y -=的渐近线方程为_________________.11.已知过点(1,1)M 的直线l 与圆22(1)(2)5x y ++-=相切,且与直线10ax y +-=垂直,则实数a =_______;直线l 的方程为__________.12. 已知F 为双曲线22:13x C y -=的一个焦点,则点F 到双曲线C 的一条渐近线的距离为_______. 13.设椭圆)0(1:2222>>=+b a b y a x C 的左、右焦点分别为1F ,2F ,P 为直线a x 23=上一点,△12PF F 是底角为30°的等腰三角形,则C 的离心率为___________。
北京市2023-2024学年高二上学期期中数学试题含答案
北京市2023—2024学年第一学期期中阶段练习高二数学(答案在最后)2023.11班级____________姓名____________学号____________本试卷共3页,共150分.考试时长120分钟.考生务必将答案写在答题纸上,在试卷上作答无效.一、选择题:本大题共10道小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项符合题目的要求.把正确答案涂写在答题卡上相应的位置..................1.已知(1,3),(3,5)A B --,则直线AB 的斜率为()A.2 B.1C.12D.不存在【答案】A 【解析】【分析】由斜率公式,可求出直线AB 的斜率.【详解】由(1,3),(3,5)A B --,可得35213AB k --==--.故选:A.2.圆222430x y x y +-++=的圆心为().A.(1,2)-B.(1,2)- C.(2,4)- D.(2,4)-【答案】A 【解析】【分析】先将圆的一般方程化为标准方程,从而可求出其圆心坐标.【详解】由222430x y x y +-++=,得22(1)(2)2x y -++=,所以圆心为(1,2)-,故选:A3.一个椭圆的两个焦点分别是()13,0F -,()23,0F ,椭圆上的点P 到两焦点的距离之和等于8,则该椭圆的标准方程为()A.2216428x y += B.221167x y += C.221169x y += D.22143x y +=【答案】B 【解析】【分析】利用椭圆的定义求解即可.【详解】椭圆上的点P 到两焦点的距离之和等于8,故28,4a a ==,且()13,0F -,故2223,7c b a c ==-=,所以椭圆的标准方程为221167x y +=.故选:B4.任意的k ∈R ,直线13kx y k -+=恒过定点()A.()0,0 B.()0,1 C.()3,1 D.()2,1【答案】C 【解析】【分析】将直线方程整理成斜截式,即可得定点.【详解】因为13kx y k -+=,即()31y k x =-+,所以直线13kx y k -+=恒过定点()3,1.故选:C.5.已知圆221:1C x y +=与圆222:870C x y x +-+=,则圆1C 与圆2C 的位置关系是()A.相离B.相交C.内切D.外切【答案】D 【解析】【分析】求出两圆的圆心和半径,得到12124C C r r ==+,得到两圆外切.【详解】圆221:1C x y +=的圆心为()10,0C ,半径为11r =,圆()22222:87049C x y x x y +-+=⇒-+=,故圆心()24,0C ,半径为23r =,则12124C C r r ==+,所以圆1C 与圆2C 的位置关系是外切.故选:D6.过点1,22P ⎛⎫- ⎪⎝⎭的直线l 与圆2214x y +=有公共点,则直线l 的倾斜角取值范围是()A.π5π,26⎡⎤⎢⎥⎣⎦ B.2π,π3⎡⎫⎪⎢⎣⎭C.π22π,3⎡⎤⎢⎥⎣⎦D.5π,π6⎡⎫⎪⎢⎣⎭【答案】A 【解析】【分析】利用直线与圆的位置关系及倾斜角与斜率的关系计算即可.【详解】易知圆的半径为12,圆心为原点,当倾斜角为π2时,即直线l 方程为12x =-,此时直线l 与圆相切满足题意;当斜率存在时,不妨设直线l方程为122y k x ⎛⎫=++ ⎪⎝⎭,则圆心到其距离为12d =≤,解不等式得33k ≤-,所以直线l 的倾斜角取值范围为π5π,26⎡⎤⎢⎥⎣⎦故选:A7.“1a =-”是“直线1:430l ax y +-=与直线()2:320l x a y +-+=平行的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【答案】A 【解析】【分析】求出当12l l //时实数的值,再利用集合的包含关系判断可得出结论.【详解】当12l l //时,()34a a -=,即2340a a --=,解得1a =-或4.当1a =-时,直线1l 的方程为430x y -+=,直线2l 的方程为420x y -+=,此时12l l //;当4a =时,直线1l 的方程为304x y +-=,直线2l 的方程为20x y ++=,此时12l l //.因为{}1-{}1,4-,因此,“1a =-”是“直线1:430l ax y +-=与直线()2:320l x a y +-+=平行”的充分不必要条件.故选:A.8.如图,在平行六面体1111ABCD A B C D -中,12AA AD AB ===,2BAD π∠=,113BAA A AD π∠=∠=,则11AB AD ⋅=()A.12B.8C.6D.4【答案】B 【解析】【分析】根据空间向量加法的运算性质,结合空间向量数量积的运算性质和定义进行求解即可.【详解】()()21111111AB AD AB AA AD AA AB AD AB AA AD AA AA ⋅=+⋅+=⋅+⋅+⋅+ 211110222228,22AB AD ⇒⋅=+⨯⨯+⨯⨯+= 故选:B9.数学家欧拉在1765年提出定理:三角形的外心、重心、垂心依次位于同一直线上,且重心到外心的距离是重心到垂心距离的一半.这条直线被后人称为三角形的欧拉线,已知△ABC 的顶点()2,0A ,()1,2B ,且AC BC =,则△ABC 的欧拉线的方程为()A.240x y --=B.240x y +-=C.4210x y ++=D.2410x y -+=【答案】D 【解析】【分析】由题设条件求出AB 垂直平分线的方程,且△ABC 的外心、重心、垂心都在垂直平分线上,结合欧拉线的定义,即垂直平分线即为欧拉线.【详解】由题设,可得20212AB k -==--,且AB 中点为3(,1)2,∴AB 垂直平分线的斜率112AB k k =-=,故垂直平分线方程为131()12224x y x =-+=+,∵AC BC =,则△ABC 的外心、重心、垂心都在垂直平分线上,∴△ABC 的欧拉线的方程为2410x y -+=.故选:D10.曲线33:1C x y +=.给出下列结论:①曲线C 关于原点对称;②曲线C 上任意一点到原点的距离不小于1;③曲线C 只经过2个整点(即横、纵坐标均为整数的点).其中,所有正确结论的序号是A.①② B.②C.②③D.③【答案】C 【解析】【分析】将(),x y --代入,化简后可确定①的真假性.对x 分成0,0,01,1,1x x x x x <=<<=>等5种情况进行分类讨论,得出221x y +≥,由此判断曲线C 上任意一点到原点的距离不小于1.进而判断出②正确.对于③,首先求得曲线C 的两个整点()()0,1,1,0,然后证得其它点不是整点,由此判断出③正确.【详解】①,将(),x y --代入曲线33:1C x y +=,得331x y +=-,与原方程不相等,所以曲线C 不关于原点对称,故①错误.②,对于曲线33:1C x y +=,由于331y x =-,所以y =,所以对于任意一个x ,只有唯一确定的y和它对应.函数y =是单调递减函数.当0x =时,有唯一确定的1y =;当1x =时,有唯一确定的0y =.所以曲线C 过点()()0,1,1,0,这两点都在单位圆上,到原点的距离等于1.当0x <时,1y >,所以221x y +>>.当1x >时,0y <,所以221x y +>>.当01x <<时,01y <<,且()()()()223322221110x y x y x y x x y y -+=+-+=-+-<,所以221x y +>>.综上所述,曲线C 上任意一点到原点的距离不小于1,所以②正确.③,由②的分析可知,曲线C 过点()()0,1,1,0,这是两个整点.由331x y +=可得()331x y -=-,当0x ≠且1x ≠时,若x 为整数,31x -必定不是某个整数的三次方根,所以曲线C 只经过两个整点.故③正确.综上所述,正确的为②③.故选:C【点睛】本小题主要考查根据曲线方程研究曲线的性质,属于中档题.二、填空题:本大题共5小题,共25分.把答案填在答题纸中相应的横线上................11.已知空间()2,3,1a = ,()4,2,b x =- ,a b ⊥ ,则b =_____.【答案】【解析】【分析】根据空间向量的垂直,根据数量积的坐标表示,建立方程,结合模长公式,可得答案.【详解】由a b ⊥ ,且()2,3,1a = ,()4,2,b x =- ,则860a b x ⋅=-++=r r ,解得2x =,故b =r.故答案为:12.已知过点(0,2)的直线l 的方向向量为(1,6),点(,)A a b 在直线l 上,则满足条件的一组,a b 的值依次为__________.【答案】1;8【解析】【分析】根据方向向量设出直线l 的方程,再由点(0,2)求出其方程,从而得出62b a =+,即可得出答案.【详解】直线l 的方向向量为(1,6),可设直线l 的方程为60x y C -+=因为点(0,2)在直线l 上,所以2C =,即直线l 为620x y -+=所以620a b -+=,即62b a =+可取1a =,则8b =故答案为:1;813.在正方体ABCD A B C D -''''中,E 是C D ''的中点,则异面直线DE 与AC 所成角的余弦值为______.【答案】10【解析】【分析】利用正方体的特征构造平行线,利用勾股定理及余弦定理解三角形即可.【详解】如图所示,取A B ''的中点F ,易得//AF DE ,则FAC ∠或其补角为所求角,不妨设正方体棱长为2,则,3,AF FC FC AC '====,由余弦定理知:222cos 210AF AC FC FAC AF AC +-∠==⋅,则FAC ∠为锐角,即异面直线DE 与AC 所成角.故答案为:1010.14.将一张坐标纸对折,如果点()0,m 与点()()2,22m m -≠重合,则点()4,1-与点______重合.【答案】()1,2--【解析】【分析】先求线段AB 的中垂线方程,再根据点关于直线对称列式求解即可.【详解】已知点()0,A m 与点()2,2B m -,可知线段AB 的中点为1,122mm M ⎛⎫-+ ⎪⎝⎭,且212AB mk m -==--,则线段AB 的中垂线的斜率1k =,则线段AB 的中垂线方程为1122m m y x ⎛⎫⎛⎫-+=--⎪ ⎪⎝⎭⎝⎭,即20x y -+=,设点()4,1-关于直线20x y -+=的对称点为(),a b ,则114412022b a a b -⎧=-⎪⎪+⎨-+⎪-+=⎪⎩,解得12a b =-⎧⎨=-⎩,所以所求点为()1,2--.故答案为:()1,2--.15.给定两个不共线的空间向量a 与b,定义叉乘运算:a b ⨯ .规定:(i )a b ⨯ 为同时与a,b垂直的向量;(ii )a,b ,a b ⨯三个向量构成右手系(如图1);(iii )sin ,a b a b a b ⨯=.如图2,在长方体1111ABCD A B C D -中,2AB AD ==,14AA =.给出下列四个结论:①1AB AD AA ⨯= ;②AB AD AD AB ⨯=⨯;③()111AB AD AA AB AA AD AA +⨯=⨯+⨯ ;④()11111ABCD A B C D V AB AD CC -=⨯⋅.其中,正确结论的序号是______________.【答案】①③④【解析】【分析】由新定义逐一核对四个选项得答案.【详解】解: ||||||sin902214AB AD AB AD ⨯=︒=⨯⨯=,且1AA 分别与,AB AD 垂直,∴1AB AD AA ⨯= ,故①正确;由题意,1AB AD AA ⨯= ,1AD AB A A ⨯=,故②错误;AB AD AC +=,∴11|()|||41AB AD AA AC AA +⨯=⨯=⨯= 且1()AB AD AA +⨯ 与DB 共线同向, 1||2418AB AA ⨯=⨯⨯= ,1AB AA ⨯ 与DA 共线同向,1||2418AD AA ⨯=⨯⨯= ,1AD AA ⨯ 与DB共线同向,11||AB AA AD AA ∴⨯+⨯= 11AB AA AD AA ⨯+⨯ 与DB共线同向,故③正确;11()||||||sin90cos022416AB AD CC AB AD CC ⨯=⨯⨯︒⨯︒=⨯⨯=,故④成立.故答案为:①③④.三、解答题:本大题共6题,共85分.解答应写出文字说明、演算步骤或证明过程,并把答案...写在答题纸中相应位置上............16.在平面直角坐标系中,已知(3,9),(2,2),(5,3)A B C -,线段AC 的中点M ;(1)求过M 点和直线BC 平行的直线方程;(2)求BC 边的高线所在直线方程.【答案】(1)3170x y -+=(2)30x y +=【解析】【分析】(1)根据(3,9),(2,2),(5,3)A B C -,求得点M 的坐标,和直线直线BC 的斜率,写出直线方程;(2)根据13BC k =,得到BC 边的高线的斜率,写出直线方程;【小问1详解】解:因为(3,9),(2,2),(5,3)A B C -,所以()1,6M ,13BC k =,所以过M 点和直线BC 平行的直线方程为()1613y x -=-,即3170x y -+=;【小问2详解】因为13BC k =,所以BC 边的高线的斜率为-3,所以BC 边的高线所在直线方程()933y x -=-+,即30x y +=17.如图,在边长为2的正方体1111ABCD A B C D -中,E 为线段1BB 的中点.(1)求证:1//BC 平面1AED ;(2)求点1A 到平面1AED 的距离;(3)直线1AA 与平面1AED 所成角的正弦值.【答案】(1)证明见解析(2)43(3)23【解析】【分析】(1)证明出四边形11ABC D 为平行四边形,可得出11//BC AD ,利用线面平行的判定定理可证得结论成立;(2)以点A 为坐标原点,AD 、AB 、1AA 所在直线分别为x 、y 、z 轴建立空间直角坐标系,利用空间向量法可求得点1A 到平面1AED 的距离;(3)利用空间向量法可求得直线1AA 与平面1AED 所成角的正弦值.【小问1详解】证明:在正方体1111ABCD A B C D -中,11//AB C D 且11AB C D =,故四边形11ABC D 为平行四边形,则11//BC AD ,因为1BC ⊄平面1AED ,1AD ⊂平面1AED ,因此,1//BC 平面1AED .【小问2详解】解:以点A 为坐标原点,AD 、AB 、1AA 所在直线分别为x 、y 、z 轴建立如下图所示的空间直角坐标系,则()0,0,0A 、()10,0,2A 、()0,2,1E 、()12,0,2D ,所以,()10,0,2AA = ,()12,0,2AD = ,()0,2,1AE = ,设平面1AED 的法向量为(),,n x y z = ,则122020n AD x z n AE y z ⎧⋅=+=⎪⎨⋅=+=⎪⎩ ,取2z =-,可得()2,1,2n =- ,所以,点1A 到平面1AED 的距离为143AA n d n⋅== .【小问3详解】解:因为11142cos ,233AA n AA n AA n ⋅<>===⨯⋅ ,因此,直线1AA 与平面1AED 所成角的正弦值为23.18.已知圆C 的圆心在直线20x y -=上,且与x 轴相切于点()1,0.(1)求圆C 的方程;(2)若圆C 直线:0l x y m -+=交于A ,B 两点,____,求m 的值.从下列三个条件中任选一个补充在上面问题中并作答:条件①:圆C 被直线l 分成两段圆弧,其弧长比为2:1;条件②:2AB =;条件③:90ACB ∠=︒.【答案】(1)()()22124x y -+-=(2)答案见解析【解析】【分析】(1)利用几何关系求出圆心的坐标即可;(2)任选一个条件,利用选择的条件,求出圆心到直线的距离,然后列方程求解即可.【小问1详解】设圆心坐标为(),C a b ,半径为r .由圆C 的圆心在直线20x y -=上,知:2a b =.又 圆C 与x 轴相切于点()1,0,1a ∴=,2b =,则02r b =-=.∴圆C 圆心坐标为()1,2,则圆C 的方程为()()22124x y -+-=【小问2详解】如果选择条件①:120ACB ∠=°,而2CA CB ==,∴圆心C 到直线l 的距离1cos 60d CA =⨯= ,则1d ==,解得1m +或1+.如果选择条件②和③:AB =,而2CA CB ==,∴圆心C 到直线l 的距离d =,则d ==,解得1m =-或3.如果选择条件③:90ACB ∠=︒,而2CA CB ==,∴圆心C 到直线l 的距离cos 45d CA ⨯== ,则d ==,解得1m =-或3.19.如图,四棱锥P ABCD -中,AD ⊥平面ABP ,,90,2,3,BC AD PAB PA AB AD BC m ∠=︒==== ,E 是PB 的中点.(1)证明:AE ⊥平面PBC ;(2)若二面角C AE D --的余弦值是33,求m 的值;(3)若2m =,在线段A 上是否存在一点F ,使得PF CE ⊥.若存在,确定F 点的位置;若不存在,说明理由.【答案】(1)证明见解析(2)1(3)不存在,理由见解析【解析】【分析】(1)推导出⊥BC 平面PAB .,AE BC AE PB ⊥⊥.由此能证明AE ⊥平面PBC ;(2)建立空间直角坐标系A xyz -,利用向量法能求出m 的值;(3)设()()0,0,03F t t ≤≤,当2m =,()0,0,2C ,()()2,0,,1,1,2PF t CE ==-- ,由PF CE ⊥知,0PF CE ⋅= ,220,1t t --==-,这与03t ≤≤矛盾,从而在线段AD 上不存在点F ,使得PF CE ⊥.【小问1详解】证明:因为AD ⊥平面PAB ,BC AD ∥,所以⊥BC 平面PAB ,又因为AE ⊂平面PAB ,所以AE BC ⊥.在PAB 中,PA AB =,E 是PB 的中点,所以AE PB ⊥.又因为BC PB B = ,,BC PB ⊂平面PBC ,所以AE ⊥平面PBC .【小问2详解】因为AD ⊥平面PAB ,,AB PA ⊂平面PAB ,所以,AD AB AD PA ⊥⊥,又因为PA AB ⊥,所以如图建立空间直角坐标系A xyz -.则()()()()()()0,0,0,0,2,0,0,2,,1,1,0,2,0,0,0,0,3A B C m E P D ,则()0,2,AC m = ,()1,1,0AE = ,设平面AEC 的法向量为 =s s .则00AC n AE n ⎧⋅=⎪⎨⋅=⎪⎩ 即200y mz x y +=⎧⎨+=⎩,令1x =,则1y =-,2z m =,故21,1,n m ⎛⎫=- ⎪⎝⎭.因为AD ⊥平面PAB ,PB ⊂平面PAB ,所以AD PB ⊥,又AE PB ⊥,,,AD AE A AD AE ⋂=⊂平面AED ,所以PB ⊥平面AED .又因为()2,2,0PB =- ,所以取平面AED 的法向量为()2,2,0PB =-所以cos ,3n PB n PB n PB⋅== ,3=,解得21m =.又因为0m >,所以1m =;【小问3详解】结论:不存在.理由如下:证明:设()()0,0,03F t t ≤≤.当2m =时,()0,0,2C ,()()2,0,,1,1,2PF t CE =-=-- ,由PF CE ⊥知0PF CE ⋅= ,220,1t t --==-,这与03t ≤≤矛盾,所以在线段AD 上不存在点F ,使得PF CE ⊥.20.已知圆()22:1C x a y -+=与直线1y x --=交于M 、N 两点,点P 为线段MN 的中点,O 为坐标原点,直线OP 的斜率为13-.(1)求a 的值及MON △的面积;(2)若圆C 与x 轴交于,A B 两点,点Q 是圆C 上异于,A B 的任意一点,直线QA 、QB 分别交:4l x =-于,R S 两点.当点Q 变化时,以RS 为直径的圆是否过圆C 内的一定点,若过定点,请求出定点;若不过定点,请说明理由.【答案】(1)12,2MON a S =-=(2)()4-【解析】【分析】(1)先确定直线OP 的方程,联立直线方程求得P 点坐标,利用垂径定理及两直线垂直的斜率关系计算可得a ,再根据点到直线的距离公式、弦长公式计算求面积即可;(2)设QA 方程,含参表示QB 方程,求出,R S 坐标,从而求出以RS 为直径的圆的方程,利用待定系数法计算即可.【小问1详解】由题知:直线OP 方程为13y x =-,则由113y x y x =--⎧⎪⎨=-⎪⎩,得到3212x y ⎧=-⎪⎪⎨⎪=⎪⎩,即31,22P ⎛⎫- ⎪⎝⎭, 点P 为线段MN 的中点,MN PC ∴⊥,即1021132MN PC k k a -⋅=-⨯=-+,2a ∴=-,即圆心−2,0;C ∴到直线=1y x --距离为2d ==,MN ∴==,又O 到直线=1y x --的距离为22,MN 边上的高为22.11222MON S ∴=⨯= .【小问2详解】由上可知()()3,0,1,0A B --,不妨设直线QA 的方程为()3y k x =+,其中0k ≠,在直线QA 的方程中,令4x =-,可得()4,R k --,因为QA QB ⊥,则直线QB 的方程为()11y x k =-+,在直线QB 的方程中,令4x =-,可得3y k =,即点34,S k ⎛⎫- ⎪⎝⎭,则线段RS 的中点为234,2k F k ⎛⎫-- ⎪⎝⎭,半径平方为2232k k ⎛⎫+ ⎪⎝⎭,所以,以线段MN 为直径的圆的方程为()2222233422k k x y k k ⎛⎫⎛⎫-+++-= ⎪ ⎪⎝⎭⎝⎭,即()2223430k x y y k -++--=,由()2430031x y x ⎧+-=⎪=⎨⎪-<<-⎩,解得40x y ⎧=-+⎪⎨=⎪⎩,因此,当点Q 变化时,以RS 为直径的圆恒过圆C内的定点()4-+.21.已知{}1,2,,n S = ,A S ⊆,{}12,T t t S =⊆,记{}(),1,2i i A x x a t a A i ==+∈=,用X 表示有限集合X 的元素个数.(1)若4n =,12A A =∅ ,分别指出{}1,2,3A =和{}1,2,4A =时,集合T 的情况(直接写出结论);(2)若6n =,12A A =∅ ,求12A A ⋃的最大值;(3)若7n =,4A =,则对于任意的A ,是否都存在T ,使得12A A =∅ 说明理由.【答案】(1){}1,4(2)10(3)不一定存在,理由见解析【解析】【分析】(1)由已知得12t t a b -≠-,其中,a b A ∈,当{}1,2,3A =时,12t t ,相差3;由此可求得T ,当{}1,2,4A =时,同理可得;(2)若6n =,12A A =∅ ,{}123456S =,,,,,,当{}2,3,4,5,6A =时,则12t t ,相差5,所以{}1,6T =,A 中至多有5个元素,所以12,A A 也至多有5个元素,求出12,A A 得出结果;(3)举反例{}1,2,5,7A =和{}{}1,2,3,4,1,6A T ==,根据题意检验即可说明.【小问1详解】若12A A =∅ ,则12t t a b -≠-,其中,a b A ∈,否则12t a t b +=+,12A A ⋂≠∅,若4n =,当{}1,2,3A =时,211-=,312-=,所以121,2t t -≠,则1t ,2t 相差3,因为1,2,3,4S =,{}12,T t t S =⊆,所以{}1,4T =;当{}1,2,4A =时,211-=,422-=,413-=,所以121,2,3t t -≠,因为1,2,3,4S =,{}12,T t t S =⊆,所以T 不存在;【小问2详解】若6n =,12A A =∅ ,{}123456S =,,,,,,当A S =时,211-=,514-=,523-=,716-=,72=5-,752-=,所以A S ≠,121,2,3,4,5t t -≠,所以T 不存在;所以A 中至多有5个元素;当{}2,3,4,5,6A =时,321-=,422-=,523-=,624-=,所以121,2,3,4t t -≠,则1t ,2t 相差5,所以{}1,6T =;{}(),1,2i i A x x a t a A i ==+∈=,所以{}1345,6,7A =,,,{}28910,11,12A =,,,{}12345,6,7,8910,11,12A A = ,,,,.因为A 中至多有5个元素,所以1A ,2A 也至多有5个元素,所以12A A ⋃的最大值为10.【小问3详解】不一定存在,理由如下:例如{}1,2,5,7A =,则211-=514-=,523-=,716-=,72=5-,752-=,则1t ,2t 相差不可能1,2,3,4,5,6,这与{}{}12,1,2,3,4,5,6,7T t t =⊆矛盾,故不都存在T ;例如{}{}1,2,3,4,1,6A T ==,不妨令121,6t t ==,则{}{}122,3,4,5,7,8,9,10A A ==,满足12A A =∅ .【点睛】关键点点睛:对于新定义问题,要充分理解定义,并把定义进行转化为已知的知识点或结论,方便解题.。
2020-2021学年北京市某校高二(上)期中数学试卷 (1)
2020-2021学年北京市某校高二(上)期中数学试卷一.选择题共13小题,每小题4分,共52分。
在每小题列出的四个选项中,选出符合题意要求的一项。
