北师大八年级不等式培优
八年级不等式培优提高练习[1]
1.若关于x的不等式组恰好只有四个整数解,则a的取值范围是()A.a B.C.﹣2D.﹣22.设a,b是常数,不等式+>0的解集为x<,则关于x的不等式bx﹣a<0的解集是()A.x>B.x<﹣C.x>﹣D.x<3.若不等式(ax﹣1)(x+2)>0的解集是﹣3<x<﹣2,那么a等于()A.B.C.3 D.一34.不等式的解集为x>2,则m的值为()A.4 B.2 C.D.5.若关于x的不等式组的整数解共有3个,则m的取值范围是()A.5<m≤6 B.5≤m<6 C.5≤m≤6 D.5<m<66.已知a>b,c≠0,则下列关系一定成立的是()A.ac>bc B.C.c﹣a>c﹣b D.c+a>c+b 7.下列命题中:①如果a<b,那么ac2<bc2;②关于x的不等式(a﹣1)x>1﹣a的解集是x<﹣1,则a<1;③若是自然数,则满足条件的正整数x有4个.正确的命题个数是()A.0 B.1 C.2 D.38.若x是方程2x+m﹣3(m﹣1)=1+x的解为负数,则m的取值范围是()A.m>﹣1 B.m<﹣1 C.m>1 D.m<19.按下面的程序计算:若输入x=100,输出结果是501,若输入x=25,输出结果是631,若开始输入的x值为正整数,最后输出的结果为556,则开始输入的x值可能有()A.1种B.2种C.3种D.4种10.若x为任意实数时,二次三项式x2﹣6x+c的值都不小于0,则常数c 满足的条件是()A.c≥0 B.c≥9 C.c>0 D.c>911.关于x的方程mx﹣1=2x的解为正实数,则m的取值范围是()A.m≥2 B.m≤2 C.m>2 D.m<212.关于x的不等式组的解集为x<3,那么m的取值范围为()A.m=3 B.m>3 C.m<3 D.m≥313.已知△ABC的边长分别为2x+1,3x,5,则△ABC的周长L的取值范围是()A.6<L<36 B.10<L≤11 C.11≤L<36 D.10<L<36 14.已知实数x、y同时满足三个条件:①3x﹣2y=4﹣p,②4x﹣3y=2+p,③x>y,那么实数p的取值范围是()A.p>﹣1 B.p<1 C.p<﹣1 D.p>115.关于x的不等式组的解集是x>﹣1,则m= .16.若不等式组的解集为﹣1<x<1,那么(a+1)(b﹣1)的值等于.17.已知关于x、y的二元一次方程组的解满足x+y>2,则k 的取值范围是.18.若不等式组有解,那么a必须满足.19.已知a、b都是实数,且a=,b=,b<<2a,那么实数x的取值范围是.20.若关于x、y的二元一次方程组的解满足x+y>0,则m的取值范围是.21.关于x的不等式x﹣3>的解集在数轴上表示如图所示,则a的值是.22.已知关于x的分式方程的解为负数,那么字母a的取值范围是.23.求不等式(2x﹣1)(x+3)>0的解集.解:根据“同号两数相乘,积为正”可得:①或②.解①得x>;解②得x<﹣3.∴不等式的解集为x>或x<﹣3.请你仿照上述方法解决下列问题:(1)求不等式(2x﹣3)(x+1)<0的解集.(2)求不等式≥0的解集.24.x取哪些整数值时,不等式5x+2>3(x﹣1)与x﹣1≤7﹣都成立?25.已知关于x的不等式组恰好有两个整数解,求实数a 的取值范围.26.已知一元一次不等式mx﹣3>2x+m.(1)若它的解集是x<,求m的取值范围;(2)若它的解集是x>,试问:这样的m是否存在?如果存在,求出它的值;如果不存在,请说明理由.27.用等号或不等号填空:(1)比较4m与m2+4的大小当m=3时,4m m2+4当m=2时,4m m2+4当m=﹣3时,4m m2+4(2)无论取什么值,4m与m2+4总有这样的大小关系吗?试说明理由.(3)比较x2+2与2x2+4x+6的大小关系,并说明理由.(4)比较2x+3与﹣3x﹣7的大小关系.28.是否存在整数m,使关于x的不等式1+>+与关于x的不等式x+1>的解集相同?若存在,求出整数m和不等式的解集;若不存在,请说明理由.29.已知关于x的不等式(2a﹣b)x+a﹣5b>0的解集为x<,(1)求的值.(2)求关于x的不等式ax>b的解集.30.若不等式组的偶数解a满足方程组,求x2+y2的值.31.小明把三个数﹣1,2﹣a,在数轴上从左到右依次排列在三个对应点上,你能确定a的取值范围吗?请写出你的解答过程.32.阅读下面的例题,并回答问题.【例题】解一元二次不等式:x2﹣2x﹣8>0.解:对x2﹣2x﹣8分解因式,得x2﹣2x﹣8=(x﹣1)2﹣9=(x﹣1)2﹣32=(x+2)(x﹣4),∴(x+2)(x﹣4)>0.由“两实数相乘,同号得正,异号得负”,可得①或②解①得x>4;解②得x<﹣2.故x2﹣2x﹣8>0的解集是x>4或x<﹣2.(1)直接写出x2﹣9>0的解是;(2)仿照例题的解法解不等式:x2+4x﹣21<0;(3)求分式不等式:≤0的解集.。
一元一次不等式与一次函数课时培优+2022-2023学年北师大版数学八年级下册
北师大版八年级下册 2.5一元一次不等式与一次函数课时培优一、选择题1.已知一次函数y1=kx+b与y2=x+a的图象如图,则下列结论:① k<0;②a>0;③ 当x<3时,y1<y2.其中正确的个数是( )A.0B.1C.2D.32.如图,直线y1=kx+2与直线y2=mx相交于点P(1,m),则不等式mx<kx+2的解集是( )A.x<0B.x<1C.0<x<1D.x>1 3.如图,直线y=kx+b(k≠0)经过点(−1,3),则关于x的不等式kx+b≥3的解集为( )A.x>−1B.x<−1C.x≥3D.x≥−1 4.直线l1:y=k1x+b与直线l2:y=k2x在同一平面直角坐标系中的图象如图所示,关于x的不等式k2x>k1x+b的解集为( )A.x>−1B.x<−1C.x<−2D.无法确定5.如图,直线y1=k1x+a与y2=k2x+b的交点坐标为(1,2),则使y1<y2的x的取值范围为()A.x>1B.x>2C.x<1D.x<26.如图,直线y1=x+b与y2=kx−1相交于点P,点P的横坐标为−1,则关于x的不等式x+b>kx−1的解集在数轴上表示正确的是( )A.B.C.D.7.如图,经过点B(−2,0)的直线y=kx+b与直线y=4x+2相交于点A(−1,−2),则不等式4x+2>kx+b的解集为( )A.x<−2B.x>−1C.x<−1D.x>−2二、填空题8.如图,直线l1:y=x+1与直线l2:y=mx+n相交于点P(a,2),则关于x的不等式x+1≥mx+n的解集为.9.一次函数y1=−x+3与y2=−3x+12的图象的交点坐标是;当x时,y1>y2;当x时,y1<y2.10.一次函数y1=ax+3与y2=kx−1的图象如图,则关于x的不等式kx−ax<4的解集是.11.如图,正比例函数y1=k1x和一次函数y2=k2x+b的图象相交于点A(2,1).当x<2时,y1y2(填“>”或“<”).x时,x的取值范围12.如图,直线y=kx+b(k<0)经过点A(3,1),当kx+b<13为.13.已知不等式−x+5>3x−3的解集是x<2,则直线y=−x+5与y=3x−3的交点坐标是.ax+3的图象交于点P,则关于x的不等式14.如图,已知函数y=x+2b和y=12ax+3的解集为.x+2b>1215.如图,一次函数y=−x+3与一次函数y=2x+m图象交于点(−2,n),则关于x的不等式2x+m<−x+3的解集为.三、解答题(16.已知一次函数y=kx+3的图象经过点(1,4).(1) 求这个一次函数的解析式.(2) 求关于x的不等式kx+3≤6的解集.17.已知一次函数y1=kx+2(k为常数,k≠0)和y2=x−3.(1) 当k=−2时,若y1>y2,求x的取值范围.(2) 当x<1时,y1>y2.结合图象,直接写出k的取值范围.18.某生态体验园推出了甲、乙两种消费卡,设入园次数为x时所需费用为y元,选择这两种卡消费时,y与x的函数关系如图所示,解答下列问题:(1) 分别求出选择这两种卡消费时,y关于x的函数表达式;(2) 请根据入园次数确定选择哪种卡消费比较合算.19.如图,已知直线y1=−12x+1与x轴交于点A,与直线y=−32x交于点B.(1) 求△AOB的面积;(2) 求y1>y2时x的取值范围.20.在平面直角坐标系中,直线l1:y1=k1x+b1与x轴交于点B(12,0),与直线l2:y2=k2x交于点A(6,3).(1) 分别求出直线l1和直线l2的表达式.(2) 直接写出不等式k1x+b1<k2x的解集.(3) 若点D是直线l2上一点,且S△COD=12S△AOC,试求点D的坐标.。
北师大八年级下第二单元《不等式》培优第一讲
不等式(组)知识网络1、不等式两边都加上(或减去)同一个数或同一个整式,不等号的方向不变。
2、不等式两边都乘以(或除以)同一个正数,不等号的方向不变。
3、不等式两边都乘以(或除以)同一个负数,不等号的方向改变。
4、说明:①在一元一次不等式中,不像等式那样,等号是不变的,是随着加或乘的运算改变。
②如果不等式乘以0,那么不等号改为等号所以在题目中,要求出乘以的数,那么就要看看题中是否出现一元一次不等式,如果出现了,那么不等式乘以的数就不等为0,否则不等式不成立;不等式与不等式组经典例题分析【例1】满足的x 的值中,绝对值不超过11的那些整数之和等于 。
【例2】 如果关于x 的一元一次方程3(x +4)=2a +5的解大于关于x 的方程的解,那么( ).【例3】 如果,2+c>2,那么( ).A. a-c>a+cB. c-a>c+aC. ac>-acD. 3a>2a【例4】 四个连续整数的和为S ,S满足不等式,这四个数中最大数与最小数的平方差等于 .【例5】解不等式 |x-5|-|2x+3|<1.【例6】关于x 的不等式组⎪⎩⎪⎨⎧≤+≥+b x a a b x 23223的解集为,求a 、b 的值。
【例7】若不等式⎩⎨⎧>+<1-2m x 1m x 无解,则m 的取值范围是 . 【例8】若不等式组的解集为,求a 的取值范围。
【例9】不等式组的解集是x>2,则m的取值范围是【例10】不等式组x +9﹥5x+1x﹤m+1 的解集是x﹤2,则m的取值范围是【例11】不等式组x +9﹤5x+1x﹤m+1 的解集是x>2,则m的取值范围是【例12】若不等式组有五个整数解,则a=_________【例13】若不等式组的解集为,则的值为_______。
【例14】已知,且﹣1<x﹣y<0,则k的取值范围为。
【例15】如果不等式组的解集是x>4,则n的取值范围是。
【精校版讲义+培优】八年级下数学北师大版第11讲 《一元一次不等式与不等式组》全章复习与巩固
第十一讲:《一元一次不等式与不等式组》全章复习与巩固(培优)【学习目标】1.理解不等式的有关概念,掌握不等式的三条基本性质;2.理解不等式的解(解集)的意义,掌握在数轴上表示不等式的解集的方法;3.会利用不等式的三个基本性质,熟练解一元一次不等式或不等式组;4.会根据题中的不等关系建立不等式(组),解决实际应用问题;5.通过讨论一次函数与方程(组)及不等式的关系,从运动变化的角度,用函数的观点加深对已经学习过的方程(组)及不等式等内容的再认识.【知识网络】【要点梳理】要点一、不等式1.不等式:用符号“<”(或“≤”),“>”(或“≥”),≠连接的式子叫做不等式.要点诠释:(1)不等式的解:能使不等式成立的未知数的值叫做不等式的解.(2)不等式的解集:对于一个含有未知数的不等式,它的所有解组成这个不等式的解集.解集的表示方法一般有两种:一种是用最简的不等式表示,例如x a≤等;另一种是>,x a用数轴表示,如下图所示:(3)解不等式:求不等式的解集的过程叫做解不等式.2. 不等式的性质:不等式的基本性质1:不等式两边加(或减)同一个数(或式子),不等号的方向不变.用式子表示:如果a>b,那么a±c>b±c不等式的基本性质2:不等式两边都乘(或除以)同一个正数,不等号的方向不变.用式子表示:如果a>b,c>0,那么ac>bc(或a bc c >).不等式的基本性质3:不等式两边乘(或除以)同一个负数,不等号的方向改变.用式子表示:如果a>b,c<0,那么ac<bc(或a bc c <).要点二、一元一次不等式1. 定义:不等式的左右两边都是整式,经过化简后只含有一个未知数,并且未知数的最高次数是1,这样的不等式叫做一元一次不等式.要点诠释:ax+b>0或ax+b<0(a≠0)叫做一元一次不等式的标准形式.2.解法:解一元一次不等式步骤:去分母、去括号、移项、合并同类项、系数化为1.要点诠释:不等式解集的表示:在数轴上表示不等式的解集,要注意的是“三定”:一是定边界点,二是定方向,三是定空实.3.应用:列不等式解应用题的基本步骤与列方程解应用题的步骤相类似,即:(1)审:认真审题,分清已知量、未知量;(2)设:设出适当的未知数;(3)找:找出题中的不等关系,要抓住题中的关键字,如“大于”“小于”“不大于”“至少”“不超过”“超过”等关键词的含义;(4)列:根据题中的不等关系,列出不等式;(5)解:解出所列的不等式的解集;(6)答:检验是否符合题意,写出答案.要点诠释:列一元一次不等式解应用题时,经常用到“合算”、“至少”、“不足”、“不超过”、“不大于”、“不小于”等表示不等关系的关键词语,弄清它们的含义是列不等式解决问题的关键. 要点三、一元一次不等式组关于同一未知数的几个一元一次不等式合在一起,就组成一个一元一次不等式组.要点诠释:(1)不等式组的解集:不等式组中各个不等式的解集的公共部分叫做这个不等式组的解集. (2)解不等式组:求不等式组解集的过程,叫做解不等式组.(3)一元一次不等式组的解法:分别解出各不等式,把解集表示在数轴上,取所有解集的公共部分,利用数轴可以直观地表示不等式组的解集.(4)一元一次不等式组的应用:①根据题意构建不等式组,解这个不等式组;②由不等式组的解集及实际意义确定问题的答案.从“数”的角度看从“形”的角度看求关于x 、y 的一元一次方程ax b +=0(a ≠0)的解x 为何值时,函数y ax b =+的值为0?确定直线y ax b =+与x 轴(即直线y =0)交点的横坐标.求关于x 、y 的二元一次方程组1122=+⎧⎨=+⎩,.y a x b y a x b 的解.x 为何值时,函数11y a x b =+与函数22y a x b =+的值相等? 确定直线11y a x b =+与直线22y a x b =+的交点的坐标.求关于x 的一元一次不等式ax b +>0(a ≠0)的解集 x 为何值时,函数y ax b =+的值大于0?