实数的运算 PPT课件

合集下载

八年级数学上册 3.3 实数 第2课时 实数的运算和大小比较课件 (新版)湘教版.pptx

八年级数学上册 3.3 实数 第2课时 实数的运算和大小比较课件 (新版)湘教版.pptx

(b+c)a = ba + ca (乘法对于加法的分配律) ;
(9)实数的减法运算规定为 a -b = a + (-b)

(10)实数的除法运算(除数b≠ a ÷ b = a·
0)1,规定为 b

(11)实数有一条重要性质:如果a≠0,b≠0,那么
ab

0.
4
小提示
实数也可以比较大小:对于实数a,b,如果a-b>0, 则a大于b(或者b小于a),记作a>b(或b<a);
3.
9
2 5(精确到小数点6, 精确到小数点后面第二位得:3.16.
10
用正方形比较
不用计算器,估计 5 与2哪个大.
解: 5 ,2 分别是5,4的正方形的边长. 容易说明,面积大的正方形,它的边长也大. 因此, 5 > 2 .
5
2
11
小提示
在实数运算中,如果遇到无理数,并且要 求出结果的近似值时,可按要求的精确度用相 应的近似有限小数代替无理数,再进行计算.
12
练习
计算(精确到小数点后面第二位).
(1) 2 + 3; (2) 5 -1 ; (3) 5 .
≈1.414+1.732≈3.15.
≈2.236-1≈1.24. ≈2.236×3.14≈7.02.
同样地,如果a-b<0,则a<b.还可以得出:正实数大 于一切负实数;两个负实数,绝对值大的数反而小.
从而数轴上右边的点表示的实数比左边的点表示的 实数大.
负实数
原点
正实数
0
<
5
结论
每个正实数有且只有两个平方根,它们互 为相反数;

初中数学精品课件:实数及其运算

初中数学精品课件:实数及其运算
关的:π3,π-1 等;④规律型:1.3232232223…(每两 个“3”之间依次多一个“2”)等有规律但不循环的无 限小数.
【典例 1】 (2019·宁波)请写出一个小于 4 的无理数: ______.
【答案】 π(答案不唯一)
【类题演练 1】 (2019·衢州)在12,0,1,-9 四个数中,
【典例 1】




π 2

2

22 7

0.3333333…

0

1.732

2.1010010001…(每两个“1”之间依次多一个“0”) 中,是无理数的


【错解】 2,272,2.1010010001…(每两个“1”之间依次多一个“0”)
【析错】 无理数是无限不循环小数,而有理数可以写成 分母不为 0 的分数形式,所以272是有理数,-π2是无理数. 【正解】 -π2, 2,2.1010010001…(每两个“1”之 间依次多一个“0”)
2.初中数学中常见的非负数有:①实数的绝对值:|a|≥0; ②实数的平方:a2≥0;③非负实数的算术平方根: a ≥0(a≥0).如果 a,b,c 都是实数,且满足 a2+|b|+ c =0,那么根据非负数的性质,有 a=b=c=0.由非负 数的性质可以求出多个未知数的值.
易错点1 平方根与算术平方根概念的混淆
数,则 ab= 1 .
(4)绝对值:一个数在数轴上对应的点到原点的距离叫做这个数 的绝对值.
a(a>0), |a|=0(a=0), 以上三条反之亦成立.
-a(a<0).
|a|是一个非负数,即|a|≥0.
(5)科学记数法: 科学记数法就是把一个数表示成 a×10n(反数,则和为 0;若两数互为倒数,则积 为 1.反之亦成立.

七年级数学下册:第六章实数6.3实数第2课时实数的运算教学课件(新版新人教版)

