4.1 函数和它的表示法

合集下载

北师大版八年级数学上册:4.1《函数》教案

北师大版八年级数学上册:4.1《函数》教案

北师大版八年级数学上册:4.1《函数》教案一. 教材分析《函数》是北师大版八年级数学上册第4章第1节的内容。

本节内容是学生学习数学的基础知识,对于学生理解数学的本质,培养学生的逻辑思维能力具有重要意义。

本节内容主要介绍了函数的概念、函数的表示方法以及函数的性质。

通过本节内容的学习,学生能够理解函数的基本概念,掌握函数的表示方法,理解函数的性质。

二. 学情分析学生在学习本节内容之前,已经学习了有理数、代数式等基础知识,对于数学的基本概念和逻辑思维能力有一定的掌握。

但是,对于函数这一概念,学生可能比较陌生,需要通过具体的教学活动来帮助学生理解和掌握。

三. 教学目标1.知识与技能:理解函数的基本概念,掌握函数的表示方法,理解函数的性质。

2.过程与方法:通过具体的教学活动,培养学生的逻辑思维能力,提高学生的问题解决能力。

3.情感态度与价值观:激发学生对数学的兴趣,培养学生的团队合作精神,提高学生的自我表达能力。

四. 教学重难点1.重点:函数的概念、函数的表示方法、函数的性质。

2.难点:函数的概念的理解,函数的性质的推导。

五. 教学方法1.情境教学法:通过具体的生活实例,引导学生理解函数的概念,激发学生的学习兴趣。

2.小组合作学习:通过小组讨论,培养学生的团队合作精神,提高学生的问题解决能力。

3.启发式教学法:通过提问,引导学生思考,培养学生的逻辑思维能力。

六. 教学准备1.教学素材:函数的实例、函数的图片、函数的性质的推导过程。

2.教学工具:黑板、粉笔、多媒体设备。

七. 教学过程1.导入(5分钟)通过具体的生活实例,如气温、身高、体重等,引导学生理解函数的概念。

2.呈现(10分钟)介绍函数的表示方法,如解析式、图像等,并通过多媒体展示函数的图像,帮助学生理解函数的表示方法。

3.操练(10分钟)让学生通过小组合作学习,探讨函数的性质,如单调性、奇偶性等,并展示小组讨论的结果。

4.巩固(10分钟)通过提问和回答的方式,巩固学生对函数的概念、表示方法和性质的理解。

北师大版八年级数学上册第四章4.1.函数PPT课件

北师大版八年级数学上册第四章4.1.函数PPT课件
2
=101×50=5050
物体总数y
1 =1 3 =1+2 6=1+2+3 10=1+2+3+4
Y=1+2+3+4+5+…+n
n Y= (1+n)×2
问题三:在平整的公路上, 资金是运动的价值,资金的价值是随时间变化而变化的,是时间的函数,随时间的推移而增值,其增值的这部分资金就是原有资金的时间价值 汽车紧急刹车后仍将滑行
函数的表示法:图象法、列表法
问问题题二二、、瓶瓶子子或或罐罐头头盒盒等等圆圆柱柱形形的的物物体体,,常常常常如如图图摆摆放放。。想想 资金是运动的价值,资金的价值是随时间变化而变化的,是时间的函数,随时间的推移而增值,其增值的这部分资金就是原有资金的时间价值
一一想想::
请请填填写写下下表表::
0 11 33 66 1100 1155
, 3、其中对于给定的每一个层数n
物体总数 y对应有几个值?
1 3 6 10 15
资金是运动的价值,资金的价值是随 时间变 化而变 化的, 是时间 的函数 ,随时 间的推 移而增 值,其 增值的 这部分 资金就 是原有 资金的 时间价 值
层数 层数1 层数2 层数3 层数4 层数n 1+2+3+..+99+100 =101× 100
见P77 习题4.1
资金是运的价值,资金的价值是随 时间变 化而变 化的, 是时间 的函数 ,随时 间的推 移而增 值,其 增值的 这部分 资金就 是原有 资金的 时间价 值
谢谢, 再见!
函函数数的的表表示示法法::列列表表法法
n(n 1) 2
问题三:在平整的公路上,汽 资金是运动的价值,资金的价值是随时间变化而变化的,是时间的函数,随时间的推移而增值,其增值的这部分资金就是原有资金的时间价值