确定直线y ax b =+在x 轴(即直线y =0)上方部分的所有点的横坐标的范围.【典型例题】 类型一、不等式1.用适当的语言翻译下列小题: (1)x 与9的差是正数或0;(2)b 与-5的和既不是正数也不是负数; (3)y 的5倍既大于x 又小于3x+2; (4)a 的2倍与-4的差小于5或大于7;(5)102y x -≥; (6)12302x -<-<;(7)(8) 【答案与解析】解:(1)x -9≥0; (2)b+(-5)=0; (3)x<5y<3x+2;(4)2a-(-4)<5或2a-(-4)>7; (5)y 的一半与x 的差非负;(6)x 的一半与3的差既大于-2又小于0; (7)x>-3或写作:大于-3的数;(8)2<x ≤3或写作:既大于2又小于等于3的数. 【总结升华】对“既……又……”,“既是……也是……”,“是……或是……”等连接词也要逐步领会积累.2. 设x>y ,试比较代数式-(8-10x)与-(8-10y)的大小,如果较大的代数式为正数,则其中最小的正整数x 或y 的值是多少?【思路点拨】比较两个代数式的大小,可以运用不等式的性质得出比较方法. 【答案与解析】解:可利用作差比较法比较大小.-(8-l0x)-[ -(8-l0y)] =-8+10x+8-10y =10x -10y .∵x>y ,∴10x>10y ,∴10x -10y>0 ∴-(8-l0x)>-(8-l0y).按题意-(8-l0x)>0,则10x>8.∴45x >. ∴x 的最小正整数值是1.【总结升华】两个数量的大小可以通过它们的差来判断:①0a b a b >⇔->; ②0a b a b =⇔-=; ③0a b a b <⇔-<. 举一反三:【变式】己知:x<0.5,比较2-4x 和18x-9的大小. 【答案】解:∵2-4x-(18x-9)=11-22x而又∵x<0.5,∴-22x>-11,即11-22x>0. ∴2-4x>18x-9. 类型二、一元一次不等式3. 已知关于x 的不等式()()1151222x ax -->+的解集是12x >,求a 的取值范围. 【答案与解析】解:解法一:522x ax -->+,(1)9a x ∴->,∵它的解集为12x >, 109112a a ->⎧⎪∴⎨=⎪-⎩, 17a ∴=-.解法二:12x =是关于x 方程()()1151222x ax --=+ 的解, 1111(5)1(2)2222a ∴--=+,解得17a =-.17a ∴=-.【总结升华】不等式解集中的端点值就是对应方程的解.举一反三:【变式1】如果关于x的不等式06>+--x k 正整数解为1、2、3, 则正整数k应取怎样的值?【答案】解不等式得:6+-<k x .∵k为正整数且6+-<k x 中的正整数解为1,2,3, ∴46=+-k . ∴2=k .【变式2】关于x 的不等式x ﹣b >0恰有两个负整数解,则b 的取值范围是( ) A .﹣3<b <﹣2 B .﹣3<b ≤﹣2 C .﹣3≤b ≤﹣2 D .﹣3≤b <﹣2 【答案】D .解:由x ﹣b >0解得:x >b ,∵不等式的负整数解只有两个负整数解, ∴﹣3≤b <﹣2. 类型三、一元一次不等式组4. 求不等式组()2x 731x 42x 31x 332513x x ⎧⎪⎪⎪≥⎨⎪-⎪<-⎪⎩-<-+-的整数解.【思路点拨】分别解出各不等式,取所有解集的公共部分. 【答案与解析】解:()2x 731x 42x 31x 332513x x ⎧⎪⎪⎪≥⎨⎪-⎪<-⎪⎩-<-+-①②③解不等式①得:x <2 .解不等式②得:x ≥-1 . 解不等式③得:x >-2 .∴不等式组的解集为-1≤x <2 . 故不等式组的整数解为-1,0,1 . 【总结升华】求不等式组的特殊解的一般步骤是先求出不等式组的解集,再从中找出符合要求的特殊解.举一反三:【变式】若关于不等式组1532223x x x x a +⎧>-⎪⎪⎨+⎪<+⎪⎩只有四个整数解,求a 的取值范围. 【答案】解:由1532x x +>-,得21x <, 由223x x a +<+,得32x a >-+,∴不等式组的解集为3221a x -+<<,∵只有四个整数解,∴163217a ≤-+<,即1453a -<≤-, ∴a 的取值范围:1453a -<≤-. 5. 某家电商场计划用32400元购进“家电下乡”指定产品中的电视机、冰箱、洗衣机共15台.三种家电的进价和售价如下表所示:价格 种类进价(元/台)售价(元/台)电视机 2000 2100 冰 箱 2400 2500 洗衣机16001700(1)在不超出现有资金的前提下,若购进电视机的数量和冰箱的数量相同,洗衣机数量不大于电视机数量的一半,商场有哪几种进货方案?(2)国家规定:农民购买家电后,可根据商场售价的13%领取补贴.在(1)的条件下,如果这15台家电全部销售给农民,国家财政最多需补贴农民多少元?【思路点拨】 (1)设购进电视机、冰箱各x 台,则洗衣机为(15-2x)台.根据两个关键词:“不大于”、“不超过”就可以建立不等式组,根据x 的取值讨论确定进货方案.(2)分别求出(1)中各方案所需的补贴,再比较确定国家财政的最多补贴. 【答案与解析】解:(1)设购进电视机、冰箱各x 台.依题意,得11522200024001600(152)32400x xx x x ⎧-≤⎪⎨⎪++-≤⎩ 解这个不等式组得,6≤x ≤7∵ x 为正整数.∴ x =6或7.方案一:购进电视机和冰箱各6台,洗衣机3台; 方案二:购进电视机和冰箱各7台,洗衣机1台. (2)方案1需补贴:(6×2100+6×2500+3×1700)×13%=4251(元).方案二需补贴:(7×2100+7×2500+1×1700)×13%=4407(元). ∴ 国家财政最多需补贴农民4407元.【总结升华】利用不等式解答实际问题的策略是:①根据题意构建不等式(组);解这个不等式(组);②由不等式(组)的整数解的个数确定方案. 类型四、一次函数与一元一次方程、不等式(组)6.如图,直线y kx b =+经过A (-2,-1)和B (-3,0)两点,则不等式组102x kx b <+< 的解集为 .【答案】32x -<<-;【解析】从图象上看,y kx b =+的图象在x 轴下方,且在12y x =上方的图象为画红线的部分,而这部分的图象自变量x 的范围在32x -<<-.【总结升华】也可以先求出y kx b =+的解析式,然后解不等式得出结果. 举一反三:【变式】如图所示,直线y kx b =+经过点A(-1,-2)和点B(-2,0),直线2y x =过点A ,则不等式2x <kx b +<0的解集为( ) .A .x <-2B .-2<x <-1C .-2<x <0D .-1<x <0 【答案】B ;提示:由图象可知A(-1,-2)是直线y kx b =+与直线2y x =的交点,当x <-1时2x <kx b +,当x >-2时,kx b +<0,所以-2<x <-1是不等式2x <kx b +<0的解集.类型五、综合应用7.已知不等式组1034(1)1x m n x +⎧-≥⎪⎨⎪--<⎩的解集为322x <≤,试求m ,n 的值. 【答案与解析】 解:解不等式103x m +-≥,得31x m ≤-. 解不等式 n-4(x-1)<1,得34n x +>.因为不等式组的解集为322x <≤,所以有3123342m n -=⎧⎪⎨+=⎪⎩, ∴ 13m n =⎧⎨=⎩.答:m 、n 的值分别1和3.【总结升华】先分别求出每一个不等式的解集,再求出这个不等式组的解集,然后根据题意,建立关于m 、n 的方程求解.8.某商店购买60件A 商品和30件B 商品共用了1080元,购买50件A 商品和20件B 商品共用了880元.(1)A 、B 两种商品的单价分别是多少元?(2)已知该商店购买B 商品的件数比购买A 商品的件数的2倍少4件,如果需要购买A 、B 两种商品的总件数不少于32件,且该商店购买的A 、B 两种商品的总费用不超过296元,那么该商店有哪几种购买方案?【思路点拨】(1)设A 种商品的单价为x 元、B 种商品的单价为y 元,根据等量关系:①购买60件A 商品的钱数+30件B 商品的钱数=1080元,②购买50件A 商品的钱数+20件B 商品的钱数=880元分别列出方程,联立求解即可.(2)设购买A 商品的件数为m 件,则购买B 商品的件数为(2m ﹣4)件,根据不等关系:①购买A 、B 两种商品的总件数不少于32件,②购买的A 、B 两种商品的总费用不超过296元可分别列出不等式,联立求解可得出m 的取值范围,进而讨论各方案即可. 【答案与解析】解:(1)设A 种商品的单价为x 元、B 种商品的单价为y 元,由题意得:,解得.答:A 种商品的单价为16元、B 种商品的单价为4元.(2)设购买A 商品的件数为m 件,则购买B 商品的件数为(2m ﹣4)件,由题意得:,解得:12≤m ≤13, ∵m 是整数, ∴m=12或13, 故有如下两种方案:方案(1):m=12,2m ﹣4=20 即购买A 商品的件数为12件,则购买B 商品的件数为20件; 方案(2):m=13,2m ﹣4=22 即购买A 商品的件数为13件,则购买B 商品的件数为22件. 【总结升华】此题考查了一元一次不等式组及二元一次方程组的应用,解答此类应用类题目的关键是仔细审题,得出等量关系,从而转化为方程或不等式解题,第二问需要分类讨论,注意不要遗漏. 举一反三:【变式】某花农培育甲种花木2株,乙种花木3株,共需成本1700元;培育甲种花木3株,乙种花木1株,共需成本1500元.(1)求甲、乙两种花木每株成本分别为多少元?(2)据市场调研,1株甲种花木售价为760元, 1株乙种花木售价为540元.该花农决定在成本不超过30000元的前提下培育甲乙两种花木,若培育乙种花木的株数是甲种花木的3倍还多10株,那么要使总利润不少于21600元,花农有哪几种具体的培育方案? 【答案】解:(1)设甲、乙两种花木的成本价分别为x 元和y 元.由题意得:⎩⎨⎧=+=+15003170032y x y x , 解得:⎩⎨⎧==300400y x .(2)设种植甲种花木为a 株,则种植乙种花木为(3a+10)株.则有:400300(310)30000,(760400)(540300)(310)21600.a a a a ++≤⎧⎨-+-+≥⎩解得:132709160≤≤a . 由于a 为整数,∴a 可取18或19或20,所以有三种具体方案: ①种植甲种花木18株,种植乙种花木3a+10=64株; ②种植甲种花木19株,种植乙种花木3a+10=67株; ③种植甲种花木20株,种植乙种花木3a+10=70株.【巩固练习】一、选择题1.不等式组的所有整数解的和是( )A .2B .3C .5D .62.某商场的老板销售一种商品,他要以不低于进价20%价格才能出售,但为了获得更多利润,他以高出进价80%的价格标价.若你想买下标价为360元的这种商品,最多降价多少时商店老板才能出售( ).A .80元B .100元C .120元D .160元3.已知一次函数y ax b =+的图象过第一、二、四象限,且与x 轴交于点(2,0),则关于x 的不等式(1)0a x b -->的解集为( ).A .x <-1B .x > -1C . x >1D .x <14.若不等式组12x x k<≤⎧⎨>⎩ 有解,则k 的取值范围是( ).A.2k <B. 2k ≥C.1k <D. 12k ≤<5.如果不等式ax+4<0的解集在数轴上表示如图,那么a 的值是( ) .A .a >0B .a <0C .a=-2D .a=26. 中央电视台2套“开心辞典”栏目中,有一期的题目如图所示,两个天平都平衡,则与两个球体质量相等的正方体的个数为( ) .A .5B .4C .3D .27.如果一次函数当自变量的取值范围是时,函数值的取值范围是,那么此函数的解析式是( ) .A .B .C .或D .或8.已知关于x 的不等式组有且只有1个整数解,则a 的取值范围是( )A .a >1B .1≤a <2C .1<a ≤2D .a ≤2二、填空题9.如果关于x的不等式(a+1)x>a+1的解集为x<1,那么a的取值范围是.10.已知方程组⎩⎨⎧=+=-7325ayxyax的解满足⎩⎨⎧<>yx,则a的取值范围.11. 若不等式组⎩⎨⎧->+<121mxmx无解,则m的取值范围是.12.如图,直线y kx b=+经过A(2,1),B(-1,-2)两点,则不等式122x kx b>+>-的解集为__________.13.已知关于x的方程3k-5x=-9的解是非负数,求k的取值范围 .14.如果关于x的不等式组9080x ax b-≥⎧⎨-<⎩的整数解仅为1,2,3,则a的取值范围是,b 的取值范围是 .15. 为确保信息安全,信息需加密传输,发送方将明加密为密文传输给接收方,接收方收到密文后解密还原为明文.已知某种加密规则为:明文a,b对应的密文为a-2b,2a+b.例如,明文1,2对应的密文是-3,4,当接收方收到密文是1,7时,解密得到的明文是 .16.若不等式组:114111.5(1)()0.5(21)22xxa x a x x+⎧+>⎪⎪⎨⎪-+>-+-⎪⎩①②只有一个整数解,则a的取值范围.三、解答题17.解不等式组:,并把解集在数轴上表示出来.18.已知关于x的不等式组有四个整数解,求实数a的取值范围.19.某小区准备新建50个停车位,用以解决小区停车难的问题.已知新建1个地上停车位和1个地下停车位共需0.6万元;新建3个地上停车位和2个地下停车位共需1.3万元. (1)该小区新建1个地上停车位和1个地下停车位各需多少万元?(2)该小区的物业部门预计投资金额超过12万元而不超过13万元,那么共有几种建造停车位的方案?20. 某医药研究所开发了一种新药,在试验药效时发现,如果成人按规定剂量服用,那么服药2h后血液中的含药量最高,达每升6mg,接着逐步衰减,10h后血液中的含药量为每升3mg,每升血液中的含药量y mg随时间x h的变化情况如图所示.当成人按规定剂量服药后:(1)分别求出x≤2和x≥2时,y与x之间的函数关系式;(2)如果每升血液中的含药量为4mg或4mg以上时,治疗疾病是有效的,那么这个有效时间是多长?【答案与解析】一.选择题1.【答案】D .【解析】∵解不等式①得;x >﹣,解不等式②得;x≤3,∴不等式组的解集为﹣<x≤3,∴不等式组的整数解为0,1,2,3,0+1+2+3=6.2. 【答案】C ;【解析】解:设降价x 元时商店老板才能出售.