七年级数学下册:第六章实数6.3实数第2课时实数的运算教学课件(新版新人教版)
18、只要愿意学习,就一定能够学会。——列宁 19、如果学生在学校里学习的结果是使自己什么也不会创造,那他的一生永远是模仿和抄袭。——列夫·托尔斯泰
20、对所学知识内容的兴趣可能成为学习动机。——赞科夫 21、游手好闲地学习,并不比学习游手好闲好。——约翰·贝勒斯 22、读史使人明智,读诗使人灵秀,数学使人周密,自然哲学使人精邃,伦理学使人庄重,逻辑学使人善辩。——培根 23、我们在我们的劳动过程中学习思考,劳动的结果,我们认识了世界的奥妙,于是我们就真正来改变生活了。——高尔基 24、我们要振作精神,下苦功学习。下苦功,三个字,一个叫下,一个叫苦,一个叫功,一定要振作精神,下苦功。——毛泽东 25、我学习了一生,现在我还在学习,而将来,只要我还有精力,我还要学习下去。——别林斯基、学习外语并不难,学习外语就像交朋友一样,朋友是越交越熟的,天天见面,朋友之间就亲密无间了。——高士其 2、对世界上的一切学问与知识的掌握也并非难事,只要持之以恒地学习,努力掌握规律,达到熟悉的境地,就能融会贯通,运用自如了。——高士其 3、学和行本来是有联系着的,学了必须要想,想通了就要行,要在行的当中才能看出自己是否真正学到了手。否则读书虽多,只是成为一座死书库。——谢觉哉、你的假装努力,欺骗的只有你自己,永远不要用战术上的勤奋,来掩饰战略上的懒惰。 11、时间只是过客,自己才是主人,人生的路无需苛求,只要你迈步,路就在你的脚下延伸,只要你扬帆,便会有八面来风,启程了,人的生命才真正开始。 12、不管做什么都不要急于回报,因为播种和收获不在同一个季节,中间隔着的一段时间,我们叫它为坚持。 13、你想过普通的生活,就会遇到普通的挫折。你想过最好的生活,就一定会遇上最强的伤害。这个世界很公平,想要最好,就一定会给你最痛。
D. 8
11.计算: (1)3 3-5 3; (2)1- 2+ 3- 2; (3)2 3+3 2-5 3-3 2; (4)| 3-2|+| 3-1|.

实数的运算(41张PPT)数学

实数的运算(41张PPT)数学
13
14
15
16
17
答案
解析
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
答案
解析
解析 由题意知b2-10=0,2a+b2=0,
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
2b
解析 由数轴知b<0<a,且|b|>|a|,则a-b>0,所以原式=a-(a-b)+b=a-a+b+b=2b.故答案为2b.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
②原式=|-4|=4,符合题意;③原式=-3,不符合题意;④原式=-0.8,不符合题意;⑤原式=3,符合题意;⑥原式=3,不符合题意.故选C.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
5.以下是小明的计算过程,请你仔细观察,错误的步骤是( )
解析 若围成长方形,设长为20厘米,则宽为10厘米,长方形面积为200平方厘米;若围成正方形,正方形边长为60÷4=15(厘米),面积为225平方厘米;
1
2
3
4
5
6
7
8
9
10
11
12
13
14

实数ppt课件

实数ppt课件

方程可以看作是实数之间的一种 约束关系,实数则是满足这种约
束条件的数值解。
通过解方程,我们可以找到实数 之间的特定关系和条件。
实数与不等式的关系
不等式是表达数学大小关系的一种形 式,而实数是这些不等式中的变量。
通过解不等式,我们可以找到实数之 间的特定范围和界限。
不等式可以看作是实数之间的一种限 制关系,实数则是满足这种限制条件 的数值。
02
实数的运算规则
实数的加法运算
定义
实数的加法运算是指将两个或多个实数合并成一 个实数的运算。
规则
实数的加法运算满足交换律和结合律,即 a+b=b+a和(a+b)+c=a+(b+c)。
例子
2+3=5,(-1)+(-2)=-3。
实数的减法运算
定义
实数的减法运算是指将一个实数减去另一个实数的运算。
规则
实数的减法运算可以通过加法运算进行转化,即a-b=a+(-b)。
例子
5-3=2,(-1)-(-2)=1。
实数的乘法运算
定义
实数的乘法运算是指将两个或多个实数相乘得到一个实数的运算 。
规则
实数的乘法运算满足交换律、结合律和分配律,即ab=ba和 (a+b)c=ac+bc。
例子
2×3=6,(-1)×(-2)=2。
03
1欧元=100欧分
时间单位的换算
小时与分钟换算:1 小时=60分钟
天与小时换算:1天 =24小时
小时与秒换算:1小 时=3600秒
其他应用举例
01
02
03
温度换算
摄氏度与华氏度换算,例 如:2摄氏度=3.6华氏度