1. 已知全集U ={1, 2, 3, 4, 5, 6},集合A ={1, 2, 4},B ={1, 3, 5},则(∁U A)∩B =( ) A.{1}B.{3, 5}C.{1, 6}D.{1, 3, 5, 6}【答案】 B【考点】交、并、补集的混合运算 【解析】进行交集、补集的运算即可. 【解答】解:∁U A ={3, 5, 6}; ∴ (∁U A)∩B ={3, 5}. 故选B .2. 已知复数z 在复平面上对应的点为(1, −1),则( ) A.z +1是实数B.z +1是纯虚数C.z +i 是实数D.z +i 是纯虚数【答案】 C【考点】复数的代数表示法及其几何意义 复数的基本概念【解析】复数z 在复平面上对应的点为(1, −1),可得z =1−i ,分别计算z +1,z +i .即可判断出结论. 【解答】解:复数z 在复平面上对应的点为(1,−1), 则z =1−i ,∴ z +1=2−i ,z +i =1. 因此只有C 正确. 故选C .3. 已知向量a →=(−1, 2, 1),b →=(3, x, 1),且a →⊥b →,那么|b →|等于( ) A.√10B.2√3C.√11D.5【答案】 C【考点】数量积判断两个平面向量的垂直关系【解析】利用向量且a →⊥b →,求出x ,然后利用向量的模长公式求|b →|的长度. 【解答】解:因为a →=(−1, 2, 1),b →=(3, x, 1),且a →⊥b →,所以−1×3+2x +1×1=0,即x =1,所以b →=(3, 1, 1), 所以|b →|=√32+12+12=√11, 故选C .4. 设a =213,b =log 32,c =cos 100∘,则( ) A.c >b >aB.a >c >bC.c >a >bD.a >b >c【答案】 D【考点】对数值大小的比较 【解析】利用指数函数、对数函数、三角函数的性质求解. 【解答】解:∵ a =213>20=1,0=log 31<b =log 32<log 33=1, c =cos 100∘<0, ∴ a >b >c . 故选:D .5. 下列函数中,在定义域内满足f(−x)+f(x)=0的是( ) A.f(x)=√x B.f(x)=ln |x|C.f(x)=x cos xD.f(x)=1x−1【答案】 C【考点】函数奇偶性的性质与判断 【解析】由题意,函数f(x)为奇函数,再利用函数的奇偶性的定义以及判断方法,得出结论. 【解答】f(−x)+f(x)=0,即f(−x)=−f(x),故函数f(x)为奇函数.由于f(x)=√x 的定义域为[0, +∞),不关于原点对称,故f(x)不是奇函数,故排除A ; 由于f(x)=ln |x|是偶函数,故排除B ;由于f(x)=x cos x 的定义域为R ,且满足f(−x)=−x cos (−x)=−x cos x =−f(x),故函数为奇函数,故C 满足条件;由于f(x)=1x−1的定义域为{x|x ≠1},不关于原点对称,不是奇函数,故排除D ,6. 在下列四个命题中,正确的是( )A.平面直角坐标系中任意一条直线均有倾斜角和斜率B.四条直线中斜率最大的直线是l 3C.直线x +2y −3=0的斜率是2D.经过(5, m)和(m, 8)的直线的斜率是1,则m =132【答案】 D【考点】 直线的斜率 【解析】对于A ,当直线与x 轴垂直时,直线没有斜率;对于B ,四条直线中斜率最大的直线是l 4;对于C ,直线x +2y −3=0的斜率是−12;对于D ,利用直线的斜率计算公式求解. 【解答】对于A ,平面直角坐标系中任意一条直线均有倾斜角,但当直线与x 轴垂直时,直线没有斜率,故A 错误;对于B ,如图,四条直线中斜率最大的直线是l 4,故B 错误; 对于C ,直线x +2y −3=0的斜率是−12,故C 错误; 对于D ,∵ 过(5, m)和(m, 8)的直线的斜率是1, ∴ 8−mm−5=1,解得m =132,故D 正确.7. 如图,在长方体ABCD −A 1B 1C 1D 1中,设AD =AA 1=1,AB =2,则BD 1→⋅AD →等于( )A.1B.2C.3D.√63【答案】 A【考点】空间向量的数量积运算 【解析】由向量的运算法则把向量用AB →,AD →,AA 1→表示,结合垂直关系和数量关系可得. 【解答】解:由题意可得BD 1→⋅AD →=(AD 1→−AB →)⋅AD → =(AD →+AA 1→−AB →)⋅AD →=AD →2+AA 1→⋅AD →−AB →⋅AD →由垂直关系可得AA 1→⋅AD →=AB →⋅AD →=0 故原式=12+0−0=1 故选A8. 如图,在三棱锥A −BCD 中,DA ,DB ,DC 两两垂直,且DB =DC =2,点E 为BC 的中点,若直线AE 与底面BCD 所成的角为45∘,则三棱锥A −BCD 的体积等于( )A.23B.43C.2D.2√23【答案】D【考点】直线与平面所成的角柱体、锥体、台体的体积计算【解析】确定∠AED 为直线AE 与底面BCD 所成的角,求出DE ,可得AD ,再利用三棱锥A −BCD 的体积公式,即可得到结论. 【解答】解:∵ DB =DC =2,点E 为BC 的中点,∴ DE ⊥BC ,DE =√2 ∵ DA ,DB ,DC 两两垂直,∴ AD ⊥平面DBC , ∴ ∠AED 为直线AE 与底面BCD 所成的角∵ 直线AE 与底面BCD 所成的角为45∘,∴ ∠AED =45∘, ∴ AD =DE =√2∴ 三棱锥A −BCD 的体积等于13×12×2×2×√2=2√23故选D .9. 已知复数z 的共轭复数z ¯=2−i1+2i ,i 是虚数单位,则复数z 的虚部是( ) A.1 B.−1 C.i D.−i【答案】 A【考点】 复数的运算 【解析】先根据复数的运算法则求出z ¯,再根据共轭复数求出z ,可得z 的虚部. 【解答】z ¯=2−i1+2i =(2−i)(1−2i)(1+2i)(1−2i)=−5i 5=−i ,则z =i ,则复数z 的虚部是1,10. 在空间中,已知直线a 的方向向量为v →,平面α的法向量为n →,则“直线a 与平面α相交”是“v →⋅n →≠0”的( ) A.充分而不必要条件 B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件【答案】 C【考点】充分条件、必要条件、充要条件 【解析】根据充分必要条件的定义以及直线和平面的位置关系判断即可. 【解答】若“直线a 与平面α相交”,则“v →⋅n →≠0”,是充分条件, 若v →⋅n →=0时,则直线a 和平面α平行或直线a ⊂平面α, 若v →⋅n →≠0,则直线a 与平面α相交,是必要条件; 故“直线a 与平面α相交”是“v →⋅n →≠0”的充要条件,11. 如图,棱长为2的正方体ABCD −A 1B 1C 1D 1中,M 是棱AA 1的中点,点P 在侧面ABB 1A 1内,若D 1P 垂直于CM ,则△PBC 的面积的最小值为( )A.2√55B.√55C.45D.1【答案】 A【考点】棱柱的结构特征 【解析】建立坐标系,求出P 的轨迹,得出P 到B 的最小距离,得出三角形的最小面积. 【解答】以AB ,AD ,AA 1为坐标轴建立空间坐标系如图所示: 则M(0, 0, 1),C(2, 2, 0),D 1(0, 2, 2),设P(a, 0, b),则D 1P →=(a, −2, b −2),CM →=(−2, −2, 1), ∵ D 1P ⊥CM ,∴ D 1P →=−2a +4+b −2=0,即b =2a −(2) 取AB 的中点N ,连结B 1N ,则P 点轨迹为线段B 1N , 过B 作BQ ⊥B 1N ,则BQ =√5=2√55. 又BC ⊥平面ABB 1A 1,故BC ⊥BQ , ∴ S △PBC 的最小值为S △QBC =12×2×2√55=2√55. 故选:A .12. 设空间直角坐标系中有四A ,B ,C ,D 个点,其坐标分别为A(1, 0, 0),B(0, 1, 0),C(2, 1, 4),D(−1, −2, 8),下列说法正确的是( )A.存在唯一的一个不过点A 、B 的平面α,使得点A 和点B 到平面α的距离相等B.存在唯一的一个过点C 的平面β,使得AB // β,CD ⊥βC.存在唯一的一个不过A 、B 、C 、D 的平面γ,使得AB // γ,CD // γD.存在唯一的一个过C 、D 点的平面α使得直线AB 与α的夹角正弦值为1235【答案】 B【考点】命题的真假判断与应用 【解析】由 AB // 平面 α 或平面 α 过线段 AB 的中点可判断 A 选项的正误; 推导出 AB ⊥CD 以及 A 、B 、C 、D 四点不共面,利用点 C 且与 CD 垂直的平面 β 有且只有一个以及 AB // β 可判断 B 选项的正误; 在 AB 、CD 的公垂线 MN 上的点作 MN 的垂面满足题意,可判断 C 选项的正误; 设平面 α 的法向量为 n →=(1,y,z),根据题意可得出关于 y 、z 的方程组,判断方程组解的个数,进而可判断 D 选项的正误. 【解答】对于 A 选项,当 AB // 平面 α 或平面 α 过线段 AB 的中点时,点 A 和点 B 到平面 α 的距离相等, A 选项错误; 对于 B 选项,AB →=(−1,1,0),CD →=(−3,−3,4),∴ AB →∗CD →=−1×(−3)+1×(−3)=0,∴ AB ⊥CD ,∵ AC →=(1,1,4),AD →=(−2,−2,8),设 AD →=xAB →+yAC →,则 {−x +y =−2x +y =−24y =8,该方程组无解,所以,A 、B 、C 、D 四点不共面, 则 AB 与 CD 异面,而过点 C 且与 CD 垂直的平面 β 有且只有一个,若 AB ⊂β,由于 CD ⊂β,则 AB 与 CD 共面,矛盾,所以,AB // β, B 选项正确; 对于 C 选项,由于 AB 、CD 异面,设 MN 为 AB 、CD 的公垂线段,且 M ∈AB ,N ∈CD ,在直线 MN (异于 M 、N ) 的任意一点作平面 γ,使得 γ⊥MN ,则 AB // γ,CD // γ,这样的平面 γ 有无数个, C 选项错误; 对于 D 选项,设平面 α 的一个法向量为 n →=(1,y,z),AB →=(−1,1,0),CD →=(−3,−3,4), 由题意可得 n →∗CD →=−3−3y +4z =0, |cos ⟨AB →,n →⟩|=|AB →∗n →||AB →|∗|n →|=√2×√y 2+z 2+1=1235,所以,{3y −4z =−3,|y−1|√y 2+z 2+1=12√235, 整理得775y 2−2774y +775=0,△=27742−4×7752=27742−15502>0,即方程 775y 2−2774y +775=0 有两个不等的实数解,所以,存在两个过 C 、D 点的平面 α 使得直线 AB 与 α 的夹角正弦值为 1235,D 选项错误.13. 如图1,矩形ABCD 中,AD =√3.点E 在AB 边上,CE ⊥DE 且AE =1.如图2,△ADE 沿直线DE 向上折起成△A 1DE .记二面角A −DE −A 1的平面角为θ,当θ∈(0∘, 180∘)时,①存在某个位置,使CE ⊥DA 1; ②存在某个位置,使DE ⊥A 1C ;③任意两个位置,直线DE 和直线A 1C 所成的角都不相等. 以上三个结论中正确的序号是( )A.①B.①②C.①③D.②③C【考点】棱锥的结构特征【解析】在①中,当二面角A−DE−A1的平面角θ=90∘时,CE⊥DA1;在②中,A1D⊥A1E,CE⊥DE,从而∠DEA一定是锐角,从而不存在某个位置,使DE⊥A1C;在③中,DE 是定直线,A1C是动直线,从而任意两个位置,直线DE和直线A1C所成的角都不相等.【解答】在①中,当二面角A−DE−A1的平面角θ=90∘时,CE⊥DA1,故①正确;在②中,∵如图1,矩形ABCD中,AD=√3.点E在AB边上,CE⊥DE且AE=1,如图2,△ADE沿直线DE向上折起成△A1DE.记二面角A−DE−A1的平面角为θ∴A1D⊥A1E,CE⊥DE,∴∠DEA一定是锐角,∴当存在某个位置,使DE⊥A1C时,DE⊥平面A1EC,则∠DEA=90∘,与∠DEA一定是锐角矛盾,故不存在某个位置,使DE⊥A1C,故②错误;在③中,DE是定直线,当二面角A−DE−A1的平面角θ变化时,A1C是动直线,∴任意两个位置,直线DE和直线A1C所成的角都不相等,故③正确.二、填空题直线y=−x−2的倾斜角是________,在y轴上的截距为________.【答案】3π,−24【考点】直线的斜截式方程直线的倾斜角【解析】由题意利用直线的斜率,求出它的倾斜角,再根据直线的方程,求出直线在y轴上的截距.【解答】,在y轴上的截距为−2,直线y=−x−2的斜率为−1,它的倾斜角是3π4已知直线l经过点P(1, 2),且直线l的方向向量为a→=(2, 4),则直线l的斜率为________,直线l的方程为________.【答案】2,2x−y=0【考点】直线的斜率直线的点斜式方程【解析】先求出直线的斜率,再用点斜式求直线l的方程.∵ 直线l 经过点P(1, 2),且直线l 的方向向量为a →=(2, 4),则直线l 的斜率为42=2,∴ 直线l 的方程为 y −2=2(x −1),即 2x −y =0,已知向量a →=(13, tan α),b →=(cos α, 1),α∈(π2,π),且a →∥b →,则sin α=________,cos 2α=________. 【答案】13,79【考点】二倍角的三角函数平面向量共线(平行)的坐标表示【解析】由题意利用两个向量共线的性质,两个向量的数量积公式,求得结果. 【解答】∵ 向量a →=(13, tan α),b →=(cos α, 1),α∈(π2,π),且a →∥b →,则13×1−tan α⋅cos α=0,求得 sin α=13,故cos 2α=1−2sin 2α=79,已知平面α的一个法向量是n →=(1, 1, −1),且平面α经过点A(1, 2, 0).若P(x, y, z)是平面α上任意一点,则点P 的坐标满足的方程是________. 【答案】x +y −z −3=0 【考点】空间向量运算的坐标表示 【解析】求出向量AP →,利用平面α的一个法向量是n →=(1, 1, −1),通过向量的数量积为0,求解即可. 【解答】解:由题意可知AP →=(x,y,z)−(1,2,0)=(x −1, y −2, z); 平面α的一个法向量是n →=(1, 1, −1),所以AP →⋅n →=0, 即:(x −1, y −2, z)(1, 1, −1)=0;x −1+y −2−z =0,即x +y −z −3=0, 所求点P 的坐标满足的方程是x +y −z −3=0. 故答案为:x +y −z −3=0.函数f(x)=sin x 的图象向左平移π6个单位得到函数g(x)的图象,则下列函数g(x)的结论:①一条对称轴方程为x =7π6;②点(5π6,0)时对称中心; ③在区间(0,π3)上为单调增函数;④函数g(x)在区间[π2,π]上的最小值为−12.其中所有正确的结论为________. 【答案】 ②③④ 【考点】函数y=Asin (ωx+φ)的图象变换 命题的真假判断与应用【解析】首先利用函数的图象的平移变换求出函数g(x)的解析式,进一步利用函数的性质函数的定义域和值域的关系,函数的单调区间,函数的对称性的应用判定①②③④的结论. 【解答】函数f(x)=sin x 的图象向左平移π6个单位得到函数g(x)=sin (x +π6)的图象, 对于①:当x =7π6时,g(7π6)=sin (7π6+π6)=sin 4π3=−√32,故①错误; ②当x =5π6时,g(5π6)=sin π=0故函数关于(5π6,0)对称,故②正确;③当x ∈(0,π3),时,x +π6∈(π6,π2),故函数在区间(0,π3)上为单调增函数,故③正确; ④当x ∈[π2,π]时,x +π6∈[2π3,7π6],所以sin (x +π6)∈[−12,√32]故函数的最小值为−12,故④正确.已知f(x)={1−|x +1|,x <0x 2−2x,x ≥0 .(1)f(−1)=________;(2)若实数m ∈[−2, 0],则|f(x)−f(−1)|在区间[m, m +2]上的最大值的取值范围是________. 【答案】 1 [1, 2] 【考点】函数的最值及其几何意义 分段函数的应用【解析】(1)直接把x =−1代入已知函数解析式求得f(−1)的值;(2)令g(x)=f(x)−f(−1),根据题设条件求出g(x)的表达式,画出其图象,再对m 进行讨论,求出|g(x)|的最大值的表达式,进而求得结论. 【解答】∵ f(x)={1−|x +1|,x <0x 2−2x,x ≥0 ,∴ f(−1)=1−|−1+1|=1;f(x)−f(−1)=f(x)−1={x +1,x ≤−1−x −1,−1<x <0x 2−2x −1,x ≥0 ,令g(x)=f(x)−f(−1)={x +1,x ≤−1−x −1,−1<x <0x 2−2x −1,x ≥0 ,其图象如下图所示:①当m =−2时,g(x)={x +1,x ∈[−2,−1]−x −1,x ∈(−1,0],此时|g(x)|max =1;②当m ∈(−2, −1)时,|g(x)|max =−g(m +2)=−[(m +2)2−2(m +2)−1]=−m 2−2m +1∈(1, 2);③当m =−1时,g(x)={−x −1,x ∈[−1,0]x 2−2x −1,x ∈(0,1] ,此时|g(x)|max =2,④当m ∈(−1, 0)时,|g(x)|max =−g(m +2)=−[(m +2)2−2(m +2)−1] =−m 2−2m +1∈(1, 2);⑤当m =0时,g(x)=x 2−2x −1,x ∈[0, 2],此时|g(x)|max =1.综上,若实数m ∈[−2, 0],则|f(x)−f(−1)|在区间[m, m +2]上的最大值的取值范围是[1, 2].三、解答题共5小题,共68分.解答应写出文字说明,演算步骤或证明过程.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c .已知a =2√2,b =5,c =√13. (Ⅰ)求角C 的大小; (Ⅱ)求sin A 的值; (Ⅲ)求sin (2A +π4)的值. 【答案】(1)由余弦定理以及a =2√2,b =5,c =√13,则cos C =a 2+b 2−c 22ab=2×2√2×5=√22, ∵ C ∈(0, π), ∴ C =π4;(2)由正弦定理,以及C =π4,a =2√2,c =√13,可得sin A =a sin C c=2√2×√2213=2√1313; (Ⅲ) 由a <c ,及sin A =2√1313,可得cos A =√1−sin 2A =3√1313, 则sin 2A =2sin A cos A =2×2√1313×3√1313=1213,∴ cos 2A =2cos 2A −1=513, ∴ sin (2A +π4)=√22(sin 2A +cos 2A)=√22(1213+513)=17√226. 【考点】 余弦定理 正弦定理 解三角形【解析】(Ⅰ)根据余弦定理即可求出C 的大小, (Ⅱ)根据正弦定理即可求出sin A 的值,(Ⅲ)根据同角的三角形函数的关系,二倍角公式,两角和的正弦公式即可求出. 【解答】(1)由余弦定理以及a =2√2,b =5,c =√13, 则cos C =a 2+b 2−c 22ab=2×2√2×5=√22, ∵ C ∈(0, π), ∴ C =π4;(2)由正弦定理,以及C =π4,a =2√2,c =√13,可得sin A =a sin C c=2√2×√22√13=2√1313; (Ⅲ) 由a <c ,及sin A =2√1313,可得cos A =√1−sin 2A =3√1313, 则sin 2A =2sin A cos A =2×2√1313×3√1313=1213,∴ cos 2A =2cos 2A −1=513,∴ sin (2A +π4)=√22(sin 2A +cos 2A)=√22(1213+513)=17√226.已知函数f(x)=(sin x +cos x)2+cos 2x . (1)求f(π4)值;(2)求f(x)的最小值正周期;(3)求f(x)的单调递增区间.【答案】解:(I)f(π4)=(√22+√22)2+cosπ2=2.(II)因为f(x)=sin2x+2sin x cos x+cos2x+cos2x,所以,f(x)=1+sin2x+cos2x=√2sin(2x+π4)+1,所以f(x)的最小正周期为T=2π|ϖ|=2π2=π.(III)令2kπ−π2≤2x+π4≤2kπ+π2,所以kπ−3π8≤x≤kπ+π8,所以f(x)的单调递增区间为(kπ−3π8,kπ+π8),k∈Z.【考点】三角函数的周期性及其求法三角函数中的恒等变换应用【解析】(I)根据函数f(x)=(sin x+cos x)2+cos2x,直接求得f(π4)值.(II)化简f(x)=sin2x+2sin x cos x+cos2x+cos2x为√2sin(2x+π4)+1,从而求得f(x)的最小正周期.(III)令2kπ−π2≤2x+π4≤2kπ+π2,求得x的范围,可得f(x)的单调递增区间.【解答】解:(I)f(π4)=(√22+√22)2+cosπ2=2.(II)因为f(x)=sin2x+2sin x cos x+cos2x+cos2x,所以,f(x)=1+sin2x+cos2x=√2sin(2x+π4)+1,所以f(x)的最小正周期为T=2π|ϖ|=2π2=π.(III)令2kπ−π2≤2x+π4≤2kπ+π2,所以kπ−3π8≤x≤kπ+π8,所以f(x)的单调递增区间为(kπ−3π8,kπ+π8),k∈Z.如图,在直三棱柱ABC−A1B1C1中,AC⊥BC,AC=BC=AA1=2.(1)求证:A 1C ⊥BC ;(2)求直线AC 1和A 1B 1所成角的大小;(3)求直线AC 1和平面ABB 1A 1所成角的大小. 【答案】证明:∵ 在直三棱柱ABC −A 1B 1C 1中,BC ⊥CC 1,∵ AC ⊥BC ,AC ∩CC 1=C , ∴ BC ⊥平面ACC 1A 1,∵ AC 1⊂平面ACC 1A 1,∴ A 1C ⊥BC .以C 为原点,CA 为x 轴,CB 为y 轴,CC 1为z 轴,建立空间直角坐标系, 则A(2, 0, 0),C 1(0, 0, 2),A 1(2, 0, 2),B 1(0, 2, 2), AC 1→=(−2, 0, 2),A 1B 1→=(−2, 2, 0), 设直线AC 1和A 1B 1所成角的大小为θ, 则cos θ=|AC 1→|⋅|A 1B 1→|˙=√8⋅√8=12, ∴ 直线AC 1和A 1B 1所成角的大小为60∘.AC 1→=(−2, 0, 2),A(2, 0, 0),B(0, 2, 0),A 1(2, 0, 2),B 1(0, 2, 2), AB →=(−2, 2, 0),AA 1→=(0, 0, 2), 设平面ABB 1A 1的法向量n →=(x, y, z),则{AA 1→⋅n →=2z =0˙,取x =1,得n →=(1, 1, 0), 设直线AC 1和平面ABB 1A 1所成角的大小为θ, 则sin θ=|AC 1→|⋅|n →|˙=8⋅2=12,θ=30∘.∴ 直线AC 1和平面ABB 1A 1所成角的大小为30∘. 【考点】直线与平面所成的角 异面直线及其所成的角【解析】(1)由BC ⊥CC 1,AC ⊥BC ,得BC ⊥平面ACC 1A 1,由此能证明A 1C ⊥BC .(2)以C 为原点,CA 为x 轴,CB 为y 轴,CC 1为z 轴,建立空间直角坐标系,由此直线AC 1和A 1B 1所成角的大小.(3)求出AC 1→=(−2, 0, 2)和平面ABB 1A 1的法向量,由此能求出直线AC 1和平面ABB 1A 1所成角的大小. 【解答】证明:∵ 在直三棱柱ABC −A 1B 1C 1中,BC ⊥CC 1,∵ AC ⊥BC ,AC ∩CC 1=C , ∴ BC ⊥平面ACC 1A 1,∵ AC 1⊂平面ACC 1A 1,∴ A 1C ⊥BC .以C 为原点,CA 为x 轴,CB 为y 轴,CC 1为z 轴,建立空间直角坐标系, 则A(2, 0, 0),C 1(0, 0, 2),A 1(2, 0, 2),B 1(0, 2, 2), AC 1→=(−2, 0, 2),A 1B 1→=(−2, 2, 0), 设直线AC 1和A 1B 1所成角的大小为θ,则cos θ=|AC 1→|⋅|A 1B 1→|˙=√8⋅√8=12, ∴ 直线AC 1和A 1B 1所成角的大小为60∘.AC 1→=(−2, 0, 2),A(2, 0, 0),B(0, 2, 0),A 1(2, 0, 2),B 1(0, 2, 2), AB →=(−2, 2, 0),AA 1→=(0, 0, 2), 设平面ABB 1A 1的法向量n →=(x, y, z),则{AA 1→⋅n →=2z =0˙,取x =1,得n →=(1, 1, 0),设直线AC 1和平面ABB 1A 1所成角的大小为θ, 则sin θ=|AC 1→|⋅|n →|˙=√8⋅√2=12,θ=30∘.∴ 直线AC 1和平面ABB 1A 1所成角的大小为30∘.如图,三棱柱ABC −DEF 的侧面BEFC 是边长为1的正方形,面BEFC ⊥面ADEB ,AB =4,∠DEB =60∘,G 是DE 的中点.(1)求证:CE // 平面AGF ;(2)求点D 到平面AGF 的距离;(3)在线段BC 上是否存在一点P ,使二面角P −GE −B 为45∘,若存在,求BP 的长;若不存在,说明理由.【答案】证明:连接CD 交AF 于H ,连接HG ,∵ 三棱柱ABC −DEF ,∴ AD // CF ,AD =CF , ∴ 四边形ADFC 是平行四边形,∴ H 是CD 的中点,又G 是DE 的中点,∴ HG // CE ,又HG ⊂平面AGF ,CE ⊄平面AGF , ∴ CE // 平面AGF .∵ 四边形BEFC 是正方形,∴ BC ⊥BE ,∵ 平面BEFC ⊥平面ABED ,平面BEFC ∩平面ABED =BE ,BC ⊂平面BEFC ,BC ⊥BE ,∴ BC ⊥平面ABED ,∵ ∠BED =60∘,BE =1,GE =12DE =12AB =2,∴ BG =√BE 2+GE 2−2⋅BE ⋅GE ⋅cos ∠BED =√3, ∴ BE 2+BG 2=GE 2,∴ BG ⊥BE ,以B 为原点,以BG ,BE ,BC 为坐标轴建立空间直角坐标系B −xyz ,如图所示, 则G(√3, 0, 0),A(2√3, −2, 0),F(0, 1, 1),D(2√3, −1, 0), ∴ AG →=(−√3, 2, 0),GF →=(−√3, 1, 1),DG →=(−√3, 1, 0), 设平面AGF 的法向量为n →=(x, y, z),则{n →⋅GF →=0˙,即{√3x =0−√3x +y +z =0,令y =1可得n →=(0, 1, −1),设D 到平面AGF 的距离为d ,则d =|n →|˙=√2=√22. 假设线段BC 上存在一点P ,使二面角P −GE −B 为45∘,设P(0, 0, ℎ), 则GP →=(−√3, 0, ℎ),EP →=(0, −1, ℎ),设平面PGE 的法向量为m →=(x 1, y 1, z 1),则{m →⋅EP →=0˙,即{−√3x 1+ℎz 1=0−y 1+ℎz 1=0,令z 1=1可得m →=(√3 ℎ, 1),∵ BC ⊥平面ABED ,∴ BC →=(0, 0, 1)是平面BGE 的一个法向量, ∴ cos <BC →,m →>=|BC →||m →|˙=√4ℎ3+1×1=√4ℎ3+1=√22, 解得ℎ=√32, 线段BC 上存在一点P ,使二面角P −GE −B 为45∘,此时BP =√32. 【考点】二面角的平面角及求法 点、线、面间的距离计算 直线与平面平行【解析】(1)连接CD 交AF 于H ,连接HG ,根据中位线定理可得HG // CE ,于是CE // 平面AGF ;(2)建立空间坐标系,求出平面AGF 的法向量n →,利用距离公式求出D 到平面AGF 的距离;(3)假设存在符合条件的P 点,设BP =ℎ,求出平面PGE 的法向量m →,令|cos <m →,BC →>|=√22计算ℎ,根据ℎ的值做出判断.【解答】证明:连接CD 交AF 于H ,连接HG ,∵ 三棱柱ABC −DEF ,∴ AD // CF ,AD =CF , ∴ 四边形ADFC 是平行四边形,∴ H 是CD 的中点,又G 是DE 的中点,∴ HG // CE ,又HG ⊂平面AGF ,CE ⊄平面AGF , ∴ CE // 平面AGF .∵ 四边形BEFC 是正方形,∴ BC ⊥BE ,∵ 平面BEFC ⊥平面ABED ,平面BEFC ∩平面ABED =BE ,BC ⊂平面BEFC ,BC ⊥BE ,∴ BC ⊥平面ABED ,∵ ∠BED =60∘,BE =1,GE =12DE =12AB =2,∴ BG =√BE 2+GE 2−2⋅BE ⋅GE ⋅cos ∠BED =√3, ∴ BE 2+BG 2=GE 2,∴ BG ⊥BE ,以B 为原点,以BG ,BE ,BC 为坐标轴建立空间直角坐标系B −xyz ,如图所示, 则G(√3, 0, 0),A(2√3, −2, 0),F(0, 1, 1),D(2√3, −1, 0), ∴ AG →=(−√3, 2, 0),GF →=(−√3, 1, 1),DG →=(−√3, 1, 0), 设平面AGF 的法向量为n →=(x, y, z),则{n →⋅GF →=0˙,即{√3x =0−√3x +y +z =0,令y =1可得n →=(0, 1, −1),设D 到平面AGF 的距离为d ,则d =|n →|˙=√2=√22. 假设线段BC 上存在一点P ,使二面角P −GE −B 为45∘,设P(0, 0, ℎ), 则GP →=(−√3, 0, ℎ),EP →=(0, −1, ℎ), 设平面PGE 的法向量为m →=(x 1, y 1, z 1),则{m →⋅EP →=0˙,即{−√3x 1+ℎz 1=0−y 1+ℎz 1=0,令z 1=1可得m →=(√3 ℎ, 1),∵ BC ⊥平面ABED ,∴ BC →=(0, 0, 1)是平面BGE 的一个法向量, ∴ cos <BC →,m →>=|BC →||m →|˙=√4ℎ23+1×1=√4ℎ23+1=√22, 解得ℎ=√32, 线段BC 上存在一点P ,使二面角P −GE −B 为45∘,此时BP =√32.已知n ∈N ∗,n ≥2,给定n ×n 个整点(x, y),其中1≤x ,y ≤n ,x ,y ∈N ∗.(Ⅰ)当n =2时,从上面的2×2个整点中任取两个不同的整点(x 1, y 1),(x 2, y 2),求x1+x2的所有可能值;(Ⅱ)从上面n×n个整点中任取m个不同的整点,m≥5n2−1.(ⅰ)证明:存在互不相同的四个整点(x1, y1),(x1′, y1′),(x2, y2),(x2′, y2′),满足y1=y1′,y2=y2′,y1≠y2;(ⅱ)证明:存在互不相同的四个整点(x1, y1),(x1′, y1),(x2, y2),(x2′, y2),满足x1+ x1′=x2+x2′,y1≠y2.【答案】(1)当n=2时,4个整点分别为(1, 1),(1, 2),(2, 1),(2, 2),所以x1+x2的所有可能值为2,3,4;(2)(i)假设不存在互不相同的四个整点(x1, y1),(x1′, y1′),(x2, y2),(x2′, y2′),满足y1=y1′,y2=y2′,y1≠y2;即在直线y=i(1≤i≤n, i∈N+)中至多有一条直线上取多余1个整点,其余每条直线上至多取一个整点,此时符合条件的整点个数最多为n−1+n=2n−1,而2n−1<52n−1,与已知m≥52−1矛盾,故存在互不相同的四个整点(x1, y1),(x1′, y1′),(x2, y2),(x2′, y2′),满足y1=y1′,y2=y2′,y1≠y2;(ii)设直线y=i(1≤i≤n, i∈N+)有a i个选定的点,若a i≥2,设y=i上的这a i个选定的点的横坐标为x1,x2,…,x n,且满足x1<x2< ...<x n,由x1+x2<x1+x3<x2+x3<x2+x4<x3+x4<x ai−1+x ai,则x1,x2,…,x n,中任意不同两项之和的不同的值恰有2n−3个,而∑n i=1(2a i−3)=2m−3n≥5n−2−3n≥2n−3,可知存在互不相同的四个整点(x1, y1),(x1′, y1),(x2, y2),(x2′, y2),满足x1+x1′=x2+ x2′,y1≠y2.【考点】归纳推理【解析】(Ⅰ)取n=2时可表示出整点即可算出可能值;(Ⅱ)(i)用反证法可推出矛盾;(ii)利用不等关系可得∑n i=1(2a i−3)=2m−3n≥5n−2−3n≥2n−3即可【解答】(1)当n=2时,4个整点分别为(1, 1),(1, 2),(2, 1),(2, 2),所以x1+x2的所有可能值为2,3,4;(2)(i)假设不存在互不相同的四个整点(x1, y1),(x1′, y1′),(x2, y2),(x2′, y2′),满足y1=y1′,y2=y2′,y1≠y2;即在直线y=i(1≤i≤n, i∈N+)中至多有一条直线上取多余1个整点,其余每条直线上至多取一个整点,此时符合条件的整点个数最多为n−1+n=2n−1,而2n−1<52n−1,与已知m≥52−1矛盾,故存在互不相同的四个整点(x1, y1),(x1′, y1′),(x2, y2),(x2′, y2′),满足y1=y1′,y2=y2′,y1≠y2;(ii)设直线y=i(1≤i≤n, i∈N+)有a i个选定的点,若a i≥2,设y=i上的这a i个选定的点的横坐标为x1,x2,…,x n,且满足x1<x2< ...<x n,由x1+x2<x1+x3<x2+x3<x2+x4<x3+x4<x ai−1+x ai,则x1,x2,…,x n,中任意不同两项之和的不同的值恰有2n−3个,而∑n i=1(2a i−3)=2m−3n≥5n−2−3n≥2n−3,可知存在互不相同的四个整点(x1, y1),(x1′, y1),(x2, y2),(x2′, y2),满足x1+x1′=x2+ x2′,y1≠y2.试卷第21页,总21页。
北京市2024-2025学年高二上学期期中考试数学试卷含解析