北师大版八年级数学上册 第四章 一次函数 4.1函数

北师大版八年级数学上册 第四章 一次函数 4.1函数

第四章:一次函数4.1函数1.函数的概念一般地,在一个变化过程中有两个变量x 和y ,如果给定一个x 值,相应地就确定了一个y 值,那么我们称y 是x 的函数.其中x 是自变量,当自变量取一个值时,另一个变量就有唯一确定的值与它对应,这也是我们判断两个变量是否构成函数关系的依据. 自变量与另一个变量的对应关系若y 是x 的函数,当x 取不同的值时,y 的值不一定不同.如:y =x 2中,当x =2,或x =-2时,y 的值都是4. 函数的定义中包括三个要素 ① 自变量的取值范围;② 两个变量之间的对应关系;③ 后一个变量被唯一确定而形成的变化范围. 注意:①自变量可以用任意字母表示;②两个变量之间的关系必须是“唯一确定”的; ③函数不是数,而是一种特殊的对应关系.规律方法:判断两个变量是否存在函数关系,关键是看两个变量之间是否是一一对应,即给一个变量一个数值,另一个变量是否有唯一确定的值与之对应.【例1】下列图像给出了变量x 与y 之间的对应关系,其中y 不是x 的函数的是( )【例2】 下列关于变量x ,y 的关系式:①x -3y =1;②y =|x |;③2x -y 2=9.其中y 是x 的函数的是( ).A .①②③B .①②C .②③D .①②【例3】 已知y =2x 2+4,(1)求x 取12和-12时的函数值;(2)求y 取10时x 的值..函数中变量的对应关系当自变量取一个值时,另一个变量就会有唯一的值与之相对应;当另一个变量取某一数值,则自变量并不一定有唯一的值与之相对应,所以另一个变量与自变量并不是一一对应的关系.2.函数关系式用来表示函数关系的等式叫做函数关系式,也称为函数解析式或关系表达式. 函数关系式中的学问①函数关系式是等式.②函数关系式中指明了哪个是自变量,哪个是函数.通常等式右边的代数式中的变量是自变量,等式左边的一个字母表示函数.③函数的解析式在书写时有顺序性.例如,y =x +1是表示y 是x 的函数.若写成x =y -1就表示x 是y 的函数.也就是说:求y 与x 的函数关系式,必须是用只含变量x 的代数式表示y ,即得到的等式(解析式)左边只含一个变量y ,右边是含x 的代数式.【例4】 已知等腰三角形的周长为36,腰长为x ,底边上的高为6,若把面积y 看做腰长x 的函数,试写出它们的函数关系式.3.自变量的取值范围使函数有意义的自变量的全体取值叫做自变量的取值范围. 自变量的取值必须使含自变量的代数式都有意义。

北师版八年级上册数学《4.1函数》教案 (1)

北师版八年级上册数学《4.1函数》教案  (1)