实数指数幂及其运算(56张PPT)高一数学人教B版必修第二册

实数指数幂及其运算(56张PPT)高一数学人教B版必修第二册
根式
当 有意义的时候, 称为根式,n 称为根指数,a 称为被开方数.
注意,虽然我们不知道 等的精确的小数形式(计算器和计算机上给出的值都是近似值),但是按照定义,我们知道 的一些性质,比如 等.
尝试与发现
现在我们已经将整数指数幂推广到了分数指数幂(即有理数指数幂).一般情况下,当 s 与 t 都是有理数时,有运算法则:
例如,________.
3
(2)如果 x3=a,则 x 称为 a 的立方根(或三次方根),在实数范围内,任意实数 a 有且只有一个立方根,记作.
例如,=______
2
n次方根
一般地,给定大于 1 的正整数 n 和实数 a,如果存在实数 x,使得 xn=a,则 x 称为 a 的 n 次方根.
例如,因为方程 x4=81 的实数解为 3 与-3,因此 3 与-3都是 81 的 4 次方根;因为 25=32,而且 x5=32只有一个实数解,所以 32 的 5 次方根为 2 .
用信息技术求实数指数幂
实数指数幂的值可以通过计算器或计算机软件方便地求得.在GeoGebra中,在“运算区”利用符号“^”,就可以得到实数指数幂的精确值或近似值.如图所示,前面三个是在符号计算模式下的输入和所得到的结果,后面两个是在数值计算模式下得到的结果.
练习提升
C
B
C
B
C
C
根据方程 xn=a 解的情况不难看出:(1)0 的任意正整数次方根均为 0,记为.(2)正数 a 的偶次方根有两个,它们互为相反数,其中正的方根称为 a 的 n 次算术根,记为,负的方根记为 ;负数的偶数次方根在实数范围内不存在,即当 a<0 且 n 为偶数时,在实数范围内没有意义.(3)任意实数的奇数次方根都有且只有一个,记为.而且正数的奇数次方根是一个正数,负数的奇数次方根是一个负数.

3.4实数的运算(教学课件)-七年级数学上册(浙教版2024)

3.4实数的运算(教学课件)-七年级数学上册(浙教版2024)

例 2 用计算器计算:
3
1 8 − 7 精确到0.001 ;
(2)3 − 2 × (4 + 3)(精确到0.01)。
解:(1)按键顺序为
3
8 − 7 = 0.915495942 ≈ 0.915。
(2)按键顺序为
3 − 2 × (4 + 3) = −2.039323654 ≈ −2.04。
做一做
3. 判断下面的说法是否正确,并举例说明理由。
(1)两个无理数的和一定是无理数;
(2)两个无理数的积一定是无理数。
解: 1 不正确。如 2与 − 2,
2 + ( − 2) = 0,0不是无理数。
2 不正确。如 3与 − 3,
3 × ( − 3) = −3, − 3不是无理数。
探究活动
用计算器探究:
位于上海中心大厦第118层的 上海之巅 观光厅高546米,
人在观光厅里最多能看多远(精确到0.1千米)?
解: = 112 × ℎ
= 112 × 0.564
≈ 82.8 千米 。
答:最多大约能看到82.8千米远。
课本练习
1. 计算:
1
2 × 精确到0.1 ;
2
4 − 18 精确到0.01 ;
3
数从有理数扩展到实数后,有理数的运算法则和运算律在实
数范围内同样适用。
课本例题
例1 计算:2 × (3 + 5) + 4 − 2 × 5。
解: 2 × 3 + 5 + 4 − 2 × 5
=2×3+2× 5+4−2× 5
=6+4+2× 5−2× 5
= 10。
我们同样可以用计算器进行实数的运算。

实数的概念及运算课件

实数的概念及运算课件
几何学应用
实数运算在几何学中也有着重要的应用。例如,在平面几何中,我们可以通过实数运算来 计算两点之间的距离、点到直线的距离等;在立体几何中,我们可以通过实数运算来计算 体积、表面积等。
在物理中的应用
力学研究
在物理学中,实数运算广泛应用于力学研究。例如,在经典力学中,我们可以通过实数运算来计算物体的运动轨迹、 速度、加速度等;在流体力学中,我们可以通过实数运算来计算流体的速度、压强等。
反身律
a+a=a
减法运算律
反身律
a-a=0
减法的可交换性
a-b=b-a
减法的可结合性
a - (b + c) = a - b - c
乘法运算律
交换律
01
a×b=b×a
结合律
02
(a × b) × c = a × (b × c)
反身律
03
a × a = a^2
除法运算律
反身律
a / a = 1(a ≠ 0)
举例
如2+3=3+2,(-5)*(-6)=(-6)*(-5)。
结合律
01
总结词
结合律是指实数运算中,改变运算的结合顺序,其运算结果不变。
02 03
详细描述
结合律也是数学中重要的运算性质之一,对于任何实数a、b和c,都有 (a+b)+c=a+(b+c)和(ab)c=a(bc)。这意味着加法和乘法都是可结合的 。
实数的定义和性质
定义
实数是包括有理数和无理数的所有数 ,具有连续性和完备性。
性质
实数具有加法、减法、乘法和除法的 封闭性,即这四种运算的结果仍为实 数。实数还具有顺序性、完备性和连 续性等性质。