2024-2025学年第一学期高二数学期中考试2024.11(答案在最后)一、单选题(每小题4分,共40分)1.已知α,β是两个不同的平面,l ,m 是两条不同的直线,下列说法正确的是()A.若//αβ,l α⊂,m β⊂,则//l mB.若αβ⊥,l α⊂,则l β⊥C.若l α⊥,αβ⊥,则//l βD.若l α∥,m α⊥,则l m⊥【答案】D 【解析】【分析】根据空间中直线与平面,以及平面与平面的关系,即可结合选项逐一求解.【详解】对于A ,若//αβ,l α⊂,m β⊂,则//l m 或者l m ,异面,故A 错误,对于B ,若αβ⊥,l α⊂,且l 与α,β的交线垂直,才有l β⊥,否则l 与β不一定垂直,故B 错误,对于C ,若l α⊥,αβ⊥,则//l β或者l β⊂,故C 错误,对于D ,若l α∥,m α⊥,则l m ⊥,D 正确,故选:D2.下列可使非零向量,,a b c构成空间的一组基底的条件是()A.,,a b c两两垂直B.b cλ=C.a mb nc=+ D.0a b c ++= 【答案】A 【解析】【分析】由基底定义和共面定理即可逐一判断选项A 、B 、C 、D 得解.【详解】由基底定义可知只有非零向量,,a b c不共面时才能构成空间中的一组基底.对于A ,因为非零向量,,a b c 两两垂直,所以非零向量,,a b c不共面,可构成空间的一组基底,故A 正确;对于B ,b c λ= ,则,b c 共线,由向量特性可知空间中任意两个向量是共面的,所以a 与,b c 共面,故B错误;对于C ,由共面定理可知非零向量,,a b c共面,故C 错误;对于D ,0a b c ++=即a b c =--,故由共面定理可知非零向量,,a b c共面,故D 错误.故选:A.3.在棱长为1的正方体1111ABCD A B C D -中,则点B 到直线1AC 的距离为()A.23B.33C.3D.223【答案】C 【解析】【分析】利用解直角三角形可求点B 到直线AC 1的距离.【详解】如图,连接1BC ,由正方体的性质可得1BC =1AB BC ⊥,故B 到1AC 的63=,故选:C.4.已知直线l 的方向向量为()1,2,4v =- ,平面α的法向量为(),1,2n x =-,若直线l 与平面α垂直,则实数x 的值为()A.10-B.10C.12-D.12【答案】D 【解析】【分析】根据线面垂直得到()1,2,4v =- 与(),1,2n x =- 平行,设v kn =r r ,得到方程组,求出12x =.【详解】直线l 与平面α垂直,故()1,2,4v =- 与(),1,2n x =-平行,设v kn =r r ,即1224kx k k =⎧⎪=⎨⎪-=-⎩,解得12x =.故选:D5.《九章算术》中的“商功”篇主要讲述了以立体几何为主的各种形体体积的计算,其中堑堵是指底面为直角三角形的直棱柱.如图,在堑堵111ABC A B C -中,,M N 分别是111,AC BB 的中点,G 是MN 的中点,若1AG xAB y AA z AC =++,则x y z ++=()A.1B.12C.32D.34【答案】C 【解析】【分析】连接,AM AN ,由()111312244AG AM AN AB AA AC =+=++,即可求出答案.【详解】连接,AM AN如下图:由于G 是MN 的中点,()12AG AM AN=+∴11111222AA AC AB AA ⎛⎫=+++ ⎪⎝⎭1131244AB AA AC =++.根据题意知1AG xAB y AA z AC =++ .32x y z ∴++=.故选:C.6.已知直线1:3470l x y -+=与直线()2:6110l x m y m -++-=平行,则1l 与2l 之间的距离为()A.2B.3C.4D.5【答案】A 【解析】【分析】根据两条直线平行,求出m 值,再应用平行线间的距离公式求值即可.【详解】因为直线1:3470l x y -+=与直线()2:6110l x m y m -++-=平行,所以6(1)1=347m m -+-≠-,解之得7m =.于是直线2:6860l x y --=,即2:3430l x y --=,所以1l 与2l2=.故选:A7.若直线y kx =与圆()2221x y -+=的两个交点关于直线20x y b ++=对称,则k ,b 的直线分别为()A.12k =,4b =- B.12k =-,4b =C.12k =,4b = D.12k =-,4b =-【答案】A 【解析】【分析】由圆的对称性可得20x y b ++=过圆的圆心且直线y kx =与直线20x y b ++=垂直,从而可求出,k b .【详解】因为直线y kx =与圆()2221x y -+=的两个交点关于直线20x y b ++=对称,故直线y kx =与直线20x y b ++=垂直,且直线20x y b ++=过圆心()2,0,所以()21k ⨯-=-,2200b ⨯++=,所以12k =,4b =-.故选:A【点睛】本题考查直线方程的求法,注意根据圆的对称性来探求两条直线的位置关系以及它们满足的某些性质,本题属于基础题.8.已知圆()()22:349C x y -+-=,直线l 过点()2,3P ,则直线l 被圆C 截得的弦长的最小值为()A. B.C. D.【答案】A 【解析】【分析】先判断出()2,3P 与圆的位置关系,然后根据圆心到直线l 的距离的最大值求解出弦长的最小值.【详解】直线l 恒过定点()2,3P ,圆()()22:349C x y -+-=的圆心为()3,4C ,半径为3r =,又()()222233429PC=-+-=<,即P 在圆内,当CP l ⊥时,圆心C 到直线l 的距离最大为d PC =,此时,直线l 被圆C 截得的弦长最小,最小值为=.故选:A .9.已知圆C 的方程为22(2)x y a +-=,则“2a >”是“函数y x =的图象与圆C 有四个公共点”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【答案】B 【解析】【分析】找出||y x =与圆有四个公共点的等价条件,据此结合充分条件、必要条件概念判断即可.【详解】由圆C 的方程为22(2)x y a +-=可得圆心()0,2,半径r =,若圆与函数y x =相交,则圆心到直线y x =的距离d ==<即2a >,若函数y x =的图象与圆C 有四个公共点,则原点在圆的外部,即220(02)a +->,解得4a <,综上函数y x =的图象与圆C 有四个公共点则24a <<,所以“2a >”是“函数y x =的图象与圆C 有四个公共点”的必要不充分条件,故选:B10.古希腊著名数学家阿波罗尼斯与欧几里得、阿基米德齐名,他发现:平面内到两个定点A 、B 的距离之比为定值(1)λλ≠的点所形成的图形是圆,后来,人们将这个圆以他的名字命名,称为阿波罗尼斯圆,简称阿氏圆.已知在平面直角坐标系xOy 中,(2,0)A -,(4,0)B .点P 满足||1||2PA PB =,设点P 所构成的曲线为C ,下列结论不正确的是()A.C 的方程为22(4)16x y ++=B.在C 上存在点D ,使得D 到点(1,1)的距离为3C.在C 上存在点M ,使得||2||MO MA =D.C 上的点到直线34130x y --=的最小距离为1【答案】C 【解析】【分析】对A :设点 th ,由两点的距离公式代入化简判断;对B :根据两点间的距离公式求得点(1,1)到圆上的点的距离的取值范围,由此分析判断;对C :设点 th ,求点M 的轨迹方程,结合两圆的位置关系分析判断;对D :结合点到直线的距离公式求得C 上的点到直线34130x y --=的最大距离,由此分析判断.【详解】对A :设点 th ,∵12PA PB =12=,整理得()22416x y ++=,故C 的方程为()22416x y ++=,故A 正确;对B :()22416x y ++=的圆心()14,0C -,半径为14r =,∵点(1,1)到圆心()14,0C -的距离1d==,则圆上一点到点(1,1)的距离的取值范围为[]1111,4d r d r ⎤-+=⎦,而)34∈,故在C 上存在点D ,使得D 到点(1,1)的距离为9,故B 正确;对C :设点 th ,∵2MO MA ==,整理得2281639x y ⎛⎫++= ⎪⎝⎭,∴点M 的轨迹方程为2281639x y ⎛⎫++= ⎪⎝⎭,是以28,03C ⎛⎫- ⎪⎝⎭为圆心,半径243r =的圆,又12124833C C r r =<=-,则两圆内含,没有公共点,∴在C 上不存在点M ,使得2MO MA =,C 不正确;对D :∵圆心()14,0C -到直线34130x y --=的距离为25d ==,∴C 上的点到直线34130x y --=的最小距离为211d r -=,故D 正确;故选:C.【点睛】思路点睛:利用点与圆的位置关系来判定B ,利用圆与圆的位置关系来判定C ,结合数形思想即可.二、填空题(每小题5分,共25分)11.已知圆锥的母线与底面所成角为45 ,高为1.则该圆锥的体积为________.【答案】1π3##π3【解析】【分析】根据圆锥的结构特征,圆锥底面半径、高、母线长构成一个直角三角形,从而求出圆锥底面半径,再利用锥体的体积公式即可求解.【详解】因为圆锥底面半径OA 、高PO 、母线PA 构成一个Rt PAO △,又45PAO ∠= ,1PO =,所以底面圆半径1OA =,则该圆锥的体积22111π×π11π333V OA PO =⨯⨯=⨯⨯⨯=,故答案为:1π3.12.已知平面α的一个法向量为(2,3,5)n =,点(1,3,0)A --是平面α上的一点,则点(3,4,1)P --到平面α的距离为__________.【答案】3819【解析】【分析】利用空间向量法可得出点P 到平面α的距离为PA nd n⋅= ,即可求解.【详解】由题意可知()2,1,1PA =-,根据点P 到平面α的距离为19PA nd n⋅==.故答案为:381913.过两条直线1:30l x y -+=与2:20l x y +=的交点,倾斜角为π3的直线方程为____________(用一般式表示)20y -++=【解析】【分析】联立两方程求出交点坐标,再由点斜式写出直线方程,然后化为一般形式即可;【详解】由题意可得12:30:20l x y l x y -+=⎧⎨+=⎩,解得交点坐标为()1,2-,又所求直线的倾斜角为π3,故斜率为πtan 3=所以直线方程为)21y x -=+,20y -++=.14.已知某隧道内设双行线公路,车辆只能在道路中心线一侧行驶,隧道截面是半径为4米的半圆,若行驶车辆的宽度为2.5米,则车辆的最大高度为______________米.【答案】392【解析】【分析】建立如图所示的平面直角坐标系,得出半圆方程,设(2.5,0)A ,求出A 点处半圆的高度即可得.【详解】建立如图所示的平面直角坐标系,O 是圆心, 2.5OA =,半圆方程为2216x y +=(0y ≥)(2.5,0)A ,B 在半圆上,且BA ⊥x 轴,则2216 2.59.75B y =-=,2B y =,故答案为:2.15.如图,在棱长为2的正方体1111ABCD A B C D -中,点M 在线段1BC (不包含端点)上运动,则下列结论正确的是______.(填序号)①正方体1111ABCD A B C D -的外接球表面积为48π;②异面直线1A M 与1AD 所成角的取值范围是,32ππ⎛⎤⎥⎝⎦;③直线1//A M 平面1ACD ;④三棱锥1D AMC -的体积随着点M 的运动而变化.【答案】②③【解析】【分析】由正方体的对角线即为外接球的直径求得球表面积判断①,由异面直线所成角的定义确定1A M 与1BC 的夹角范围判断②,根据线面平面平行的判定定理判断③,换度后由三棱锥体积公式判断④.【详解】正方体对角线长为,即这外接球直径,因此球半径为r =2412ππ==S r ,①错;正方体中AB 与11C D 平行且相等,11ABC D 是平行四边形,11//AD BC ,11A BC V 是正三角形,1A M 与1BC 的夹角(锐角或直角)的范围是[,32ππ,因此②正确;由②上知11//BC AD ,而1BC ⊄平面1ACD ,1AD ⊂平面1ACD ,所以1//BC 平面1ACD ,同理1//A B 平面1ACD ,又11A B BC B ⋂=,11,A B BC ⊂平面11A BC ,所以平面11//A BC 平面1ACD ,而1A M ⊂平面11A BC ,所以1//A M 平面1ACD ,③正确;由1//BC 平面1ACD ,因此M 到平面1ACD 的距离不变,所以11D AMC M ACD V V --=不变,④错.故答案为:②③.三、解答题(共85分)16.已知ABC V 顶点()1,2A 、()3,1B --、()3,3C -.(1)求线段BC 的中点及其所在直线的斜率;(2)求线段BC 的垂直平分线1l 的方程;(3)若直线2l 过点A ,且2l 的纵截距是横截距的2倍,求直线2l 的方程.【答案】(1)中点为()0,2-,13-(2)320x y --=;(3)2y x =或240x y +-=.【解析】【分析】(1)根据中点坐标公式和斜率公式求解;(2)根据(1)中结果结合两直线垂直的斜率关系,得出中垂线斜率,然后利用点斜式方程求解;(3)分类讨论直线是否过原点结合截距式方程即可求解【小问1详解】由()3,1B --、()3,3C -,可知BC 中点为()0,2-,且()()311333BC k ---==---,【小问2详解】由(1)可得13BC k =-,BC 垂直平分线斜率1k 满足11BC k k ⋅=-,即13k =,又BC 的垂直平分线过(0,2)-,所以边BC 的垂直平分线1l 的方程为()()230y x --=-,即320x y --=;【小问3详解】当直线2l 过坐标原点时,2221k ==,此时直线2:2l y x =,符合题意;当直线2l 不过坐标原点时,由题意设直线方程为12x y a a +=,由2l 过点()1,2A ,则1212a a +=,解得2a =,所以直线2l 方程为124x y +=,即240x y +-=,综上所述,直线2l 的方程为2y x =或240x y +-=.17.在平面直角坐标系xOy 中,圆C 经过点()1,0A 和点()1,2B -,且圆心在直线220x y -+=上.(1)求圆C 的标准方程;(2)若直线3x ay =+被圆C 截得弦长为a 的值.【答案】(1)()2214x y ++=(2)a =【解析】【分析】(1)先求线段AB 的垂直平分线所在直线的方程,进而求圆心和半径,即可得方程;(2)由垂径定理可得圆心到直线的距离1d =,利用点到直线的距离公式运算求解.【小问1详解】因为()1,0A ,()1,2B -的中点为()0,1E ,且直线AB 的斜率20111AB k -==---,则线段AB 的垂直平分线所在直线的方程为1y x =+,联立方程1220y x x y =+⎧⎨-+=⎩,解得10x y =-⎧⎨=⎩,即圆心()1,0C -,2r CA ==,所以,圆C 的方程为()2214x y ++=.【小问2详解】因为直线3x ay =+被曲线C截得弦长为,则圆心到直线的距离1d ==,由点到直线的距离公式可得1=,解得a =18.已知圆22:68210C x y x y +--+=,直线l 过点()1,0A .(1)求圆C 的圆心坐标及半径长;(2)若直线l 与圆C 相切,求直线l 的方程;(3)设直线l 与圆C 相切于点B ,求 R .【答案】(1)圆心坐标为 th ,半径长为2.(2)1x =或3430x y --=.(3)4.【解析】【分析】(1)将圆化为标准方程即可求出圆心坐标以及半径长;(2)讨论直线l 的斜率不存在与存在两种情况,不存在时设出直线方程kx y k 0--=根据点到直线距离公式求解即可;(3)根据两点间距离公式求出AC 长,再根据勾股定理求解即可.【小问1详解】圆C 方程可化为:()()22344x y -+-=,圆心坐标为 th ,半径长为2.【小问2详解】①当直线l 的斜率不存在时,方程为 ,圆心 th 到直线l 距离为2,满足题意.②当直线l 的斜率存在时,设直线l 的方程是h ,即kx y k 0--=.由圆心()34,到直线l2=,解得34k =,此时直线l 的方程为3430x y --=.综上,直线l 的方程为 或3430x y --=.【小问3详解】∵圆C 的圆心坐标为 th ,()1,0A ,∴()()22314025AC =-+-=.如图,由相切得,AB BC ⊥,2BC =,∴222044AB AC BC =-=-=.19.如图所示,在几何体ABCDEFG 中,四边形ABCD 和ABFE 均为边长为2的正方形,//AD EG ,AE ⊥底面ABCD ,M 、N 分别为DG 、EF 的中点,1EG =.(1)求证://MN 平面CFG ;(2)求直线AN 与平面CFG 所成角的正弦值.【答案】(1)证明见解析(2)53【解析】【分析】(1)建立空间直角坐标系,求得直线MN 的方向向量31,,12MN ⎛⎫=- ⎪⎝⎭ ,求得平面CFG 的法向量1n ,然后利用10n MN ⋅= ,证明1MN n ⊥ ,从而得出//MN 平面CFG ;(2)求得直线AN 的方向向量()1,0,2AN = ,由(1)知平面CFG 的法向量1n ,结合线面角的向量公式即可得解.【小问1详解】因为四边形ABCD 为正方形,AE ⊥底面ABCD ,所以AB ,AD ,AE 两两相互垂直,如图,以A 为原点,分别以AB ,AD ,AE 方向为x 轴、y 轴、z 轴正方向建立空间直角坐标系A xyz -,由题意可得 t t ,()2,0,0B ,()2,2,0C ,()0,2,0D ,()0,0,2E ,()2,0,2F ,()0,1,2G ,30,,12M ⎛⎫ ⎪⎝⎭,()1,0,2N ,则()0,2,2CF =- ,()2,1,2CG =-- ,31,,12MN ⎛⎫=- ⎪⎝⎭ 设平面CFG 的一个法向量为 th t ,则11n CF n CG⎧⊥⎪⎨⊥⎪⎩ ,故11·=0·=0n CF n CG ⎧⎪⎨⎪⎩ ,即11111220220y z x y z -+=⎧⎨--+=⎩,则111112y z x z =⎧⎪⎨=⎪⎩,令12z =,得()11,2,2n = ,所以()1331,2,21,,111221022n MN ⎛⎫⎛⎫⋅=⋅-=⨯+⨯-+⨯= ⎪ ⎪⎝⎭⎝⎭,所以1MN n ⊥ ,又MN ⊄平面CFG ,所以//MN 平面CFG .【小问2详解】由(1)得直线AN 的一个方向向量为()1,0,2AN = ,平面CFG 的一个法向量为()11,2,2n = ,设直线AN 与平面CFG 所成角为θ,则111sin cos,3n ANn ANn ANθ⋅=====⋅,所以直线AN与平面CFG 所成角的正弦值为53.20.如图,已知等腰梯形ABCD中,//AD BC,122AB AD BC===,E是BC的中点,AE BD M=,将BAE沿着AE翻折成1B AE△,使1B M⊥平面AECD.(1)求证:CD⊥平面1B DM;(2)求平面1B MD与平面1B AD夹角的余弦值;(3)在线段1B C上是否存在点P,使得//MP平面1B AD,若存在,求出11B PB C的值;若不存在,说明理由.【答案】(1)证明见解析(2)155(3)存在,1112B PB C=.【解析】【分析】(1)作出辅助线,得到四边形ABED是菱形,AE BD⊥,得到1,AE B M AE DM⊥⊥,证明出AE⊥平面1B DM,再证明出四边形AECD是平行四边形,故//AE CD,所以CD⊥平面1B DM;(2)证明出1,,AE B M DM两两垂直,建立空间直角坐标系,写出点的坐标,求出两平面的法向量,利用面面角的余弦向量公式求出平面1B MD与平面1B AD夹角余弦值;(3)假设线段1B C上存在点P,使得//MP平面1B AD,作出辅助线,得到A M P Q,,,四点共面,四边形AMPQ为平行四边形,所以12PQ AM CD==,所以P是1B C的中点,求出11B PB C.【小问1详解】如图,在梯形ABCD 中,连接DE ,因为E 是BC 的中点,所以12BE BC =,又122AD BC ==,所以AD BE =,又因为//AD BE ,所以四边形ABED是平行四边形,因为AB AD =,所以四边形ABED 是菱形,从而AE BD ⊥,BAE 沿着AE 翻折成1B AE △后,有1,AE B M AE DM⊥⊥又11,,B M DM M B M DM =⊂ 平面1B DM ,所以AE ⊥平面1B DM ,由题意,易知//,AD CE AD CE =,所以四边形AECD 是平行四边形,故//AE CD ,所以CD ⊥平面1B DM .【小问2详解】因为1B M ⊥平面AECD ,DM ⊂平面AECD ,则有1B M DM ⊥,由(1)知1,AE B M AE DM ⊥⊥,故1,,AE B M DM 两两垂直,以M 为坐标原点,1,,ME MD MB 所在直线分别为,,x y z轴,建立空间直角坐标系,因为AB BE AE ==,所以ABE 为等边三角形,同理ADE V 也为等边三角形,则(()()1,1,0,0,0,B A D -,设平面1B AD 的一个法向量为 tht ,则()()()(1,,0,,0m AD x y z x m B D x y z ⎧⋅=⋅=+=⎪⎨⋅=⋅=-=⎪⎩ ,令1y =得1x z ==,故()m = ,又平面1B MD 的一个法向量为()1,0,0n = ,则cos ,5m n m n m n ⋅==⋅ ,故平面1B MD 与平面1B AD 夹角的余弦值为5;【小问3详解】假设线段1B C 上存在点P ,使得//MP 平面1B AD ,过点P 作PQ CD∥交1B D 于Q ,连接MP AQ ,,如图所示:所以////AM CD PQ ,所以A M P Q ,,,四点共面,又因为//MP 平面1B AD ,所以//MP AQ ,所以四边形AMPQ 为平行四边形,所以12PQ AM CD ==,所以P 是1B C 的中点,故在线段1B C 上存在点P ,使得//MP 平面1B AD ,且1112B P B C =.21.“曼哈顿几何”也叫“出租车几何”,是在19世纪由赫尔曼·闵可夫斯基提出来的.如图是抽象的城市路网,其中线段AB 是欧式空间中定义的两点最短距离,但在城市路网中,我们只能走有路的地方,不能“穿墙”而过,所以在“曼哈顿几何”中,这两点最短距离用(),d A B 表示,又称“曼哈顿距离”,即(),d A B AC CB =+,因此“曼哈顿两点间距离公式”:若()11,A x y ,()22,B x y ,则()2121,d A B x x y y =-+-(1)①点()A 3,5,()2,1B -,求(),d A B 的值.②求圆心在原点,半径为1的“曼哈顿单位圆”方程.(2)已知点()10B ,,直线220x y -+=,求B 点到直线的“曼哈顿距离”最小值;(3)设三维空间4个点为(),,i i i i A x y z =,1,2,3,4i =,且i x ,i y ,{}0,1i z ∈.设其中所有两点“曼哈顿距离”的平均值即d ,求d 最大值,并列举最值成立时的一组坐标.【答案】(1)①7;②1x y +=;(2)2;(3)2,()10,0,0A ,()21,0,1A ,()31,1,0A ,()40,1,1A .【解析】【分析】(1)①②根据“曼哈顿距离”的定义求解即可;(2)设直线220x y -+=上任意一点坐标为()11,22C x x +,然后表示(),d C B ,分类讨论求(),d C B 的最小值;(3)将i A 的所有情况看做正方体的八个顶点,列举出不同情况的d ,即可得到d 的最小值.【小问1详解】①(),32517d A B =-++=;②设“曼哈顿单位圆”上点的坐标为(),x y ,则001x y -+-=,即1x y +=.【小问2详解】设直线220x y -+=上任意一点坐标为()11,22C x x +,则()11,122d C B x x =-++,当11x <-时,()1,31d C B x =--,此时(),2d C B >;当111x -≤≤时,()1,3d C B x =+,此时(),2d C B ≥;当11x >时,()1,31d C B x =+,此时(),4d C B >,综上所述,(),d C B 的最小值为2.【小问3详解】如图,A B C D E F G H ''''''''-为正方体,边长为1,则i A 对应正方体的八个顶点,当四个点在同一个面上时,(i )例如:,,,A B C D '''',此时121121463d +++++==;(ii )例如:,,,A E G C '''',此时23113226d +++++==;当四个点不在同一个平面时,(iii )例如:,,,A C H D '''',此时22222226d +++++==;(iiii )例如:,,,A B E D '''',此时221112563d +++++==;(iiiii )例如:,,,A B E H '''',此时112231563d +++++==;(iiiiii )例如:,,,A B E G '''',此时1223121166d +++++==;综上所述,d 的最大值为2,例如:()10,0,0A ,()21,0,1A ,()31,1,0A ,()40,1,1A .。
2020北京汇文中学高二(上)期中数学含答案
2020北京汇文中学高二(上)期中数 学一、选择题1.已知)5,3(),3,1(B A −−,则直线AB 的斜率为( )A. 2B. 1C.21 D. 不存在2. 圆心为)2,3(−且过点)1,1(−A 的圆的方程是( )A. 5)2()3(22=−+−y xB. 5)2()3(22=−++y xC. 25)2()3(22=−+−y xD. 25)2()3(22=−++y x3. 焦点在x 轴上的椭圆2213x ym +=的离心率是12,则实数m 的值是( )A. 4B.94 C. 1 D.344. 已知圆22:1O x y +=,直线:3430l x y +−=,则直线l 被圆O 所截的弦长为( )A.65 B. 1 C.85D.2 5.已知抛物线x y C =2:的焦点为F ,),(00y x A 是C 上一点,045||x AF =,则0x =( ) A. 1B. 2C. 4D. 86. 过点P )1,3(−−的直线l 与圆122=+y x 有公共点,则直线l 的倾斜角的取值范围是( )A. ]6,0(πB. ]3,0(πC. ]6,0[πD. ]3,0[π7.已知抛物线24y x =的动弦AB 的中点的横坐标为2,则AB 的最大值为( )A .4B .6C .8D .12 8.直线1:10l ax y a+−=与,x y 轴的交点分别为,A B , 直线l 与圆22:1O x y +=的交点为,C D . 给出下面三个结论:① 11,2AOB a S ∆∀≥=; ②1,||||a AB CD ∃≥<;③11,2COD a S ∆∃≥<则所有正确结论的序号是A.①②B.②③C.①③D.①②③二、填空题9. 已知直线10x ay −−=与直线y ax =平行,则实数___.a =10. 双曲线221169x y −=的渐近线方程为_________________.11.已知过点(1,1)M 的直线l 与圆22(1)(2)5x y ++−=相切,且与直线10ax y +−=垂直,则实数a =_______;直线l 的方程为__________.12. 已知F 为双曲线22:13x C y −=的一个焦点,则点F 到双曲线C 的一条渐近线的距离为_______. 13.设椭圆)0(1:2222>>=+b a by a x C 的左、右焦点分别为1F ,2F ,P 为直线a x 23=上一点,△12PF F 是底角为30°的等腰三角形,则C 的离心率为___________。
2020-2021学年北京市高二第一次普通高中学业水平合格性考试数学试题(解析版)