则可得: 360-x ≥3601.8×(1+20%), 解得:x ≤120.3. 【答案】A ;【解析】一次函数y ax b =+的图象过第一、二、四象限,所以a <0,将(2, 0)代入y ax b =+,得20a b +=,所以()()1210a x b ax a a a x --=-+=+>,所以10,1x x +<<-.4. 【答案】A ;【解析】画数轴进行分析.5. 【答案】C ;【解析】由已知a <0且x >-a4,则-24=a ,即2a =-. 6. 【答案】A ;【解析】设一个球体、圆柱体与正方体的质量分别为x 、y 、z , 根据已知条件,有2522x y z y =⎧⎨=⎩①② ①×2-②×5,得2x =5y ,即与2个球体质量相等的正方体的个数为5.7. 【答案】C ;【解析】分k >0和k <0两种情况讨论.8. 【答案】B ;【解析】解:解不等式x ﹣a >0,得:x >a ,解不等式7﹣2x >1,得:x <3,∵不等式组有且只有1个整数解,∴不等式组的整数解为2,∴1≤a <2,故选:B .二.填空题9.【答案】a <﹣1.10.【答案】710a 157<-<; 【解析】方程组⎩⎨⎧=+=-7325ay x y ax 得:⎪⎪⎩⎪⎪⎨⎧+-=++=223210732715a a y a a x , 所以⎪⎪⎩⎪⎪⎨⎧<+->++03210703271522a a a a , ∴⎩⎨⎧<->+01070715a a 解得:-710157<<a . 11. 【答案】2≥m ;【解析】要使原不等式无解,则需满足211m m -≥+,得m ≥2.12. 【答案】-1<x <2;【解析】由于直线y kx b =+经过A (2,1),B (-1,-2)两点,那么把A 、B 两点的坐标代入y kx b =+,用待定系数法求出k 、b 的值,然后解不等式组122x kx b >+>-,即可求出解集.13.【答案】 k ≥-3;【解析】3k-5x=-9,x=935k +,930,5k +≥ 解得k ≥-3. 14. 【答案】09a <≤,2432b <≤;15.【答案】3,1;【解析】由于本密码的解密钥匙是: 明文a ,b 对应的密文为a-2b ,2a+b .故当密文是1,7时,得2127a b a b -=⎧⎨+=⎩, 解得31a b =⎧⎨=⎩. 也就是说,密文1,7分别对应明文3,1.16.【答案】1<a ≤2.【解析】先把a 看成一个固定数,解关于x 的不等式组,再由不等式组的解集研究a 的取值范围.三.解答题17.【解析】解:,由不等式①移项得:4x+x >1﹣6,整理得:5x >﹣5,解得:x >﹣1,…(1分)由不等式②去括号得:3x ﹣3≤x+5,移项得:3x ﹣x≤5+3,合并得:2x≤8,解得:x≤4,则不等式组的解集为﹣1<x≤4.在数轴上表示不等式组的解集如图所示,18.【解析】解:解不等式组,解不等式①得:x >﹣,解不等式②得:x ≤a+4,∵不等式组有四个整数解,∴1≤a+4<2,解得:﹣3≤a <﹣2.19.【解析】解:(1)设新建1个地上停车位需要x 万元,新建1个地下停车位需y 万元,根据题意,得0.632 1.3x y x y +=⎧⎨+=⎩, 解得:0.10.5x y =⎧⎨=⎩答:新建1个地上停车位需要0.1万元,新建1个地下停车位需0.5万元.(2)设建m 个地上停车位,则建(50-m )个地下停车位,根据题意,得12<0.1m+0.5(50-m )≤13,解得:30≤m<652∵m 为整数,∴m=30,31,32∴50-m=20,19,18.答:有三种建造方案:方案一:新建30个地上停车位和20个地下停车位;方案二:新建31个地上停车位和19个地下停车位;方案三:新建32个地上停车位和18个地下停车位.20. 【解析】解:(1)由图知,x ≤2时是正比例函数,x ≥2时是一次函数.设x ≤2时,y kx =,把(2,6)代入y kx =,解得k =3,∴ 当0≤x ≤2时,3y x =.设x ≥2时,y k x b '=+,把(2,6),(10,3)代入y k x b '=+中,得26103k b k b '+=⎧⎨'+=⎩,解得38274k b ⎧'=-⎪⎪⎨⎪=⎪⎩,即32784y x =-+.当y =0时,有327084x =-+,18x =.∴ 当2≤x ≤18时,32784y x =-+.(2)由于y ≥4时在治疗疾病是有效的,∴ 34327484x x ≥⎧⎪⎨-+≥⎪⎩,解得42233x ≤≤.即服药后43h 得到223h 为治病的有效时间,这段时间为224186()333h -==.。
北师大版八年级下学期数学期末培优检测卷(一)(含答案)
知识像烛光,能照亮一个人,也能照亮无数的人。--培根
∴BE=DF.
(2)∵AD=DF,∠ADF=40° ∴∠DAF=∠AFD=70° ∵AD∥BC ∴∠AFB=∠FAD=70°. 22.(1)证明:连接 AC 交 BD 于 O, ∵四边形 ABCD 是正方形, ∴BD⊥AC,BO=DO,AO=CO, ∵BF=DE= , ∴OE=OF, ∴四边形 AECF 是菱形; (2)解:∵四边形 ABCD 是边长为 1 的正方形, ∴AB=AD=1, ∴BD=AC= , ∴EF=3 ,
解得:x= ,
∴MN= , ∵CM2﹣MN2=AC2﹣AN2,
8 / 10
知识像烛光,能照亮一个人,也能照亮无数的人。--培根
∴CM2﹣(
)2=12﹣( )2,
解得:CM= ,
故 PA+PM 的最小值= .
五.解答题 23.解:(1)∵一次函数 l1:y=ax+1 与 x 轴交于 E(﹣2,0),
一.选择题 1. C. 2. C. 3. A. 4. C. 5. D. 6. D. 7. B. 8. C. 9. A.
参考答案
5 / 10
知识像烛光,能照亮一个人,也能照亮无数的人。--培根
10. D. 二.填空题 11.(a+1)100. 12. x≠1. 13. 7 或﹣1. 14. 2.5 15. 14. 16. a>2. 三.解答题
22.如图,四边形 ABCD 是边长为 1 的正方形,分别延长 BD,DB 至点 E,F,且 BF=DE= .连 接 AE,AF,CE,CF. (1)求证:四边形 AECF 是菱形; (2)求四边形 AECF 的面积; (3)如果 M 为 AF 的中点,P 为线段 EF 上的一动点,求 PA+PM 的最小值.
北师大版八年级下数学培优提高习题
八年级下“勇攀高峰”第1期(2015年3月)命题人:张志欣一.选择题(共7小题)1.如果关于x的不等式(a+2)x>a+2的解集为x<1,那么a的取值范围是()A.a>0 B.a<0 C.a>﹣2 D.a<﹣22.不等式组的解集在数轴上表示正确的是()A.B.C.D.3.已知不等式组的解集是x>5,则m的取值范围是()A.m>5 B.m≥5 C.m<5 D.m≤54.已知点M(1﹣2m,m﹣1)关于x轴的对称点在第二象限,则m的取值范围在数轴上表示正确的是()A.B. C.D.5.阅读理解:我们把称作二阶行列式,规定它的运算法则为=ad﹣bc,例如=1×4﹣2×3=﹣2,如果>0,则x的解集是()A.x>1 B.x<﹣1 C.x>3 D.x<﹣36.如图,直线y=﹣x+2与y=ax+b(a≠0且a,b为常数)的交点坐标为(3,﹣1),则关于x的不等式﹣x+2≥ax+b的解集为()A.x≥﹣1 B.x≥3 C.x≤﹣1 D.x≤37.已知关于x的不等式组有且只有1个整数解,则a的取值范围是()A.a>0 B.0≤a<1 C.0<a≤1 D.a≤1二.填空题(共5小题)8.不等式组的最小整数解是.9.已知不等式组的解集为x>3,则a的取值范围是.10.已知不等式3x﹣a≤0的解集为x≤5,则a的值为.11.如果1<x<2,则(x﹣1)(x﹣2)0.(填写“>”、“<”或“=”)三.解答题(共5小题)12.代数式的值不大于的值,求x的取值范围.13.解不等式组:14.解不等式组,并求其整数解.15. 某电器商场销售A、B两种型号计算器,两种计算器的进货价格分别为每台30元,40元,商场销售5台A型号和1台B型号计算器,可获利润76元;销售6台A型号和3台B型号计算器,可获利润120元.(1)求商场销售A、B两种型号计算器的销售价格分别是多少元?(利润=销售价格﹣进货价格)(2)商场准备用不多于2500元的资金购进A、B两种型号计算器共70台,问最少需要购进A型号的计算器多少台?。
北师大版八年级下册2.5 一元一次不等式和一次函数培优拔尖同步习题(附答案)
2.5 一元一次不等式与一次函数培优拔尖同步习题一.选择题(共6小题)1.如图,直线y=kx﹣b与横轴、纵轴的交点分别是(m,0),(0,n),则关于x的不等式kx﹣b≥0的解集为()A.x≥m B.x≤m C.x≥n D.x≤n2.如图,函数y=ax+4和y=2x的图象相交于点A(m,3),则不等式ax+4>2x的解集为()A.x B.x<3 C.x D.x>33.在平面直角坐标系中,若直线y=x+n与直线y=mx+6(m、n为常数,m<0)相交于点P(3,5),则关于x的不等式x+n+1<mx+7的解集是()A.x<3 B.x<4 C.x>4 D.x>64.同一直角坐标系中,一次函数y1=k1x+b与正比例函数y2=k2x的图象如图所示,则满足y1≥y2的x取值范围是()A.x≤﹣2 B.x≥﹣2 C.x<﹣2 D.x>﹣25.如图,已知直线y1=x+m与y2=kx﹣1相交于点P(﹣1,1),则关于x的不等式x+m >kx﹣1的解集在数轴上表示正确的是()A.B.C.D.6.如图,正比例函数y1=ax与一次函数y2=x+b的图象交于点P.下面四个结论:①a <0;②b<0;③不等式ax>x+b的解集是x<﹣2;④当x>0时,y1y2>0.其中正确的是()A.①②B.②③C.①④D.①③二.填空题(共7小题)7.如图是函数y=kx+b的图象,它与x轴的交点坐标是(﹣3,0),则方程kx+b=0的解是,不等式kx+b>0的解集是.8.函数y1=k1x+b1与y2=k2x+b2在同一平面直角坐标系中的图象如图所示,则关于x的不等式y1>y2的解集为.9.若直线l1:y1=k1x+b1经过点(0,3),l2:y2=k2x+b2经过点(3,1),且l1与l2关于x轴对称,则关于x的不等式k1x+b1>k2x+b2的解集为.10.如图,直线y=kx+b经过A(2,1),B(﹣1,﹣2)两点,则不等式﹣2<kx+b<1的解集为.11.如图所示,函数y2=ax+b和y1=|x|的图象相交于(﹣1,1),(2,2)两点.当y1>y2时,x的取值范围是.12.已知点P(x,y)位于第二象限,并且y≤x+4,x、y为整数,符合上述条件的点P共有个.13.对于实数a,b,定义符号min{a,b},其意义为:当a≥b时,min{a,b}=b;当a<b 时,min{a,b}=a.例如:min={2,﹣1}=﹣1,若关于x的函数y=min{2x﹣1,﹣x+3},则该函数的最大值为.三.解答题(共7小题)14.已知直线y=kx+b经过点A(5,0)B(1,4),并与直线y=2x﹣4相交于点C,求关于x的不等式2x﹣4<kx+b的正整数解.15.已知一次函数y1=kx+2(k为常数,k≠0)和y2=x﹣3.(1)当k=﹣2时,若y1>y2,求x的取值范围.(2)当x<1时,y1>y2.结合图象,直接写出k的取值范围.16.(1)画出一次函数y=﹣3x+6的图象;(2)利用(1)中的图象求:①方程﹣3x+6=0的解;②不等式﹣3x+6<0的解集;③当x<0时,直接写出y的取值范围.17.如图,直线l1:y1=﹣x+b分别与x轴、y轴交于点A、点B,与直线l2:y2=x交于点C(2,2).(1)若y1<y2,请直接写出x的取值范围;(2)点P在直线l1:y1=﹣x+b上,且△OPC的面积为3,求点P的坐标?18.已知点A(6,6)在直线l1:y=kx﹣3上,(1)直线l1解析式为;(2)画出该一次函数的图象;(3)将直线l1向上平移5个单位长度得到直线l2,l2与x轴的交点C的坐标为;(4)直线l2与直线OA相交于点B,B点坐标为;(5)三角形ABC的面积为;(6)由图象可知不等式kx﹣3<x的解集为.19.如图,在平面直角坐标系中,一次函数y=kx+b的图象经过点A(﹣2,6),且与x轴相交于点B,与正比例函数y=3x的图象相交于点C,点C的横坐标为1.(1)求k、b的值;(2)请直接写出不等式kx+b﹣3x>0的解集.(3)若点D在y轴上,且满足S△BCD=2S△BOC,求点D的坐标.20.如图,直线y1=﹣x+b与x轴交于点A,与y轴交于点B,与直线y2=x交于点E,点E的横坐标为3.(1)直接写出b值:;(2)当x取何值时,0<y1≤y2?(3)在x轴上有一点P(m,0),过点P作x轴的垂线,与直线y1=﹣x+b交于点C,与直线y2=x交于点D,若CD=2OB,求m的值.参考答案一.选择题(共6小题)1.【解答】解:∵要求kx﹣b≥0的解集,∴从图象上可以看出等y>0时,x≥m.故选:A.2.【解答】解:∵函数y=2x过点A(m,3),∴2m=3,解得:m=,∴A(,3),∴不等式ax+4>2x的解集为x<.故选:A.3.【解答】解:∵直线y=x+n从左向右逐渐上升,直线y=mx+6(m、n为常数,m<0)从左向右逐渐下降,且两直线相交于点P(3,5)∴当x<3时,x+n<mx+6,∴x+n+1<mx+7.故选:A.4.【解答】解:当x≤﹣2时,直线l1:y1=k1x+b1都在直线l2:y2=k2x的上方,即y1≥y2.故选:A.5.【解答】解:∵直线y1=x+m与y2=kx﹣1相交于点P(﹣1,1),∴根据图象可知:关于x的不等式x+m>kx﹣1的解集是x>﹣1,在数轴上表示为:,故选:B.6.【解答】解:因为正比例函数y1=ax经过二、四象限,所以a<0,①正确;一次函数y2=x+b经过一、二、三象限,所以b>0,②错误;由图象可得:不等式ax>x+b的解集是x<﹣2,③正确;当x>0时,y1y2<0,④错误;故选:D.二.填空题(共7小题)7.【解答】解:∵函数y=kx+b的图象与x轴的交点坐标是(﹣3,0),∴方程kx+b=0的解是x=﹣3,不等式kx+b>0的解集是x<﹣3.故答案为x=﹣3;x=﹣3.8.【解答】解:由图可得,当x>2时,k1x+b1>k2x+b2,所以不等式y1>y2的解集为x>2.故答案为:x>2.9.【解答】解:依题意得:直线l1:y1=k1x+b1经过点(0,3),(3,﹣1),则.解得.故直线l1:y1=x+3.所以,直线l2:y2=x﹣3.