实数的运算-七年级数学上册课件(浙教版)

实数的运算-七年级数学上册课件(浙教版)
(1)a+b =
(加法交换律);
b+a
(2)(a+b)+c =
(3)a+0 = 0+a =
a
(4)a+(-a) = (-a)+a =
(5)ab =
(加法结合律);
a+(b+c)
ba

0

(乘法交换律);
(6)(ab)c = a(bc)
(乘法结合律);
(7) 1 ·a = a ·1 =
a

(8)a(b+c) = ab+ac (乘法对于加法的分配律),
如果遇到括号, 则先进行括号里的运算.
例3:计算:
(1)2 (3 5)+4-2 5;(2) 2 ( 1 ) ( 3 2)
2
(1)2 (3 5)+4-2 5
解:
(2) 2+(-1) ( 3 2)
=2 3+2 5+4-2 5
= 2 3 2
=6+4+2 5-2 5
③倒数
如果两个数的积是1,则这两个数互为倒数 .
思考:无理数也有相反数吗?怎么表示?有绝对值吗?怎么表示?有倒
数吗?怎么表示?
在实数范围内 ,相反数、倒数、绝对值的意义和有
理数范围内的相反数、倒数、绝对值的意义完全一样.
例如:
2
3
5


2
1
3
5
互为相反数
互为倒数
| 3 | 3, | 0 | 0, | |
∴“7喜数”有4个:21、42、63、84.
课堂总结

[++初中数学]实数的运算+课件+浙教版(2024)数学七年级上册+

[++初中数学]实数的运算+课件+浙教版(2024)数学七年级上册+
第三章 实数
3. 4 实数的运算
目录
Contents
01
教学目标
04
课堂练习
02
新知导入
05
课堂小结
03
新知讲解
06
作业布置
01
教学目标
1. 掌握实数的运算法则和运算顺序;
2. 学会用计算器进行近似计算;
3. 应用实数解决实际问题。
02
新知导入
一个物体自由下落时,它
所经过的距离h(米)和时间
(t秒)之间的关系可以用t=
米)。
答:最多大约能看到82.8千米远。
03
新知讲解
拓展:
正数a的算术平方根 与被开方数a的变化规律
当被开方数a的小数点向左或向右移动两位时,它的算
术平方根的小数点相应地向左或向右移动一位。当a扩大
到原来的100倍(或缩小到原来的
1
)
100
时,a的算术平方根
相应地扩大到原来的10倍(或缩小到原来的
A.②④⑤
B.①④⑤
C.②③⑤
D.①③⑤
).
3
+
作业布置
06
C 【解析】因为a+b=0,所以a=-b,所以a,b两个数都等于0或其
中有一个数小于0.当有一个数小于0时,因为负数没有平方根,所
以 +
=0不成立;当a=b=0时, +
=0.所以①的结论
不正确,因为a+b=0,所以a= -b,所以2=2,所以2 − 2=0.
3
125(精确到0.01);
(4)3× 5-1.32×π(精确到0.1)。
知识点:用计算器求数的开方:熟知计算器上各个键的功能

实数ppt课件人教版

实数ppt课件人教版

实数与复数的关系和转换
实数与复数的关系
实数是特殊的复数,即虚部为0的复数。实 数在复数域中占据了原点附近的区域。
实数与复数的转换
在数学表达上,任何实数都可以视为复数, 只需将其虚部设为0即可。同样地,任何复 数也可以视为实数的扩展,只需将其虚部消 去即可。
THANKS FOR WATCHING
感谢您的观看
绝对值和符号
根据实数的绝对值大小和正负符号,可以将实数分为正数、负数、零和绝对值相 等但符号不同的数等。
03 实数的运算
加法运算
总结词
加法运算的基本性质
详细描述
实数的加法运算满足交换律和结合律,即a+b=b+a和(a+b)+c=a+(b+c)。加法运算还有负数和零的加法性质, 即a+(-a)=0和a+0=a。
过极限来描述。
实数的收敛性和极限理论是数学 分析的基础,它们在解决各种数
学问题中发挥着重要的作用。
实数的其他性质和定理
实数具有完备性,这意味着实数集合 具有一些特殊的性质,使得实数集合 在加法、减法、乘法和除法等运算下 是封闭的。
实数还具有一些其他的性质和定理, 例如实数的有序性、阿基米德性质等 等,这些性质和定理在数学分析和实 数理论中有着广泛的应用。
实数的表示方法
十进制表示法
实数可以用小数或分数形式表示,如 2.5、1/3等。
分数形式表示法
实数可以用分数形式表示,如2/3、 3/4等。
实数的性质和运算,可以确定任意两个实数之间
的大小关系。
实数的四则运算
实数可以进行加、减、乘、除四 则运算,运算规则与有理数相同
实数ppt课件人教版