2020-2021学年北京市高二第一次普通高中学业水平合格性考试数学试题一、单选题1.已知集合{1,0,2},{0,1,2}A B =-=,则A B =( ) A .{-1,0,2} B .{0,1,2} C .{-1,0,1} D .{-1,0,1,2} 【答案】D【分析】由集合并集概念求得结果即可. 【详解】由题知,{}1,0,1,2A B ⋃=-. 故选:D.2.已知复数134i z =-,223i z =-+,则12z z +=( ) A .1i - B .5i - C .17i - D .5i +【答案】A【分析】根据复数加法运算求得结果.【详解】由题知,()()123243i 1i z z +=-+-+=- 故选:A3.函数2()log f x x =的定义域是( ) A .(1,)-+∞ B .(0,)+∞ C .(1,)+∞ D .(2,)+∞【答案】B【分析】利用真数大于直接求解【详解】由题意0x >,故函数2()log f x x =的定义域是(0,)+∞ 故选:B4.下列函数中,在区间()0,∞+上单调递减的是( )A .2y x B .y =C .2xy =D .12xy ⎛⎫= ⎪⎝⎭【答案】D【分析】根据基本初等函数的单调性判断可得出结论.【详解】函数2y x 、y =2xy =在()0,∞+上均为增函数,函数12xy ⎛⎫= ⎪⎝⎭在()0,∞+上为减函数.故选:D.5.下列各点中,在函数()21x f x =-的图象上的点是( ) A .(0,0) B .(0,1) C .(1,0) D .(1,2)【答案】A【分析】直接代入计算可得.【详解】解:因为()21xf x =-,所以()00210f =-=,故函数过点()0,0.故选:A.6.某校为了解学生关于校本课程的选课意向,计划从高一、高二这两个年级共500名学生中,采用分层抽样的方法抽取50人进行调査.已知高一年级共有300名学生,那么应抽取高一年级学生的人数为( ) A .10 B .20C .30D .40【答案】C【分析】根据分层抽样的定义求出相应比例,进而得出结果.【详解】解:因为高一年级共有300名学生,占高一、高二这两个年级共500名的30035005=, 则采用分层抽样的方法抽取50人中,应抽取高一年级学生的人数为350305⨯=人.故选:C.7.如图,四边形ABCD 是平行四边形,则AB BC +=( ) A .AC B .CA C .BD D .DB【答案】A【分析】根据向量加法的三角形法则计算可得; 【详解】解: AB BC AC故选:A8.在平面直角坐标系xOy 中,角α以Ox 为始边,它的终边经过点()4,3,则cos α=( ) A .45-B .45 C .34-D .34【答案】B【分析】由任意角的三角函数的定义即可求得结果. 【详解】解:角α以Ox 为始边,终边经过点()4,3,∴4cos 5α==. 故选:B.9.函数()||1f x x =-的零点个数是( ) A .0 B .1 C .2 D .3【答案】C【分析】令()||10f x x =-=求解. 【详解】令()||10f x x =-=, 解得 1x =±,所以函数()||1f x x =-的零点个数是2, 故选:C10.已知a R ∈,则“1a >”是“0a >”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充要条件 D .既不充分也不必要条件【答案】A【分析】根据两者的推出关系,结合充要条件的概念分析即可. 【详解】若1a >,则0a >成立, 若0a >,无法推出1a >, 故1a >是0a >的充分不必要条件, 故选:A .【点睛】本题考查了充分条件必要条件的判断,考查逻辑思维能力,属于基础题. 11.sin20°cos10°+cos20°sin10°=( )A .12 B C D .1【答案】A【分析】逆用两角和的正弦公式求值. 【详解】原式()1sin 2010sin 302=︒+︒=︒= 故选:A12.如图,在长方体1111ABCD A B C D -中,AB =AD =2,13AA =,则四棱锥1D ABCD -的体积为( ) A .3 B .4C .6D .9【答案】B【分析】根据长方体的特殊线面关系,结合棱锥体积公式求得结果. 【详解】在长方体中,1DD ⊥底面ABCD ,则四棱锥1D ABCD -的体积为122343⨯⨯⨯=.故选:B13.已知篮球运动员甲、乙的罚球命中率分别为0.9,0.8,且两人罚球是否命中相互独立.若甲、乙各罚球一次,则两人都命中的概率为( ) A .0.08 B .0.18 C .0.25 D .0.72【答案】D【分析】根据独立事件乘法公式求解【详解】由题意,根据独立事件乘法两人都命中的概率为0.90.80.72⨯= 故选:D14.在△ABC 中,a =4,A =45°,B =60°,则b =( ) A.B.C.D.【答案】C【分析】利用正弦定理直接求解【详解】由正弦定理4sin sin sin sin a b a Bb A B A=∴===故选:C15.不等式x (x -1)<0的解集为( ) A .{01}xx <<∣ B .{10}xx -<<∣ C .{0x x <∣或1}x > D .{1xx <-∣或0}x > 【答案】A【分析】根据一元二次方程的两个根,解得一元二次不等式的解集. 【详解】方程()10x x -=有两个根0,1, 则不等式()10x x -<的解集为{}01x x << 故选:A16.在△ABC 中,a =2,b =4,C =60°,则c =( ) A .2 B.C .4D .6【答案】B【分析】直接利用余弦定理求解即可. 【详解】2222cos 416812c a b ab C =+-=+-=∵,c ∴=故选:B17.函数()3sin cos f x x x =的最大值为( ) A .1 B .12C .2D .32【答案】D【分析】由二倍角公式可得()3sin 22f x x =,结合正弦函数的值域即可得结果【详解】∵()33sin cos sin 22f x x x x ==,∴函数()3sin cos f x x x =的最大值是32.故选:D.18.已知224a b >>,则( ) A .a >b >2 B .b >a >2 C .a <b <2 D .b <a <2【答案】A【分析】利用指数函数单调性解不等式即可 【详解】222422a b a b >>=∴>> 故选:A19.已知向量,a b 在正方形网格中的位置如图所示.若网格中每个小正方形的边长均为1,则·a b =( )A .3B .C .6D .12【答案】C【分析】从图中读出向量模长和夹角,按照数量积运算公式求得结果. 【详解】由图知,322a b ==,,两向量的夹角为45°,则··cos ,3226a b a b a b ==⨯⨯= 故选:C20.在信息论中,设某随机事件发生的概率为p ,称21log p为该随机事件的自信息.若随机抛一枚均匀的硬币1次,则“正面朝上”这一事件的自信息为( ) A .0 B .12C .1D .2【答案】C【分析】首先求出“正面朝上”的概率,再代入计算可得;【详解】解:随机抛一枚均匀的硬币1次,则“正面朝上”的概率12p =, 所以22211log log log 2112p===,故“正面朝上”这一事件的自信息为1; 故选:C 二、填空题21.已知a ,b 是实数,且a >b ,则-a ________-b (填“>”或“<”). 【答案】<【分析】根据不等式的性质计算可得; 【详解】解:因为a b >,所以a b -<- 故答案为:<22.已知向量a =(1,m ),b =(2,4).若//a b ,则实数m =________. 【答案】2【分析】根据向量平行关系求得参数. 【详解】由//a b 知,124m=,解得m =2. 故答案为:223.设m ,n 是两条不同的直线,,αβ是两个不同的平面.给出下列三个命题: ①如果m ∥n ,m ⊥α,那么n ⊥α; ②如果m ⊥α,m ⊥β,那么α//β; ③如果α⊥β,m ∥β,那么m ⊥α. 其中所有真命题的序号是________. 【答案】①②【分析】由线面垂直的判定定理可判断①;由线面垂直的性质可判断②;由面面垂直的性质可判断③【详解】解:对于①,由m ∥n ,m ⊥α,可得n ⊥α,所以①正确; 对于②,由m ⊥α,m ⊥β,可得α//β,所以②正确;对于③,由α⊥β,m ∥β,可得直线m 与平面α可平行,可能相交但不垂直,可能垂直,还有可能直线m 在平面α内,所以③错误, 故答案为:①② 三、双空题24.已知函数1()f x x x=+,则f (x )是________函数(填“奇”或“偶”);f (x )在区间(0,+∞)上的最小值是________. 【答案】奇 2【分析】根据奇函数定义判断函数奇偶性;利用基本不等关系求得最小值.【详解】由题知,1()()f x x f x x-=--=-,故()f x 是奇函数;(0,)x ∈+∞时,1()2f x x x =+≥=,当且仅当1x =时,等号成立, 则()f x 的最小值为2. 故答案为:奇;2. 四、解答题25.已知函数()sin 4f x x π⎛⎫=- ⎪⎝⎭.(1)写出f (x )的最小正周期;(2)求f (x )在区间0,2π⎡⎤⎢⎥⎣⎦上的最小值和最大值.【答案】(1)2π ;(2)最小值为. 【分析】(1)根据函数解析式写出最小正周期;(2)根据正弦函数单调性判断函数在区间上的单调性,从而求得最值.【详解】解:(1)f (x )的最小正周期为2π. (2)因为02x π, 所以444x πππ--.所以函数在0,2π⎡⎤⎢⎥⎣⎦上单调递增,当44x ππ-=-,即x =0时,f (x )取得最小值当44x ππ-=,即2x π=时,f (x )所以f (x )在区间0,2π⎡⎤⎢⎥⎣⎦上的最小值为26.阅读下面题目及其解答过程.已知函数23,0()2,0x x f x x x x +⎧=⎨-+>⎩,(1)求f (-2)与f (2)的值; (2)求f (x )的最大值.解:(1)因为-2<0,所以f (-2)= ① . 因为2>0,所以f (2)= ② . (2)因为x ≤0时,有f (x )=x +3≤3,而且f (0)=3,所以f (x )在(,0]-∞上的最大值为 ③ .又因为x >0时,有22()2(1)11f x x x x =-+=--+, 而且 ④ ,所以f (x )在(0,+∞)上的最大值为1. 综上,f (x )的最大值为 ⑤ .以上题目的解答过程中,设置了①~⑤五个空格,如下的表格中为每个空格给出了两个选项,其中只有一个正确,请选出你认为正确的选项,并填写在答题卡的指定位置(只需填写“A ”或“B ”).【答案】(1)①A ; ②B ;(2)③A ; ④A ; ⑤B . 【分析】依题意按照步骤写出完整的解答步骤,即可得解;【详解】解:因为23,0()2,0x x f x x x x +⎧=⎨-+>⎩,(1)因为20-<,所以()2231f -=-+=,因为20>,所以()222220f =-+⨯=(2)因为0x ≤时,有()33f x x =+≤,而且()03f =,所以()f x 在(,0]-∞上的最大值为3. 又因为0x >时,有22()2(1)11f x x x x =-+=--+, 而且()11f =,所以()f x 在()0,∞+上的最大值为1. 综上,()f x 的最大值为3.27.如图,在三棱锥O -ABC 中,OA ,OB ,OC 两两互相垂直,OA =OB ,且D ,E ,F 分别为AC ,BC ,AB 的中点. (1)求证:DE ∕∕平面AOB ; (2)求证:AB ⊥平面OCF .【答案】(1)见解析;(2)见解析.【分析】(1)D,E分别为AC,BC的中点,得DE AB∕∕,从而证明DE∕∕平面AOB;⊥,由题易(2)OA,OB,OC两两互相垂直,得:OC⊥平面AOB,从而得出OC AB ⊥从而证明AB⊥平面OCF.知AB OF【详解】解:(1)在△ABC中,D,E分别为AC,BC的中点,所以DE∥AB.又因为DE⊄平面AOB,所以DE∥平面AOB.(2)因为OA=OB,F为AB的中点,所以AB⊥OF.因为OC⊥OA,OC⊥OB,所以OC⊥平面AOB.所以AB⊥OC.所以AB⊥平面OCF.28.为确定传染病的感染者,医学上可采用“二分检测方案”.假设待检测的总人数是2m(m为正整数).将这2m个人的样本混合在一起做第1轮检测(检测1次),如果检测结果是阴性,可确定这些人都未感染;如果检测结果是阳性,可确定其中有感染者,则将这些人平均分成两组,每组12m-个人的样本混合在一起做第2轮检测,每组检测1次.依此类推:每轮检测后,排除结果为阴性的组,而将每个结果为阳性的组再平均分成两组,做下一轮检测,直至确定所有的感染者.例如,当待检测的总人数为8,且标记为“x”的人是唯一感染者时,“二分检测方案”可用下图表示.从图中可以看出,需要经过4轮共n次检测后,才能确定标记为“x”的人是唯一感染者.(1)写出n的值;(2)若待检测的总人数为8,采用“二分检测方案”,经过4轮共9次检测后确定了所有的感染者,写出感染者人数的所有可能值;(3)若待检测的总人数为102,且其中不超过2人感染,写出采用“二分检测方案”所需总检测次数的最大值.n=;(2)感染者人数可能的取值为2,3,4;(3)39.【答案】(1)7【分析】(1)由图可计算得到n的取值;(2)当经过4轮共9次检测后确定所有感染者,只需第3轮对两组都进行检查,由此所有可能的结果;(3)当所需检测次数最大时,需有2名感染者,并在第2轮检测时分居两组当中,从而将问题转化为待检测人数为92的组,每组1个感染者,共需的检测次数,由此可计算求得结果.【详解】(1)由题意知:第1轮需检测1次;第2轮需检测2次;第3轮需检测2次;第4轮需检测2次;12227n ∴=+++=;(2)由(1)可知:若只有1个感染者,则只需7次检测即可;经过4轮共9次检测查出所有感染者,比只有1个感染者多2次检测,则只需第3轮时,对两组都都进行检查,即对最后4个人进行检查,可能结果如下图所示:∴感染者人数可能的取值为2,3,4.(3)若没有感染者,则只需1次检测即可;若只有1个感染者,则只需121021+⨯=次检测即可;若有2个感染者,若要检测次数最多,则第2轮检测时,2个感染者不位于同一组中; 此时相当于两个待检测人数均为92的组,每组1个感染者,此时每组需要12919+⨯=次检测;∴此时两组共需21938⨯=次检测;∴若有2个感染者,且检测次数最多,共需38139+=次检测.综上所述:所需总检测次数的最大值为39.。
北京2024-2025学年高二上学期期中考试数学试卷含答案
北京2024-2025学年高二上学期期中考试数学试卷考生须知(答案在最后)1.本试卷有三道大题,共6页.考试时长120分钟,满分150分.2.考生务必将答案填写在答题纸上,在试卷上作答无效.3.考试结束后,考生应将答题纸交回.一、选择题共10小题,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.直线350y --=的倾斜角为A.6π B.3π C.23π D.56π【答案】A 【解析】【分析】根据直线倾斜角的正切值等于切线斜率求解即可.350y --=的斜率为33,故倾斜角θ的正切值3tan 3θ=,又[)0,θπ∈,故6πθ=.故选:A【点睛】本题主要考查了直线倾斜角与斜率的关系,属于基础题型.2.已知()1,,2a k =-,()2,2,4b k = ,若//a b ,则实数k 的值为()A.2-B.2C.1- D.1【答案】C 【解析】【分析】若//a b 则存在非零实数λ使a b λ=成立,代入计算即可以求出k .【详解】//a b ∴存在非零实数λ使a b λ=成立()1,,2a k =- ,()2,2,4b k = ()()1,,2=2,2,4k k λ∴-1=2224k k λλλ⎧⎪∴=⎨⎪-=⎩1=21k λ⎧-⎪∴⎨⎪=-⎩故选:C3.已知直线l 的方程为210x y ++=,则过点(1,3)A 且与l 垂直的直线方程为()A.270x y +-= B.210x y -+=C.250x y +-=D.250x y --=【答案】B 【解析】【分析】根据垂直得到2k =,由点斜式可求直线的方程.【详解】直线l 的方程为210x y ++=,则12l k =-,根据两直线垂直知所求直线的斜率为2k =,又直线过点(1,3)A ,所以与直线l 垂直的线方程为32(1)y x -=-,即210x y -+=.故选:B.4.已知平面α的一个法向量(2,1,1)n = ,直线l 的一个方向向量(1,0,2)v =,则()A.//l αB.l α⊥C.l α⊂ D.l 与α相交且不垂直【答案】D 【解析】【分析】根据题意,求得0v n ⋅≠ ,且不存在实数λ,使得v n λ=,即可得到答案.【详解】由平面α外的直线l 的方向向量为(1,0,2)v =,平面α的一个法向量为(2,1,1)n = ,可得12012140v n ⋅=⨯+⨯+⨯=≠,所以直线l 与平面不平行,又不存在实数λ,使得v n λ=,所以直线l 与平面不垂直,所以l 与α相交且不垂直.故选:D.5.如图,在长方体1111ABCD A B C D -中,P 是线段1D B 上一点,且12BP D P =,若1AP x AB y AD z AA =++,则x y z ++=()A.53B.23C.43D.1【答案】A 【解析】【分析】将1BD 利用AB 、AD 、1AA 表示,再利用空间向量的加法可得出AP 关于AB 、AD 、1AA的表达式,进而可求得x y z ++的值.【详解】连接1AD 、AP ,因为111BD AD AB AD AA AB =-=+- ,因为P 是线段1D B 上一点,且12BP D P =,则123BP BD =,因此()1121223333AP AB BP AB AD AA AB AB AD AA =+=++-=++,因此,12253333x y z ++=++=.故选:A.6.在正三棱柱111ABC A B C -中,1AB AA =,则直线1B C 与平面11ABB A 所成角的正弦值为()A.22B.32C.64D.104【答案】C 【解析】【分析】根据线面角的定义,作出线面角求正弦即可.【详解】取AB 的中点D ,连接1,CD B D ,如图,由正三棱柱可知,CD AB ⊥,1AA CD ⊥,又1AA AB A ⋂=,1,AA AB ⊂平面11ABB A ,所以CD ⊥平面11ABB A ,所以1B D 是直线1B C 在平面11ABB A 上的射影,所以1CB D ∠即为直线1B C 与平面11ABB A 所成角,设12AA AB a ==,则322CD a =⨯=,1B C =,所以116sin 4CD CB D B C ∠===.故选:C7.如图,在三棱锥D ABC -中,平面ABC ⊥平面,DAC AB BC ⊥,,AD CD ⊥AB BC CD AD ===,则二面角A BC D --的余弦值为()A.32B.12C.33D.55【答案】C 【解析】【分析】取AC 的中点N ,连接DN ,过N 作NM BC ⊥于M ,连接DM ,可证DMN ∠是二面角A BC D --的平面角,计算可求二面角A BC D --的余弦值.【详解】取AC 的中点N ,连接DN ,过N 作NM BC ⊥于M ,连接DM,因为CD AD =,所以DN AC ⊥,因为平面ABC ⊥平面DAC ,平面ABC 平面DAC AC =,所以DN⊥平面ABC ,又⊂BC 平面ABC ,所以DN BC ⊥,又DN NM N = ,,DN NM ⊂平面DNM ,所以⊥BC 平面DNM ,因为DM ⊂平面DNM ,所以BC DM ⊥,所以DMN ∠是二面角A BC D --的平面角,设2AB BC CD AD ====,又AB BC ⊥,AD CD ⊥,所以AC =,所以DN =又NM BC ⊥,所以NM AB ∥,又AC 的中点N ,所以1NM =,在Rt DNM △中,DM ==在Rt DNM △中,可得cos3NM DMN DM ∠==,所以二面角A BC D --的余弦值为33.故选:C.8.设m ,n 是两条不同的直线,,αβ是两个不同的平面,已知//,m n αβ^,则“//m n ”是“αβ⊥”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件【答案】A 【解析】【分析】利用空间中线线,线面的位置关系判断即可得结论.【详解】在如图所示的图形中记直线1AA 为m ,1DD 为n ,平面ABCD 为β,平面11BB C C 为α,过m 作平面11AA B B 交α于1BB ,因为//m α,所以1m BB P ,又//m n ,所以1n BB P ,又n β⊥,所以1BB β^,又1BB α⊂,所以αβ⊥,所以“//m n ”是“αβ⊥”的充分条件,在正方体1111ABCD A B C D -中,记直线AD 为m ,1DD 为n ,平面ABCD 为β,平面11BB C C 为α,显然符合条件,但m 与n 不平行,所以“//m n ”是“αβ⊥”的不必要条件,所以“//m n ”是“αβ⊥”的充分不必要条件.故选:A .9.如图,在四棱锥P ABCD -中,底面ABCD 为正方形,点M 是PC 的中点,3AB =,4,60PA PAD PAB ︒=∠=∠=,则AM =()A.2B.C.292D.4【答案】A 【解析】【分析】根据题意,()12AM AB AD AP =++,再求其模即可.【详解】根据题意,0,6AB AD AB AP AP AD ⋅=⋅=⋅=,()()111222AM AP PM AP PC AP AC AP AB AD AP =+=+=+-=++,所以()()222221122244AM AB AD AP AB AD AP AB AD AB AP AP AD =++=+++⋅+⋅+⋅()15899161212044=+++++=,所以2AM AM == .故选:A10.如图,在棱长为2的正方体1111ABCD A B C D -中,点E 为BC 的中点,点P 在线段1CC 上,则1D EP面积的最小值为()A.255B.355C.D.655【答案】B 【解析】【分析】根据题意可知,点P 到直线1D E 距离的最小值等于异面直线1D E 与1CC 的距离,进而利用向量法求异面直线1D E 与1CC 的距离,从而可得1D EP 面积的最小值.【详解】因为1112D EP S ED h =,点P 到直线1ED 的距离最小时1D EP 面积取得最小值,而点P 在线段1CC 上,直线1D E 与1CC 互为异面直线,因此点P 到直线1D E 距离的最小值等于异面直线1D E 与1CC 的距离.下面用向量法求异面直线1D E 与1CC 的距离:以D 为原点,1,,DA DC DD 分别为x 轴、y 轴、z轴建立空间直角坐标系,如图所示:则()()11,2,0,0,0,2E D ,(0,2,0)C ,1(0,2,2)C ,1(1,2,2)ED =-- ,1(0,0,2)CC = ,(1,0,0)C E =,设异面直线1D E 与1CC 公垂线的方向向量为(,,)u x y z = ,则11u CC u ED ⎧⊥⎪⎨⊥⎪⎩ ,即()11(,,)0,0,220(,,)(1,2,2)220u CC x y z z u ED x y z x y z ⎧⋅=⋅==⎪⎨⋅=⋅--=--+=⎪⎩,得02z x y =⎧⎨=-⎩,令2x =,则1y =-,即)2,(1,0u =-,于是异面直线1D E 与1CC的距离为||25||5u CE h u ⋅===,又113D E ED ===,所以1D EP面积的最小值为11132255ED h =⨯⨯=.故选:B二、填空题共5小题,每小题5分,共25分.11.若直线10ax y ++=与直线340x y +-=平行,则a =______.【答案】13【解析】【分析】利用两直线平行列出关于a 的方程,解之即可求得a 的值.【详解】因为直线10ax y ++=与直线340x y +-=平行,所以3110a -⨯=且()4110a ⨯--⨯≠,解得13a =.故答案为:13.12.长方体1111ABCD A B C D -中,12AB AA ==,1AD =,E 为1CC 的中点,则异面直线1BC 与AE 所成角的余弦值为__________.【答案】3010【解析】【详解】分析:连接1111,,,,//AD AC AE D E BC AD ,1∠EAD 就是异面直线1BC 与AE 所成角,在1AD E ∆中,由余弦定理可得结果.详解:由题知,连接1111,,,,//AD AC AE D E BC AD ,异面直线1BC 与AE 所成角,即为1AD 与AE 所成角1∠EAD ,在1Rt AA D ∆中,221115AD AA A D =+=在Rt ACE ∆中,2226AE AB BC CE =++=在11Rt D C E ∆中,22211115D E C E D C =+=,故由余弦定理,1AD E ∆中,222156530cos 10256EAD +-∠==⨯⨯,故答案为:3010.点睛:本题主要考查异面直线所成的角,属于中档题题.求异面直线所成的角的角先要利用三角形中位线定理以及平行四边形找到,异面直线所成的角,然后利用直角三角形的性质及余弦定理求解,如果利用余弦定理求余弦,因为异面直线所成的角是直角或锐角,所以最后结果一定要取绝对值.13.已知(1,2,3),(0,2,0),(1,0,3)A B C --为平面α内三点,点D 在α内,且D 异于,,A B C 三点,写出点D 的一个坐标:____________.【答案】(2,0,6)(答案不唯一)【解析】【分析】利用点共面的条件计算可得D 的一个坐标.【详解】因为点D 在α内,记坐标原点为O ,所以(1)(1)(1,2,3)(0,2,0)(1,0,3)OD OA OB OC λμλμλμλμ=--++=---+-+(1,22,33)λμλ=--+-,取1,1μλ==-,可得(2,0,6)OD =,所以点D 的一个坐标为(2,0,6)(答案不唯一).故答案为:(2,0,6)(答案不唯一).14.如图所示的多面体ABCDEF ,其各个面都是边长为2的等边三角形,点,P Q 分别为棱,AB AD 的中点,则CP FQ ⋅=______.【答案】1【解析】【分析】根据正八面体的性质得到FB DA =uu r uu u r,然后利用线性运算和数量积的运算律计算即可.【详解】由条件可知此多面体为正八面体,故BF AD =,BF AD ,则FB DA =uu r uu u r,()()12CP FQ CB CA FB BA AQ ⋅=+⋅++ ()1122CB CAAD AB ⎛⎫=+⋅-- ⎪⎝⎭11114242CB AD CB AB CA AD CA AB=-⋅-⋅-⋅-⋅uu r uuur uu r uu u r uu r uuu r uu r uu u r 11122cos12022cos 6022cos12022cos120424=-⨯⨯︒-⨯⨯︒-⨯⨯︒-⨯︒111122=-++1=.故答案为:115.如图,正方体1111ABCD A B C D -的棱长为2,点,E F 分别为棱111,B C BB 的中点,点G 为线段1A D 上的一个动点,给出下列四个结论:①三棱锥1B EFG -的体积为定值;②存在点G ,使1A C ⊥平面EFG ;③存在点G ,使平面//EFG 平面1ACD ;④设直线FG 与平面11ADD A 所成角为θ,则sin θ的最大值为223.其中所有正确结论的序号为____________________.【答案】①②④【解析】【分析】对于①选项,利用等体积法判断;对于②、③、④三个选项可以建立空间直角坐标系,利用空间向量求解【详解】易得平面11//ADD A 平面11BCC B ,所以G 到平面11BCC B 的距离为定值,又1B EF S △为定值,所以三棱锥1G B EF -即三棱锥1B EFG -的体积为定值,故①正确.对于②,如图所示,以D 为坐标原点,DA 为x 轴,DC 为y 轴,1DD 为z 轴,,建立空间直角坐标系,则1`1(2,0,0),(2,2,0),(0,0,0),(0,2,0),(2,0,2),(0,0,2)A B D C A D ,1(0,2,2),(1,2,2),(2,2,1)C E F ,所以11(2,2,2),(2,2,0),(2,0,2),(1,0,1)AC AC AD EF =-=-=-=- ,设1(01)DG DA λλ=≤≤ ,则(2,0,2)G λλ,所以(21,2,22)EG λλ---= ,(22,2,21)FG λλ---= ,因为1A G ⊥平面EFG ,所以11·2(21)2(2)(2)(22)0·2(22)2(2)(2)(21)0A C EG A C FG λλλλ⎧=--+⨯-+-⨯-=⎪⎨=--+⨯-+-⨯-=⎪⎩ ,解得14λ=,当G 为线段1A D 上靠近D 的四等分点时,1A C ⊥平面EFG ,故②正确.对于③,设平面1ACD 的法向量为(,,)m x y z = ,则1·220·220m AC x y m AD x z ⎧=-+=⎪⎨=-+=⎪⎩ ,取1z =,得1,1y x ==,所以平面1ACD 的一个法向量(1,1,1)m = ,设平面EFG 的法向量为(,,)n a b c =,则·0·(21)2(22)0n EF a c n EG a b c λλ⎧=-=⎪⎨=--+-=⎪⎩ ,取1a =,得43,12b c λ-==,所以平面EFG 的法向量为43(1,,1)2n λ-= ,因为平面//EFG 平面1ACD ,所以n m ,设m kn = ,即43(1,1,1)(1,,1)2k λ-=,解得451,k λ==,又因为01λ≤≤,不合题意,线段1A D 上不存在点G ,使//EFG 平面1ACD ,故③错误.对于④,平面11ADD A 的法向量为(0,1,0)μ= ,则||sin ||||FG FG μθμ== ,因为2239981298(422λλλ-+=-+≥,所以22sin 3θ=≤=,所以sin θ的最大值为223.故④正确.故答案为:①②④.【点睛】思路点睛:空间几何常常通过建立空间直角坐标系,利用空间向量的夹角公式求解空间面面,线面,线线的位置关系,以及求解空间角的有关问题.三、解答题共6小题,共85分.解答应写出文字说明,演算步骤或证明过程.16.已知点()3,0A 、()1,3B --、()1,1C ,点D 是线段BC 的中点,CE AD ⊥,垂足为E .(1)求直线AD 的方程;(2)求点E 的坐标;(3)求ABC V 的面积.【答案】(1)330x y --=(2)31,22⎛⎫- ⎪⎝⎭(3)5【解析】【分析】(1)求出线段BC 的中点D 的坐标,利用两点式可得出直线AD 的方程;(2)求出直线CE 的方程,将直线CE 、AD 的方程联立,即可解得点E 的坐标;(3)求出AD 、CE ,由2ABC ACD S S AD CE ==⋅△△可得结果.【小问1详解】解:因为()1,3B --、()1,1C ,所以BC 的中点D 为()0,1-,所以直线AD 的方程为031003y x --=---,即330x y --=.【小问2详解】解:由(1)知13=AD k ,因为CE AD ⊥,所以3CE k =-,所以直线CE 方程为()131y x -=--,即340x y +-=.联立330340x y x y --=⎧⎨+-=⎩,解得3212x y ⎧=⎪⎪⎨⎪=-⎪⎩,所以点E 的坐标为31,22⎛⎫- ⎪⎝⎭.【小问3详解】解:因为AD =,102CE =,所以25ABC ACD S S AD CE ==⋅=△△.17.如图,在四棱锥P ABCD -中,底面ABCD 为矩形,点E ,F 分别为 别,PB 的中点,PE ⊥平面,ABCD PA PD ⊥.(1)求证://EF 平面PCD ;(2)求证:PD AF ⊥;(3)若1AB =,2AD =,求四面体ABFE 的体积.【答案】(1)证明见解析(2)证明见解析(3)112【解析】【分析】(1)取PC 中点G ,证明四边形DEFG 是平行四边形,可得//EF DG ,根据线面平行的判定定理得证;(2)先证明AB ⊥平面PAD ,再证明PD ⊥平面PAB ,得证;(3)取BE 中点H ,连接FH ,可证FH ⊥平面ABCD ,求出FH ,求出四面体ABEF 的体积.【小问1详解】取PC 中点G ,连接DG ,FG .因为F 为PB 中点,所以1//,2FG BC FG BC =,因为E 为AD 中点,所以12DE BC =,又因为矩形ABCD 中,//AD BC ,所以//,FG DE FG DE =,所以四边形DEFG 是平行四边形所以//EF DG ,因为DG ⊂平面,PCD EF ⊄平面PCD ,所以//EF 平面PCD .【小问2详解】因为PE ⊥平面ABCD ,AB ⊂平面ABCD ,所以PE AB ⊥,因为矩形ABCD 中,,,AD AB PE AD E PE ⊥⋂=⊂平面PAD ,所以AB ⊥平面PAD ,PD ⊂平面PAD ,所以AB PD ⊥.因为PA PD ⊥,,AB PA 是平面PAB 内两条相交直线,所以PD ⊥平面PAB ,因为AF ⊂平面PAB ,所以PD AF ⊥.【小问3详解】取BE 中点H ,连接FH .因为F 为PB 中点,所以1//,2FH PE FH PE =,因为PE ⊥平面ABCD ,所以FH ⊥平面ABCD .