由k1x+b1>k2x+b2的得到:x+3>x﹣3.解得x<.故答案是:x<.10.【解答】解:由题意可得:一次函数图象在y=1的下方时x<2,在y=﹣2的上方时x >﹣1,∴关于x的不等式﹣2<kx+b<1的解集是﹣1<x<2故答案为:﹣1<x<2.11.【解答】解:∵函数y=ax+b和y=|x|的图象相交于(﹣1,1),(2,2)两点,∴根据图象可以看出,当y1>y2时,x的取值范围是x>2或x<﹣1,故答案为:x<﹣1或x>2.12.【解答】解:∵已知点P(x,y)位于第二象限,∴x<0,y>0,又∵y≤x+4,∴0<y<4,x<0,又∵x、y为整数,∴当y=1时,x可取﹣3,﹣2,﹣1,当y=2时,x可取﹣1,﹣2,当y=3时,x可取﹣1.则P坐标为(﹣1,1),(﹣1,2),(﹣1,3),(﹣2,1),(﹣2,2),(﹣3,1)共6个.故答案为:613.【解答】解:由题意得:,解得:,当2x﹣1≥﹣x+3时,x≥,∴当x≥时,y=min{2x﹣1,﹣x+3}=﹣x+3,由图象可知:此时该函数的最大值为;当2x﹣1≤﹣x+3时,x≤,∴当x≤时,y=min{2x﹣1,﹣x+3}=2x﹣1,由图象可知:此时该函数的最大值为;综上所述,y=min{2x﹣1,﹣x+3}的最大值是当x=所对应的y的值,如图所示,当x=时,y=,故答案为:.三.解答题(共7小题)14.【解答】解:∵直线y=kx+b经过点A(5,0),B(1,4),∴,解得,∴直线AB的解析式为:y=﹣x+5;∵若直线y=2x﹣4与直线AB相交于点C,∴.解得,∴点C(3,2);根据图象可得:关于x的不等式2x﹣4<kx+b的解集为:x<3,∴关于x的不等式2x﹣4<kx+b的正整数解是1,2.15.【解答】解:(1)k=﹣2时,y1=﹣2x+2,根据题意得﹣2x+2>x﹣3,解得x<;(2)当x=1时,y=x﹣3=﹣2,把(1,﹣2)代入y1=kx+2得k+2=﹣2,解得k=﹣4,当﹣4≤k<0时,y1>y2;当0<k≤1时,y1>y2.所以k的范围为﹣4≤k≤1且k≠0.16.【解答】解:(1)当x=0时,y=6;当y=0时,x=2.即该直线经过点(0,6)和(2,0),其图象如图所示:;(2)①由于一次函数y=﹣3x+6的图象与x轴的交点坐标是(2,0),所以方程﹣3x+6=0的解是x=2;②由一次函数y=﹣3x+6的图象知,不等式﹣3x+6<0的解集是x>2;③由一次函数y=﹣3x+6的图象,当x<0时,y>6.17.【解答】解:(1)∵直线l1:y1=﹣x+b与直线l2:y2=x交于点C(2,2),∴当y1<y2时,x>2;(2)将(2,2)代入y1=﹣x+b,得b=3,∴y1=﹣x+3,∴A(6,0),B(0,3),∴S△BOC=×3×2=3,当点P与点B重合时,△OPC的面积为3,此时,P(0,3);当点P在射线CA上时,点C为PB的中点,设点P的坐标为(a,b),则=2,=2,解得a=4,b=1,∴P(4,1),综上所述,点P的坐标为(0,3)或(4,1).18.【解答】解:(1)∵点A(6,6)在直线l1:y=kx﹣3上,∴6=6k﹣3,即k=,∴直线l1解析式为:;故答案为:;(2)令x=0,则y=﹣3;令y=0,则x=2;函数图象如图:(3)将直线l1向上平移5个单位长度得到直线l2,则l2的解析式为y=x+2,当y=0时,0=x+2,解得x=﹣,∴;故答案为:;(4)由题可得,直线OA的解析式为y=x,解方程组,可得,∴B(﹣4,﹣4);故答案为:(﹣4,﹣4);(5)由A(6,6),B(﹣4,﹣4),,可得S△ABC=S△AOC+S△BOC=××(6+4)=;故答案为:;(6)由图象可知不等式kx﹣3<x的解集为:x<6.故答案为:x<6.19.【解答】解:(1)当x=1时,y=3x=3,∴点C的坐标为(1,3).将A(﹣2,6)、C(1,3)代入y=kx+b,得:解得:;(2)由kx+b﹣3x>0,得kx+b>3x,∵点C的横坐标为1,∴x<1;(3)由(1)直线AB:y=﹣x+4当y=0时,有﹣x+4=0,解得:x=4,∴点B的坐标为(4,0).设点D的坐标为(0,m),∴直线DB:y=,过点C作CE∥y轴,交BD于点E,则E(1,),∴CE=|3﹣|∴S△BCD=S△CED+S△CEB==|3﹣|×4=2|3﹣|.∵S△BCD=2S△BOC,即2|3﹣|=×4×3×2,解得:m=﹣4或12,∴点D的坐标为D(0,﹣4)或D(0,12).20.【解答】解:(1)点E在直线y2=x上,点E的横坐标为3.∴E(3,3)代入直线y1=﹣x+b得,b=4,故答案为:4.(2)直线y1=﹣x+4得与x轴交点A的坐标为(12,0),由图象可知:当0<y1≤y2时,相应的x的值为:3≤x<12.(3)当x=0时,y=4,∴B(0,4),即:OB=4,∴CD=2OB=8,∵点C在直线y1=﹣x+4上,点D在直线y2=x上,∴(﹣x+4 )﹣x=8或x﹣(﹣x+4 )=8,解得:x=﹣3或x=9,即:m=﹣3或m=9.答:m的值为﹣3或9.。
专题11 一元一次不等式的应用(原卷版)
2022-2023学年北师大八年级数学下册精选压轴题培优卷专题11 一元一次不等式的应用姓名:___________班级:___________考号:___________题号一二三总分得分评卷人得分一.选择题(共10小题,满分20分,每小题2分)1.(2分)(2021秋•港南区期末)某种商品进价为700元,标价1100元,由于该商品积压,商店准备打折销售,但要保证利润率不低于10%,则至多可以打( )折.A.9B.8C.7D.62.(2分)(2021春•毕节市月考)2020年5月,毕节的所有学校复课之前必须购置一批防疫物资,其中有20支水银温度计,体温枪若干支.水银温度计每支5元,体温枪每支180元,如果总费用超过1000元,那么体温枪至少有( )A.4支B.5支C.6支D.7支3.(2分)(2021春•武侯区校级期中)静怡准备用70元在文具店买A,B两种笔记本共7本,A种笔记本每本10元,B种笔记本每本8元,如果至少要买4本A种笔记本,请问静怡购买的方案有( )A.2种B.3种C.4种D.5种4.(2分)(2021春•舞阳县期末)新冠病毒肺炎疫情防控期间,某校为达到开学复课标准,购进一批新桌椅.学校组织100名教师搬桌椅,规定一人一次搬两把椅子,两人一次搬一张桌子,每人限搬一次,最多可搬桌椅(一桌一椅为一套)的套数为( )A.40B.30C.20D.105.(2分)(2021春•牡丹区期中)某商品进价是6000元,标价是9000元,商店要求利润率不低于5%,需按标价打折出售,最低可以打( )A.8折B.7折C.7.5折D.8.5折6.(2分)(2018秋•慈溪市期末)某经销商销售一批多功能手表,第一个月以200元/块的价格售出80块,第二个月起降价,以150元/块的价格将这批手表全部售出,销售总额超过了2.7万元,则这批手表至少有( )A.152块B.153块C.154块D.155块7.(2分)(2018春•文山州期末)学校准备用3000元购买口琴和笛子作为校园歌手大赛的奖品,其中笛子每支80元,口琴每把200元,现已经购买笛子21支,最多还能购买( )把口琴.A.5B.6C.7D.88.(2分)(2016•合肥校级一模)甲在集市上先买了3只羊,平均每只a元,稍后又买了2只,平均每只羊b元,后来他以每只元的价格把羊全卖给了乙,结果发现赔了钱,赔钱的原因是( )A.a>b B.a=bC.a<b D.与a、b大小无关9.(2分)(2021春•青岛期末)某校20名同学去工厂进行暑假实践活动,每名同学每天可以加工甲种零件5个或乙种零件4个,已知每加工一个甲种零件可获利16元,每加工一个乙种零件可获利24元,若要使车间每天获利不低于1800元,加工乙种零件的同学至少为( )A.11B.12C.13D.1410.(2分)(2019春•稷山县期末)电话手表轻巧方便,一经推出倍受青睐.某经销商销售一批电话手表,第一个月以550元/块的价格售出60块,第二个月起降价,以500元/块的价格将这批电话手表全部售出,销售总额超过了5.5万元.这批电话手表至少有( )A.103块B.104块C.105块D.106块评卷人得分二.填空题(共10小题,满分20分,每小题2分)11.(2分)(2022春•巴南区期末)临近端午,甲、乙两食品厂商分别承接制作白粽,肉粽和蛋黄粽的任务,甲厂商安排200名工人制作白粽和肉粽,每人只能制作其中一种粽子,乙厂商安排100名工人制作蛋黄粽,其中肉粽的人均制作数量比白粽的人均制作数量少20个,蛋黄粽的人均制作数量比肉粽的人均制作数量少20%,若本次制作的白粽、肉粽和蛋黄粽三种粽子的人均制作数量比肉粽的人均制作数量多20%,且制作白粽的人数不高于制作肉粽的人数的3倍,则本次可制作的粽子数量最多为m个,这里的m = .12.(2分)(2022春•禅城区校级月考)某种家用小电器的进价为每件200元,以每件300元的标价出售,由于电器积压,商店准备打折销售,但要保证利润率不低于5%,则最低可按标价的 折出售.13.(2分)(2022春•电白区期末)一次普法知识竞赛共有30道题,规定答对一题得4分,答错或者不答扣一分,在这次竞赛中小明获得优秀(不低于90分),则他至少答对了 道题.14.(2分)(2021秋•沙坪坝区校级期末)2022年北京冬奥会已经越来越近了,这是我国重要历史节点的重大标志性活动,更是全国人民的一次冰雪运动盛宴.与此同时北京冬奥会吉祥物冰墩墩也受到人们的喜爱,关于冰墩墩的各种周边纪念品:徽章、风铃、抱枕、公仔正在某商场火热销售中.已知徽章和抱枕的价格相同,公仔的单价是风铃的两倍,且徽章和风铃的单价之和不超过120元.元旦节期间,徽章的销售数量是公仔数量的2倍,风铃和抱枕的销售数量相同,其中徽章和风铃共卖出120件,抱枕和公仔的销售总额比风铃和徽章的销售总额多2200元,则徽章和风铃销售总额的最大值是 元.15.(2分)(2021春•神木市期末)为扩大十四运影响力,充分展现陕西人文风貌,某县欲印制一批宣传册,该宣传册每本共10页,由A、B两种彩页构成,其中A种彩页4页,B种彩页6页.已知A种彩页印刷费为2.5元/页,B彩页印刷费为1.5元/页,若要求这批宣传册的总印刷费不超过28500元,则最多能印制这种宣传册 册.16.(2分)(2021春•青山区期中)制作糕点的张师傅现有面粉460千克,武汉成为新冠肺炎的重灾区后,张师傅想把这些面粉制作成A、B两种型号的糕点,装盒后送给武汉的医护人员,已知每盒可以装2块A 和4块B,而制作1块A需要0.05千克的面粉,制作1块B需要0.02千克面粉,每盒都装满,他最多能制作这样的糕点 盒.17.(2分)(2022春•五常市期末)用10元钱买一包牛奶钱不足,打九折后钱又有剩余,如果牛奶的标价是整数元,那么标价是 元.18.(2分)(2021春•开州区期末)某公司以A、B两种材料,利用不同的搭配方式推出了两款产品,其中,甲产品每份含2克A、2克B;乙产品每份含2克A、1克B,甲乙两种产品每份成本价分别为A、B两种材料的成本之和,若甲产品每份成本为16元,公司在核算成本的时候把A、B两种材料单价看反了,实际成本比核算时的成本多760元,如果每天甲销量的4倍和乙销量的3倍之和不超过120份,那么公司每天的实际成本最多为 元.19.(2分)(2019春•沙坪坝区校级期末)为迎接建国70周年,某商店购进A,B,C三种纪念品共若干件,且A,B,C三种纪念品的数量之比为8:7:9.一段时间后,根据销售情况,补充三种纪念品后,库存总数量比第一次多200件,且A,B,C三种纪念品的比例为9:10:10.又一段时间后,根据销售情况,再次补充三种纪念品,库存总数量比第二次多170件,且A,B,C三种纪念品的比例为7:6:6.已知第一次三种纪念品总数量不超过1000件,则第一次购进A种纪念品 件.20.(2分)(2021春•奉化区校级期中)我校为组织八年级的234名同学去看电影,租用了某公交公司的几辆公共汽车.如果每辆车坐30人,则最后一辆车不空也不满.他们共租了 辆公共汽车.评卷人得分三.解答题(共10小题,满分60分,每小题6分)21.(6分)(2022春•渝中区校级月考)“感受生命律动,聆听花开声音”,鲁能巴蜀中学生物组老师组织初二年级同学开展“开心农场”活动.生物组老师准备去市场购买辣椒种子和樱桃萝卜种子,计划用492元购买两种种子共72袋.已知辣椒种子的售价为每袋6元,樱桃萝卜种子的售价为每袋8元.(1)求计划购买辣椒种子和樱桃萝卜种子各多少袋;(2)生物组老师去市场购买种子时,发现市场正在进行促销,辣椒种子的售价每袋下降了5a元,樱桃萝卜种子的售价每袋打八折,老师决定按原计划数量购买辣椒种子,而樱桃萝卜种子比原计划多购买了50a袋,这样实际使用的经费比原计划经费节省了至少15元.求a的最大值.22.(6分)(2022春•城阳区期中)某校学生会组织七年级和八年级共100名同学参加垃圾分类志愿者活动,七年级学生平均没人收集15个废弃塑料瓶,八年级学生平均每人收集20个废弃塑料瓶,为了保证所收集的塑料瓶总数不少于1800个,至少需要多少名八年级学生参加活动?23.(6分)(2022春•城阳区期中)2022年北京冬奥会掀起“一墩难求”热潮,由于供货紧张,某商场第一次采购雪容融10个和冰墩墩15个,采购总价为510元,第二次采购冰墩墩20个,采购雪容融数量是冰墩墩的,采购总价720元.(1)雪容融和冰墩墩的进货单价各是多少元?(2)商家决定采购冰墩墩的数量比雪容融数量的倍多15个,在采购总价不超过1290元的情况下,冰墩墩最多能购进多少个?24.(6分)(2022春•凌海市期中)“五一”期间甲、乙旅行社假期搞组团促销活动.甲旅行社说:“如果带队团长买全票一张,则其余的员工可享受半价优惠.”乙旅行社说:“包括团长在内全部按票价的六折优惠.”若全票价为2000元,两家旅行社的服务质量相同,根据员工的人数(不包括团长)你认为选择哪一家旅行社才比较合算?25.(6分)(2022春•榆次区期中)电影《长津湖》以抗美援朝时的长津湖战役为背景,讲述了一段波澜壮阔的历史:72年前,中国人民志愿军赴朝作战,在极寒严酷环境下,东线作战部队凭着钢铁意志和英勇无畏的战斗精神一路追击,奋勇杀敌,扭转战役局势,打出了军威国威.某中学为了培养学生的爱国主义情怀,准备先组织师生共100人进行观影活动,已知学生票每张38元,成人票每张60元,若总费用不超过4000元,最多可以安排几名教师参加此次观影活动?26.