【课题】北师版八年级上册第四章 一次函数第一节:函数【课程标准陈述】1.结合实例,了解函数的概念和三种表示法,能举出函数的实例.2.能确定简单实际问题中函数自变量的取值范围.【课时学习目标】1.经历从具体实例中抽象出函数概念的过程,知道函数常见的三种表示法;(重点)2.会描述函数、函数值的概念,能判断两个变量间的关系是不是函数关系.(难点)【评价活动方案】1.通过提出三个具体实例引发的问题串,引导学生合作探究自变量与因变量的对应关系,进一步概括实例的相同抽象出函数概念,概括实例的不同归纳函数常见的三种表示法.(以达到目标1)2.通过抽象、归纳、概括、交流等活动描述函数、函数值的概念,例题1及课堂小测中的变式及反例练习强化学生对函数、函数值的概念的理解.(以达到目标2)【教学活动设计】第一环节:创设情境、导入新课展示一些与学生实际生活有关的图片,如心电图片,天气随时间的变化图片,抛掷铅球球形成的轨迹,k 线图等,提醒学生思考问题:在图片中有哪些量?他们是固定不变的吗?第二环节:合作探究探究活动一:经历从具体实例中抽象出函数概念的过程,知道函数常见的三种表示法;问题1:如图是壮壮同学骑自行车上学的路程与时间的关系图像,你能获取什么信息?(目标1) (1)右图反映了哪两个变量之间的关系?哪个是自变量?哪个是因变量?(2)10t =时,路程是多少?15t =呢?30t =呢?(3)是否在0-30分钟内,每个时间都对应一个路程? 问题2:壮壮在上学路上的文具店买了一个笔袋花了15元,又买了几只圆珠笔,每只2元,你能提出什么数学问题?(目标1)(1)本题反映了哪两个变量之间的关系?哪个是自变量?哪个是因变量?(2)设圆珠笔支数为x ,总费用为y . 1x =时,y 是多少?5x =呢?(3)y 与x 存在什么关系?是否给定一个x ,就有一个y 与之对应?(分钟)问题3:壮壮放学后打了辆出租车回家。