因为直角三角形PAD 中,E 为AD 中点,所以112PE AD ==,所以12FH =.四面体ABEF 体积11111111133232212F ABE ABE V FH S FH AB AE -=⋅=⋅⋅=⨯⨯⨯⨯= .18.在ABC中,222b a c =+.(1)求B ∠的大小;(2)再从下列三个条件中,选择两个作为已知,使得ABC V 存在且唯一,求a 和ABC V 的面积.条件①tan A =;条件②b =;条件③AB边上的高为2.【答案】(1)π4B =(2)答案见解析【解析】【分析】(1)由题意,根据余弦定理计算即可求解;(2)若选①②、①③,先求得2π3A =,由正弦定理求得a =sin C ,结合面积公式计算即可求解;若选②③,求得sin h A b ==,不符合题意.【小问1详解】在ABC V中,因为222b a c =+,由余弦定理得2222cos 22a cb B ac +-==,因为(0,π)B ∈,所以π4B =;【小问2详解】若选①②,ABC V 存在且唯一,解答如下:因为1cos ,(0,π)2A A =-∈,所以2π3A =,因为b =,由正弦定理2πsin sin 3π4a =,则a =又πC A B =--,所以1sin sin()22224C A B =+=⨯-⨯=,所以113sin2244--==⨯=ABCS ab C;若选①③,ABCV存在且唯一,解答如下:因为1cos,(0,π)2A A=-∈,所以2π3A=,因为AB边上的高h为2,所以sinhbA==,由正弦定理2πsin sin3π4a=,则a=又ππππ34C A B=--=--,所以2ππ321262sin sin3422224C⎛⎫=+=⨯-⨯=⎪⎝⎭,所以113sin2244--==⨯=ABCS ab C;若选②③,ABCV不唯一,不合题意.解答如下:b=,AB边上的高h为2,故32sin2hAb===,又(0,π)A∈,所以2π3A=或π3,故A有两个解,不符合题意.19.如图,在直三棱柱111ABC A B C-中,1,,AB BC AB BC AA AC D⊥===是11A C的中点,平面ABD与直线11B C交于点E.(1)求证:E是线段11B C的中点;(2)设点M在线段CD上,直线AE与平面ABM 所成角的正弦值为7839.(i )求CM CD的值;(ii )求1B 到平面ABM 的距离.【答案】(1)证明见解析(2)(i )23CM CD =;(ii)3.【解析】【分析】(1)根据线面平行的判定定理与性质即可证明;(2)如图,建立空间直角坐标系,设,[0,1]CM CD λλ=∈ ,根据空间向量求线面角的方法建立关于λ的方程,求出λ,即可求出利用空间向量法求出点面距.【小问1详解】三棱柱111ABC A B C -中,因为11//,AB A B AB ⊂/平面111A B C ,11A B ⊂平面111A B C ,所以//AB 平面111A B C ,因为平面ABD ⋂平面111A B C DE =,所以//AB DE ,则11//DE A B ,又D 是11A C 的中点,所以E 是11B C 的中点.【小问2详解】(i )因为在直三棱柱111ABC A B C -中,1BB ⊥平面ABC ,BA BC ⊂、平面ABC ,所以11,BB BA BB BC ⊥⊥,因为AB BC ⊥,所以如图以B 为原点建立空间直角坐标系B xyz -.(0,2,0),(2,0,0),A C D E,(0,2,0),(2,2,0),((1,BA BD AC CD AE ===-=-=- ,设,[0,1]CM CD λλ=∈,则(,),(2,)CM CD AM AC CM λλλλλ==-=+=-- .设平面ABM 法向量(,,)n x y z = ,则00n BA n AM ⎧⋅=⎪⎨⋅=⎪⎩ ,即()()20220y x y z λλ=⎧⎪⎨-+-+=⎪⎩,则0y =,令x =,则2z λ=-,所以平面ABM的一个法向量,0,-2)n λ= .设直线AE 与平面ABM 所成的角为θ,sin 39θ=得|||cos ,|39||||AE n AE n AE n ⋅〈〉=== ,解得23λ=或2213λ=,因为[0,1]λ∈,所以23λ=.即23CM CD =.(ii)11B BB = ,由(i )得,平面ABM法向量4,0,33n ⎛⎫=- ⎪ ⎪⎝⎭ ,所以点1B 到平面ABM 的距离1263BB n d n ⋅==.20.如图,在四棱锥E ABCD -中,//,AB CD CD ⊥平面,6,2ADE CD DA AB ===,π3,3DE ADE =∠=.(1)求证:平面ACE ⊥平面CDE ;(2)求二面角B CE D --的余弦值;(3)设F 为平面ADE内的动点,满足BF ≤.G 为ADE V 边上的动点,点P 满足AP AF AG =+,写出点P 组成的图形的面积.(结论不要求证明)【答案】(1)证明见解析(2)139-(3)15π++.【解析】【分析】(1)利用余弦定理求得227AE =,可证AE DE ⊥,可证CD AE ⊥,进而利用线线垂直可得线面垂直;(2)建立空间直角坐标系,求得平面BCE 与平面CDE 的法向量,利用向量的夹角公式可求二面角B CE D --的余弦值;(3)由已知可得F 的运算轨迹是以A 为圆心,1为半径的圆,由AP AF AG =+ ,可得P 运动的图形为圆心为1的圆,当圆心在ADE V 的三边上移动时所扫过的区域,进而可求面积.【小问1详解】在ADE V 中,π6,3,3DA DE ADE ==∠=,所以2222cos 27AE AD DE AD DE ADE =+-⋅∠=,所以222AE DE AD +=,所以AE DE ⊥.因为CD ⊥平面ADE ,AE ⊂平面ADE ,所以CD AE ⊥,又CD DE D = ,,CD DE ⊂平面CDE ,所以AE ⊥平面CDE ,又AE ⊂平面ACE ,所以平面ACE ⊥平面CDE ;【小问2详解】过E 作直线//l CD ,因为CD ⊥平面ADE ,所以l ⊥平面ADE .又AE DE ⊥,以A 坐标原点,,EA ED 为,x y 轴建立如图所示空间直角坐标系E xyz -,则(3,0,6)EB EC == .设平面BCE 的法向量为(,,)n x y z = ,则00n EB n EC ⎧⋅=⎪⎨⋅=⎪⎩,即20360z x z ⎧+=⎪⎨+=⎪⎩,令z =,则(n =-- .又平面CDE 的一个法向量为(0,1,0)m = ,所以cos ,139||||m n m n m n ⋅〈〉==-⋅ ,所以二面角B CE D --的余弦值为139-.【小问3详解】因为//,AB CD CD ⊥平面ADE ,所以AB ⊥平面ADE ,又AF ⊂平面ADE ,所以AB AF ⊥,又BF ≤,又2AB =,所以可得1AF ≤,所以F 的运算轨迹是以A 为圆心,1为半径的圆,又G 为ADE V 边上的动点,点P 满足AP AF AG =+ ,所以点P 运动的图形为圆心为1的圆,当圆心在ADE V的三边上移动时所扫过的区域,如圆所示:此区域的面积为ADE ADSO DERW AEUZ KNH S S S S S S +++-+圆,由(1)可得ADE V是直角三角形,且π3,,6,3DE ADE AD AE =∠===,由题意可得DN 平分π3ADE ∠=,且1NM =,解得DM =,从而可得Rt KHN中,3123NH KH =-=-==,从而可得点P组成的图形的面积为:211361311(23)π122⨯⨯+⨯+⨯+-⨯⨯+⨯15π=+.【点睛】思路点睛:求点运算轨迹的图形的面积,关建在于确定轨迹的形状与类型,从而依据轨迹的形状求得图形的面积.21.由n 个实数组成的有序实数组()12,,,n a a a ⋯称n 维向量.设()12,,,n a a a =⋯α,称12n a a a ⎛⎫ ⎪ ⎪ ⎪ ⎪⎝⎭为α的转置,记作T α.将n 个n 维向量12,,,n ⋯δδδ的转置12,,,T T Tn ⋯δδδ从左至右顺次排列构成n n ⨯数阵C ,记()12,,,T T T n C =⋯δδδ.例如,12(1,2),(3,4)==δδ,则1324C ⎛⎫= ⎪⎝⎭.对任意n 维向量()()1212,,,,,,,n n a a a b b b =⋯=⋯αβ和数阵()12,,,T T T n C =⋯δδδ,定义如下运算:①1122T n n a b a b a b ⊗=++⋯+αβ,特别地,若0T ⊗=αβ,则称α与β正交;若1T ⊗=αα,则称α为单位向量.②()12,,,T T T n C ⊗=⊗⊗⋯⊗ααδαδαδ.③对任意N m ∈且()12,m m m C C C -≥⊗=⊗⊗αα,其中1C C =.(1)设()1212(1,0),,,,,,2222T T C ⎛⎫⎛⎫==-== ⎪ ⎪⎝⎭⎝⎭αδδδδ,直接写出C ⊗α和2C ⊗α;(2)已知3维向量1231(1,0,0),,,(,,)(0)22a b c d c ⎛⎫===< ⎪⎝⎭δδδ均为单位向量,且两两正交.设()123(2,1,0),,,T T T C ==αδδδ,若存在正整数m ,使得m C ⊗=αα,求a ,b ,c ,d 的值及m 的最小值;(3)已知4维向量1234,,,δδδδ均为单位向量且两两正交,其中2(0,1,0,0)=δ.设()1234,,,T T T T C =δδδδ,若对任意4维向量α,都存在正整数m 使得m C ⊗=αα且m 的最小值为12,给出一组满足上述条件的134,,δδδ,并说明理由.【答案】(1)2,,(0,1)22C C ⎛⎫⊗=⊗= ⎪⎝⎭αα;(2)10,,,22a b c d m ===-=的最小值为6(3)13411(1,0,0,0),0,0,,,0,0,,2222⎛⎫⎛⎫==-= ⎪ ⎪⎝⎭⎝⎭δδδ,理由见解析【解析】【分析】(1)利用新定义可求解;(2)利用新定义结合已知可得10,022a b c d ==+=,221c d +=,计算可得6(2,1,0)C ⊗==αα,可求m 的最小值;(3)利用新定义,以及n n ⨯的矩阵的运算性质,结合已知可写出134,,δδδ.【小问1详解】2,,(0,1)22C C ⎛⎫⊗=⊗= ⎪ ⎪⎝⎭αα;【小问2详解】因为123,,δδδ两两正交,所以10,022a b c d ==+=,又23,δδ均为单位向量,所以221c d +=,因为0c <,所以31(,)22c d ⎛⎫=- ⎪ ⎪⎝⎭,所以1231331(1,0,0),0,,,0,,2222⎛⎫⎛⎫===- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭δδδ,所以2313132,,,2,,,(2,1,0)2222C C C ⎛⎫⎛⎫⊗=-⊗=--⊗=- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭ααα,45613132,,,2,,,(2,1,0)2222C C C ⎛⎫⎛⎫⊗=-⊗=⊗== ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭αααα,所以m 的最小值是6.综上,10,,,22a b c d m ===-=的最小值为6.【小问3详解】设(,)x y =β是任意2维向量,则β有如下性质:①当11001D ⎛⎫= ⎪⎝⎭时,对于任意正整数k ,都有1k D ⊗=ββ.②当20000D ⎛⎫= ⎪⎝⎭时,对于任意正整数k ,都有2(0,0)k D β⊗=.③设点(,)B x y 是平面直角坐标系xOy 中的一点,将点B 绕原点O 逆时针旋转θ得到点(),B x y ''',则点B B '、分别对应向量(,)x y =β与(),x y =''γ.所以()'2'222*x y x y cos θ⎧+=+⎪=,设r =,γβ可以设为(cos ,sin ),(cos ,sin )r r r r γγγββ==β,则(*)可化简为cos()cos γβθ-=,可以取γβθ=+,所以cos sin ,sin cos x x y y x y θθθθ''=-=+,则有()cos sin cos sin ,(,)sin cos sin cos x y x y θθθθθθθθ⎛⎫⎛⎫==⊗'=⊗ ⎪ ⎪--⎝'⎭⎝⎭γβ,记3cos sin sin cos D θθθθ⎛⎫= ⎪-⎝⎭,即3D =⊗γβ.根据上述性质,不妨设(,,,)a b c d =α,取1234(1,0,0,0),(0,1,0,0),(0,0,cos ,sin ),(0,0,s in ,cos )θθθθ===-=δδδδ,则()12123423,,,T T T T D D C D D ⎛⎫== ⎪⎝⎭δδδδ,根据性质①和性质②,(),,,m m m C a b c d ⊗=α,根据性质②和性质③,()()*113,,,,k k k k c d c d D k k m --=⊗∈≤N ,其中00,c c d d ==.设k r =k r 为定值,记为r ,设cos ,sin c r d r ϕϕ==,则cos(),sin()k k c r k d r k θϕθϕ=+=+,因为存在正整数m 使得m C ⊗=αα且m 的最小值为12,所以()()001212(,),,c d c d c d ==且()(,),,1,2,,11k k c d c d k ≠= .可取122θπ=,即2126ππθ==,所以1343113(1,0,0,0),0,0,,,0,0,,2222⎛⎫⎛⎫==-= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭δδδ.【点睛】方法点睛:新定义题型,认真阅读,弄清题意是关键,理解α的转置,n n ⨯数阵C ,与所学内容类比,转化,考查运算求解能力与逻辑思维能力,对综合素养要求较高.。
2020-2021北京汇文中学高中必修二数学下期中第一次模拟试卷及答案
2020-2021北京汇文中学高中必修二数学下期中第一次模拟试卷及答案一、选择题1.圆224470x y x y +--+=上的动点P 到直线0x y +=的最小距离为( )A .1B .221-C .22D .22.已知三棱锥S ABC -的所有顶点都在球O 的球面上,SC 为球O 的直径,且SC OA ⊥,SC OB ⊥,OAB V 为等边三角形,三棱锥S ABC -的体积为433,则球O 的半径为( ) A .3B .1C .2D .43.直线20x y ++=截圆222210x y x y a ++-+-=所得弦的长度为4,则实数a 的值是( ) A .-3B .-4C .-6D .36-4.已知m 和n 是两条不同的直线,α和β是两个不重合的平面,那么下面给出的条件中一定能推出m ⊥β的是( ) A .α⊥β,且m ⊂α B .m ⊥n ,且n ∥β C .α⊥β,且m ∥αD .m ∥n ,且n ⊥β5.已知正四面体ABCD 中,M 为棱AD 的中点,设P 是BCM ∆(含边界)内的点,若点P 到平面ABC ,平面ACD ,平面ABD 的距离相等,则符合条件的点P ( ) A .仅有一个 B .有有限多个 C .有无限多个 D .不存在 6.已知点A (1,2),B (3,1),则线段AB 的垂直平分线的方程是( )A .4x 2y 5+=B .4x 2y 5-=C .x 2y 5+=D .x 2y 5-=7.已知圆截直线所得线段的长度是,则圆与圆的位置关系是( ) A .内切B .相交C .外切D .相离8.已知圆O :2224110x y x y ++--=,过点()1,0M 作两条相互垂直的弦AC 和BD ,那么四边形ABCD 的面积最大值为( )A .42B .24C .212D .69.一个几何体的三视图如图所示,则该几何体的表面积为( )A .B .C .D .10.,为两个不同的平面,,为两条不同的直线,下列命题中正确的是( ) ①若,,则; ②若,,则; ③若,,,则④若,,,则.A .①③B .①④C .②③D .②④11.如图是正方体的平面展开图,则在这个正方体中: ①BM 与ED 平行 ②CN 与BE 是异面直线 ③CN 与BM 成60︒角 ④DM 与BN 是异面直线 以上四个命题中,正确命题的个数是( )A .1B .2C .3D .412.如图是一个几何体的三视图(侧视图中的弧线是半圆),则该几何体的表面积是( )A .20+3πB .24+3πC .20+4πD .24+4π二、填空题13.已知菱形ABCD 中,2AB =,120A ∠=o ,沿对角线BD 将ABD △折起,使二面角A BD C --为120o ,则点A 到BCD V 所在平面的距离等于 .14.若过点(8,1)P 的直线与双曲线2244x y -=相交于A ,B 两点,且P 是线段AB 的中点,则直线AB 的方程为________. 15.若圆的方程为2223()(1)124kx y k +++=-,则当圆的面积最大时,圆心坐标和半径分别为 、 .16.已知动点,A B 分别在x 轴和直线y x =上,C 为定点()2,1,则ABC ∆周长的最小值为_______.17.已知B 与点()1,2,3A 关于点()0,1,2M -对称,则点B 的坐标是______.18.已知棱长等于31111ABCD A B C D -,它的外接球的球心为O ﹐点E 是AB 的中点,则过点E 的平面截球O 的截面面积的最小值为________.19.在三棱锥P ABC -中,PA ⊥平面ABC ,AC BC ⊥,且三棱锥的最长的棱长为2,则此三棱锥的外接球体积为_____________.20.如图:点P 在正方体1111ABCD A B C D -的面对角线1BC 上运动,则下列四个命题: ①三棱锥1A D PC -的体积不变; ②1A P ∥面1ACD ;③1DP BC ^; ④面1PDB ^面1ACD .其中正确的命题的序号是__________.三、解答题21.如图,AB 是半圆O 的直径,C 是半圆O 上除A ,B 外的一个动点,DC 垂直于半圆O 所在的平面,DC ∥EB ,DC =EB =1,AB =4.(1)证明:平面ADE ⊥平面ACD ;(2)当C 点为半圆的中点时,求二面角D ﹣AE ﹣B 的余弦值.22.已知圆C 过点()1,1A ,()3,1B -,圆心C 在直线250x y --=上,P 是直线34100x y -+=上任意一点.(1)求圆C 的方程;(2)过点P 向圆C 引两条切线,切点分别为M ,N ,求四边形PMCN 的面积的最小值.23.已知平面内两点(8,6),(2,2)A B -. (1)求AB 的中垂线方程;(2)求过点(2,3)P -且与直线AB 平行的直线l 的方程.24.如图四棱锥C ABDE -的侧面ABC ∆是正三角形,BD ⊥面ABC ,//BD AE 且2BD AE =,F 为CD 的中点.(1)求证://EF 面ABC(2)若6BD AB ==,求BF 与平面BCE 所成角的正弦值25.如图,在ABC V 中AC BC ⊥且点O 为AB 的中点,矩形ABEF 所在的平面与平面ABC 互相垂直.(1)设EC 的中点为M ,求证://OM 平面ACF ; (2)求证:AC ⊥平面CBE26.如图,在四棱锥P ABCD -中,PA ⊥平面ABCD ,底面ABCD 是菱形. (1)求证:BD PC ⊥;(2)若平面PBC 与平面PAD 的交线为l ,求证://BC l .【参考答案】***试卷处理标记,请不要删除一、选择题1.B 解析:B 【解析】 【分析】先求出圆心到直线0x y +=的距离,根据距离的最小值为d r -,即可求解. 【详解】由圆的一般方程可得22(2)(2)1x y -+-=, 圆心到直线的距离222d == 所以圆上的点到直线的距离的最小值为221-. 故选B. 【点睛】本题主要考查了点到直线的距离,圆的方程,属于中档题.2.C解析:C 【解析】 【分析】根据题意作出图形,欲求球的半径r .利用截面的性质即可得到三棱锥S ABC -的体积可看成是两个小三棱锥S ABO -和C ABO -的体积和,即可计算出三棱锥的体积,从而建立关于r 的方程,即可求出r ,从而解决问题. 【详解】解:根据题意作出图形: 设球心为O ,球的半径r .SC OA ⊥Q ,SC OB ⊥,SC ∴⊥平面AOB ,三棱锥S ABC -的体积可看成是两个小三棱锥S ABO -和C ABO -的体积和. 2343123S ABC S ABO C ABO V V V r r ---∴=+=⨯⨯⨯⨯=三棱锥三棱锥三棱锥, 2r ∴=.故选:C .本题考查棱锥的体积,考查球内接多面体,解题的关键是确定将三棱锥S ABC -的体积看成是两个小三棱锥S ABO -和C ABO -的体积和,属于中档题.3.A解析:A 【解析】 【分析】求出圆心坐标和半径,根据圆的弦长公式,进行求解即可. 【详解】由题意,根据圆的方程222210x y x y a ++-+-=,即22(1)(1)2x y a ++-=-,则圆心坐标为(1,1)-,半径r =又由圆心到直线的距离为d ==所以由圆的弦长公式可得4=,解得3a =-,故选A. 【点睛】本题主要考查了直线与圆的位置关系的因公,以及弦长公式的应用,其中根据圆的方程,求得圆心坐标和半径,合理利用圆的弦长公式列出方程求解是解答的关键,着重考查了推理与运算能力.4.D解析:D 【解析】 【分析】根据所给条件,分别进行分析判断,即可得出正确答案. 【详解】解:αβ⊥且m α⊂⇒m β⊂或//m β或m 与β相交,故A 不成立;m n ⊥且//n β⇒m β⊂或//m β或m 与β相交,故B 不成立;αβ⊥且//m α⇒m β⊂或//m β或m 与β相交,故C 不成立; //m n 且n β⊥⇒m β⊥,故D 成立;故选:D 【点睛】本题考查直线与平面的位置关系,线面垂直判定,属于基础题.5.A解析:A 【解析】 【分析】根据正四面体的对称性分析到平面ABC ,平面ACD ,平面ABD 的距离相等的点的轨迹,与BCM ∆所在平面的公共部分即符合条件的点P .在正四面体ABCD 中,取正三角形BCD 中心O ,连接AO ,根据正四面体的对称性,线段AO 上任一点到平面ABC ,平面ACD ,平面ABD 的距离相等,到平面ABC ,平面ACD ,平面ABD 的距离相等的点都在AO 所在直线上,AO 与BCM ∆所在平面相交且交于BCM ∆内部,所以符合题意的点P 只有唯一一个. 故选:A 【点睛】此题考查正四面体的几何特征,对称性,根据几何特征解决点到平面距离问题,考查空间想象能力.6.B解析:B 【解析】 【分析】 【详解】因为线段AB 的垂直平分线上的点(),x y 到点A ,B 的距离相等, 所以22(1)(2)x y -+-22(3)(1)x y =-+-.即:221244x x y y +-++-229612x x y y =+-++-,化简得:425x y -=. 故选B .7.B解析:B 【解析】 化简圆到直线的距离,又两圆相交. 选B8.B【解析】 【分析】设圆心到AC ,BD 的距离为1d ,2d ,则222128d d MO +==,22121216162S AC BD d d =⋅=-⋅-,利用均值不等式得到最值. 【详解】 2224110x y x y ++--=,即()()221216x y ++-=,圆心为()1,2O -,半径4r =.()1,0M 在圆内,设圆心到AC ,BD 的距离为1d ,2d ,则222128d d MO +==.222222121211222161622S AC BD r d r d d d =⋅=⨯-⋅-=-⋅- 2212161624d d ≤-+-=,当22121616d d -=-,即122d d ==时等号成立.故选:B . 【点睛】本题考查了圆内四边形面积的最值,意在考查学生的计算计算能力和转化能力.9.D解析:D 【解析】该几何体为半圆柱,底面为半径为1的半圆,高为2,因此表面积为,选D.10.B解析:B 【解析】 【分析】在①中,由面面平行的性质定理得m ∥β;在②中,m 与n 平行或异面;在③中,m 与β相交、平行或m ⊂β;在④中,由n ⊥α,m ⊥α,得m ∥n ,由n ⊥β,得m ⊥β. 【详解】由α,β为两个不同的平面,m ,n 为两条不同的直线,知:在①中,若α∥β,m ⊂α,则由面面平行的性质定理得m ∥β,故①正确; 在②中,若m ∥α,n ⊂α,则m 与n 平行或异面,故②错误;在③中,若α⊥β,α∩β=n ,m ⊥n ,则m 与β相交、平行或m ⊂β,故③错误; 在④中,若n ⊥α,m ⊥α,则m ∥n , 由n ⊥β,得m ⊥β,故④正确. 故选:B . 【点睛】本题考查命题真假的判断,考查空间中线线、线面、面面间的位置关系等基础知识,考查空间想象能力、推理论证能力,考查化归与转化思想,是中档题.解析:B 【解析】 【分析】把平面展开图还原原几何体,再由棱柱的结构特征及异面直线定义、异面直线所成角逐一核对四个命题得答案. 【详解】把平面展开图还原原几何体如图:由正方体的性质可知,BM 与ED 异面且垂直,故①错误;CN 与BE 平行,故②错误;连接BE ,则BE CN P ,EBM ∠为CN 与BM 所成角,连接EM ,可知BEM ∆为正三角形,则60EBM ∠=︒,故③正确;由异面直线的定义可知,DM 与BN 是异面直线,故④正确. ∴正确命题的个数是2个. 故选:B . 【点睛】本题考查棱柱的结构特征,考查异面直线定义及异面直线所成角,是中档题.12.A解析:A 【解析】 【分析】 【详解】由几何体的三视图分析可知,该几何体上部为边长为2的正方体, 下部为底面半径为1、高为2的半圆柱体, 故该几何体的表面积是20+3π,故选A.考点:1、几何体的三视图;2、几何体的表面积.二、填空题13.【解析】【分析】【详解】设AC 与BD 交于点O 在三角形ABD 中因为∠A =120°AB =2可得AO =1过A 作面BCD 的垂线垂足E 则AE 即为所求由题得∠AOE =180°−∠AOC =180°−120°=60 解析:32【解析】 【分析】 【详解】设AC 与BD 交于点O .在三角形ABD 中,因为∠A =120°,AB =2.可得AO =1. 过A 作面BCD 的垂线,垂足E ,则AE 即为所求. 由题得,∠AOE =180°−∠AOC =180°−120°=60°. 在RT △AOE 中,AE =AO•sin ∠AOE =3.14.【解析】【分析】设出的坐标代入双曲线方程两式相减根据中点的坐标可知和的值进而求得直线的斜率根据点斜式求得直线的方程【详解】设则直线的方程为即故答案为【点睛】本题主要考查双曲线的方程直线的斜率公式直线 解析:2150x y --=【解析】 【分析】设出,A B 的坐标,代入双曲线方程,两式相减,根据中点的坐标可知12x x +和12y y +的值,进而求得直线AB 的斜率,根据点斜式求得直线的方程. 【详解】设()()1122,,,A x y B x y ,则1216x x +=,122y y +=,2222112244,44x y x y -=-=Q ,()()()()121212120x x x x y y y y ∴+--+-= ()()12121680x x y y ∴---=,12121628y y x x -==-2AB k ∴=,∴直线的方程为()128y x -=-,即2150x y --=,故答案为2150x y --=.【点睛】本题主要考查双曲线的方程、直线的斜率公式、直线点斜式方程的应用,意在考查灵活运用所学知识解答问题的能力,属于中档题. 涉及弦长的中点问题,常用“点差法”设而不求,将弦所在直线的斜率、弦的中点坐标联系起来,相互转化.15.【解析】试题分析:圆的面积最大即半径最大此时所以圆心为半径为1考点:圆的方程解析:(0,1)-,1 【解析】试题分析:圆的面积最大即半径最大,此时0k =()2211x y ∴++=,所以圆心为(0,1)-半径为1 考点:圆的方程16.【解析】【分析】点C 关于直线y=x 的对称点为(12)点C 关于x 轴的对称点为(2﹣1)三角形PAB 周长的最小值为(12)与(2﹣1)两点之间的直线距离【详解】点C 关于直线y=x 的对称点为(12)点C 关【解析】 【分析】点C 关于直线y=x 的对称点为C '(1,2),点C 关于x 轴的对称点为C ''(2,﹣1).三角形PAB 周长的最小值为C '(1,2)与C ''(2,﹣1)两点之间的直线距离. 【详解】点C 关于直线y=x 的对称点为C '(1,2),点C 关于x 轴的对称点为C ''(2,﹣1).三角形PAB 周长的最小值为C '(1,2)与C ''(2,﹣1)两点之间的直线距离,|C C '''(2,﹣1).【点睛】本题考查点到直线的距离公式,解题时要认真审题,仔细解答,注意合理地进行等价转化.17.【解析】【分析】根据空间直角坐标系中点坐标公式求结果【详解】设B 则所以所以的坐标为【点睛】本题考查空间直角坐标系中点坐标公式考查基本分析求解能力属基础题 解析:()1,4,1--【解析】【分析】根据空间直角坐标系中点坐标公式求结果. 【详解】 设B (),,x y z ,则1230,1,2222x y z+++=-==,所以1,4,1x y z =-=-=,所以B 的坐标为()1,4,1--. 【点睛】本题考查空间直角坐标系中点坐标公式,考查基本分析求解能力,属基础题.18.【解析】【分析】当过球内一点的截面与垂直时截面面积最小可求截面半径即可求出过点的平面截球的截面面积的最小值【详解】解:棱长等于的正方体它的外接球的半径为3当过点的平面与垂直时截面面积最小故答案为:【解析:3π. 【解析】 【分析】当过球内一点E 的截面与OE 垂直时,截面面积最小可求截面半径,即可求出过点E 的平面截球O 的截面面积的最小值. 【详解】解:棱长等于1111ABCD A B C D -,它的外接球的半径为3,||OE =当过点E 的平面与OE 垂直时,截面面积最小,r 33S ππ=⨯=, 故答案为:3π. 【点睛】本题考查过点E 的平面截球O 的截面面积的最小值及接体问题,找准量化关系是关键,属于中档题.19.【解析】【分析】根据题意可得平面所以得出为三棱锥的最长边根据直角三角形的性质边的中点到三棱锥的各顶点距离都相等所以为球心球直径即为【详解】平面平面平面所以三棱锥中最长边为设中点为在中所以三棱锥的外接 解析:43π【解析】 【分析】根据题意可得,BC ⊥平面PAC ,所以BC PC ⊥,得出PB 为三棱锥的最长边,PA AB ⊥,根据直角三角形的性质,PB 边的中点到三棱锥的各顶点距离都相等,所以为球心,球直径即为PB . 