(6分)(2022春•漳州期中)天运羽毛球馆有两种计费方案,如表,钟老师打算和朋友们周末去该羽毛球馆连续打球4小时,经球馆管理员测算后,告知他们包场计费会比人数计费便宜,则他们参与包场的人数至少为多少人?包场计费每场每小时50元,每人须另付入场费5元人数计费前两小时每人每小时10元,两小时之后每人每小时6元27.(6分)(2022春•金水区校级期末)某公司40名员工到一景点集体参观,景点门票价格为30元/人.该景点规定满40人可以购买团体票,票价打八折,这天恰逢妇女节,该景点做活动,女士票价打五折,但不能同时享受两种优惠,请你通过计算帮助他们选择购票方案.28.(6分)(2022•同心县二模)雾霾天气持续笼罩我国大部分地区,困扰着广大市民的生活,口罩市场出现热销,小明的爸爸用12000元购进甲、乙两种型号的口罩在自家商店销售,销售完后共获利2700元,进价和售价如表:甲型口罩乙型口罩品名价格进价(元/袋)2030售价(元/袋)2536(1)小明爸爸的商店购进甲、乙两种型号口罩各多少袋?(2)该商店第二次以原价购进甲、乙两种型号口罩,购进甲种型号口罩袋数不变,而购进乙种型号口罩袋数是第一次的2倍,甲种口罩按原售价出售,而效果更好的乙种口罩打折让利销售,若两种型号的口罩全部售完,要使第二次销售活动获利不少于2460元,每袋乙种型号的口罩最多打几折?29.(6分)(2022秋•海曙区期中)哈六十九中校团委为了教育学生,开展了以感恩为主题的有奖征文活动,并为获奖的同学颁发奖品.小红与小明去文化商店购买甲、乙两种笔记本作为奖品,若买甲种笔记本20个,乙种笔记本10个,共用110元,且买甲种笔记本30个比买乙种笔记本20个少花10元.(1)求甲、乙两种笔记本的单价各是多少元?(2)若本次购进甲种笔记本的数量比乙种笔记本的数量的2倍还少10个,且购买这两种笔记本的总金额不超过320元,求本次乙种笔记本最多购买多少个?30.(6分)(2019春•滕州市期中)为了提倡低碳经济,某公司为了更好得节约能源,决定购买节省能源的10台新机器.现有甲、乙两种型号的设备供选择,其中每台的价格、工作量如下表:甲型乙型价格(万元/台)1210产量(吨/月)240180(1)经预算:该公司购买的节能设备的资金不超过110万元,请列式解答有几种购买方案可供选择;(2)在(1)的条件下,若每月要求产量不低于2040吨,为了节约资金,请你设计一种最省钱的购买方案.。
北师版八下数学不等式培优
一、选择题1. 如果a 、b 表示两个负数,且a <b ,则( ).(A)1>ba (B)ba <1 (C)ba 11< (D)ab <12. a 、b 是有理数,下列各式中成立的是( ).(A)若a >b ,则a 2>b 2 (B)若a 2>b 2,则a >b (C)若a ≠b ,则|a |≠|b | (D)若|a |≠|b |,则a ≠b 3. |a |+a 的值一定是( ).(A)大于零 (B)小于零 (C)不大于零 (D)不小于零 4. 若由x <y 可得到ax >ay ,应满足的条件是( ).(A)a ≥0 (B)a ≤0 (C)a >0 (D)a <0 5. 若不等式(a +1)x >a +1的解集是x <1,则a 必满足( ).(A)a <0 (B)a >-1 (C)a <-1 (D)a <16. 九年级(1)班的几个同学,毕业前合影留念,每人交0.70元.一张彩色底片0.68元,扩印一张相片0.50元,每人分一张.在收来的钱尽量用掉的前提下,这张相片上的同学最少有( ). (A)2人 (B)3人 (C)4人 (D)5人 7. 某市出租车的收费标准是:起步价7元,超过3km 时,每增加1km 加收2.4元(不足1km 按1km 计).某人乘这种出租车从甲地到乙地共支付车费19元,设此人从甲地到乙地经过的路程是x km ,那么x 的最大值是( ). (A)11 (B)8 (C)7 (D)5 8. 若不等式组⎩⎨⎧>≤<kx x ,21有解,则k 的取值范围是( ).(A)k <2(B)k ≥2(C)k <1(D)1≤k <29. 不等式组⎩⎨⎧+>+<+1,159m x x x 的解集是x >2,则m 的取值范围是( ).(A)m ≤2(B)m ≥2(C)m ≤1(D)m ≥110. 对于整数a ,b ,c ,d ,定义bd ac cd ba -=,已知3411<<d b,则b +d 的值为_________. 11. 如果a 2x >a 2y (a ≠0).那么x ______y . 12. 若x 是非负数,则5231x-≤-的解集是______. 13. 已知(x -2)2+|2x -3y -a |=0,y 是正数,则a 的取值范围是______. 14. 6月1日起,某超市开始有偿..提供可重复使用的三种环保购物袋,每只售价分别为1元、2元和3元,这三种环保购物袋每只最多分别能装大米3千克、5千克和8千克.6月7日,小星和爸爸在该超市选购了3只环保购物袋用来装刚买的20千克散装大米,他们选购的3只环保购物袋至少..应付给超市______元.15. 若m >5,试用m 表示出不等式(5-m )x >1-m 的解集______.16. 乐天借到一本72页的图书,要在10天之内读完,开始两天每天只读5页,那么以后几天里每天至少要读多少页?设以后几天里每天要读x 页,列出的不等式为______.17. k 满足______时,方程组⎩⎨⎧=-=+4,2y x k y x 中的x 大于1,y 小于1.18. 2(2x -3)<5(x -1). 10-3(x +6)≤1. 19. ⋅-->+22531x x⋅-≥--+612131y y y20. ).1(32)]1(21[21-<---x x x x⋅->+-+2503.0.02.003.05.09.04.0x x x三、解不等式组21. ⎪⎪⎩⎪⎪⎨⎧<+->+--.1)]3(2[21,312233x x x x x ⎪⎪⎪⎩⎪⎪⎪⎨⎧⋅>-->-->-24,255,13x x x x x x22. 解不等式组⎪⎩⎪⎨⎧-<-->-->+.3273,4536,7342x x x x x x四、变式练习23. 若m 、n 为有理数,解关于x 的不等式(-m 2-1)x >n .24. .已知关于x ,y 的方程组⎩⎨⎧-=++=+134,123p y x p y x 的解满足x >y ,求p 的取值范围.25. 已知方程组⎩⎨⎧-=++=+②①m y x m y x 12,312的解满足x +y <0,求m 的取值范围.26. 适当选择a 的取值范围,使1.7<x <a 的整数解:(1) x 只有一个整数解; (2) x 一个整数解也没有. 27. 当310)3(2k k -<-时,求关于x 的不等式k x x k ->-4)5(的解集.28. 已知A =2x 2+3x +2,B =2x 2-4x -5,试比较A 与B 的大小.29. (类型相同)当k 取何值时,方程组⎩⎨⎧-=+=-52,53y x k y x 的解x ,y 都是负数.30. (类型相同)已知⎩⎨⎧+=+=+122,42k y x k y x 中的x ,y 满足0<y -x <1,求k 的取值范围.31. 已知a 是自然数,关于x 的不等式组⎩⎨⎧>-≥-02,43x a x 的解集是x >2,求a 的值.32. 关于x 的不等式组⎩⎨⎧->-≥-123,0x a x 的整数解共有5个,求a 的取值范围.33. (类型相同)k 取哪些整数时,关于x 的方程5x +4=16k -x 的根大于2且小于10?34. (类型相同)已知关于x ,y 的方程组⎩⎨⎧-=-+=+34,72m y x m y x 的解为正数,求m 的取值范围.35. 若关于x 的不等式组⎪⎪⎩⎪⎪⎨⎧+<+->+a x x x x 322,3215只有4个整数解,求a 的取值范围.五、解答题36. 一个工程队原定在10天内至少要挖掘600m 3的土方.在前两天共完成了120m 3后,接到要求要提前2天完成掘土任务.问以后几天内,平均每天至少要挖掘多少土方?37. 某城市平均每天产生垃圾700吨,由甲、乙两个垃圾厂处理.如果甲厂每小时可处理垃圾55吨,需花费550元;乙厂每小时处理45吨,需花费495元.如果规定该城市每天用于处理垃圾的费用的和不能超过7150元,问甲厂每天至少要处理多少吨垃圾?38. 若干名学生,若干间宿舍,若每间住4人将有20人无法安排住处;若每间住8人,则有一间宿舍的人不空也不满.问学生有多少人?宿舍有几间?39. 某零件制造车间有20名工人,已知每名工人每天可制造甲种零件6个或乙种零件5个,且每制造一个甲种零件可获利150元,每制造一个乙种零件可获利260元.在这20名工人中,车间每天安排x 名工人制造甲种零件,其余工人制造乙种零件.(1) 若此车间每天所获利润为y (元),用x 的代数式表示y .40.某单位要印刷一批宣传资料,在需要支付制版费600元和每份资料0.3元印刷费的前提下,甲、乙两个印刷厂分别提出了不同的优惠条件,甲印刷厂提出:凡印刷数量超过2000份的,超过部分的印刷费可按9折收费;乙印刷厂提出:凡印刷数量超过3000份的,超过部分印刷费可按8折收费.(1)若该单位要印刷2400份宣传资料,则甲印刷厂的费用是______,乙印刷厂的费用是______.(2)根据印刷数量大小,请讨论该单位到哪家印刷厂印刷资料可获得更大优惠?41.2008年5月12日,汶川发生了里氏8.0级地震,给当地人民造成了巨大的损失.某中学全体师生积极捐款,其中九年级的3个班学生的捐款金额如下表:老师统计时不小心把墨水滴到了其中两个班级的捐款金额上,但他知道下面三条信息:信息一:这三个班的捐款总金额是7700元;信息二:二班的捐款金额比三班的捐款金额多300元;信息三:一班学生平均每人捐款的金额大于..48元,小于..51元.请根据以上信息,帮助老师解决:(1)二班与三班的捐款金额各是多少元?(2)一班的学生人数是多少?42.某学校计划组织385名师生租车旅游,现知道出租公司有42座和60座客车,42座客车的租金为每辆320元,60座客车的租金为每辆460元.(1)若学校单独租用这两种客车各需多少钱?(2)若学校同时租用这两种客车8辆(可以坐不满),而且比单独租用一种车辆节省租金,请选择最节省的租车方案.43.在“5·12大地震”灾民安置工作中,某企业接到一批生产甲种板材24000m2和乙种板材12000m2的任务.某灾民安置点计划用该企业生产的这批板材搭建A,B两种型号的板房共400间,在搭建过程中,按实际需要调运这两种板材.已知建一间A型板房和一间B型板房所需板材及能安置的人数如下表所示:板房型号甲种板材乙种板材安置人数A型板房54 m226 m2 5B型板房78 m241 m28问:这400(1)若不等式组⎩⎨⎧≥>a x x 2的解集是2>x ,则a 的取值范围为 (2)若不等式组⎩⎨⎧≥≤ax x 2的解集时2≤≤x a ,则a 的取值范围为 (3)若不等式组⎩⎨⎧≥≤a x x 2无解,则a 的取值范围为 2.若不等式组⎩⎨⎧≤>ax x 0只含有三个整数1、2和3,则a 的取值范围为 ;变式1:若不等式组⎩⎨⎧<>a x x 0只含有三个整数1、2和3,则a 的取值范围为 ; 变式2:关于x 的不等式组010x a x ->⎧⎨->⎩,只有3个整数解,则a 的取值范围是 ;3.若不等式组12x x m<≤⎧⎨>⎩有解,则m 的取值范围是( ).A .m<2 B .m≥2 C .m<1 D .1≤m<24. 不等式a ≤x ≤3只有5个整数解,则a 的范围是 5、已知a b <<0,那么下列不等式组中有解的是 ( )A .⎩⎨⎧<>b x a x B .⎩⎨⎧-<->b x a x C .⎩⎨⎧-<>b x a x D .⎩⎨⎧>-<bx ax 6、已知不等式组⎩⎨⎧<>a x x 1无解,则a 的取值范围是( )A .a ≤1 B .a ≥1 C . a <1 D .a >17、已知关于x 的不等式组⎩⎨⎧--0x 230a x >>的整数解共有5个,求a 的取值范围。
北师大八年级不等式培优0001
第一章一兀一次不等式和一兀一次不等式组【知识总结】一. 不等关系探1.一般地,用符号“ V” (或“W” ), “>” (或“》”)连接的式子叫做不等式...•O2.要区别方程与不等式:方程表示的是相等的关系;不等式表示的是不相等的关系• 探3.准确“翻译”不等式,正确理解“非负数”、“不小于”等数学术语.非负数<===> 大于等于0( > 0) <===> 0和正数<===> 不小于0非正数<===> 小于等于0( < 0) <===> 0和负数<===> 不大于0二. 不等式的基本性质探1.掌握不等式的基本性质,并会灵活运用:(1) 不等式的两边加上(或减去)同一个整式,不等号的方向不变,即:如果a>b,那么a+c>b+c, a-c>b-c.(2) 不等式的两边都乘以(或除以)同一个正数,不等号的方向不变,即如果a>b,并且c>0,那么ac>bc, a b .c c(3) 不等式的两边都乘以(或除以)同一个负数,不等号的方向改变,即:如果a>b,并且c<0,那么ac<bc,—:::-c c三•不等式的解集:探1.能使不等式成立的未知数的值,叫做不等式的解一个不等式的所有解,组成这个不等式的解集;求不等式的解集的过程,叫做解不等式.•探2.不等式的解可以有无数多个,一般是在某个范围内的所有数,与方程的解不同•O3.不等式的解集在数轴上的表示:用数轴表示不等式的解集时,要确定边界和方向:①边界:有等号的是实心圆圈,无等号的是空心圆圈;②方向:大向右,小向左四.一元一次不等式:探1.只含有一个未知数,且含未知数的式子是整式,未知数的次数是1•像这样的不等式叫做一元一次不等式...探2.解一元一次不等式的过程与解一元一次方程类似,特别要注意,当不等式两边都乘以一个负数时,不等号要改变方向.探3.解一元一次不等式的步骤:①去分母;②去括号;③移项;④合并同类项;⑤系数化为1(不等号的改变问题)探4. 一元一次不等式基本情形为ax>b(或axvb)①当a>0时,解为x b;a②当a=0时,且b<0,则x取一切实数;当a=0时,且b>0,则无解;③当a<0时,解为x:::b;a五.一元一次不等式组探1.定义:由含有一个相同未知数的几个一元一次不等式组成的不等式组,叫做一元一次不等式组..探2. 一元一次不等式组中各个不等式解集的公共部分叫做不等式组的解集.如果这些不等式的解集无公共部分,就说这个不等式组无解.几个不等式解集的公共部分,通常是利用数轴来确定.探3.解一元一次不等式组的步骤:(1)分别求出不等式组中各个不等式的解集;(2)利用数轴求出这些解集的公共部分,即这个不等式组的解集.