实数的混合运算ppt课件

实数的混合运算ppt课件

2)零除以任何非零的数为零.
2)负数的奇次幂为负,偶次幂为正.
3)除以一个数就是乘以这个数的倒
数;
我们学过的实数的 运算律: 加法交换律:a+b=b+a;
加法结合律:(a+b)+c=a+(b+c);
乘法交换律:ab=ba;
乘法结合律:(ab)c=a(bc);
乘法分配律:a(b+c)=ab+ac.
下列算式中有哪几种运算? 应该按照怎样的顺序计算?
计算下列各题:
(1)-5+(-15)= (2)-30-(-15)= (3)4×(-8)×25= (4)-27÷(-3)= (5)-23= (6) 25 的平方根=
实数的加法法则
1)同号两数的相加,取加数符号,并把绝对值相加;
2)绝对值不等异号两数相加,取绝对值较大数的符号,
并用较大绝对值减去较小绝对值;
3)互为相反数的两数相加和为零;
4)零与任何数相加仍得这个数.
实数的减法法则 减去一个数就是加上这个数的相反数.
实数的乘法法则
1)两数相乘同号得正,异号得负,并把绝对值相乘; 2)零与任何数相乘都得零.
实数的除法法则
实数的乘方符号法则
1)两数相除同号得正,异号得负;
并把绝对值相除;
1)正数的任何次幂都是正数;
ቤተ መጻሕፍቲ ባይዱ
5. 适当运用运算律使运算简

便.
1、2×(-3)3-4×(-3)+15 2、-10+8÷(-2)2-(-4)×(-3) 3、(-8÷23)-(-8÷2)3 4、2+10÷52 ×(-0.5)-1
5、-9+5×(-6)-(-4)2÷(-8) 6、-3-[-5+(1-0.2)÷(-2)] 7、-14-×[ 2-(-3)2 ] 8、(-52)×(-1)5+27÷(-3)×(-1)4
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

之间有关系式: t 阻力)(精确到0.01)
d (不计空气
5
好高啊
(1)计算填表:
100 200 500 1000
4.47 6.32 10.00 14.14
(2)如果共下降1000米,则前一个500米与 后一个500米所用的时间分别是多少?
这节课,你有什么收获,能与我们一起 分享通吗过?这节课的学习,你有那些收获,
练习: ( 1 ) 4 18 (精确到0.01);
(2) 2
(结果保留3个有效数字);
( 3 ) 3 10 7 (精确到0.01).
例1 计算
(2) 92(4 3)
练习:
(结果保留4个有效数字)
1. 3 7 2 7 (结果保留3个有效数字)
2. 9 2 ( 5 2) (精确到0.01)
实数运算的法则
实数运算的顺序是先算乘方和开方, 再算乘除,最后算加减. 如果遇到括号, 则先进行括号里的运算.
例2 计算
(1) 2 9 2 (5 2 )(精确到0.01).
(2) 16(x-2)2=49
例3.跳伞时间t(秒)
3.5实数的运算
计算
12(32 1) 2
面积为2的正方形的
边长是什么? 2
面积为1的正方形的 边长又是什么?1
那么这两个正方形的边长的和是什么?
边长的差又是什么?
例1 计算
(1) 8 3 9(精确到0.001);
解:(1)按键顺序为
8-3
9=
0.748343301 ∴ 8390.7483430.7340.81
能与我们一起分享吗?
大家有疑问的,可以询问和交流
可以互相讨论下,但要小声点
探究题: (1)计算: (精确到0.01)
1 2____2,1_____
2 3___3_, 2_____
(2)能计算下题吗? 122334
作业:作业本3.5,同步3.5.
相关文档
最新文档