这辆出租车起步价是9元(路程小于或等于3公里),超过3公里每增加1公里加收1.7元。

北师大版八年级数学上册:4.1《函数》说课稿3

北师大版八年级数学上册:4.1《函数》说课稿3

北师大版八年级数学上册:4.1《函数》说课稿3一. 教材分析《函数》是北师大版八年级数学上册第4章的第1节内容。

本节内容是在学生已经掌握了有理数的运算、函数的概念和性质等知识的基础上进行学习的。

教材从实际问题出发,引导学生认识函数的概念,理解函数的性质,学会用函数的观点解决实际问题。

本节课的内容对于学生来说是比较抽象的,需要学生有一定的抽象思维能力。

二. 学情分析八年级的学生已经具备了一定的数学基础,对于有理数的运算、函数的概念和性质等知识有一定的了解。

但是,由于函数的概念和性质比较抽象,学生可能存在一定的理解困难。

因此,在教学过程中,我需要注重引导学生从实际问题中认识函数,理解函数的性质,并用函数的观点解决实际问题。

三. 说教学目标1.知识与技能:让学生理解函数的概念,掌握函数的性质,能用函数的观点解决实际问题。

2.过程与方法:通过实际问题,引导学生认识函数的概念,理解函数的性质,培养学生的抽象思维能力。

3.情感态度与价值观:让学生体验数学与实际生活的联系,培养学生的数学应用意识。

四. 说教学重难点1.重点:函数的概念、函数的性质。

2.难点:函数的概念的理解,函数的性质的掌握。

五. 说教学方法与手段1.教学方法:采用问题驱动法、案例教学法、小组合作学习法等。

2.教学手段:多媒体课件、黑板、粉笔等。

六. 说教学过程1.导入新课:通过一个实际问题,引导学生认识函数的概念。

例如:在一条直线上,对于每一个确定的x值,都有一个唯一的y值与之对应。

那么,我们可以称y是x的函数。

2.自主学习:让学生通过阅读教材,理解函数的性质。

例如:函数的性质有四个,分别是单调性、奇偶性、周期性和连续性。

3.合作交流:让学生通过小组合作学习,用函数的观点解决实际问题。

例如:某商店进行打折活动,原价100元的商品,打8折后的价格是多少?4.教师讲解:对学生的解答进行点评,讲解函数的概念和性质。

5.巩固练习:让学生完成教材后的练习题,巩固所学知识。

高考数学理科 复习 第四章三角函数 §4.1三角函数的概念、同角三角函数的关系式和诱导公式

高考数学理科 复习 第四章三角函数  §4.1三角函数的概念、同角三角函数的关系式和诱导公式

A.a>b>c B.b>c>a C.c>b>a D.c>a>b
(2)(2014成都一模)已知sin(π-α)=log8
1 4
,且α∈
2
,
0
,则tan(2π-α)的值为
.
25
答案 (1)C (2) 5
解析 (1)∵b=cos 55°=sin 35°>sin 33°=a,∴b>a.
∵c=tan
35°=
、 R、
α α≠ 2 +kπ,k∈Z .
5.三角函数线 设角α的终边与单位圆交于点P,过点P作PM⊥x轴于点M,则有向线段MP 叫做角α的正弦线,有向线段 OM 叫做 角α的余弦线;过点A(1,0)作单位圆的切线交 角α的终边或其反向延长线于点T,则有向线 段AT叫做角α的 正切 线.
6.三角函数的符号规律 第一象限全“+”,第二象限正弦“+”,第三象限正切“+”,第四象限余 弦“+”.简称:一全、二正、三切、四余. 7.同角三角函数的基本关系 (1)平方关系: sin2α+cos2α=1 ;
(2)商数关系: 8.诱导公式
sin α =tan α .
cos α
组数 角
正弦
一 2kπ+α (k∈Z)
sin α
余弦
cos α
二 π+α
-sin α -cosα
三 -α
-sin α cos α
正切
tan α
tan α -tan α
四 π-α
sin α -cos α -tan α




α的值为
(

函数(知识梳理与考点分类讲解)-八年级数学上册基础知识专项突破讲与练(北师大版)

函数(知识梳理与考点分类讲解)-八年级数学上册基础知识专项突破讲与练(北师大版)