两个一元一次不等式组的解集的四种情况(a、b为实数,且a<b)【培优训练】一、选择题(每小题3分,共30分)1.. 下列不等式一定成立的是()4 2A.5a> 4aB.x+2v x+3C. —a>—2aD.-a a2•不等式—3x+6> 0的正整数有()A.1个B.2个C.3个D.无数多个 3..在数轴上与原点的距离小于 8的点对应的x 满足()A. — 8v x v 8B.x v — 8 或 x > 8C.x v 8D.x > 84•若不等式组/"m 无解,则m 的取值范围是()x>11A. m v 11B.m > 11C.m < 11D.m > 115. 要使函数y=(2m — 3)x+(3n+1)的图象经过x 、y 轴的正半轴,则片需要0.35元.在每位同学得到一张相片、共用一张底片的前提下,平均每人分摊的钱不足 0.5元,那么参加合影的同学人数m 与n 的取值应为()3 A. m > n >— 1B.m >3, n >— 32 3> _ 136. 如右图,当 y 0时, 自变量x 的范围是(A 、 x :: -2B 、 x -2C 、 x 27.如果0 x 1,则下列不等式成立的(xx8.若 a>b>0, 则下列结论正确的是 (A) -a>-b(B)i1 (C)a- 3 1_ 3C.m v -,nv —D.m v 一 ,n2 32I,)丄LD、x 21i)1、x x 2D1、—X 2Xxx( )3<0 (D)a2 2>b6次射击共中52环,如果他要打破89环(10次射击)的记录,第七次射击不能少于( )环(每次射击最多是 10环)10.初三的几位同学拍了一张合影作留念, 已知冲一张底片需要 0.80元,洗一张相A x x 2- B 、 x 2:: x :丄 C 9.某射击运动员在一次比赛中前A.至多6人 E.至少6人 C.至多5人 D.至少5人[ 211.不等式组v vi vii viii ix x• -3的「最小整数解为()3x -4 乞8(A) - 1 (B)0 (C)1(D) 412、如果0 ::: x :: 1,则卜夕U不等式成立的()1A、x < x2£—B 、21Cx : x C 、1 2X x D 、1 2x ::: x x x x x13、在平面直角坐标系内,点P ( m - 3,m - 5 )在第四象限,则m的取值范围是( )A、一B> -3 m 5 C、3 m 5D> -5 m : -3二、填空题:(每题3分,共15分)1、若区也=—1,则x的取值范围是x _12、如果关于x的不等式(a -1)x :::a 5和2x ::: 4的解集相同,则a的值为__3、若a ::: b,用“v” 或“〉”号填空:2a a b , - - a .3 34、点A (—5 , y i ) > B (—2 , y?)都在直线y = -2x上,贝U y i与y的关系5、若不等式组匸》3的解集为"2,那么A3"*)的值等于——6、不等式ax b的解集是x -,则a的取值范围是_______________________a三、解不等式(组)(每题5分)5x -6 乞2(x 3)x .4_1 ::2x-1 5x + 1 (4)」3 一 2'5x -1 c 3(x + 1)四、解答题(1) 不等式组 a —「x ::a2的解集是3< x v a+2,则a 的取值范围3 <x <5.:2x-1.(2) 若关于x 的不等式组 ^1,的解集为x<2,求k 的取值范围x - k :: 0(3) 若不等式组 X m 1,无解,求m 的取值范围x 》2m -1(4) 已知关于x ,y 的方程组』x +y =m的解为非负数,求整数 m 的值Qx+3y =31(5) 画出函数y=3x+12的图象,并回答下列问题:(6分)(1) 当x 为什么值时,y >0?⑵如果这个函数y 的值满足一6<y <6,求相应的x 的取值范围. (6)已知方程组丿2x + y-— m的解%、y 满足x +y > 0,求m 的取值范围.(6 分) £ +2y =2四.应用题某汽车租赁公司要购买轿车和面包车共10辆•其中轿车至少要购买 3辆,轿车每辆7万元,面包车每辆 4万元,公司可投入的购车款不超过 55万元.(10分)(1) 符合公司要求的购买方案有哪几种?请说明理由.(2) 如果每辆轿车的日租金为 200元,每辆面包车的日租金为 110元.假设新购 买的这10辆车每日都可租出,要使这 10辆车的日租金收入不低于 1500元,那么 应选择以上哪种购买方案? 考点1不等式(3)"x - 5 £ -3 2x 龙—2(1)不等式的概念:用不等号表示不等关系的式子叫做不等式(2)不等式的解、解集能使不等式成立的未知数的值叫做不等式的解;一个含有未知数的不等式的解的全体叫做这个不等式的解集。
北师大版八年级数学下册 2.4.1一元一次不等式及其解法 培优训练(含答案)
北师版八年级数学下册2.4.1 一元一次不等式及其解法培优训练一、选择题(共10小题,3*10=30)1.下列不等式,不是一元一次不等式的是( )A .x>3B .-y +1>yC .1x >2D .2x>12.下列不等式是一元一次不等式的是( )A .2(1-y)+y>4y +2B .x 2-2x -1<0C .12+13>16D .x +1<x +23.若不等式(m +1)xm 2>3是一元一次不等式,则m 的值为() A .±1 B .1 C .-1 D .04. 不等式3x -1≥x +3的解集是( )A .x ≤4B .x ≥4C .x ≤2D .x ≥25.下列不等式2+x 3>2x -15的变形过程:①去分母,得5(2+x)>3(2x -1);②去括号,得10+5x>6x -3;③移项,得5x -6x>-3-10;④系数化为1,得x>13.其中错误的步骤是( )A .①B .②C .③D .④6.不等式3(x -2)≤x +4的非负整数解有( )A .4个B .5个C .6个D .无数个7.不等式13(x -m)>2-m 的解集为x>2,则m 的值为( )C .32D .128.若实数3是不等式2x -a -2<0的一个解,则a 可取的最小正整数为( )A .2B .3C .4D .59. 不等式5x +1≥3x -1的解集在数轴上表示正确的是( )10.(荆门中考)已知关于x 的不等式3x -m +1>0的最小整数解为2,则实数m 的取值范围是( )A .4≤m <7B .4<m <7C .4≤m ≤7D .4<m ≤7二.填空题(共8小题,3*8=24)11.下列不等式:① -2<0;② 3x -5>0;③ x 2-x >1;④ x >1;⑤ 1x-2>0;⑥ x +2>y +1,其中一元一次不等式有_________(填序号)12. 不等式2x +9≥3(x +2)的解集是____________.13.若(m +1)x |m|+2>0是关于x 的一元一次不等式,则m 的取值是________.14. 不等式x -1≤2的非负整数解有____________.15. 若实数3是不等式2x -a -2<0的一个解,则a 可取的最小正整数为___________.16.使不等式-6x -23≤3x 2+12成立的最小整数解是__________. 17. 已知关于x 的不等式3x -m +1>0的最小整数解为2,则实数m 的取值范围是__________.18. 若不等式2x +53-1≤2-x 的解集中x 的每一个值,都能使关于x 的不等式3(x -1)+5>5x +2(m +x)成立,则m 的取值范围是_____________.三.解答题(共7小题, 46分)19.(6分)解不等式:(1)4x -3>x=6.(2)-5x -1<x +17.20.(6分21.(6分) 解下列不等式:(1) 3x -1≥2(x -1);(2)5(x -4) <3(3x -16)22.(6分) 若关于x ,y 的二元一次方程组⎩⎪⎨⎪⎧x -3y =4m +3,x +5y =5的解满足x +y≤0,求m 的取值范围.23.(6分) 求不等式5(x +2)≤28-2x 的非负整数解.24.(8分) 解下列不等式:(1) x +12≥3(x -1)-4.(2) 2x -13≤3x +24-1.25.(8分) 阅读理解:我们把⎪⎪⎪⎪⎪⎪a bc d 称为二阶行列式,其运算法则为⎪⎪⎪⎪⎪⎪a bc d =ad -bc.如:⎪⎪⎪⎪⎪⎪2345=2×5-3×4=-2.如果有⎪⎪⎪⎪⎪⎪23-x 1x >0,求x 的取值范围.参考答案1-5CABDD 6-10 CBDBA11. ②④12. x ≤313. 414. 0,1,2,315.516.017.4≤m <718.m <-3519. 解:(1) 移项,得4x -x >6+3.合并同类项,得3x >9.系数化为1,得x >3.(2) 移项,得-5x -x <17+1,合并同类项,得-6x <18,系数化为1,得x >-3.20. 解:去分母得x -m >3(3-m),去括号、移项、合并同类项得x >9-2m.又∵不等式的解集为x >1,∴9-2m =1,解得m =4.21. 解:(1)去括号,得3x -1≥2x -2,移项,得3x -2x ≥-2+1,合并同类项,得x ≥-1,(2)去括号,得5x -20<9x -48,移项,得5x -9x <-48+20,合并同类项,得-4x <-28,系数化为1,得x >7.22. 解:⎩⎪⎨⎪⎧x -3y =4m +3,①x +5y =5.②则x +y =2m +4.根据题意,得2m +4≤0,解得m≤-2.23. 解:5(x +2)≤28-2x ,5x +10≤28-2x ,5x +2x≤28-10,7x≤18,x≤187. ∴不等式5(x +2)≤28-2x 的非负整数解为0,1,2.24. 解:去分母,得(1) x +1≥6(x -1)-8,去括号,得x +1≥6x -6-8,移项,得x -6x ≥-6-8-1,合并同类项,得-5x ≥-15.两边都除以-5,得x ≤3.(2))去分母,得4(2x -1)≤3(3x +2)-12.去括号,得8x -4≤9x +6-12.移项,得8x -9x ≤4+6-12.合并同类项,得-x ≤-2.两边都除以-1,得x ≥2.25. 解:由题意,得2x -(3-x)>0,去括号,得2x -3+x >0,移项,合并同类项,得3x >3,系数化为1,得x >1.∴x 的取值范围为x >1.。
专题2.10方程(组)与不等式相结合的解集问题(重难点培优)-2021年八年级数学下册尖子生同步培优
2020-2021学年八年级数学下册尖子生同步培优题典【北师大版】专题2.10方程(组)与不等式相结合的解集问题(重难点培优)姓名:__________________ 班级:______________ 得分:_________________1.(2020秋•拱墅区月考)(1)已知关于x 的不等式①x +a >7的解都能使不等式②x−2a 5>1﹣a 成立,求a 的取值范围.(2)若关于x 、y 的二元一次方程组{2x +y =−3m +2x +2y =4的解满足x +y >−32,求出满足条件的m 的所有正整数值.【分析】(1)分别取出求出不等式①②的解集,再根据题意得到7﹣a ≥5﹣3a ,最后解不等式即可求出a 的取值范围.(2)两个方程相加,即可得出关于m 的不等式,求出m 的范围,即可得出答案. 【解析】(1)解不等式①x +a >7得:x >7﹣a , 解不等式②x−2a 5>1﹣a 得:x >5﹣3a ,根据题意得,7﹣a ≥5﹣3a , 解得:a ≥﹣1.(2){2x +y =−3m +2①x +2y =4②,①+②得:3x +3y =﹣3m +6, ∴x +y =﹣m +2,∵关于x 、y 的二元一次方程组{2x +y =−3m +2x +2y =4的解满足x +y >−32,∴﹣m +2>−32, ∴m <72,∴满足条件的m 的所有正整数值是1,2,3,.2.(2020春•南关区月考)感知:解方程组{2x +3y =7,①4(2x +3y)−y =27②,下列给出的两种方法中,方法简单的是B .(A )由①,得x =7−3y2,代入②,先消去x ,求出y ,再代入求解. (B )将①代入②,得4×7﹣y =27,解得y =1,再代入求解.探究:解方程组{x +y =2018x+y2−5y =1094.应用:若关于x ,y 的二元一次方程组{3x −2y =1+2a3x−2y 3−2x =3的解中的x 是正数,则a 的取值范围为 a >4 .【分析】感知:根据题目中的解答过程可知(B )种方法简答; 探究:根据感知中的解答方法可以解答此方程组;应用:根据感知中的方法,可以用含a 的代数式表示出x ,再根据方程组的解中x 是正数,从而可以求得a 的取值范围.【解析】感知:由题目中的解答过程可知,最佳的方法是(B ), 故答案为:(B ); 探究:{x +y =2018①x+y2−5y =1094②,将①代入②,得 1009﹣5y =1094, 解得,y =﹣17, 将y =﹣17代入①,得 x =2035,故原方程组的解是{x =2035y =−17;应用:{3x −2y =1+2a ①3x−2y 3−2x =3②,将①代入②,得1+2a 3−2x =3,解得,x =a−43,∵关于x ,y 的二元一次方程组{3x −2y =1+2a3x−2y3−2x =3的解中的x 是正数,∴a−43>0,解得,a >4, 故答案为:a >4.3.(2020秋•沙坪坝区校级月考)若关于x 、y 的方程组{2x +y =5kx −y =4k +3的解满足x +y ≤6,求k 的取值范围.【分析】先把k 当作已知表示出x 、y 的值,再根据x +y ≤6列出不等式,求出k 的取值范围即可. 【解析】解方程组{2x +y =5k x −y =4k +3得,{x =3k +1y =−k −2,∵x +y ≤6, ∴3k +1﹣k ﹣2≤6, 解得k ≤72.∴k 的取值范围为k ≤72.4.(2020春•南岗区校级月考)关于x 、y 的二元一次方程组{x +2y =2m −5x −2y =3−4m 的解x 、y 满足x +y ≥0,求此时m 的取值范围.【分析】将m 看做已知数求出方程组的解,然后根据已知不等式求出m 的范围即可. 【解析】{x +2y =2m −5①x −2y =3−4m②,①+②得2x =﹣2﹣2m , 解得x =﹣1﹣m . ①﹣②得4y =6m ﹣8, 解得y =32m ﹣2. ∵x +y ≥0,∴﹣1﹣m +32m ﹣2≥0, 解得m ≥6.故m 的取值范围是m ≥6.5.