【详解】PA ⊥Q 平面ABC ,BC ⊂平面ABC ,PA BC ∴⊥, ,,AC BC PA AC A BC ⊥=∴⊥I 平面PAC ,BC PC ⊥, ,,,,PB BC PB PC PA AC PC AC PC PA ∴>>⊥∴>>,所以三棱锥中最长边为2PB =,设PB 中点为O ,在,Rt PAB Pt PBC ∆∆中,12AO CO PB ==,所以三棱锥的外接球的球心为O , 半径为41,3V π∴=. 故答案为:43π. 【点睛】本题考查几何体的“切”“接”球问题,确定球心是解题的关键,考查空间垂直的应用,属于中档题.20.①②④【解析】对于①因为从而平面故上任意一点到平面的距离均相等以为顶点平面为底面则三棱锥的体积不变正确;对于②连接容易证明且相等由于①知:平面平面所以可得面②正确;对于③由于平面若则平面则为中点与动解析:. ① ② ④ 【解析】对于①,因为11//AD BC ,从而1//BC 平面1AD C ,故1BC 上任意一点到平面1AD C 的距离均相等,∴以P 为顶点,平面1AD C 为底面,则三棱锥1A D PC -的体积不变,正确;对于②,连接111,A B A C 容易证明111//AC A D 且相等,由于①知:11//AD BC ,平面11//BA C 平面1ACD ,所以可得1//A P 面1ACD ,②正确;对于③,由于DC ⊥平面111,BCB C DC BC ∴⊥,若1DP BC ^,则1BC ⊥平面DCP ,1BC PC ⊥,则P 为中点,与P 动点矛盾,错误;对于④,连接1DB ,由1DB AC ⊥且11DB AD ⊥,可得1DB ⊥面1ACD ,由面面垂直的判定知平面1PDB ⊥平面1ACD ,④正确,故答案为①②④.三、解答题21.(1)证明见解析(2)26- 【解析】 【分析】(1)由BC ⊥AC ,BC ⊥CD 得BC ⊥平面ACD ,证明四边形DCBE 是平行四边形得DE ∥BC ,故而DE ⊥平面ACD ,从而得证面面垂直;(2)建立空间坐标系,求出两半平面的法向量,计算法向量的夹角得出二面角的大小. 【详解】(1)证明:∵AB 是圆O 的直径,∴AC ⊥BC , ∵DC ⊥平面ABC ,BC ⊂平面ABC , ∴DC ⊥BC ,又DC ∩AC =C , ∴BC ⊥平面ACD , ∵DC ∥EB ,DC =EB ,∴四边形DCBE 是平行四边形,∴DE ∥BC , ∴DE ⊥平面ACD , 又DE ⊂平面ADE , ∴平面ACD ⊥平面ADE.(2)当C 点为半圆的中点时,AC =BC =22,以C 为原点,以CA ,CB ,CD 为坐标轴建立空间坐标系如图所示:则D (0,0,1),E (0,22,1),A (22,0,0),B (0,22,0),∴AB =uu u r(﹣22,22,0),BE =u u u r (0,0,1),DE =uuu r (0,22,0),DA =u u u r (22,0,﹣1),设平面DAE 的法向量为m =r (x 1,y 1,z 1),平面ABE 的法向量为n =r(x 2,y 2,z 2),则00m DA m DE ⎧⋅=⎨⋅=⎩u u u v r u u u v r ,00n AB n BE ⎧⋅=⎨⋅=⎩u u u v r u u u v r ,即111220220x z y ⎧-=⎪⎨=⎪⎩,222222200x y z ⎧-+=⎪⎨=⎪⎩,令x 1=1得m =r (1,0,22),令x 2=1得n =r(1,1,0).∴cos 2632m n m n m n ⋅===⨯r r r rr r <,>. ∵二面角D ﹣AE ﹣B 是钝二面角, ∴二面角D ﹣AE ﹣B 的余弦值为26-.【点睛】本题考查了面面垂直的判定,空间向量与二面角的计算,属于中档题.22.(1)()()22314x y -+-=(2)【解析】 【分析】(1)首先列出圆的标准方程()()()2220x a y b r r -+-=>,根据条件代入,得到关于,,a b r 的方程求解;(2)根据切线的对称性,可知,12222S PM PM =⨯⨯⨯=,这样求面积的最小值即是求PM 的最小值,当点P 是圆心到直线的距离的垂足时,PM 最小. 【详解】解:(1)设圆C 的方程为()()()2220x a y b r r -+-=>.由题意得()()()()222222250,11,31,a b a b r a b r ⎧--=⎪⎪-+--=⎨⎪-+--=⎪⎩解得3,1,2.a b r =⎧⎪=⎨⎪=⎩故圆C 的方程为()()22314x y -+-=.另解:先求线段AB 的中垂线与直线250x y --=的交点,即2,25,y x y x =-⎧⎨=-⎩解得3,1,x y =⎧⎨=⎩从而得到圆心坐标为()3,1,再求24r =,故圆C 的方程为()()22314x y -+-=. (2)设四边形PMCN 的面积为S ,则2PMC S S =V . 因为PM 是圆C 的切线,所以PM CM ⊥, 所以12PMC S PM CM PM =⋅=V ,即22PMC S S PM ==V . 因为PM CM ⊥,所以PM ==因为P 是直线34100x y -+=上的任意一点,所以3PC ≥=,则PM =,即2PMC S S =≥V故四边形PMCN 的面积的最小值为 【点睛】本题考查了圆的标准方程,和与圆,切线有关的最值的计算,与圆有关的最值计算,需注意数形结合.23.(1)34230x y --=; (2)4310x y ++=. 【解析】 试题分析:(1)首先求得中点坐标,然后求得斜率,最后利用点斜式公式即可求得直线方程; (2)利用点斜式可得直线方程为4310x y ++=.试题解析: (1)8252+=,6222-+=- ∴AB 的中点坐标为()5,2- 624823AB k --==--,∴AB 的中垂线斜率为34∴由点斜式可得()3254y x +=- ∴AB 的中垂线方程为34230x y --= (2)由点斜式()4323y x +=-- ∴直线l 的方程4310x y ++= 24.(1)见解析(2)64【解析】 【分析】(1)取BC 中点G 点,连接AG ,FG ,由F ,G 分别为DC ,BC 中点,知//FG BD 且12FG BD =,又//AE BD 且12AE BD =,故//AE FG 且AE FG =,由此能够证明//EF 平面ABC .(2)在面EFGA 内过点F 作FO EG ⊥,连接BO ,则FO ⊥面BCE ,OBF ∠即为BF 与平面BCE 所成角,由此可求出答案. 【详解】(1)证:取BC 中点G ,连接AG 和FG ,由于F 为CD 的中点,则//FG BD 且2BD FG =, 又已知//BD AE 且2BD AE =故可得//FG AE 且FG AE =,∴EFGA 是平行四边形. ∴//EF AG ,所以//EF 面ABC ; (2)解:∵//FG BD ,BD ⊥面ABC , ∴FG ⊥面ABC ∴FG BC ⊥,又正三角形ABC ∆且G 是BC 中点,∴AG BC ⊥, 则得BC ⊥面EFGA ,∴面EFGA ⊥面BCE , 又面EFGA ⋂面BCE EG =,在面EFGA 内过点F 作FO EG ⊥,连接BO , 则FO ⊥面BCE ,∴OBF ∠即为BF 与平面BCE 所成角,在矩形EFGA 中,3AE FG ==,EF AG ==FO ∴=, 在直角三角形CBD 中,6BC BD ==,12BF DC ==sinFO OBF BF ∴∠===.【点睛】本题主要考查空间想象能力、逻辑思维能力、运算求解能力和探究能力,同时考查学生灵活利用图形,借助向量工具解决问题的能力,考查数形结合思想,属于中档题. 25.(1)证明见解析(2)证明见解析 【解析】 【分析】(1)取CF 中点N ,连结AN ,MN ,可知四边形ANMO 为平行四边形,从而可知//OM AN ,由线面平行的判定定理可证//OM 平面ACF .(2)由BE AB ⊥以及平面ABEF ⊥平面ABC ,可得BE ⊥平面ABC ,从而可证BE AC ⊥,结合AC BC ⊥,即能证明AC ⊥平面CBE .【详解】证明:(1)取CF 中点N ,连结AN ,MN .Q M 为CE 中点,//MN EF ∴且12MN EF =. 又在矩形ABEF 中,//AB EF 且AB EF =,//MN AB ∴且12MN AB =.O Q 为AB 中点,//MN OA ∴且MN OA =.∴四边形ANMO 为平行四边形, ∴//OM AN ,且OM ⊄平面ACF ,AN ⊂平面ACF ,//OM Q 平面ACF .(2)由平面ABEF ⊥平面ABC ,平面ABEF I 平面ABC AB =,BE ⊂平面ABEFQ 矩形ABEF 中,BE AB ⊥,∴BE ⊥平面ABC .又AC ⊂平面ABC ,∴BE AC ⊥又AC BC ⊥且BC BE B =I ,,BC BE ⊂平面CBE ,AC ∴⊥平面CBE .【点睛】本题考查了线面平行的判定,考查了线面垂直的判定,考查了面面垂直的性质.证明线线平行时,常结合三角形的中位线、平行四边形的对边、线面平行的性质.证明线线垂直时,常结合勾股定理、等腰三角形三线合一、菱形对角线垂直、线面垂直、面面垂直的性质. 26.(1)见解析;(2)见解析【解析】【分析】⊥(1)要想证明线线垂直,可以考虑线面垂直.已知底面ABCD是菱形,显然有BD AC⊥,这样就可以根据线面垂直的判定定理,,已知PA⊥平面ABCD,可以得到PA BD证明出⊥;BD⊥平面APC,进而可以证明出BD PCBC l.(2)可以先证明出线面平行,然后利用线面平行的性质定理证明出//【详解】(1)证明:连接AC,交BD于点O.⊥∵四边形ABCD为菱形,所以BD AC⊥又∵PA⊥平面ABCD,BD⊂平面ABCD,∴PA BD⋂=, PA⊂平面PAC, AC⊂平面PAC又∵PA AC A∴BD⊥平面APC,又∵PC⊂平面APC⊥∴ BD PCBC AD(2)∵四边形ABCD为菱形,∴//∵AD⊂平面PAD,BC⊄平面PAD.BC平面PAD.∴//又∵BC⊂平面PBC,平面PBC⋂平面PAD l=.BC l.∴//【点睛】本题考查了线面垂直的判定定理、线面平行的判定定理以及性质定理.关键是考查了转化思想.。
北京汇文中学2020-2021学年高二数学理模拟试题含解析
北京汇文中学2020-2021学年高二数学理模拟试题含解析一、选择题:本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,只有是一个符合题目要求的1. 程序框图的算法思路源于我国古代数学名著《九章算术》中的“更相减损术”,执行该程序框图,若输入的a,b分别为14,18,则输出的a=()A.0 B.2 C.4 D.14参考答案:B【考点】程序框图.【分析】由循环结构的特点,先判断,再执行,分别计算出当前的a,b的值,即可得到结论.【解答】解:由a=14,b=18,a<b,则b变为18﹣14=4,由a>b,则a变为14﹣4=10,由a>b,则a变为10﹣4=6,由a>b,则a变为6﹣4=2,由a<b,则b变为4﹣2=2,由a=b=2,则输出的a=2.故选:B.2. 设点是椭圆上一点,分别是椭圆的左、右焦点,I为的内心,若,则该椭圆的离心率是( )A. B. C. D.参考答案:A3. 互不相等的三个正数a、b、c成等差数列,又x是a、b的等比中项,y是b、c的等比中项,那么x2、b2、y2三个数()A.成等差数列,非等比数列B.成等比数列,非等差数列C.既是等差数列,又是等比数列D.既不成等差数列,又不成等比数列参考答案:A【考点】8M:等差数列与等比数列的综合.【分析】解法1:对于含字母的选择题,可考虑取特殊值法处理.比如a=1,b=2,c=3即可得结论.解法2:因为就研究三项,所以可用等差中项和等比中项的定义来推导即可.【解答】解法1:取特殊值法令a=1,b=2,c=3?x2=2,b2=4,y2=6.解法2:b2﹣x2=b2﹣ab=b(a﹣b),y2﹣b2=bc﹣b2=b(c﹣b)a﹣b=c﹣b?b2﹣x2=y2﹣b2,故x2、b2、y2三个数成等差数列.若x2、b2、y2三个数成等比数列,则与题意矛盾.故选 A.【点评】本题主要考查等差中项:x,A,y成等差数列?2A=x+y,等比中项:x、G、y成等比数列?G2=xy,或G=±.4. 已知正项等比数列{a n}满足:a7=a6+2a5,若存在两项a m,a n,使得a m a n=16a12,则的最小值为()A.B.C.D.不存在参考答案:A【考点】基本不等式;等比数列的通项公式.【分析】应先从等比数2列入手,利用通项公式求出公比q,然后代入到a m a n=16a12中,可得到关于m,n的关系式,再利用基本不等式的知识解决问题.【解答】解:设正项等比数列{a n}的公比为q,易知q≠1,由a7=a6+2a5,得到a6q=a6+2,解得q=﹣1或q=2,因为{a n}是正项等比数列,所以q>0,因此,q=﹣1舍弃.所以,q=2因为a m a n=16a12,所以,所以m+n=6,(m>0,n>0),所以≥,当且仅当m+n=6,即m=2,n=4时等号成立.故选A5. “1<x<2”是“x<2”成立的()A. 充分不必要条件B. 必要不充分条件C. 充分必要条件D. 既不充分也不必要条件参考答案:A试题分析:因为“若,则”是真命题,“若,则”是假命题,所以“”是“”成立的充分不必要条件.选A.考点:充分必要条件的判断.【易错点睛】本题主要考查了充分条件,必要条件,充要条件的判断,属于基础题.对于命题“若,则”是真命题,我们说,并且说是的充分条件,是的必要条件,命题“若,则”是假命题,我们说,由充分条件,必要条件的定义,可以判断出“”是“”成立的充分不必要条件.掌握充分条件,必要条件的定义是解题关键.6. 顶点在原点,焦点在轴上的抛物线上一点(-2,)到焦点的距离是5,则的值是()(A)4 (B) 4 (C)2 (D) 2参考答案:D 7. 在5道题中有3道理科题和2道文科题.不放回地依次抽取2道题,则在第1次抽到理科题的条件下,第2次抽到理科题的概率为()A. B. C.D.参考答案:B略8. 如图,点P,Q,R,S分别在正方体的四条棱上,别且是所在棱的中点,则直线PQ与RS是异面直线的图是DABC参考答案:C9. 下列关于回归分析的说法中错误的是( ) A .回归直线一定过样本中心B .残差图中残差点比较均匀地落在水平的带状区域,说明选用的模型比较合适C .两个模型中残差平方和越小的模型拟合的效果越好D .甲、乙两个模型的分别为0.98和0.80,则模型乙的拟合效果更好参考答案:D对于A ,回归直线一定过样本中心,正确;对于B ,可用残差图判断模型的拟合效果,残差点比较均匀地落在水平的带状区域中,说明这样的模型比较合适。
2023-2024学年北京市汇文中学教育集团高二(上)期中数学试卷【答案版】
2023-2024学年北京市汇文中学教育集团高二(上)期中数学试卷一、单选题(本大题共12小题,共60.0分)1.直线l 过点P (﹣1,2),且倾斜角为45°,则直线l 的方程为( ) A .x ﹣y +1=0B .x ﹣y ﹣1=0C .x ﹣y ﹣3=0D .x ﹣y +3=02.设a ∈R ,则“a =﹣2”是“直线l 1:ax +2y ﹣1=0与直线l 2:x +(a +1)y +4=0平行”的( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件D .既不充分也不必要条件3.直线x4+y 2=1与x 轴,y 轴分别交于点A ,B ,以线段AB 为直径的圆的方程为( )A .x 2+y 2﹣4x ﹣2y ﹣1=0B .x 2+y 2﹣4x ﹣2y =0C .x 2+y 2﹣4x ﹣2y +1=0D .x 2+y 2﹣2x ﹣4y =04.已知方程x 210−t+y 2t−4=1表示的曲线是椭圆,则t 的取值范围为( )A .(4,7)B .(7,10)C .(4,10)D .(4,7)∪(7,10)5.已知圆C 1:x 2+y 2=1与圆C 2:x 2+y 2﹣8y +7=0,则圆C 1与圆C 2的位置关系是( ) A .相离B .相交C .内切D .外切6.抛物线y =x 2上的一动点M 到直线l :x ﹣y ﹣1=0距离的最小值是( ) A .3√28B .38C .34D .3√247.直线l 过抛物线y 2=2x 的焦点F ,且l 与该抛物线交于不同的两点A (x 1,y 1),B (x 2,y 2),若x 1+x 2=3,则弦AB 的长是( ) A .4B .5C .6D .88.我们把离心率为黄金分割系数√5−12的椭圆称为“黄金椭圆”.如图,“黄金椭圆”C 的中心在坐标原点,F 为左焦点,A ,B 分别为长轴和短轴上的顶点,则∠ABF =( )A .90°B .60°C .45°D .30°9.已知圆M :x 2+y 2﹣2x ﹣2y ﹣2=0,直线l :2x +y +2=0,P 为l 上的动点,过点P 作圆M 的切线P A ,PB ,切点为A ,B ,则|PM ||AB |的最小值为( ) A .4B .2C .3D .510.已知圆C :x 2+y 2=4,直线l :y =kx +m ,若当k 的值发生变化时,直线被圆C 所截的弦长的最小值为2,则m 的取值为( ) A .±2 B .±√2 C .±√3 D .±311.已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左右焦点为F 1,F 2,若椭圆C 上恰好有6个不同的点,使得△F 1F 2P 为等腰三角形,则椭圆C 的离心率的取值范围是( ) A .(13,23) B .(12,1)C .(23,1)D .(13,12)∪(12,1)12.曲线C 是平面内与两个定点F 1(﹣1,0)和F 2(1,0)距离之积等于定长4的点的轨迹,以下说法正确的是( ) ①曲线C 过坐标原点; ②曲线关于坐标原点对称;③若点P 在曲线C 上,则△F 1PF 2的面积不大于2; ④曲线C 与曲线x 24+y 23=1有且仅有两个交点.A .①②B .②③C .③④D .②③④二、填空题(本大题共6小题,共30.0分)13.已知抛物线y 2=2px 的准线方程为x =﹣1,则p = .14.已知双曲线y 2+x 2m =1的渐近线方程为y =±√33x ,则m = .15.圆C :(x ﹣2)2+(y ﹣2)2=8与y 轴相交于A ,B 两点,则弦AB 所对的圆心角的大小为 . 16.设P 为椭圆C :x 27+y 23=1上一动点,F 1,F 2分别为左、右焦点,延长F 1P 至点Q ,使得|PQ |=|PF 2|,则动点Q 的轨迹方程为 .17.若直线y =kx ﹣1与曲线y =−√1−(x −2)2有公共点,则k 的取值范围是 .18.在平面直角坐标系中,定义d (S ,T )=|x 2﹣x 1|+|y 2﹣y 1|为两点S (x 1,y 1),T (x 2,y 2)之间的“折线距离”,有下列命题,其中为真命题的是 .(填序号) ①若A (0,0),B (1,1),则d (A ,B )=2;②到原点的“折线距离”不大于1的点构成的区域面积为1;③原点O 与直线x ﹣y +3=0上任意一点M 之间的折线距离d (O ,M )的最小值为3;④原点O 与圆(x ﹣2)2+(y ﹣4)2=1上任意一点M 之间的折线距离d (O ,M )的最大值为6+√2. 三、解答题(本大题共4小题,共60.0分.解答应写出文字说明,证明过程或演算步骤)19.(15分)在△ABC 中,BC 边上的高所在直线的方程为x ﹣2y +1=0,∠A 的平分线所在直线方程为y =0,若点B 的坐标为(1,2). (1)求点A 和点C 的坐标;(2)求AC 边上的高所在的直线l 的方程.20.(15分)设抛物线C 的方程为x 2=y ,点M 为直线l :y =﹣m (m >0)上任意一点,过点M 作抛物线C 的两条切线MA ,MB ,切点分别为A ,B .(1)当M 的坐标为(0,−14)时,求过M ,A ,B 三点的圆的方程,并判断直线l 与此圆的位置关系; (2)求证:直线AB 恒过定点. 21.(15分)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为12,过椭圆右焦点F 的直线l 与椭圆交于A ,B 两点,当直线l 与x 轴垂直时,|AB |=3. (Ⅰ)求椭圆C 的标准方程;(Ⅱ)当直线l 与x 轴不垂直时,在x 轴上是否存在一点P (异于点F ),使x 轴上任意点到直线P A ,PB 的距离均相等?若存在,求P 点坐标;若不存在,请说明理由. 22.(15分)已知椭圆E :x 2a 2+y 2b 2=1(a >b >0)的一个顶点为A (0,1),焦距为2√3.(Ⅰ)求椭圆E 的方程;(Ⅱ)过点P (﹣2,1)作斜率为k 的直线与椭圆E 交于不同的两点B ,C ,直线AB ,AC 分别与x 轴交于点M ,N .当|MN |=2时,求k 的值.2023-2024学年北京市汇文中学教育集团高二(上)期中数学试卷参考答案与试题解析一、单选题(本大题共12小题,共60.0分)1.直线l 过点P (﹣1,2),且倾斜角为45°,则直线l 的方程为( ) A .x ﹣y +1=0B .x ﹣y ﹣1=0C .x ﹣y ﹣3=0D .x ﹣y +3=0解:直线l 过点P (﹣1,2),且倾斜角为45°, 则直线l 的斜率为k =tan45°=1, 直线方程为y ﹣2=1×(x +1), 即x ﹣y +3=0. 故选:D .2.设a ∈R ,则“a =﹣2”是“直线l 1:ax +2y ﹣1=0与直线l 2:x +(a +1)y +4=0平行”的( ) A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件解:当a =﹣2时,两直线方程分别为l 1:﹣2x +2y ﹣1=0与直线l 2:x ﹣y +4=0满足,两直线平行,充分性成立.当a =1时,满足直线l 1:x +2y ﹣1=0与直线l 2:x +2y +4=0平行,∴必要性不成立,∴“a =﹣2”是“直线l 1:ax +2y ﹣1=0与直线l 2:x +(a +1)y +4=0平行”的充分不必要条件, 故选:A . 3.直线x4+y 2=1与x 轴,y 轴分别交于点A ,B ,以线段AB 为直径的圆的方程为( )A .x 2+y 2﹣4x ﹣2y ﹣1=0B .x 2+y 2﹣4x ﹣2y =0C .x 2+y 2﹣4x ﹣2y +1=0D .x 2+y 2﹣2x ﹣4y =0解:直线x4+y 2=1在x ,y 轴上的截距分别为4,2,即A (4,0),B (0,2)则AB 的中点坐标为(2,1),且|AB |=2√5,∴以线段AB 为直径的圆的方程为(x ﹣2)2+(y ﹣1)2=5,即x 2+y 2﹣4x ﹣2y =0. 故选:B . 4.已知方程x 210−t+y 2t−4=1表示的曲线是椭圆,则t 的取值范围为( )A .(4,7)B .(7,10)C .(4,10)D .(4,7)∪(7,10)解:∵方程x 210−t+y 2t−4=1表示的曲线是椭圆,∴{10−t >0t −4>010−t ≠t −4,解得4<t <10且t ≠7.∴t 的取值范围为(4,7)∪(7,10). 故选:D .5.已知圆C 1:x 2+y 2=1与圆C 2:x 2+y 2﹣8y +7=0,则圆C 1与圆C 2的位置关系是( ) A .相离B .相交C .内切D .外切解:根据题意,圆C 1:x 2+y 2=1,圆心为(0,0),半径r =1,圆C 2:x 2+y 2﹣8y +7=0,即x 2+(y ﹣4)2=9,圆心为(0,4),半径R =3, 圆心距|C 1C 2|=4=R +r ,两圆外切, 故选:D .6.抛物线y =x 2上的一动点M 到直线l :x ﹣y ﹣1=0距离的最小值是( ) A .3√28B .38C .34D .3√24解:(法一)对y =x 2求导可得y ′=2x 令y ′=2x =1可得x =12∴与直线x ﹣y ﹣1=0平行且与抛物线y =x 2相切的切点(12,14),切线方程为y −14=x −12即x ﹣y −14=0 由两平行线的距离公式可得所求的最小距离d =|−14+1|2=3√28(法二)设抛物线上的任意一点M (m ,m 2)M 到直线x ﹣y ﹣1=0的距离d =|m−m 2−1|√2=|m 2−m+1|√2=|(m−12)2+34|√2由二次函数的性质可知,当m =12时,最小距离d =34√2=3√28故选:A .7.直线l 过抛物线y 2=2x 的焦点F ,且l 与该抛物线交于不同的两点A (x 1,y 1),B (x 2,y 2),若x 1+x 2=3,则弦AB 的长是( ) A .4B .5C .6D .8解:∵抛物线y 2=2x ,∴p =1,由抛物线的定义可知,|AB |=x 1+x 2+p =3+1=4, 故选:A .8.我们把离心率为黄金分割系数√5−12的椭圆称为“黄金椭圆”.如图,“黄金椭圆”C 的中心在坐标原点,F 为左焦点,A ,B 分别为长轴和短轴上的顶点,则∠ABF =( )A .90°B .60°C .45°D .30°解:黄金椭圆C 中,e =ca =√5−12, b 2=a 2﹣c 2=a 2−(√5−12)2a 2=√5−12a 2,∴b 2a 2=√5−12, ∴b 2a 2=c a,即b 2=ac , ∴OB 2=OA •OF , 即OB OA=OF OB,∴△AOB ∽△BOF , ∴∠ABO =∠BFO ,∴∠ABF =∠ABO +∠OBF =90°. 故选:A .9.已知圆M :x 2+y 2﹣2x ﹣2y ﹣2=0,直线l :2x +y +2=0,P 为l 上的动点,过点P 作圆M 的切线P A ,PB ,切点为A ,B ,则|PM ||AB |的最小值为( ) A .4B .2C .3D .5解:∵圆M :x 2+y 2﹣2x ﹣2y ﹣2=0,∴(x ﹣1)2+(y ﹣1)2=4,即圆心为(1,1),半径为2, 如图所示,连接AM ,BM ,四边形P AMB 的面积为12|PM|⋅|AB|,要使|PM ||AB |最小,则只需P AMB 的面积最小,即只需△P AM 的面积最小, ∵|AM |=2, ∴只需|P A |最小,|AM |=√|PM|2−|AM|2=√|PM|2−4,所以只需直线2x +y +2=0上的动点P 到点M 的距离最小,其最小值是圆心到直线的距离d =|2+1+2|√5=√5,此时PM ⊥l ,|P A |=1,则此时四边形P AMB 的面积为2,即|PM ||AB |的最小值为4. 故选:A .10.已知圆C :x 2+y 2=4,直线l :y =kx +m ,若当k 的值发生变化时,直线被圆C 所截的弦长的最小值为2,则m 的取值为( ) A .±2B .±√2C .±√3D .±3解:圆心C (0,0),半径r =2,则圆心C 到直线l 的距离d =|m|√1+k ,设弦长为a ,则由弦长公式可得d =√r 2−(a 2)2=√4−a 24, 若a 取最小值2时,则d 取最大值√4−1=√3, 即又d =|m|√1+k ,√1+k 2≥1,故d 的最大值为|m |=√3,所以m =±√3,故选:C . 11.已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左右焦点为F 1,F 2,若椭圆C 上恰好有6个不同的点,使得△F 1F 2P 为等腰三角形,则椭圆C 的离心率的取值范围是( ) A .(13,23) B .(12,1)C .(23,1)D .(13,12)∪(12,1)解:①当点P 与短轴的顶点重合时, △F 1F 2P 构成以F 1F 2为底边的等腰三角形, 此种情况有2个满足条件的等腰△F 1F 2P ; ②当△F 1F 2P 构成以F 1F 2为一腰的等腰三角形时, 以F 2P 作为等腰三角形的底边为例, ∵F 1F 2=F 1P ,∴点P 在以F 1为圆心,半径为焦距2c 的圆上因此,当以F 1为圆心,半径为2c 的圆与椭圆C 有2交点时, 存在2个满足条件的等腰△F 1F 2P ,在△F 1F 2P 1中,F 1F 2+PF 1>PF 2,即2c +2c >2a ﹣2c , 由此得知3c >a .所以离心率e >13.当e =12时,△F 1F 2P 是等边三角形,与①中的三角形重复,故e ≠12同理,当F 1P 为等腰三角形的底边时,在e >13且e ≠12时也存在2个满足条件的等腰△F 1F 2P 这样,总共有6个不同的点P 使得△F 1F 2P 为等腰三角形 综上所述,离心率的取值范围是:e ∈(13,12)∪(12,1)故选:D .12.曲线C 是平面内与两个定点F 1(﹣1,0)和F 2(1,0)距离之积等于定长4的点的轨迹,以下说法正确的是( ) ①曲线C 过坐标原点; ②曲线关于坐标原点对称;③若点P 在曲线C 上,则△F 1PF 2的面积不大于2; ④曲线C 与曲线x 24+y 23=1有且仅有两个交点.A .①②B .②③C .③④D .②③④解:设曲线C 上的任意一点P (x ,y ),则|PF 1|•|PF 2|=4,∴√(x +1)2+y 2•√(x −1)2+y 2=4,化为:[(x +1)2+y 2][(x ﹣1)2+y 2]﹣16=0,①把x =y =0代入上述方程可得1﹣4=0,此式不成立,因此曲线C 不过坐标原点,因此①不正确; ②把(﹣x ,﹣y )代入上述方程中的(x ,y ),其方程不变,因此曲线关于坐标原点对称,因此②正确; ③若点P 在曲线C 上,则△F 1PF 2的面积=12|PF 1|•|PF 2|•sin ∠F 1PF 2=12×4×sin ∠F 1PF 2≤2,因此③正确; ④由曲线x 24+y 23=1,(x ∈[﹣2,2]),解得y 2=3(1−x 24),并且代入曲线C ,化为x 2(x 2﹣32)=0,x 2=32舍去,∴x =0,解得y =±√3,可得曲线C 与曲线x 24+y 23=1有且仅有两个交点(0,±√3),因此④正确.综上可得:只有②③④正确. 故选:D .二、填空题(本大题共6小题,共30.0分)13.已知抛物线y 2=2px 的准线方程为x =﹣1,则p = 2 . 解:由抛物线y 2=2px ,得准线方程为x =−p2, 由题意,−p2=−1,得p =2. 故答案为:2.14.已知双曲线y 2+x 2m =1的渐近线方程为y =±√33x ,则m = ﹣3 .解:双曲线y 2+x 2m =1化为标准方程可得y 2−x 2−m =1, 所以m <0,双曲线的渐近线方程y =±√−mx ,又双曲线y 2+x 2m =1的渐近线方程为y =±√33x ,所以√−m=√33,解得m =﹣3. 