专题4.1函数(知识梳理与考点分类讲解)【知识点1】函数的定义1.函数的定义一般地,如果在一个变化过程中有两个变量x和y,并且对于变量x的每个值,变量y都有唯一的值与它对应,那么我们称y是x的函数,其中x是自变量.说明:(1)在函数中定义的两个变量x,y是有主次之分的,变量x的变化是主动的,称之为自变量,而变量y是随x的变化而变化的,是被动的,称之为因变量(即自变量的函数);(2)函数不是数,函数的实质是两个变量的对应关系.2.判断一个关系是否是函数关系的方法一看是否在一个变化过程中;二看是否存在两个变量;三看对于变量每取一个确定的值,另一个变量是否都有唯一确定的值与其对应,以上三者(简称“三要素”)缺一不可.特别提醒:函数的定义中包括了对应值的存在性唯一性两重薏思,即对自变量的每一个确定的值函数有且只有一个值与之对应对自变量x的不同值y的值可以相同,如函数2y x ,当x=1和x=-1时,y的对应值者是L 【知识点2】函数的三种表示方法1.函数的三种表示方法表示方法定义优点缺点列表示通过列出自变量的值与对应函数值的表格表示函数关系的方法叫做列表法一目了然,对表格中已有自变量的每一个值,可直接查出与它对应的函数值列出的对应值是有限的,而且在表格中也不容易看出自变量与函数的变化规律关系式法用数学式子表示函数关系的方法叫做关系式法.其中的等式叫做函数关系式能准确地反映整个变化过程中自变量与数值的对应关系从函数关系式很难直观看出函数的变化规律,而且有些函数不能用关系式法表示出来图象法用图象表示两个变量间的函数关系的方法叫做图象法直观、形象地反映出函数关系变化的趋势和某些性质从自变量的值常常难以找到对应函数的准确值2.列函数关系式根据实际问题列函数关系式的方法类似于列方程解应用题,只要找出自变量与函数值之间存在的等量关系,列出等式即可.但要整理成用含自变量的代数式表示函数值的形式.【考点一】利用函数的概念判断两变量的函数关系【例1】(2023·上海·八年级假期作业)下列各式中,y 是否是x 的函数?为什么?(1)23y x =;(2)23y x =.【答案】(1)是,理由见分析;(2)不是,理由见分析【分析】根据函数的概念进行求解即可:对于两个变量,对于其中一个变量x 的任意取值(取值范围内),另一个变量y 都有唯一的值与之对应,那么y 就是x 的函数.(1)解:∵在23y x =中,对于任意的x 的值,y 都有唯一的值与之对应,∴y 是x 的函数;(2)解:∵在23y x =中,对于任意一个正数x 的值,y 都有两个值与之对应,∴y 不是x 的函数;【点拨】本题主要考查了函数的定义,熟知函数的定义是解题的关键.【举一反三】【变式1】(2023秋·安徽合肥·八年级合肥38中校考阶段练习)下列各曲线中,能表示y 是x 的函数的是()A .B .C .D .【答案】D【分析】根据函数的概念即可解答.解:由函数的定义:在一个变化过程中有两个变量x 与y ,对于x 的每一个确定的值,y 都有唯一的值与其对应,那么就说y 是x 的函数.则只有D 选项符合题意故选:D .【点拨】题主要考查了函数的概念,在一个变化过程中有两个变量x 与y ,对于x 的每一个确定的值,y 都有唯一本的值与其对应,那么就说y 是x 的函数.【变式2】(2023·山东德州·二模)下列关于两个变量关系的四种表述中,正确的是.(填序号即可)①圆的周长C 是半径r 的函数;②表达式y =y 是x 的函数;③如表中,n 是m 的函数;m 3-2-1-123n2-3-6-632④如图中,曲线表示y 是x 的函数.【答案】①②③【分析】根据函数的定义与函数的表示方法逐一分析即可得到答案.解:①圆的周长C 是半径r 的函数;表述正确,故①符合题意;②表达式y =y 是x 的函数;表述正确,故②符合题意;③由表格信息可得:对应m 的每一个值,n 都有唯一的值与之对应,故③符合题意;在④中的曲线,当0x >时的每一个值,y 都有两个值与之对应,故④不符合题意;故答案为:①②③【点拨】本题考查的是函数的定义,函数的表示方法,理解函数定义与表示方法是解本题的关键.【考点二】函数的解析式★★自变量★★因变量【例2】(2022秋·八年级课时练习)在一次实验中,老师把一根弹簧秤的上端固定,在其下端悬挂物体,测得弹簧秤的长度()cm y 随所挂物体的质量x ()kg 变化关系的图象如下:(1)根据图象信息补全表格:x /kg 012345y /cm810121416(2)写出所挂物体质量在0至5kg 时弹簧秤长度y ()cm 与所挂物体质量()kg x 的关系式;(3)结合图象,写出弹簧秤长度是怎样随悬挂物体质量的变化而变化的.【答案】(1)18;(2)=2+8y x ;(3)当0≤x ≤5时,所挂重物每增加1千克,弹簧增长2cm ;当挂重物不小于5千克时,弹簧的长度均为18cm .