(2020春•荔城区校级月考)已知关于x 、y 的方程组{x +2y =3mx −y =9m .(1)若此方程组的解是二元一次方程2x +3y =16的一组解,求m 的值; (2)若此方程组的解满足不等式12x +3y >6,求m 的取值范围.【分析】(1)根据方程组的解法解答即可; (2)根据不等式的解法解答即可. 【解析】(1){x +2y =3m ①x −y =9m②,①﹣②得:3y =﹣6m , 解得:y =﹣2m ,①+②×2得:3x =21m , 解得:x =7m ,将x =7m ,y =﹣2m 代入2x +3y =16得:14m ﹣6m =16, 解得m =2;(2)由(1)知:x =7m ,y =﹣2m , 代入12x +3y >6,得7m 2+(﹣6m )>6,∴m <−125. 6.(2020春•高邮市期末)已知关于x 、y 的二元一次方程组{3x −5y =4m5x −3y =8(1)若方程组的解满足x ﹣y =6,求m 的值; (2)若方程组的解满足x <﹣y ,求m 的取值范围.【分析】(1)用加减消元法解出x 和y 的值,把x 和y 用含有m 的式子表示,代入x ﹣y =6,求出m 的值即可,(2)把x 和y 用含有m 的式子表示,代入x +y <0,得到关于m 的一元一次不等式,解之即可. 【解析】(1){3x −5y =4m ①5x −3y =8②,①+②得:8x ﹣8y =4m +8,即x ﹣y =1+12m , 代入x ﹣y =6得:1+12m =6, 解得:m =10, 故m 的值为10,(2)②﹣①得:2x +2y =8﹣4m ,即x +y =4﹣2m , ∵x <﹣y , ∴x +y <0, ∴4﹣2m <0, 解得:m >2,故m 的取值范围为:m >2.7.(2020秋•路北区月考)(1)解方程组:{3x −y =3①x 2+y 3=2②;(2)已知关于x ,y 的二元一次方程组{2x +y =−3m +2x +2y =4的解满足x +y >−32,求出满足条件的m 的所有正整数值.【分析】(1)先整理方程②,再用加减消元法解方程组即可;(2)方程组两方程相加表示出x +y ,代入已知不等式求出m 的范围,确定出正整数值即可. 【解析】(1){3x −y =3①x 2+y 3=2②,由②得3x +2y =12 ③ 由③﹣①得,3y =9, 解得:y =3,把y =3代入①得,x =2. 所以这个方程组的解是{x =2y =3;(2){2x +y =−3m +2①x +2y =4②,①+②得:3(x +y )=﹣3m +6,即x +y =﹣m +2, 代入不等式得:﹣m +2>−32, 解得:m <72,则满足条件m 的正整数值为1,2,3.8.(2020•历下区校级模拟)已知关于x ,y 的二元一次方程组{x −3y =5x −2y =k 的解满足x >y ,求k 的取值范围.【分析】加减法求得x ,y 的值(用含k 的式子表示),然后再列不等式求解即可. 【解析】{x −3y =5①x −2y =k②,①﹣②得:﹣y =5﹣k , ∴y =k ﹣5,将y =k ﹣5代入②得,x =3k ﹣10, ∵x >y , ∴3k ﹣10>k ﹣5. ∴k >52.即k 的取值范围为k >52.9.(2020春•宝应县期末)已知关于x ,y 的二元一次方程组{2x −3y =5x −2y =k.(1)若{x =3y =−2满足方程x ﹣2y =k ,请求出此时这个方程组的解;(2)若该方程组的解满足x >y ,求k 的取值范围.【分析】(1)把x 与y 的值代入已知方程求出k 的值,进而求出方程组的解即可; (2)表示出方程组的解,根据x >y ,求出k 的范围即可. 【解析】(1)把{x =3y =−2代入x ﹣2y =k 得:k =3+4=7,方程组为{2x −3y =5①x −2y =7②,①﹣②×2得:y =﹣9, 把y =﹣9代入①得:x =﹣11, 则方程组的解为{x =−11y =−9;(2){2x −3y =5①x −2y =k②,①﹣②得:x ﹣y =5﹣k , ∵x >y ,即x ﹣y >0, ∴5﹣k >0, 解得:k <5.10.(2020春•沭阳县期末)关于x 、y 的方程组{x +2y =3k 2x +y =−2k +1的解满足x +y >35.(1)求k 的取值范围; (2)化简:|5k ﹣1|﹣|4﹣5k |.【分析】(1)两方程相加、化简得出x +y =k+13,结合x +y >35知k+13>35,解之可得答案; (2)根据绝对值的性质去绝对值符号,再去括号、合并即可得. 【解析】(1)将两个方程相加可得3x +3y =k +1, 则x +y =k+13, ∵x +y >35, ∴k+13>35,解得k >45;(2)原式=5k ﹣1﹣(5k ﹣4) =5k ﹣1﹣5k +4 =3.11.(2020春•东城区校级期末)若关于x ,y 的二元一次方程组{x +y =5k ,x −y =k的解满足x ﹣2y <1,求k 的取值范围.【分析】首先解关于x 的方程组,求得x ,y 的值,然后代入方程x ﹣2y <1,即可得到一个关于k 的不等式,再解不等式即可解答.【解析】由方程组{x +y =5k ,x −y =k 得:{x =3k y =2k ,∵关于x ,y 的二元一次方程组{x +y =5k ,x −y =k的解满足x ﹣2y <1,∴3k ﹣4k <1, 解得:k >﹣1.∴k 的取值范围是k >﹣1. 12.(2020春•万州区期末)已知方程组{x −y =4m ①2x +y =2m +3②的解满足x ﹣2y <8.(1)求m 的取值范围;(2)当m 为正整数时,求代数式2(m 2﹣m +1)﹣3(m 2+2m ﹣5)的值.【分析】(1)解方程组得出x =2m +1,y =1﹣2m ,代入不等式x ﹣2y <8,可求出m 的取值范围; (2)根据题意求出m =1,化简原式即可得出答案.【解析】(1)解方程组{x −y =4m ①2x +y =2m +3②得,{x =2m +1y =1−2m ,∵x ﹣2y <8,∴2m +1﹣2(1﹣2m )<8, 解得,m <32.(2)∵m <32,m 为正整数, ∴m =1,∴原式=2m 2﹣2m +2﹣3m 2﹣6m +15=﹣m 2﹣8m +17. 当m =1时,原式=﹣1﹣8+17=8.13.(2020春•叙州区期末)若关于x 、y 的二元一次方程组{2x +3y =−7k2y +x =k +5.(1)若方程组的解满足x ﹣y =1,求k 的值; (2)若x +y ≤﹣1,求k 的取值范围.【分析】(1)先利用加减消元法解方程组得到{x =−17k −15y =9k +10,则利用x ﹣y =1得到﹣17k ﹣15﹣(9k +10)=1,然后解关于k 的方程即可;(2)利用x +y ≤﹣1得到﹣17k ﹣15+9k +10≤﹣1,然后解关于k 的不等式即可. 【解析】(1)解方程组{2x +3y =−7k 2y +x =k +5得{x =−17k −15y =9k +10,∵x ﹣y =1,∴﹣17k ﹣15﹣(9k +10)=1, ∴k =﹣1; (2)∵x +y ≤﹣1,∴﹣17k ﹣15+9k +10≤﹣1, ∴k ≥−12.14.(2020春•南安市期中)已知关于x ,y 的二元一次方程组{2x −y =3mx −2y =6的解满足x +y >3,求满足条件的m的取值范围.【分析】先将m 看做常数解方程组求出x =2m ﹣2、y =m ﹣4,再代入x +y >3可得关于m 的不等式,解之可得答案.【解析】{2x −y =3m ①x −2y =6②,①×2得:4x ﹣2y =6m ③, ③﹣②得:3x =6m ﹣6, ∴x =2m ﹣2,把x =2m ﹣2代入①得:2(2m ﹣2)﹣y =3m , ∴y =m ﹣4, ∵x +y >3,∴(2m ﹣2)+(m ﹣4)>3, ∴m >3.15.(2020春•北流市期末)已知不等式组{2x −5<5x +43(x +1)≤2x +5的最小整数解是关于x 的方程12x ﹣mx =5的解,求m 的值.【分析】分别求出不等式组中两不等式的解集,找出解集中的公共部分,确定出不等式组的解集,找出解集中的整数解,确定出x 的值,将x 的值代入已知方程计算,即可求出m 的值. 【解析】{2x −5<5x +4①3(x +1)≤2x +5②,由 ①,得:x >﹣3; 由 ②,得:x ≤2;∴原不等式组的解集为:﹣3<x ≤2, ∵x 为最小整数 ∴x =﹣2,把x =﹣2代入方程12x ﹣mx =5,得:12×(−2)−m ×(−2)=5,解得m =3.16.(2014春•福清市校级期末)已知不等式组{x >−1x <1x <1−k(1)当k =﹣2时,不等式组的解集是: ﹣1<x <1 ;当k =3时,不等式组的解集是: 无解 (2)由(1)可知,不等式组的解集随k 的值变化而变化,若不等式组有解,求k 的取值范围并求出解集. 【分析】(1)把k =﹣2和k =3分别代入已知不等式组,分别求得三个不等式的解集,取其交集即为该不等式组的解集;(2)当k 为任意有理数时,要分1﹣k <﹣1,1﹣k >1,﹣1<1﹣k <1三种情况分别求出不等式组的解集. 【解析】(1)把k =﹣2代入,得 {x >−1x <1x <3,解得﹣1<x <1; 把k =3代入,得 {x >−1x <1x <−2,无解.故答案是:﹣1<x <1;无解;(2)若k 为任意实数,不等式组的解集分以下三种情况: 当1﹣k ≤﹣1即k ≥2时,原不等式组可化为{x >−1x <−1,故原不等式组的解集为无解;当1﹣k ≥1即k ≤0时,原不等式组可化为{x >−1x <1,故原不等式组的解集为﹣1<x <1;当﹣1<1﹣k <1即0<k <2时,原不等式组可化为{x >−1x <1−k ,故原不等式组的解集为﹣1<x <1﹣k .17.(2014春•无锡期末)已知方程组{x +y =4a +5x −y =6a −5的解满足不等式4x ﹣5y <9.求a 的取值范围.【分析】先解得不等式的解集,再根据题意,求出a 的取值范围. 【解析】两个方程相加得,x =5a , 两个方程相减得,y =﹣a +5, ∵4x ﹣5y <9,∴20a ﹣5(﹣a +5)<9 ∴a <342518.(2020春•惠东县期中)若关于x ,y 的方程组{2x +y =ax +2y =5a 的解满足x ﹣y >12,求a 的取值范围.【分析】将两个方程相减得出x ﹣y =﹣4a ,结合x ﹣y >12得出关于a 的不等式,解之可得. 【解析】两方程相减可得x ﹣y =﹣4a , ∵x ﹣y >12, ∴﹣4a >12, 解得a <﹣3.19.(2020•黄石模拟)若关于x 、y 的二元一次方程组{3x +y =1+ax +3y =3的解满足x +y <2,求a 的正整数解.【分析】将两个方程相加可得4(x +y )=4+a ,根据x +y <2知4(x +y )<8,从而列出关于a 的不等式,解之可得.【解析】将两个方程相加可得4x +4y =4+a ,即4(x +y )=4+a , ∵x +y <2, ∴4(x +y )<8, ∴4+a <8, 解得a <4,∴a 的正整数解为1、2、3.20.(2020春•海淀区校级期中)已知关于x ,y 的方程组{3x +2y =p +14x +3y =p −1的解满足x <y ,求p 的取值范围? 【分析】解不等式组求出{x =p +5y =−p −7,再根据x <y 得出关于p 的不等式,解之可得答案. 【解析】解方程组{3x +2y =p +14x +3y =p −1,得:{x =p +5y =−p −7, ∵x <y ,∴p +5<﹣p ﹣7,解得p <﹣6.。
北师大版数学八下优辅(难题培优)()
29级初二下学期数学优辅(1)一元一次不等式【典例示范】例1、要使a 5<a 3<a <a 2<a 4成立,则a 的取值范围是( )A.0<a <1B. a >1C.-1<a <0D. a <-1 例2、已知6<a <10,2a≤b ≤a 2,b a c +=,则c 的取值范围是 。
例3、若不等式0432b <a x b a -+-)(的解集是49x >,则不等式的解集是0324b >a x b a -+-)( 。
例4、设7321x x x x ,,,, 均为自然数,且76321x x x x x <<<<< ,又201721=+++x x x ,则21x x +的最大值是 。
例5、设实数a 、b 、c 满足a <b <c (ac <0),且|c |<|b |<|a |,则|x -a |+|x -b |+|x +c |的最小值是( ) (A )3|c b a |++ (B )|b | (C )c -a (D )―c ―a例6、三角形的三条边各不相同,并且其三条高都是整数,其中有两条高分别是3和10,那么第三条高的长度为__________.【练习巩固】 一、选择题1、如果a 、b 表示两个负数,且a <b ,则 ( ).(A)1>ba(B)ba<1 (C)ba 11< (D)ab <12、a 、b 是有理数,下列各式中成立的是 ( ).(A)若|a |≠|b |,则a ≠b (B)若a 2>b 2,则a >b(C)若a ≠b ,则|a |≠|b | (D)若a >b ,则a 2>b 23、|a |+a 的值一定是( ).(A)大于零 (B)小于零 (C)不大于零 (D)不小于零4、若不等式(a +1)x >a +1的解集是x <1,则a 必满足( ).(A)a <0 (B)a >-1 (C)a <1 (D)a <-1 5、若由x <y 可得到ax ≥ay ,应满足的条件是 ( ).(A)a ≥0 (B)a ≤0 (C)a >0 (D)a <06、某市出租车的收费标准是:起步价7元,超过3km 时,每增加1km 加收2.4元(不足1km 按1km 计).某人乘这种出租车从甲地到乙地共支付车费19元,设此人从甲地到乙地经过的路程是x km ,那么x 的最大值是 ( ).(A)11 (B)8 (C)7 (D)5 7、若不等式组⎩⎨⎧>≤<k x x ,21有解,则k 的取值范围是 ( ).(A)k <1 (B)k ≥2(C)k <2(D)1≤k <28、不等式组⎩⎨⎧+>+<+1,159m x x x 的解集是x >2,则m 的取值范围是( ).(A)m ≤2 (B)m ≥2(C)m ≤1(D)m ≥1二、填空题9、对于整数a ,b ,c ,d ,定义bd ac c d b a -=,已知3411<<d b,则b +d 的值为_________. 10、如果-a 2x >-a 2y (a ≠0).那么x ______y . 11、若x 是非负数,则5231x-≤-的解集是______. 12、已知(x -2)2+|2x -3y -a |=0,y 是正数,则a 的取值范围是______. 13、6月1日起,某超市开始有偿..提供可重复使用的三种环保购物袋,每只售价分别为1元、2元和3元,这三种环保购物袋每只最多分别能装大米3千克、5千克和8千克.6月7日,小星和爸爸在该超市选购了3只环保购物袋用来装刚买的20千克散装大米,他们选购的3只环保购物袋至.少.应付给超市______元. 14、试用m 表示出不等式(5-m )x >1-m 的解集______.三、解下列不等式(组)15、 ).1(32)]1(21[21-<---x x x x⋅->+-+2503.0.02.003.05.09.04.0x x x16、解不等式组⎪⎩⎪⎨⎧-<-->-->+.3273,4536,7342x x x x x x四、解答题17、适当选择a 的取值范围,使1.7<x <a 的整数解:(1) x 只有一个整数解; (2) x 一个整数解也没有.18、已知A =2x 2+3x +2,B =2x 2-4x -5,试比较A 与B 的大小.19、某次数学竞赛活动,共有16道选择题,评分办法是:答对一题给6分,答错一题倒扣2分,不答题不得分也不扣分.某同学有一道题未答,那么这个学生至少答对多少题,成绩才能在60分以上?20、若干名学生,若干间宿舍,若每间住4人将有20人无法安排住处;若每间住8人,则有一间宿舍的人不空也不满.问学生有多少人?宿舍有几间?附加题:1.3|x-1|+2≥|x-1|+52.求不等式|x |>|x+5|的解集3.已知|x-1|+|x-5|=4,求x 的取值范围。