故答案为:﹣3.15.圆C :(x ﹣2)2+(y ﹣2)2=8与y 轴相交于A ,B 两点,则弦AB 所对的圆心角的大小为 90° . 解:当x =0时,得(y ﹣2)2=4,解得y =0或y =4, 则AB =4﹣0=4, 半径R =√8=2√2,∵OA 2+OB 2=(2√2)2+(2√2)2=8+8=16=(AB )2, ∴△AOB 是直角三角形, ∴∠AOB =90°,即弦AB 所对的圆心角的大小为90°, 故答案为:90° 16.设P 为椭圆C :x 27+y 23=1上一动点,F 1,F 2分别为左、右焦点,延长F 1P 至点Q ,使得|PQ |=|PF 2|,则动点Q 的轨迹方程为 (x +2)2+y 2=28 .解:∵P 为椭圆C :x 27+y 23=1上一动点,F 1,F 2分别为左、右焦点,延长F 1P 至点Q ,使得|PQ |=|PF 2|, ∴|PF 1|+|PF 2|=2a =2√7,|PQ |=|PF 2|, ∴|PF 1|+|PQ|=|F 1Q|=2√7,∴Q 的轨迹是以F 1(﹣2,0)为圆心,2√7为半径的圆, ∴动点Q 的轨迹方程为(x +2)2+y 2=28. 故答案为:(x +2)2+y 2=28.17.若直线y =kx ﹣1与曲线y =−√1−(x −2)2有公共点,则k 的取值范围是 [0,1] .解:曲线y =−√1−(x −2)2表示圆心为(2,0),半径为1的x 轴下方的半圆,直线y =kx ﹣1为恒过(0,﹣1)点的直线系,根据题意画出图形,如图所示:则直线与圆有公共点时,倾斜角的取值范围是[0,1].故答案为:[0,1].18.在平面直角坐标系中,定义d (S ,T )=|x 2﹣x 1|+|y 2﹣y 1|为两点S (x 1,y 1),T (x 2,y 2)之间的“折线距离”,有下列命题,其中为真命题的是 ①③④ .(填序号)①若A (0,0),B (1,1),则d (A ,B )=2;②到原点的“折线距离”不大于1的点构成的区域面积为1;③原点O 与直线x ﹣y +3=0上任意一点M 之间的折线距离d (O ,M )的最小值为3;④原点O 与圆(x ﹣2)2+(y ﹣4)2=1上任意一点M 之间的折线距离d (O ,M )的最大值为6+√2. 解:对于①:坐标代入d (A ,B )=|x 2﹣x 1|+|y 2﹣y 1|=|0﹣1|+|0﹣1|=2,故①对.对于②:到原点的“折线距离”不大于1的点的集合{(x ,y )||x |+|y |≤1},如图:构成的区域面积为2×12×2×1=2,故②不正确.对于③:设M (x ,x +3),则d (O ,M )=|x |+|x +3|={2x +3,x ≥03,−3<x <0−2x −3,x ≤−3,函数图像如下:则d (O ,M )最小值为3,故③正确;对于④:因为圆(x ﹣2)2+(y ﹣4)2=1表示以(2,4)为圆心,1为半径的圆,设M (x ,y ),则d (O ,M )=|x |+|y |=x +y ,令z =x +y ,即x +y ﹣z =0, 所以√2≤1,解得6−√2≤z ≤6+√2,即d (O ,M )最大值为6+√2,故④正确;故答案为:①③④.三、解答题(本大题共4小题,共60.0分.解答应写出文字说明,证明过程或演算步骤)19.(15分)在△ABC 中,BC 边上的高所在直线的方程为x ﹣2y +1=0,∠A 的平分线所在直线方程为y =0,若点B 的坐标为(1,2).(1)求点A 和点C 的坐标;(2)求AC 边上的高所在的直线l 的方程.解:(1)由已知点A 应在BC 边上的高所在直线与∠A 的角平分线所在直线的交点,由{x −2y +1=0y =0得{x =−1y =0,故A (﹣1,0). 由k AC =﹣k AB =﹣1,所以AC 所在直线方程为y =﹣(x +1),BC 所在直线的方程为y ﹣2=﹣2(x ﹣1),由{y =−(x +1)y −2=−2(x −1),得C (5,﹣6). (2)由(1)知,AC 所在直线方程x +y +1=0,所以l 所在的直线方程为(x ﹣1)﹣(y ﹣2)=0,即x ﹣y +1=0.20.(15分)设抛物线C 的方程为x 2=y ,点M 为直线l :y =﹣m (m >0)上任意一点,过点M 作抛物线C 的两条切线MA ,MB ,切点分别为A ,B .(1)当M 的坐标为(0,−14)时,求过M ,A ,B 三点的圆的方程,并判断直线l 与此圆的位置关系;(2)求证:直线AB 恒过定点.解:(1)当M 的坐标为(0,−14)时,不妨设过M 点的切线方程为y =kx −14,联立{y =kx −14x 2=y,消去y 并整理得x 2−kx +14=0, 令Δ=k 2−4×14=0,解得k =±1,代入切线方程中,解得B(12,14),A(−12,14),因为AB 的中点N(0,14),且|NA|=|NB|=|NM|=12,所以过M ,A ,B 三点的圆的圆心为N(0,14),半径为12, 则圆的方程为x 2+(y −14)2=14.因为圆心坐标为N(0,14),半径为12, 所以圆N 与直线l :y =−14相切;(2)证明:已知抛物线方程为y =x 2,可得y ′=2x ,不妨设切点分别为A (x 1,y 1),B (x 2,y 2),则过点A (x 1,y 1)的切线斜率为k =2x 1,此时切线方程为y −x 12=2x 1(x −x 1),即y =2x 1x −x 12, 又切线过点M (x 0,﹣m ),所以−m =2x 1x 0−x 12,①即﹣m =2x 1x 0﹣y 1,同理得过点B (x 2,y 2)的切线为y =2x 2x −x 22,又切线过点M (x 0,﹣m ),所以−m =2x 2x 0−x 22,②即﹣m =2x 2x 0﹣y 2,因为点A (x 1,y 1),B (x 2,y 2)均满足﹣m =2xx 0﹣y ,所以直线AB 的方程为﹣m =2xx 0﹣y ,又M (x 0,﹣m )为直线l :y =﹣m (m >0)上任意一点,则2xx 0=y ﹣m 对任意x 0成立,可得x =0,y =m ,故直线AB 恒过定点(0,m ).21.(15分)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为12,过椭圆右焦点F 的直线l 与椭圆交于A ,B 两点,当直线l 与x 轴垂直时,|AB |=3.(Ⅰ)求椭圆C 的标准方程;(Ⅱ)当直线l 与x 轴不垂直时,在x 轴上是否存在一点P (异于点F ),使x 轴上任意点到直线P A ,PB 的距离均相等?若存在,求P 点坐标;若不存在,请说明理由.解:(Ⅰ)由题意得:{ 2b 2a =3,c a =12,a 2=b 2+c 2,, 解得:a =2,b =√3,c =1.所以椭圆的标准方程为:x 24+y 23=1;( II )依题意,若直线l 的斜率不为零,可设直线l :x =my +1(m ≠0),A (x 1,y 1),B (x 2,y 2). 假设存在点P ,设P (x 0,0),由题设,x 0≠1,且x 0≠x 1,x 0≠x 2.设直线P A ,PB 的斜率分别为k 1,k 2,则k 1=y 1x 1−x 0,k 2=y2x 2−x 0. 因为A (x 1,y 1),B (x 2,y 2)在x =my +1上,故x 1=my 1+1,x 2=my 2+1.而x 轴上任意点到直线P A ,PB 距离均相等等价于“PF 平分∠APB ”,继而等价于k 1+k 2=0.则k 1+k 2=y 1x 1−x 0+y 2x 2−x 0=x 1y 2+x 2y 1−x 0(y 1+y 2)(x 1−x 0)(x 2−x 0)=2my 1y 2+(1−x 0)(y 1+y 2)(x 1−x 0)(x 2−x 0)=0. 联立{x 24+y 23=1x =my +1,消去x ,得:(3m 2+4)y 2+6my ﹣9=0, 有y 1+y 2=−6m 3m 2+4,y 1y 2=−93m 2+4. 则k 1+k 2=0=−18m−6m+6mx 0(3m 2+4)(x 1−x 0)(x 2−x 0)=−24m+6mx 0(3m 2+4)(x 1−x 0)(x 2−x 0), 即﹣4m +mx 0=0,故x 0=4或m =0(舍).当直线l 的斜率为零时,P (4,0)也符合题意.故存在点P (4,0),使得x 轴上任意点到直线P A ,PB 距离均相等.22.(15分)已知椭圆E :x 2a 2+y 2b 2=1(a >b >0)的一个顶点为A (0,1),焦距为2√3.(Ⅰ)求椭圆E 的方程;(Ⅱ)过点P (﹣2,1)作斜率为k 的直线与椭圆E 交于不同的两点B ,C ,直线AB ,AC 分别与x 轴交于点M ,N .当|MN |=2时,求k 的值.解:(Ⅰ)由题意得,{b =12c =2√3,∴b =1,c =√3,a =2, ∴椭圆E 的方程为x 24+y 2=1.(Ⅱ)设过点P (﹣2,1)的直线为y ﹣1=k (x +2),B (x 1,y 1),C (x 2,y 2),联立得{y −1=k(x +2)x 24+y 21=1,即(1+4k 2)x 2+(16k 2+8k )x +16k 2+16k =0, ∵直线与椭圆相交,∴Δ=[(16k 2+8k )]2﹣4(1+4k 2)(16k 2+16k )>0,∴k <0,由韦达定理得x 1+x 2=−16k 2+8k 1+4k 2,x 1•x 2=16k 2+16k 1+4k 2, ∵k AB =y 1−1x 1,∴直线AB 为y =y 1−1x 1x +1, 令y =0,则x =x 11−y 1,∴M (x 11−y 1,0),同理N (x 21−y 2,0), ∴|MN |=|x 11−y 1−x 21−y 2|=|x 1−k(x 1+2)−x 2−k(x 2+2)|=|1k (x 2x 2+2−x 1x 1+2)| =|1k •2(x 2−x 1)(x 2+2)(x 1+2)|=|1k •2√(x 1+x 2)2−4x 1x 2[x 1x 2+2(x 1+x 2)+4]|=|2k √(−16k 2+8k 1+4k 2)2−4(16k 2+16k)1+4k 216k 2+16k 1+4k 2−2(16k 2+8k)1+4k 2+4|=2,∴|2k •√−64k 4|=2,∴|√−k k|=12, ∴k =﹣4.。
北京市汇文中学2020-2021学年第一学期期中考试高二数学试卷及答案
北京汇文中学2020-2021上学期期中考试高二数学一、选择题1.已知)5,3(),3,1(B A --,则直线AB 的斜率为( )A. 2B. 1C.21 D. 不存在2. 圆心为)2,3(-且过点)1,1(-A 的圆的方程是( )A. 5)2()3(22=-+-y x B. 5)2()3(22=-++y x C. 25)2()3(22=-+-y xD. 25)2()3(22=-++y x3. 焦点在x 轴上的椭圆2213x ym +=的离心率是12,则实数m 的值是( )A. 4B.94C. 1D.344. 已知圆22:1O x y +=,直线:3430l x y +-=,则直线l 被圆O 所截的弦长为( ) A.65 B. 1 C.85D.2 5.已知抛物线x y C =2:的焦点为F ,),(00y x A 是C 上一点,045||x AF =,则0x =( ) A. 1B. 2C. 4D. 86. 过点P )1,3(--的直线l 与圆122=+y x 有公共点,则直线l 的倾斜角的取值范围是( )A. ]6,0(πB. ]3,0(π C. ]6,0[πD. ]3,0[π7.已知抛物线24y x =的动弦AB 的中点的横坐标为2,则AB 的最大值为( )A .4B .6C .8D .12 8.直线1:10l ax y a+-=与,x y 轴的交点分别为,A B , 直线l 与圆22:1O x y +=的交点为,C D . 给出下面三个结论:① 11,2AOB a S ∆∀≥=; ②1,||||a AB CD ∃≥<;③11,2COD a S ∆∃≥<则所有正确结论的序号是A.①②B.②③C.①③D.①②③二、填空题9. 已知直线10x ay --=与直线y ax =平行,则实数___.a =10. 双曲线221169x y -=的渐近线方程为_________________.11.已知过点(1,1)M 的直线l 与圆22(1)(2)5x y ++-=相切,且与直线10ax y +-=垂直,则实数a = ;直线l 的方程为 .12. 已知F 为双曲线22:13x C y -=的一个焦点,则点F 到双曲线C 的一条渐近线的距离为_______.13.设椭圆)0(1:2222>>=+b a b y a x C 的左、右焦点分别为1F ,2F ,P 为直线a x 23=上一点,△12PF F 是底角为30°的等腰三角形,则C 的离心率为___________。
北京市2024-2025学年高二上学期11月期中练习数学试题含答案
2024—2025学年度第一学期高二年级数学期中练习(答案在最后)一、选择题,共10小题,每小题4分,共40分.1.直线:30l y --=的倾斜角为()A.30︒B.60︒C.120︒D.90︒【答案】B 【解析】【分析】先由直线的一般式得到其斜率,再利用直线斜率与倾斜角的关系即可得解.【详解】因为直线30l y --=可化为3y -,,0180θθ︒≤<︒,则tan θ=,所以60θ=︒.故选:B.2.正方体1111ABCD A B C D -的棱长为a ,则棱1BB 到面11AA C C 的距离为()A.33a B.a C.2a D.【答案】C 【解析】【分析】连接1111,A C B D ,它们交于点O ,证明11B D ⊥平面11AA C C ,得1B O 的长即为棱1BB 到面11AA C C 的距离,【详解】如图,连接1111,A C B D ,它们交于点O ,正方形中1111AC B D ⊥,又1AA ⊥平面1111D C B A ,11B D ⊂平面1111D C B A ,所以111AA B D ⊥,1111111,,AA A C A AA A C ⋂=⊂平面11AA C C ,所以11B D ⊥平面11AA C C ,所以1B O 的长即为棱1BB 到面11AA C C 的距离,而122B O a =,所以所求距离为2a .故选:C .3.如图所示,在平行六面体ABCD ﹣A 1B 1C 1D 1中,1111AA D C BB +-=()A.1AB B.DC C.AD D.BA【答案】B 【解析】【分析】通过所给平行六面体1111ABCD A B C D -,并结合相等向量、向量的加减运算,即可求解.【详解】由题中所给平行六面体1111ABCD A B C D -可知,11AA BB →→=,11D C DC →→=,故111111AA D C BB D C DC →→→→→+-==.故选:B4.已知直线()12:20,:2120l ax y l x a y +-=+++=,若1l ∥2l ,则a =()A.1-或2 B.1C.1或2- D.2-【答案】B 【解析】【分析】由条件结合直线平行结论列方程求a ,并对所得结果进行检验.【详解】因为1l ∥2l ,()12:20,:2120l ax y l x a y +-=+++=,所以()112a a +=⨯,所以220a a +-=,解得2a =-或1a =,当2a =-时,1:220l x y -+=,2:220l x y -+=,直线12,l l 重合,不满足要求,当1a =时,1:20+-=l x y ,2:10l x y ++=,直线12,l l 平行,满足要求,故选:B.5.已知l m ,为两条不同的直线,αβ,为两个不同的平面,则下列结论正确的是()A.若l m αβαβ⊂⊂∥,,,则lmB.若l m l m αβ⊂⊂,,∥,则αβ∥C.若l m m l αββ⋂=⊂⊥,,,则αβ⊥D.若n l l n αβαβα⊥⋂=⊂⊥,,,,则l β⊥【答案】D 【解析】【分析】根据空间里面直线与平面、平面与平面位置关系的相关定理逐项判断即可.【详解】A ,若l m αβαβ⊂⊂∥,,,则lm 或异面,故该选项错误;B ,若l m l m αβ⊂⊂,,∥,则αβ∥或相交,故该选项错误;C ,若l m m l αββ⋂=⊂⊥,,,则α,β不一定垂直,故该选项错误;D ,若n l l n αβαβα⊥⋂=⊂⊥,,,,则利用面面垂直的性质可得l β⊥,故该选项正确.故选:D.6.如图,将半径为1的球与棱长为1的正方体组合在一起,使正方体的一个顶点正好是球的球心,则这个组合体的体积为()A.716π+ B.7566π+ C.718π+ D.1π+【答案】A 【解析】【分析】该组合体可视作一个正方体和78个球体的组合体,进而求出体积.【详解】由题意,该组合体是一个正方体和78个球体的组合体,其体积为33747111836ππ+⨯⨯=+.故选:A.7.已知直线:l y kx b =+,22:1O x y +=e ,则“||1b <”是“直线l 与O 相交”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件【答案】A 【解析】【分析】根据点到直线的距离公式,结合直线与圆的位置关系分别验证充分性,必要性即可得到结果.【详解】由题意可得直线:l y kx b =+与22:1O x y +=e 相交,2211b k <⇒<+当||1b <时,满足221b k <+,即“||1b <”是“直线l 与O 相交”的充分条件;当直线:l y kx b =+与22:1O x y +=e 相交时,不一定有||1b <,比如2,3b k ==也满足,所以“||1b <”是“直线l 与O 相交”的充分不必要条件.故选:A.8.已知直线l :20ax y --=和点(2,1)P ,(3,2)Q -,若l 与线段PQ 相交,则实数a 的取值范围是()A.3243a -≤≤ B.34a ≤-或23a ≥ C.4332a -≤≤ D.43a ≤-或32a ≥【答案】D 【解析】【分析】结合已知条件作图并求出直线l 的定点A ,然后分别求出直线AP 和直线AQ 的斜率,结合图像求解即可.【详解】由直线l :20ax y --=可知直线l 必过定点A (0,2)-,且直线l 的斜率为a ,如下图所示:由斜率公式可知,直线AP 的斜率为213022AP k --==-,直线AQ 的斜率为2240(3)3AQ k --==---,若l 与线段PQ 相交,只需要32AP a k ≥=或43AQ a k ≤=-,故实数a 的取值范围是43a ≤-或32a ≥.故选:D.9.当曲线214y x =-与直线330kx y k --+=有两个相异的交点时,实数k 的取值范围是A.120,5⎛⎫⎪⎝⎭B.2,25⎛⎤⎥⎝⎦C.20,5⎛⎤ ⎥⎝⎦D.122,5⎡⎫⎪⎢⎣⎭【答案】D 【解析】【分析】根据图像计算直线过()2,1时和相切时的斜率,计算得到答案.【详解】如图所示:∵曲线214y x =--,直线330kx y k --+=,∴()2214x y +-=,1y ≤,()33y k x =-+,圆心()0,1O ,直线过定点()3,3,直线过()2,1时,有两个交点,此时13k =-+,2k =,22221k k -=+,125k =,∴1225k ≤<.故答案选D.【点睛】本题考查了直线的半圆的交点问题,忽略掉y 的取值范围是容易犯的错误.10.人脸识别是基于人的脸部特征进行身份识别的一种生物识别技术.主要应用距离测试样本之间的相似度,常用测量距离的方式有3种.设()11,A x y ,()22,B x y ,则欧几里得距离()()()221212,D A B x x y y =-+-曼哈顿距离()1212,d A B x x y y =-+-,余弦距离()(),1cos ,e A B A B =-,其中()cos ,cos ,A B OA OB =(O 为坐标原点).若点()2,1M ,(),1d M N =,则(),e M N 的最大值为()A.310110-B.72110-C.2515-D.515-【答案】C 【解析】【分析】根据题意分析可得N 在正方形ABCD 的边上运动,结合图象分析,OM ON的最大值,即可得结果.【详解】设(),N x y ,则(),211d M N x y =-+-=,即211x y -+-=,可知211x y -+-=表示正方形ABCD ,其中()()()()2,0,3,1,2,2,1,1A B C D ,即点N 在正方形ABCD 的边上运动,因为()()2,1,,OM ON x y ==,由图可知:当()cos ,cos ,M N OM ON = 取到最小值,即,OM ON最大,点N 有如下两种可能:①点N 为点A ,则()2,0ON = ,可得()25cos ,cos ,5M N OM ON ==;②点N 在线段CD 上运动时,此时ON 与DC同向,不妨取()1,1ON = ,则()310cos ,cos ,10M N OM ON ==;因为31025105>,所以(),e M N 的最大值为2515-.故选:C.二、填空题,共5小题,每小题4分,共20分.11.两平行直线1l :3420x y +-=与2l :3450x y +-=之间的距离是_____.【答案】35##0.6【解析】【分析】借助两平行线间距离公式计算即可得.【详解】35d ==.故答案为:35.12.如图,在正方体1111ABCD A B C D -中,M ,N 分别为DB ,11A C的中点,则直线1A M 和BN 的夹角的余弦值为______【答案】23【解析】【分析】建立空间直角坐标系,设正方体棱长为2,求出各点坐标,利用异面直线空间向量夹角公式进行求解.【详解】以D 为坐标原点,1,,DA DC DD 所在直线分别为,,x y z 轴,建立空间直角坐标系,设正方体棱长为2,则()()()()12,0,2,1,1,0,2,2,0,1,1,2A M B N ,故1A M 和BN 的夹角的余弦值为114263A M BN A M BN⋅===⋅.故答案为:2313.已知圆22:(1)4C x y +-=,过点P 作圆的切线,则切线方程为________.【答案】5y =+【解析】【分析】先判断点P 在圆上,再由垂直关系得出切线方程.【详解】因为22(21)4+-=,所以点P 在圆上,设切线的斜率为k ,则1CP k k ⋅=-,3,3PC k k==∴=.则切线方程为25y x =+=+.故答案为:5y =+14.已知直线l 过点()4,1P 且与x 轴、y 轴的正半轴分别交于A 、B 两点,O 为坐标原点,当三角形OAB 面积取最小值时直线l 的斜率为_____.【答案】14-##0.25-【解析】【分析】设出直线的截距式方程,由基本不等式得到三角形OAB 面积取最小值时的直线方程,从而得到直线的斜率.【详解】设 ,()0,B b ,其中,0a b >,设直线l 的方程为1x ya b+=,因为直线l 过点()4,1P ,所以411a b+=,由基本不等式可得411a b =+≥=,4≥,16ab ≥,当且仅当41a b=,即8a =,2b =时取等号,所以ab 的最小值为16,此时OAB △的面积取最小值8,直线l 的斜率为201084-=--.故答案为:14-.15.如图,在正方体1111ABCD A B C D -中,P 为1AC 的中点,1AQ t AB =,[]0,1t ∈,则下列说法正确的________(请把正确的序号写在横线上)①1PQ A B ⊥②当12t =时,//PQ 平面11BCC B③当13t =时,PQ 与CD 所成角的余弦值为11④当14t =时,1A Q ⊥平面1PAB 【答案】①②③【解析】【分析】建立空间直角坐标系,对A ,验证两向量的数量积是否为0;对B ,证明QP 与BC平行即可得;对C ,借助向量求出夹角的余弦值即可得;对D ,证明1A Q 与1AB不垂直即可得.【详解】建立如图所示的空间直角坐标系,设正方体的棱长为1,则(),0,Q t t ,所以111,,222QP t t ⎛⎫=-- ⎪⎝⎭ ,()11,0,1A B =-,所以10QP A B ⋅=,所以1PQ A B ⊥,①正确;当12t =时,110,,022QP BC ⎛⎫== ⎪⎝⎭ ,所以//PQ BC,又⊂BC 平面11BCC B ,PQ ⊄平面11BCC B ,从而//PQ 平面11BCC B ,②正确;当13t =时,111,,626QP ⎛⎫= ⎪⎝⎭, ᦙ,所以PQ 与CD 所成角的余弦值为1116cos ,11116DC QP DC QP DC QP⋅== ,③正确;当14t =时,113,0,44A Q ⎛⎫=- ⎪⎝⎭ ,()11,0,1AB = ,111310442A Q AB ⋅=-=-≠ ,所以1AQ 不垂直于1AB ,所以1AQ 不垂直于平面1PAB ,④错误.故答案为:①②③.三、解答题,共4小题,每小题10分,共40分.解答应写出文字说明,演算步骤或证明过程.16.已知ABC V 的顶点(1,5)A -,(2,1)B --,(4,7)C .(1)求边BC 上的高AD 所在直线的方程;(2)求边BC 上的中线AD 所在直线的方程;(3)求ABC V 的面积.【答案】(1)34170x y +-=(2)40x y +-=(3)14【解析】【分析】(1)利用直线垂直的性质求得高AD 的斜率,再利用直线的点斜式即可得解;(2)利用中位坐标公式求得点M 的坐标,再利用直线的两点式即可得解;(3)利用直线的两点式求得直线BC 的方程,再利用点线距离公式与两点距离公式即可得解.【小问1详解】因为(1,5)A -,(2,1)B --,(4,7)C ,所以7(1)44(2)3BC k --==--,所以34AD k =-,则边BC 上的高AD 所在直线的方程为()3514y x -=-+,即34170x y +-=;【小问2详解】由题意可知M 是BC 的中点,所以()1,3M ,从而边BC 上的中线AM 所在直线的方程为315311y x --=---,即40x y +-=;【小问3详解】由题意知,边BC 所在直线的方程为()()()()127142y x ----=----,即4350x y -+=,所以点A 到直线BC 的距离145h ==,又10BC ==,所以ABC V 的面积为11141014225BC h ⋅=⨯⨯=.17.已知四边形ABCD 为正方形,O 为AC ,BD 的交点,现将三角形BCD 沿BD 折起到PBD 位置,使得PA AB =,得到三棱锥P ABD -.(1)求证:平面PBD ⊥平面ABD ;(2)棱PB 上是否存在点G ,使平面ADG 与平面ABD 夹角的余弦值为31111?若存在,求PG PB;若不存在,说明理由.【答案】(1)证明见解析(2)存在,12PG PB =【解析】【分析】(1)根据折叠前后的几何性质可得OP OB ⊥,结合线线垂直可得OP OA ⊥,根据面面垂直判定定理即可证得结论;(2)以O 为原点,以OA 为x 轴,以OB 为y 轴,以OP 为z 轴建立空间直角坐标系,根据空间向量的坐标运算,设()()0,,01PG PB λλλλ==-≤≤,分别求平面ADG 与平面ABD 的法向量,根据面面夹角余弦值公式列方程求解λ即可得结论.【小问1详解】因为四边形ABCD 为正方形,所以OA OB OC OD ===,,OC OB OA OB ⊥⊥,所以折起后,OA OB OP OD ===,OP OB ⊥,由于折起前有222OA OB AB +=,且折起后PA AB =,所以折起后有222OA OP PA +=,即OP OA ⊥,又OP OB ⊥,OA OB O = ,,OA OB ⊂平面ABD ,所以OP ⊥平面ABD ,又OP ⊂平面PBD ,所以平面PBD ⊥平面ABD .【小问2详解】存在,理由如下:由(1)知OP OB ⊥,OP OA ⊥,OA OB ⊥,所以以O 为原点,以OA 为x 轴,以OB 为y 轴,以OP 为z 轴建立空间直角坐标系,设1OA =,则()1,0,0A ,()0,1,0B ,()0,1,0D -,()0,0,1P ,则()1,1,0AD =--,()0,1,1PB =- ,()1,0,1AP =- ,假设存在满足题意的点G ,设()()0,,01PG PB λλλλ==-≤≤,则()1,,1AG AP PG λλ=+=--,设平面ADG 的法向量为(),,n x y z =,则·0·0AD n AG n ⎧=⎪⎨=⎪⎩ ,即()010x y x y z λλ--=⎧⎨-++-=⎩,令1x =,得1y =-,11z λλ+=-,即11,1,1n λλ+⎛⎫=- ⎪-⎝⎭ ,易知平面ABD 的一个法向量为()0,0,1m =,因为平面ADG 与平面ABD 夹角的余弦值为31111,所以21·3111cos ,11121n m n m n mλλλλ+-〈〉==+⎛⎫+ ⎪-⎝⎭,整理得22520λλ-+=解得12λ=或2λ=(舍),所以在棱PB 上存在点G ,使平面ADG 与平面ABD 311,且12PG PB =.18.如图,在四棱锥P ABCD -中,底面ABCD 是边长为1的正方形,Q 为棱PD 的中点.(1)求证:PB ∥平面ACQ ;(2)若BA PD ⊥,再从条件①、条件②、条件③中选择若干个作为已知,使四棱锥P ABCD -唯一确定,并求:(i )直线PC 与平面ACQ 所成角的正弦值;(ii )点P 到平面ACQ 的距离.条件①:二面角P CD A --的大小为45 ;条件②:2PD =条件③:AQ PC ⊥.【答案】(1)证明见解析(2)(i )13;(ii )33【解析】【分析】(1)连接BD ,交AC 于O ,连接OQ ,由OQ ∥PB 证明PB ∥平面ACQ ;(2)选择①②或①③或②③或①②③都能得到BA ⊥平面PAD ,建立空间直角坐标系,求出法向量,求解PC 与平面ACQ 所成角的正弦值,计算点P 到平面ACQ 的距离.【小问1详解】(1)连接BD ,交AC 于O ,连接OQ ,底面ABCD 是正方形,故O 是BD 的中点,又因为Q 为棱PD 的中点,所以,在PBD △中OQ ∥PB ,而OQ ⊂平面,ACQ PB ⊄平面ACQ ,所以PB ∥平面ACQ .