【分析】(1)根据表格可知,发现所挂重物每增加1千克,弹簧增长2cm ,据此解答即可;(2)根据弹簧的长度等于弹簧原来的长度+弹簧伸长的长度列出关系式;(3)结合图象解答即可.解:(1)由题意可知,当x =5时,y =16+2=18,故答案为:18;(2)根据表格可知:所挂重物每增加1千克,弹簧增长2cm ,根据弹簧的长度=弹簧原来的长度+弹簧伸长的长度可知当所挂物体的重量为x 千克时,弹簧长度y =2x +8(0≤x ≤5);(3)由图象可知,当0≤x ≤5时,所挂重物每增加1千克,弹簧增长2cm ;当挂重物不小于5千克时,弹簧的长度均为18cm .【点拨】本题主要考查得是列函数关系式,解答本题需要同学们明确弹簧的长度=弹簧原来的长度+弹簧伸长的长度,根据表格发现所挂重物每增加1千克,弹簧增长2cm 是解题的关键.【举一反三】【变式1】(2021春·海南海口·八年级北京大学附属中学海口学校校考期中)在函数y 变量x 的取值范围是()A .x ≥1B .x ≠2C .x ≥2D .x ≥1且x ≠2【答案】D【分析】根据二次根式的性质和分式的意义,被开方数大于等于0,分母不等于0,就可以求解.解:根据二次根式的意义可知:x -1≥0,即x ≥1,根据分式的意义可知:x -2≠0,即x ≠2,∴x ≥1且x ≠2.故选:D .【点拨】本题考查了函数自变量的取值范围的确定和分式的意义.函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数为非负数.【变式2】(2022春·河北邯郸·八年级校考阶段练习)如图,长为32米,宽为20米的长方形地面上,修筑宽度均为x 米的两条互相垂直的小路(图中阴影部分),其余部分作耕地,如果将两条小路铺上地砖,选用地砖的价格是60元/米2.(1)写出买地砖需要的钱数y (元)与x (米)的函数关系式为(不要求写自变量的取值范围);(2)当3x =时,地砖的费用为元.【答案】2312060y x x =-8820【分析】(1)先求出小路的面积,然后根据买地砖需要的钱数=小路的面积⨯每平方米地砖的价格,进行计算即可解答;(2)把3x =代入(1)中所求的关系式进行计算即可解答.解:(1)由题意得:两条小路的面积为:223220(52)x x x x x +-=-米2,2260(52)312060y x x x x ∴=⨯-=-,故答案为:2312060y x x =-;(2)当3x =时,2312060312036098820x x -=⨯-⨯=(元),答:当3x =时,地砖的费用为8820元.【点拨】本题考查了函数关系式,根据题目的已知条件结合图形求出小路的面积是解题的关键.【考点三】利用函数的三种表达方式解决问题【例3】(2023春·山东烟台·六年级统考期末)在一次实验中,马达同学把一根弹簧的上端固定,在其下端悬挂物体,测得的弹簧长度(cm)y 随所挂物体的质量(kg)x 变化关系的图象如下:(1)上表反映的变化过程中的两个变量,哪个是自变量?哪个是因变量?(2)根据以上图象补全表格:所挂物体质量/kg x 012345弹簧长度/cmy 8101214(3)由图象可知,弹簧能承受的所挂物体的最大质量是多少千克?(4)在弹簧承受范围内,请直接用含有x 的代数式表示y .【答案】(1)图中反映的是弹簧的长度随所挂物体质量之间的变化关系,其中所挂物体的质量是自变量,弹簧的长度是因变量;(2)16,18;(3)5千克;(4)()2805y x x =+≤≤【分析】(1)根据变量常量的定义结合题意进行判断即可;(2)根据图象填写表格即可;(3)根据图象得出结论;(4)根据图象可知所挂物体质量每增加1千克,弹簧伸长2厘米,据此解答即可.解:(1)图中反映的是弹簧的长度随所挂物体质量之间的变化关系,其中所挂物体的质量是自变量,弹簧的长度是因变量;(2)由图象得:所挂物体质量/kg x 012345弹簧长度/cm y 81012141618故答案为:16,18;(3)由图象可知,弹簧能承受的所挂物体的最大质量是5千克.(4)∵所挂物体质量每增加1千克,弹簧伸长2厘米,∴()2805y x x =+≤≤.【点拨】本题考查函数的表示方法,理解表格中弹簧的长度随所挂物体质量之间的变化关系是正确判断的关键.【举一反三】【变式1】(2023春·四川达州·七年级统考期末)李强一家自驾车到离家500km 的九寨沟旅游,出发前将油箱加满油.下表记录了轿车行驶的路程(km)x 与油箱剩余油量(L)y 之间的部分数据:轿车行驶的路程/km x 0100200300400…油箱剩余油量/L y 5042342618…下列说法不正确的是()A .