北师大八年级不等式培优
一、选择题(每小题3分,共30分)1..下列不等式一定成立的是( )A.5a >4aB.x +2<x +3C.-a >-2aD.aa 24> 2.不等式-3x +6>0的正整数有( )A.1个B.2个C.3个D.无数多个3. .在数轴上与原点的距离小于8的点对应的x 满足( )A.-8<x <8B.x <-8或x >8C.x <8D.x >8 4.若不等式组⎩⎨⎧>≤11x mx 无解,则m 的取值范围是( )A.m <11B.m >11C.m ≤11D.m ≥115.要使函数y =(2m -3)x +(3n +1)的图象经过x 、y 轴的正半轴,则m 与n 的取值应为( )A.m >23,n >-31B.m >3,n >-3C.m <23,n <-31D.m <23,n >-316. 如右图,当0<y 时,自变量 x 的范围是( )A 、2-<xB 、2->xC 、2<xD 、2>x 7. 如果10<<x ,则下列不等式成立的( )A 、x x x 12<< B 、x x x 12<< C 、21x x x << D 、x x x<<21 8. 若a>b>0, 则下列结论正确的是 ( ) (A) -a>-b (B)ba 11> (C)a 3<0 (D)a 2>b 2 9.某射击运动员在一次比赛中前6次射击共中52环,如果他要打破89环(10次射击)的记录,第七次射击不能少于( )环(每次射击最多是10环)A 、5B 、6C 、7D 、810.初三的几位同学拍了一张合影作留念,已知冲一张底片需要0.80元,洗一张相片需要0.35元.在每位同学得到一张相片、共用一张底片的前提下,平均每人分摊的钱不足0.5元,那么参加合影的同学人数 . A.至多6人B.至少6人C.至多5人D.至少5人11.不等式组⎪⎩⎪⎨⎧≤-->84332x x 的最小整数解为 ( )(A)–1 (B) 0 (C)1 (D) 412、如果10<<x ,则下列不等式成立的( )A 、x x x 12<< B 、x x x 12<< C 、21x x x << D 、x x x<<21 13、在平面直角坐标系内,点P (3-m ,5-m )在第四象限,则m 的取值范围是( ) A 、35<<-m B 、53<<-m C 、53<<m D 、35-<<-m二、填空题:(每题3分,共15分) 1、若11|1|-=--x x ,则x 的取值范围是_______ 2、 如果关于x 的不等式5)1(+<-a x a 和42<x 的解集相同,则a 的值为________. 3、若b a <,用“<”或“>”号填空:2a______b a +,33ab -_____. 4、 点A (-5,1y )、B (-2,2y )都在直线x y 2-=上,则1y 与2y 的关系是 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
北师大八年级不等式培优Last revision on 21 December 2020第一章 一元一次不等式和一元一次不等式组【知识总结】 一. 不等关系※1. 一般地,用符号“<”(或“≤”), “>”(或“≥”)连接的式子叫做不等式.¤2. 要区别方程与不等式: 方程表示的是相等的关系;不等式表示的是不相等的关系. ※3. 准确“翻译”不等式,正确理解“非负数”、“不小于”等数学术语.非负数 <===> 大于等于0(≥0) <===> 0和正数 <===> 不小于0 非正数 <===> 小于等于0(≤0) <===> 0和负数 <===> 不大于0 二. 不等式的基本性质※1. 掌握不等式的基本性质,并会灵活运用:(1) 不等式的两边加上(或减去)同一个整式,不等号的方向不变,即:如果a>b,那么a+c>b+c, a-c>b-c.(2) 不等式的两边都乘以(或除以)同一个正数,不等号的方向不变,即如果a>b,并且c>0,那么ac>bc,cb c a >. (3) 不等式的两边都乘以(或除以)同一个负数,不等号的方向改变,即:如果a>b,并且c<0,那么ac<bc,cb c a < 三. 不等式的解集:※1. 能使不等式成立的未知数的值,叫做不等式的解;一个不等式的所有解,组成这个不等式的解集;求不等式的解集的过程,叫做解不等式.※2. 不等式的解可以有无数多个,一般是在某个范围内的所有数,与方程的解不同. ¤3. 不等式的解集在数轴上的表示:用数轴表示不等式的解集时,要确定边界和方向:①边界:有等号的是实心圆圈,无等号的是空心圆圈; ②方向:大向右,小向左 四. 一元一次不等式:※1. 只含有一个未知数,且含未知数的式子是整式,未知数的次数是1. 像这样的不等式叫做一元一次不等式.※2. 解一元一次不等式的过程与解一元一次方程类似,特别要注意,当不等式两边都乘以一个负数时,不等号要改变方向. ※3. 解一元一次不等式的步骤:①去分母; ②去括号; ③移项; ④合并同类项;⑤系数化为1(不等号的改变问题) ※4. 一元一次不等式基本情形为ax>b(或ax<b)①当a>0时,解为ab x >; ②当a=0时,且b<0,则x 取一切实数; 当a=0时,且b ≥0,则无解; ③当a<0时, 解为ab x <; 五. 一元一次不等式组※1. 定义: 由含有一个相同未知数的几个一元一次不等式组成的不等式组,叫做一元一次不等式组.※2. 一元一次不等式组中各个不等式解集的公共部分叫做不等式组的解集.如果这些不等式的解集无公共部分,就说这个不等式组无解. 几个不等式解集的公共部分,通常是利用数轴来确定. ※3. 解一元一次不等式组的步骤:(1)分别求出不等式组中各个不等式的解集;(2)利用数轴求出这些解集的公共部分,即这个不等式组的解集. 两个一元一次不等式组的解集的四种情况(a 、b 为实数,且a<b)【培优训练】一、选择题(每小题3分,共30分)1..下列不等式一定成立的是( )>4a+2<x +3 C.-a >-2aD.aa24>2.不等式-3x +6>0的正整数有( )个个 个D.无数多个3. .在数轴上与原点的距离小于8的点对应的x 满足( )A.-8<x <8 <-8或x >8 <8>84.若不等式组⎩⎨⎧>≤11x mx 无解,则m 的取值范围是( )<11 >11 ≤11 ≥115.要使函数y =(2m -3)x +(3n +1)的图象经过x 、y 轴的正半轴,则m 与n 的取值应为( )>23,n >-31 >3,n >-3 <23,n <-31<23,n >-316. 如右图,当0<y 时,自变量 x 的范围是( )A 、2-<xB 、2->xC 、2<xD 、2>x7. 如果10<<x ,则下列不等式成立的( )A 、x x x 12<< B 、x x x 12<< C 、21x x x << D 、x x x<<218. 若a>b>0, 则下列结论正确的是 ( ) (A) -a>-b (B)ba 11> (C)a 3<0 (D)a 2>b 2 9.某射击运动员在一次比赛中前6次射击共中52环,如果他要打破89环(10次射击)的记录,第七次射击不能少于( )环(每次射击最多是10环) A 、5 B 、6 C 、7 D 、810.初三的几位同学拍了一张合影作留念,已知冲一张底片需要元,洗一张相片需要元.在每位同学得到一张相片、共用一张底片的前提下,平均每人分摊的钱不足元,那么参加合影的同学人数 . A.至多6人B.至少6人C.至多5人D.至少5人11.不等式组⎪⎩⎪⎨⎧≤-->84332x x 的最小整数解为 ( ) (A)–1 (B) 0 (C)1 (D) 4 12、如果10<<x ,则下列不等式成立的( )A 、x x x 12<< B 、x x x 12<< C 、21x x x << D 、x x x<<2113、在平面直角坐标系内,点P (3-m ,5-m )在第四象限,则m 的取值范围是( )A 、35<<-mB 、53<<-mC 、53<<mD 、35-<<-m 二、填空题:(每题3分,共15分)1、若11|1|-=--x x ,则x 的取值范围是_______2、 如果关于x 的不等式5)1(+<-a x a 和42<x 的解集相同,则a 的值为________.3、若b a <,用“<”或“>”号填空:2a______b a +,33a b -_____.4、 点A (-5,1y )、B (-2,2y )都在直线x y 2-=上,则1y 与2y 的关系是 。
5、若不等式组⎩⎨⎧>-<-3212b x a x 的解集为11<<-x ,那么)3)(3(+-b a 的值等于_______.6、 不等式b ax >的解集是abx <,则a 的取值范围是 。
三、解不等式(组)(每题5分)(1). ⎪⎩⎪⎨⎧-<-+≤-3314)3(265x x x x (2). 0415212<---x x (3).⎩⎨⎧-<-<-2235x x(4)⎪⎩⎪⎨⎧+<-≤+--)1(3151215312x x x x 四、解答题(1)不等式组12,3 5.a x a x -<<+⎧⎨<<⎩的解集是3<x <a +2,则a 的取值范围(2)若关于x 的不等式组211,30x x x k -⎧>-⎪⎨⎪-<⎩的解集为x<2,求k 的取值范围(3)若不等式组1,21x m x m <+⎧⎨>-⎩无解,求m 的取值范围(4)已知关于x ,y 的方程组⎩⎨⎧=+=+3135y x my x 的解为非负数,求整数m 的值(5)画出函数y =3x +12的图象,并回答下列问题:(6分)(1)当x 为什么值时,y >0(2)如果这个函数y 的值满足-6≤y ≤6,求相应的x 的取值范围.(6)已知方程组⎩⎨⎧=+-=+2212y x my x 的解x 、y 满足x +y >0,求m 的取值范围. (6分)四.应用题某汽车租赁公司要购买轿车和面包车共10辆.其中轿车至少要购买3辆,轿车每辆7万元,面包车每辆4万元,公司可投入的购车款不超过55万元.(10分) (1)符合公司要求的购买方案有哪几种请说明理由.(2)如果每辆轿车的日租金为200元,每辆面包车的日租金为110元.假设新购买的这10辆车每日都可租出,要使这10 辆车的日租金收入不低于1500元,那么应选择以上哪种购买方案 考点1 不等式(1)不等式的概念:用不等号表示不等关系的式子叫做不等式。
(2)不等式的解、解集能使不等式成立的未知数的值叫做不等式的解;一个含有未知数的不等式的解的全体叫做这个不等式的解集。
不等式的解集包括不等式的每一个解。
(3)解不等式:求不等式的解集的过程叫做解不等式。
与解方程一样,解不等式的过程,就是要将不等式变形为ax>0或ax<0的形式。
(4)不等式的“解”和“解集”的区别与联系①不等式的解是指在某一范围内的数,用它代替不等式中的未知数,不等式成立;②不等式的解集是一个含有未知数的不等式的所有解组成的集合;不等式的解集是一个范围,在这个范围内的每一个值都是不等式的一个解;③不等式的解和不等式的解集是两个不同的概念:不等式的解是满足这个不等式的未知数的某个值,而不等式的解集是指满足这个不等式的未知数的所有的值,解集中包含了每一个解。
(5)不等式解集的表示方法①用不等式表示不等式的解集,常见的形式有以下四种:②用数轴表示不等式的解集,主要注意“两定”,即:一定“边界点”;二定“方向”。
若含边界点,解集为实心点;若不含边界点,解集为空心圆圈。
对于方向,相对于边界点而言,大于向右,小于向左。
用数轴表示不等式的解集,通常分三个步骤进行:ⅰ)画数轴;ⅱ)定边界点;ⅲ)定方向。
(6)不等式的性质不等式的性质1不等号的两边都加上(或减去)同一个数或同一个整式,不等号不等式的性质2:不等式的两边同时乘以(或除以)同一个正数,不等号的方向不变。
不等式的性质3不等式的两边同时乘以(或除以)同一个负数,不等号的方向改变。
即:(7)不等式的对称性和传递性对称性:传递性:考点2 一元一次不等式(1)一元一次不等式:只含有一个未知数,并且未知数的最高次数是1,系数不等于0,这样的不等式叫做一元一次不等式。
一元一次不等式与一元一次方程在定义上类似。
不同的是,前者是用“>”或“<”连接两个整式,后者是用“=”连接两个整式。
(2)解一元一次不等式的一般步骤①去分母(根据不等式的性质2)②去括号(根据整式的运算法则)③移项(根据不等式的性质1)④合并同类项(根据整式的运算法则)⑤将系数化为1(根据不等式的性质2)(3)列一元一次不等式解应用题的步骤①审题:理解问题中的数量关系及对解答的要求;②设未知数:根据所求问题设出合适的未知数;③列不等式:根据题意中的数量之间的不等关系,列出正确的不等式;④解不等式:求出不等式的解集;⑤作答:对不等式的解集进行分析讨论,根据题意要求,作出答语。