【小问2详解】选①②:因为四边形ABCD 是正方形,所以,,BA AD AD CD BA ⊥⊥∥CD ,又因为BA PD ⊥,所以CD PD ⊥,因为二面角P CD A --的大小为45 ,平面PAD ⋂平面,,ABCD CD AD CD PD CD =⊥⊥,所以45ADP ∠= ,在PAD △中,2222cos 1PA AD PD AD PD ADP ∠=+-⋅⋅=,所以222PA AD PD +=,故PA AD ⊥,又因为,,,BA AD BA PD AD PD D AD PD ⊥⊥⋂=⊂、平面PAD ,所以BA ⊥平面PAD ,选①③:因为四边形ABCD 是正方形,所以,,BA AD AD CD BA ⊥⊥∥CD ,又因为BA PD ⊥,所以CD PD ⊥,因为二面角P CD A --的大小为45 ,平面PAD ⋂平面,,ABCD CD AD CD PD CD =⊥⊥,所以45ADP ∠= ,因为,,,CD PD CD AD AD PD D AD PD ⊥⊥⋂=⊂、平面PAD ,所以CD ⊥平面PAD ,又因为AQ ⊂平面PAD ,所以CD AQ ⊥,又因为,,AQ PC PC CD C PC CD ⊥⋂=⊂、平面PCD ,所以AQ ⊥平面PCD ,因为PD ⊂平面PCD ,所以AQ PD ⊥,又因为Q 为PD 中点,所以PA AD =,所以45APD ADP ∠∠== ,所以90PAD ∠= ,即PA AD ⊥,因为BA ∥,CD CD ⊥平面PAD ,所以BA ⊥平面PAD ,选②③:因为四边形ABCD 是正方形,所以,AD CD BA ⊥∥CD ,因为,,,CD PD CD AD AD PD D AD PD ⊥⊥⋂=⊂、平面PAD ,所以CD ⊥平面PAD ,又因为AQ ⊂平面PAD ,所以CD AQ ⊥,又因为,,AQ PC PC CD C PC CD ⊥⋂=⊂、平面PCD ,所以AQ ⊥平面PCD ,因为PD ⊂平面PCD ,所以AQ PD ⊥,又因为Q 为PD 中点,所以1PA AD ==,在PAD △中,222PA AD PD +=,故PA AD ⊥,因为BA ∥,CD CD ⊥平面PAD ,所以BA ⊥平面PAD ,选①②③同上.以A 为原点,,,AB AD AP 为,,x y z 轴建立空间直角坐标系,则()()()()110,0,0,1,1,0,0,1,0,0,,,0,0,122A C D Q P ⎛⎫⎪⎝⎭,故()()110,,,1,1,0,1,1,122AQ AC PC ⎛⎫===- ⎪⎝⎭,令(),,m x y z = 为面ACQ 的一个法向量,则110,220.m AQ y z m AC x y ⎧⋅=+=⎪⎨⎪⋅=+=⎩令1x =,则()1,1,1m =-,(i)因为1cos ,3m PC m PC m PC⋅===,所以直线PC 与平面ACQ 所成角的正弦值为13,(ii )由(i )知点P 到平面ACQ的距离133PC =.19.设二次函数23y x =-的图象与两坐标轴的交点分别记为M ,N ,G ,曲线C 是经过这三点的圆.(1)求圆C 的方程;(2)过(1,0)P -作直线l 与圆C 相交于A ,B 两点.(i )||||PA PB ⋅是否是定值?如果是,请求出这个定值;(ii )设(0,2)Q -,求22||||QA QB +的最大值.【答案】(1)()2214x y ++=(2)(i )||||PA PB ⋅是定值,定值为2;(ii)12+【解析】【分析】(1)分别求出M ,N ,G 的坐标,假设圆的一般方程,代入求解即可;(2)(i )当直线的斜率不存在时,求出A B 、的坐标,进而可求||||PA PB 、的值,当直线斜率存在时,假设直线方程,与圆联立得到韦达定理,运用两点间的距离公式分别求出||||PA PB 、并化简,然后计算||||PA PB ⋅即可;(ii )同(i )分直线斜率存在和直线斜率不存在两种情况讨论,当直线斜率存在时,易求得2210QA QB +=,当直线斜率不存在时,运用两点间距离公式及韦达定理求出22QA QB +关于k 的表达式,结合函数性质即可求最大值.【小问1详解】设二次函数23y x =-与x 轴分别交于,M N ,与y 轴交于点G ,令0y =,则x =,即)(),MN ,令0x =,则=3y -,则()0.3G -,设圆C 的方程为220x y Dx Ey F ++++=,将点M 、N 、G的坐标代入可得3030930F F E F ⎧-+=⎪⎪++=⎨⎪-+=⎪⎩,解得023D E F =⎧⎪=⎨⎪=-⎩,则22230x y y ++-=,化为标准式为()2214x y ++=.【小问2详解】||||PA PB ⋅是定值.(i )当直线l 的斜率不存在时,则l 方程为1x =-,联立()22141x y x ⎧++=⎪⎨=-⎪⎩,可得11x y =-⎧⎪⎨=-⎪⎩或11x y =-⎧⎪⎨=-⎪⎩,即()()1,1,1A B --,则1PA =,1PB =,则2PA PB ⋅=;当直线l 的斜率存在时,设l 方程为()1y k x =+,设 ,联立直线与圆的方程()()22114y k x x y ⎧=+⎪⎨++=⎪⎩,消去y 可得()()()222212230k x k k x k k +++++-=,由韦达定理可得()22121222223,11k k k k x x x xk k -++-+==++,且PA ==,PB ==,则()()()212111PA PB k x x⋅==+++()()()()222221212222311111k k k k k k x x x x k k -+++-++=++++=++()222121k k-=+⨯=+;综上所述,2PA PB ⋅=是定值.(ii )由(i )可知,当直线l的斜率不存在时,()()1,1,1A B --,且()0,2Q -,则())222115QA =-+=+()()222115QB =-+=-,则2210QA QB +=;当直线l 的斜率存在时,设l 方程为()1y k x =+,则()()222222112222QA QB x kx k x kx k +=+++++++()()()()222221212124288k xx k kx x kk =++++++++()()()()()2222222222242*********111k k k k k k kk k kk k k k ⎡⎤⎡⎤+-++-⎢⎥⎢⎥=+-⨯++⨯+++⎢⎥++⎢⎥+⎣⎦⎣⎦()()2222222244(2)2(23)28811k k k k k kk k kk kk+-++=-+-+++++()22414141k k k k-+=+++()241141k k k -=++224(1)44141k k k-+++=++24(1)101k k +=++令1t k =+,则1k t =-222224(1)4410101011(1)22k t tQA QB k t t t ++=+=+=+++--+令24()1022tf t t t =+-+当0t =,即1k =-时,(0)10f =;当0t ≠,即1k ≠-时,244()10102222t f t t t t t=+=+-++-;2+(,)t t ∈-∞-⋃+∞当2+t t=,即t =,11k t =-=-时,()f t取最大值12+所以()22max12QA QB+=+。
2021-2022学年北京汇文中学中学部高二数学理测试题含解析
2021-2022学年北京汇文中学中学部高二数学理测试题含解析一、选择题:本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,只有是一个符合题目要求的1. 已知 t=(u>1),且关于t的不等式t2﹣8t+m+18<0有解,则实数m的取值范围是()A.(﹣∞,﹣3)B.(﹣3,+∞)C.(3,+∞)D.(﹣∞,3)参考答案:A【考点】基本不等式.【分析】u>1,可得u﹣1>0.t==﹣[(u﹣1)+]+5,利用基本不等式的性质可得t∈(﹣∞,3].不等式t2﹣8t+m+18<0,化为m<﹣t2+8t﹣18,因此关于t的不等式t2﹣8t+m+18<0有解?m<(﹣t2+8t﹣18)max.利用二次函数的单调性即可得出.【解答】解:∵u>1,∴u﹣1>0.∴t===﹣[(u﹣1)+]+5≤+5=3,当且仅当u=2时取等号.∴t∈(﹣∞,3].∵不等式t2﹣8t+m+18<0,化为m<﹣t2+8t﹣18,∴关于t的不等式t2﹣8t+m+18<0有解?m<(﹣t2+8t﹣18)max.令f(t)=﹣t2+8t﹣18=﹣(t﹣4)2﹣2≤f(3)=﹣3.因此m<﹣3.故选:A.2. 已知函数f(x)=2ln(3x)+8x,则的值为()A.10 B.﹣10 C.﹣20 D.20参考答案:C 【考点】62:导数的几何意义;61:变化的快慢与变化率.【分析】利用导数的定义与运算法则即可得出.【解答】解:函数f(x)=2ln(3x)+8x,∴f′(x)=+8,∴f′(1)=10,∴=﹣2=﹣2f′(1)=﹣20,故选:C3. 在下列四个正方体中,能得出的是()参考答案:A4. 某三棱锥的三视图如图所示,则该三棱锥的表面积为A.B.C.D.参考答案:B5. 设,,则与的大小关系为( )A. B. C. D. 与的取值有关参考答案:D略6. 平面几何中,有边长为a的正三角形内任一点到三边距离之和为定值,类比上述命题,棱长为a的正四面体内任一点到四个面的距离之和为()A.B.C.D.参考答案:B【考点】类比推理.【分析】由平面图形的性质向空间物体的性质进行类比时,常用的思路有:由平面图形中点的性质类比推理出空间里的线的性质,由平面图形中线的性质类比推理出空间中面的性质,由平面图形中面的性质类比推理出空间中体的性质.固我们可以根据已知中平面几何中,关于线的性质“正三角形内任意一点到三边距离之和是一个定值”,推断出一个空间几何中一个关于面的性质.【解答】解:类比在边长为a的正三角形内任一点到三边的距离之和为定值,在一个正四面体中,计算一下棱长为a的三棱锥内任一点到各个面的距离之和,如图:由棱长为a可以得到BF=,BO=AO=a﹣OE,在直角三角形中,根据勾股定理可以得到BO2=BE2+OE2,把数据代入得到OE=a,∴棱长为a的三棱锥内任一点到各个面的距离之和4×a=a,故选B.7. 定义在R上的函数f(x)满足f(x+2)=3f(x),当x∈[0,2]时,f(x)=x2-2x,则当x∈[-4,-2]时,f(x)的最小值是( )A.- B.- C. D.-1参考答案:A8. 对于实数是的()A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分也不必要条件参考答案:A9. 如右图在一个二面角的棱上有两个点,,线段分别在这个二面角的两个面内,并且都垂直于棱,,则这个二面角的度数为()A.B. C. D.参考答案:B10. 在等比数列()中,若,,则该数列的前10项和为D.A.B.C.D.参考答案:B二、填空题:本大题共7小题,每小题4分,共28分11. 过点(1,2)且在两坐标轴上的截距互为相反数的直线方程为_______________.参考答案:或当直线过原点时,设直线方程为,则,直线方程为,即,当直线不经过原点时,直线的斜率为,直线方程为,整理可得:.故答案为:或.12. 在底面为正方形的长方体上任意选择4个顶点,它们可能是如下各种几何形体的4个顶点,这些几何形体是_____________.(写出所有正确结论的编号)①矩形;②不是矩形的平行四边形;③有三个面为直角三角形,有一个面为等腰三角形的四面体;④每个面都是等腰三角形的四面体;⑤每个面都是直角三角形的四面体.参考答案:①③④⑤略13. 孙悟空、猪八戒、沙和尚三人中有一个人在唐僧不在时偷吃了干粮,后来唐僧问谁偷吃了干粮,孙悟空说是猪八戒,猪八戒说不是他,沙和尚说也不是他。
2022-2023学年北京市东城区汇文中学高二年级上册学期期中数学试题【含答案】
2022-2023学年北京市东城区汇文中学高二上学期期中数学试题一、单选题1.已知直线的倾斜角是23π,则该直线的斜率为( ) AB.C. D.D【分析】根据倾斜角和斜率的关系求斜率即可. 【详解】因为倾斜角为23π,所以直线的斜率2tan3k π==故选:D.2.已知直线在y 轴上的截距为-2,则此直线方程可以为( ) A .22y x =+ B .132y x += C .240x y --= D .24x y =-C【分析】将0x =代入各项直线方程中求y 值即可.【详解】A 、B 、D :将0x =代入方程,可得2y =,不合要求; C :0x =时,=2y -,符合要求; 故选:C3.“35m -<<”是“方程22153x y m m +=-+表示椭圆”的( )A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件B【分析】先根据椭圆知识求出方程22153x y m m +=-+表示椭圆的充要条件,再根据必要不充分条件的概念可得结果.【详解】因为方程22153x ym m +=-+表示椭圆的充要条件是503053m m m m ->⎧⎪+>⎨⎪-≠+⎩,即35m -<<且1m ≠,故“35m -<<”是“方程22153x y m m +=-+表示椭圆”的必要而不充分条件.故选:B.本题考查了椭圆的标准方程,考查了必要不充分条件,属于基础题.4.下列说法中,①若两直线平行,则其斜率相等;②若两直线斜率之积为-1,则这两条直线垂直;.③若直线10ax y ++=与直线10x ay -+=垂直,则0a =. 其中正确命题的个数为( ) A .1 B .2 C .3 D .4A【分析】根据直线倾斜角与斜率关系、直线垂直的判定判断各项的真假,即可得结果. 【详解】①若两直线平行且两线都垂直于x 轴,此时斜率不存在,错误; ②若两直线斜率之积为-1,则这两条直线垂直,正确;③若直线10ax y ++=与直线10x ay -+=垂直,则11()0a a ⨯+⨯-=,R a ∈,错误. 正确命题为②. 故选:A5.直线30x y +-=截圆222x y r +=所得劣弧所对的圆心角为3π,则r 的值为( ) A .63B .33C .6D .3C【分析】根据给定条件用圆的半径r 表示出圆心到直线30x y +-=距离即可计算作答. 【详解】因直线30x y +-=截圆222x y r +=所得劣弧所对的圆心角为3π,令劣弧的两个端点为A ,B ,圆心为O ,于是得OAB 为正三角形,圆心O 到直线AB :30x y +-=的距离为正OAB 的高32r , 因此,,解得6r =所以r 6. 故选:C6.已知双曲线C :2221y x b-=的一个焦点为()2,0-,则双曲线C 的一条渐近线方程为( )A .30x y =B 30x y +=C .20x y +=D .20x y +=B【分析】由题知21,2a c ==,双曲线的焦点在x 轴上,进而计算b ,再求渐近线方程即可得答案.【详解】解:由题知21,2a c ==,双曲线的焦点在x 轴上, 所以223b c a =-=,所以双曲线的渐近线为3y x =± 故选:B7.设1F ,2F 为双曲线2214x y -=的两个焦点,点P 在双曲线上,且满足1290F PF ∠=︒,则12F PF △的面积为( ) A .5 B .2C .52D .1D设12||,||()PF x PF y x y ==>,由双曲线的性质可得x y -的值,再由1290F PF ∠=︒,根据勾股定理可得22x y +的值,进而求得xy ,即得.【详解】设12||,||()PF x PF y x y ==>,1F ,2F 为双曲线的两个焦点,点P 在双曲线上,4x y ∴-=,1290F PF ∠=︒,2220x y ∴+=,2222()4xy x y x y ∴=+--=,2xy ∴=,12F PF ∴的面积为112xy =.故选:D本题考查双曲线的性质,难度不大.8.如图,已知ABCDEF 为正六边形,若以C ,F 为焦点的双曲线恰好经过A ,B ,D ,E 四点,则该双曲线的离心率为( )A 21B .22C 31D 31D【分析】以正六边形中心O 为原点,FC 为x 轴,过O 作FC 垂线为y 轴建系,令正六边形的边长为2,求出各顶点坐标,由焦点坐标、点在双曲线上求双曲线参数,进而求离心率. 【详解】如下图,以正六边形中心O 为原点,FC 为x 轴,过O 作FC 垂线为y 轴,令正六边形的边长为2,则(1,3)A -、(1,3)B 、(2,0)C 、(1,3)D -、(1,3)E --,(2,0)F -,令所求双曲线为22221x y a b-=且2c =,A 、B 、D 、E 在双曲线上,所以22221314a b a b ⎧-=⎪⎨⎪+=⎩,解得,故31a ,则3131c e a ==-. 故选:D9.已知椭圆C 的焦点为()10,1-F ,()20,1F .过点1F 的直线与C 交于A ,B 两点.若2ABF △的周长为8,则椭圆C 的标准方程为( ) A .221516x y +=1B .2211615x y +=C .22134x y +=D .22143x y +=C【分析】由题设可设椭圆方程为22221y x a b+= (0)a b >>,根据焦点三角形的周长得2a =,进而求参数b ,即可得标准方程.【详解】由题设,椭圆焦点在y 轴上,若所求椭圆方程为22221y x a b+= (0)a b >>,因为2ABF △的周长为8,则48a =,故2a =,而1c =,则23b =, 所以椭圆方程为22143y x +=.故选:C10.阿基米德是古希腊著名的数学家、物理学家,他利用“逼近法”得到椭圆的面积除以圆周率π等于椭圆的长半轴长与短半轴长的乘积.已知在平面直角坐标系xOy 中,椭圆:C 22221x y a b+=(a b >)0>的面积为83π,两焦点与短轴的一个端点构成等边三角形,则椭圆C 的标准方程是( ) A .2211612x y +=B .2211216x y +=C .22143x y +=D .221168x y +=A【分析】由椭圆的面积为和两焦点与短轴的一个端点构成等边三角形,结合椭圆的性质,得到关于,,a b c 的方程组,从而可得答案.【详解】椭圆的面积除以圆周率π等于椭圆的长半轴长与短半轴长的乘积,且椭圆:C 22221x y a b +=(a b >)0>的面积为,所以ab ==又因为两焦点与短轴的一个端点构成等边三角形,所以得2222ab a c a b c ⎧=⎪=⎨⎪=+⎩,解得4a b =⎧⎪⎨=⎪⎩所以椭圆C 的标准方程是2211612x y +=. 故选:A11.已知圆锥曲线2214x y m+=的离心率e 为方程231030x x -+=的根,则满足条件的m 有( )个不同的值 A .1 B .2 C .3 D .4C【分析】解方程得13x =或3x =,讨论13e =、3e =,结合椭圆、双曲线性质判断焦点位置,进而求参数值,即可得结果.【详解】由23103(31)(3)0x x x x -+=--=,则13x =或3x =,当13e =时,曲线为椭圆,当椭圆的焦点在x 轴上时,04m <<,则4149m -=,可得329m =符合; 当椭圆的焦点在y 轴上时,4m >,则419m m -=,可得92m =符合;当3e =时,曲线为双曲线,则0m <,故494m-=,可得32m =-符合. 综上,m 有3个不同的值. 故选:C12.已知双曲线C :()222210,0x y a b a b-=>>的右焦点为F ,关于原点对称的两点A 、B 分别在双曲线的左、右两支上,0AF FB ⋅=,3BF FC =,且点C 在双曲线上,则双曲线的离心率为( ) ABCDB【分析】若左焦点F ',连接,,AF BF CF ''',由题意知AFBF '为矩形,设||BF m =,则||3FC m =,||2BF a m '=+,||32CF m a '=+,在直角△CBF '、直角△BFF '中应用勾股定理列方程可得m a =,且得到关于双曲线参数的齐次方程,即可得离心率. 【详解】如下图,若左焦点F ',连接,,AF BF CF ''',因为A 、B 关于原点对称且0AF FB ⋅=,所以AFBF '为矩形, 设||BF m =,则||3FC m =,||2BF a m '=+,||32CF m a '=+,在直角△CBF '中222||||||BC BF CF ''+=,即22216(2)(32)m a m m a ++=+, 所以m a =,在直角△BFF '中222||||||BF BF FF ''+=,即2222(2)104m a m a c ++==, 所以10e =故选:B二、填空题13.a ,b ,c 是两两不等的实数,则经过(),P a c b -、(),C b c a -两点的直线的倾斜角为____________.π4##45° 【分析】根据倾斜角与斜率关系,利用斜率两点式求倾斜角正切值,即可确定其大小. 【详解】由题设,若直线的倾斜角为[0,π)θ∈,则tan θ=()1c a c b b a---=-,所以π4θ=.故π414.过双曲线22143x y -=的左顶点,且与直线210x y -+=平行的直线方程为____________.240x y -+=【分析】由双曲线方程确定顶点坐标,根据直线平行确定斜率,应用点斜式写出直线方程. 【详解】由双曲线方程知:其左顶点为(2,0)-, 根据直线平行关系知:所求直线的斜率为2, 所以所求直线为2(2)y x =+,则240x y -+=. 故240x y -+=15.以双曲线2212y x -=的焦点为顶点,顶点为焦点的椭圆方程为_____________.22132x y += 【分析】由双曲线方程写出顶点、焦点坐标,根据题设写出椭圆方程即可.【详解】由双曲线方程知:顶点坐标为(1,0)±,焦点坐标为(,所以所求椭圆的焦点为(1,0)±,左右顶点为(,即1a c ==, 故22b =,则椭圆方程为22132x y +=. 故22132x y += 16.圆2220x y x +-=与圆()222260R x y m m m +-+-=∈的位置关系为_____________.(从“相离”“相交”“相切”“内含”中选一个填入) 内含【分析】写出圆的标准形式求出圆心和半径,判断圆心距与两半径的不等关系,即可得答案. 【详解】由2220x y x +-=的标准形式为22(1)1x y -+=,即圆心为(1,0),半径为1;由()222260R x y m m m +-+-=∈的标准形式为222(1)5x y m +=-+,即圆心为(0,0),半径为2;所以圆心距为11<,故两圆为内含关系. 故内含17.下列说法中,①=②4表示的曲线为椭圆;③1=表示的曲线为双曲线;④2=表示的曲线为圆心在x 轴上的一个圆.以上叙述正确的有____________(写出所有序号) ①②【分析】①④将两边平方并整理即可判断,②③根据几何意义,结合椭圆、双曲线的定义判断即可. 【详解】①两边平方得2222(2)(2)x y x y +=+++,整理得20x y ++=表示一条直线,正确; ②几何意义为点(,)x y 到(1,0),(1,0)-的距离和为4且(1,0),(1,0)-的距离小于4,故(,)x y 的轨迹为椭圆,正确;③几何意义为点(,)x y 到(1,0)-的距离与到(1,0)的距离差为1且(1,0),(1,0)-的距离大于1,故(,)x y 的轨迹为双曲线的一支,错误;④两边平方并整理得2240x x y ++=,即22(2)4x y ++=且去掉点(1,0)-,其圆心为(2,0)-,曲线为圆心在x 轴上且去掉点(1,0)-的一个圆,错误. 故①②18.已知实数1x 、2x 、1y 、2y 满足:22111x y +=,22221x y +=,121212x x y y +=,+的最大值为______. 【分析】设A (x 1,y 1),B (x 2,y 2),OA =(x 1,y 1),OB =(x 2,y2),由圆的方程和向量数量积的定义、坐标表示,可得三角形OAB 为等边三角形,AB=1的几何意义为点A ,B 两点到直线x+y ﹣1=0的距离d 1与d 2之和,由两平行线的距离可得所求最大值. 【详解】设A (x 1,y 1),B (x 2,y 2), OA =(x 1,y 1),OB =(x 2,y 2), 由x 12+y 12=1,x 22+y 22=1,x 1x 2+y 1y 2=12, 可得A ,B 两点在圆x 2+y 2=1上, 且OA •OB =1×1×cos ∠AOB=12, 即有∠AOB=60°,即三角形OAB 为等边三角形, AB=1,的几何意义为点A ,B 两点到直线x+y ﹣1=0的距离d 1与d 2之和,显然A ,B 在第三象限,AB 所在直线与直线x+y=1平行, 可设AB :x+y+t=0,(t >0), 由圆心O 到直线AB 的距离可得,解得1,本题考查向量数量积的坐标表示和定义,以及圆的方程和运用,考查点与圆的位置关系,运用点到直线的距离公式是解题的关键,属于难题.三、解答题19.在平面直角坐标系中,ABC 三个顶点坐标分别为()4,2A --,()6,6B ,()0,6C . (1)设线段AB 的中点为M ,求中线CM 所在直线的方程; (2)求边AB 上的高所在直线的方程. (1)460x y +-= (2)54240x y +-=【分析】(1)由中点坐标公式得AB 中点坐标为()12,,进而根据点斜式方程求解即可; (2)先根据直线AB 的斜率得高的斜率,再根据点斜式方程求解即可.【详解】(1)解:由题意,ABC 三个顶点坐标分别为()4,2A --,()6,6B ,()0,6C , 设AB 中点坐标为()00,x y ,由中点公式可得04612x -+==,02622y -+==, 即AB 中点坐标为()12,,又由斜率公式,可得62401MC k -==--, 所以中线CM 所在直线的方程为()640y x -=--,即460x y +-=(2)解:由()4,2A --,()6,6B 可得()()624645AB k --==--,所以AB 上的高所在直线的斜率为54k =-,则AB 上的高所在直线的方程为()5604y x -=--,即54240x y +-=. 20.(1)中心在原点,焦点在y 轴上的双曲线W ,经过点()3,2,且其实轴长与椭圆C :22132x y +=的焦距相等,求双曲线W 的标准方程:(2)已知A ,B 是椭圆C :22132x y +=上两点,且A ,B 两点关于x 轴对称,点A 在第二象限,点()1,0M ,MAB △为等边三角形,求点A 坐标.(1)2213x y -=;(2)(A -.【分析】(1)由椭圆方程求焦距,即得双曲线实轴长22a =,再令双曲线为2221x y b-=,根据所过的点求得23b =,即可得方程;(2)若(,)A m n 且0,0m n <>,结合M 坐标和MAB △为等边三角形列方程组求参数m 、n . 【详解】(1)由题设,椭圆C :22132x y +=的焦距为2,则双曲线实轴长22a =,即1a =, 又焦点在y 轴上,令双曲线为2221x y b-=,经过()3,2,故2941b -=,则23b =,所以双曲线W 的标准方程为2213x y -=.(2)由题设,若(,)A m n 且0,0m n <>,则(,)B m n -,又()1,0M ,MAB △为等边三角形,则222132n m n ⎧=⎪⎨+=⎪⎩综上,可得1m n =-⎧⎪⎨=⎪⎩(A -. 21.(1)已知圆心在y 轴上且过点()3,1的圆与x 轴相切,求该圆的方程; (2)过点()2,1A -作圆O :224x y +=的切线l ,求l 方程. (1)22(5)25x y +-=;(2)2x =-或34100x y -+=.【分析】(1)令圆心为(0,)m ,写出圆的方程,根据点在圆上求参数m ,即可得方程; (2)讨论切线的斜率,结合点线距离公式,分别求出圆的切线方程即可. 【详解】(1)由题设,令圆心为(0,)m ,则圆的方程为222()x y m m +-=,又()3,1在圆上,故229(1)m m +-=,可得5m =,所以圆的方程为22(5)25x y +-=.(2)圆O :224x y +=的圆心为(0,0),半径为2,当切线斜率不存在时有2x =-,显然与O :224x y +=相切,满足要求;当切线斜率存在时,设切线为(2)121y k x kx k =++=++,即210kx y k -++=,2=,可得34k =, 所以切线方程为35042x y -+=,即34100x y -+=, 综上,切线方程为2x =-或34100x y -+=.22.已知椭圆C :22163x y +=,点()2,1A ,过点()3,0B 的直线l 与椭圆C 交于不同的两点M ,N . (1)若直线l 的斜率为12,求AMN 的面积; (2)设直线AM 和直线AN 的斜率分别为AM k 和AN k ,求证:AM AN k k +为定值.(1)2; (2)证明见解析.【分析】(1)由题设有直线MN 为1(3)2y x =-,代入椭圆方程整理得2210x x --=,应用韦达定理、相交弦的弦长公式及点线距离公式、三角形面积公式求AMN 的面积;(2)由题设,令直线:(3)l y k x =-联立椭圆整理,应用韦达定理得221212N M k x x k +=+、226(31)12N M k x x k -=+,利用斜率两点式可得AM AN k k +2(51)()1242()4N M N M N M N M kx x k x x k x x x x -++++=-++,进而化简即可证.【详解】(1)由题设,直线MN 为1(3)2y x =-,即230x y --=,代入椭圆C :22163x y +=, 整理得:2210x x --=,则2M N x x +=,1M N x x =-,所以||M N x x -|||M N MN x x =-= 又()2,1A 到直线MNAMN的面积为122. (2)由题设,直线l 的斜率一定存在,设直线:(3)l y k x =-,联立椭圆并整理得:2222(12)121860k x k x k +-+-=,则221212N M k x x k +=+,226(31)12N M k x x k -=+, 12M AM M y k x -=-,12N AN N y k x -=-,且(3)M M y k x =-,(3)N N y k x =-, 则()()2()2)4(4N M M N N M N M AM AN N M N M x y x y x x y y k k x x x x +--+++-++=+()()()25112424N M N M N M N M kx x k x x k x x x x -++++=-++()()2222411222112k k k k --+==--+为定值.。