该车的油箱容量为50LB .该车每行驶100km 耗油8LC .油箱剩余油量(L)y 与行驶的路程(km)x 之间的关系式为508y x =-D .当李强一家到达九寨沟时,油箱中剩余10L 油【答案】C【分析】根据表格中信息逐一判断即可.解:A 、由表格知:行驶路程为0km 时,油箱余油量为50L ,故A 正确,不符合题意;B 、0100km -时,耗油量为-=50428L ;100——200km 时,耗油量为37298L -=;故B 正确,不符合题意;C 、有表格知:该车每行驶50km 耗油4L ,则45050y x =-,故C 错误,符合题意;D 、当500x =时,()45050010L 50y =-⨯=,故D 正确,不符合题意.故选:C .【点拨】本题主要考查了函数的表示方法,明确题意、正确从表格中获取信息是解题的关键.【变式2】(2020秋·八年级单元测试)等腰三角形ABC 周长为24,底边BC 长为y ,腰AB 长为x ,则y 关于x 的函数解析式及定义域是.【答案】()242612y x x =-<<【分析】根据三角形的周长为24可得出2x+y=24,变形后即可得出y=-2x+24;根据三角形的边长大于0以及两腰之和大于底边,即可得出关于x 的一元一次不等式组,解之即可得出自变量x 的取值范围.解:根据题意得:2x+y=24,∴y=-2x+24,∵x 、x 、y 为三角形的边,∴22242240x x x -+-+⎧⎨⎩>>,∴6<x <12.故答案为:()242612y x x =-<<.【点拨】本题考查了一次函数的应用、等腰三角形的性质、三角形三边关系以及三角形的周长,解题的关键是:(1)根据三角形的周长为20找出y 关于x 的函数解析式;(2)由三角形的边长为正值结合两腰之和大于底边,列出关于x 的一元一次不等式组.【考点四】实际问题中列函数的表达式【例4】(2023秋·全国·八年级专题练习)某超市最近销售蓝莓,根据以往的销售经验,每天的售价与销售量之间有如下关系:每千克售价(元)6059585756……30每天销售量(千克)5055606570……200(1)表格中的自变量是__________,因变量是__________.(2)设当售价从每千克60元下降了x 元时,每天销售量为y 千克,直接写出y 与x 之间的关系式;(3)如果周六的销售量是170千克,那这天的售价是每千克多少元?(4)如果蓝莓的成本价是30元/千克,某天的售价定为40元/千克,当天的销售利润是多少?【答案】(1)每千克售价,每天销量;(2)550y x =+;(3)36元;(4)1500元【分析】(1)根据表格内容可求解此题;(2)由題意根据每千克售价每下降1元每天销售量就增加5千克进行求解;(3)将170y =代入(2)题结果并进行计算;(4)根据当天的销售利润等于每千克的利润乘以销售的千克数进行代入计算.(1)解:由题意得,自变量是每千克售价,因变量是每天销量,故答案为:每千克售价,每天销量;(2)解:由题意得售价每下降1元销售量就增大5千克,∴当售价从每千克60元下降了x 元时,每天销售量为550y x =+即y 与x 之间的关系式为550y x =+;(3)解:当170y =时,170550x =+,解得:24x =,∴602436-=,即这天的售价是每千克36元;(4)解:由(2)题结果可得,当604020x =-=时,52050150y =⨯+=,∴()40301501500-⨯=(元)答:这天的销售利润是1500元.【点拨】此题考查了运用函数解决实际问题的能力,关键是能准确理解题目间数量关系,并运用函数知识进行求解.【举一反三】【变式1】(2023春·河北邯郸·八年级统考期末)已知两个变量x 和y ,它们之间的三组对应值如下表所示:x 2-02y311-那么y 关于x 的函数解析式可能是()A .1y x =-+B .21y x x =++C .y =13x +D .2y x=-【答案】A【分析】根据函数的定义以及函数图象上点的坐标特征逐项进行判断即可.解:A .表格中的三组x y 、的对应值均满足1y x =-+,因此选项A 符合题意;B .表格中01x y ==,满足21y x x =++,但23x y =-=,与21x y ==-,不满足21y x x =++,因此选项B 不符合题意;C .表格中的三组x y 、的对应值均不满足13y x =+,因此选项C 不符合题意;D .表格中的三组x y 、的对应值均不满足2y x =-,因此选项D 不符合题意;故选:A .【点拨】本题考查函数关系式,理解函数的定义以及函数图象上点的坐标特征是正确解答的前提.【变式2】(2023秋·全国·八年级专题练习)甲同学的饭卡原有208元,在学校消费为周一到周五,平均每天消费35元,他的卡内余额y (元)与在校天数()05x x ≤≤之间的关系式为.【答案】20835y x=-【分析】用208减去x 天内的消费,即可确定函数关系式.解:依题意,他的卡内余额y (元)与在校天数()05x x ≤≤之间的关系式为20835y x =-,故答案为:20835y x =-.【点拨】本题考查了函数关系式,理解题意列出关系式是解题的关键.【考点五】动点问题中列函数的表达式【例5】(2023春·湖南长沙·八年级统考期末)已知点()8,0A 及在第一象限的动点(),P x y ,且10x y +=.设OPA 的面积为S .(1)求S 关于x 的函数解析式;(2)求x 的取值范围,并根据x 的取值范围求出S 的取值范围;(3)当12S =时,求P 点坐标.【答案】(1)=-+S 4x 40;(2)010x <<,040S <<;(3)(7,3)【分析】(1)根据OPA ∆的面积S 等于1·2y OP P 可得出S 关于x 的函数解析式;(2)由点P 在第一象限,可得点P 的横纵坐标均大于0,则可得关于x 的不等式,解得x 的取值范围即可.(3)先根据(1)中S 关于x 的函数解析式及12S =,得出点P 的横坐标,再将其代入10x y +=,则可解得点P 的纵坐标.(1)解:由10x y +=得10y x =-,P 点在第一象限,点A 坐标(8,0),∴11·8(10)44022S OA Py x x ==⨯⨯-=-+,S ∴关于x 的函数解析式为=-+S 4x 40.(2)解:P 在第一象限,∴1000x x ->⎧⎨>⎩,x ∴的取值范围为010x <<.则S 的取值范围为040S <<.(3)解:440S x =-+ ,∴当12S =时,44012x -+=,7x ∴=,710y += ,3y ∴=,P ∴点的坐标为(7,3).【点拨】本题主要考查了求函数关系式,求自变量的取值范围,解题的关键是运用数形结合和三角形的面积公式进行计算.【举一反三】【变式1】(2023春·八年级课时练习)如图所示,在ABC 中,已知16BC =,高10AD =,动点Q 由C 点沿CB 向B 点移动(不与点B 重合).设CQ 的长为x ,ACQ 的面积为S ,则S 与x 之间的函数关系式为()A .805S x =-(016x <<)B .5S x =(016x <<)C .10S x =(016x <<)D .580S x =+(016x <<)【答案】B 【分析】根据三角形的面积公式即可得到S 与x 之间的函数关系式.解:∵12ACQ S CQ AD =⋅ ∴11052S x x =⨯=∴S 与x 之间的函数关系式为5S x =(016x <<).故选:B【点拨】本题考查列函数解析式,理解题意,列出函数解析式,写出自变量的取值范围是解题的关键.【变式2】(2022秋·辽宁沈阳·八年级沈阳市实验学校校考期中)如图,在正方形ABCD 中,4AB =,动点M 从点A 出发,以每秒1个单位长度的速度沿线段AB 运动,同时动点N 从点A 出发,以每秒2个单位长度的速度沿线段AD 运动,当点N 运动到点D 时,点M ,N 同时停止运动,设AMN 的面积为y ,运动时间为x (s ),请写出y 与x 之间函数关系式.【答案】()202y x x =<≤【分析】根据点N 的运动情况,写出y 和x 之间的函数关系式即可.解:当点N 在AD 运动时,∵4AB =,∴02x <≤,∵动点M 以每秒1个单位长度的速度沿线段AB 运动,动点N 以每秒2个单位长度的速度沿线段AD 运动,∴AM x =,2AN x =,∴2122y x x x =⋅=,故答案为:()202y x x =<≤.【点拨】本题是运动型综合题,考查了函数表达式、正方形的性质、三角形的面积等知识点.解题关键是深刻理解动点的函数图象,了解图象中关键点所代表的实际意义,理解动点的完整运动过程.【考点六】分段函数的表达式【例6】(2022秋·黑龙江大庆·七年级校考开学考试)某市自来水公司为鼓励单位节约用水,额定某单位每月计划内用水3000吨.计划内用水每吨收费1.5元,超额部分按每吨2.4元收费.(1)写出这个单位每月消费y (元)与用水量x (吨)之间的函数关系式;(2)若该单位1、2月份分别用水3200吨和2800吨,水费各为多少?【答案】(1) 1.5(03000)2.42700(3000)x x y x x <≤⎧=⎨->⎩(2)该单位1、2月份分别用水3200吨和2800吨,水费分别为4980元和4200元【分析】(1)根据题意,分03000x <≤时,3000x >时,分别列出函数关系式,即可求解;(2)将3200,2800x =分别代入(1)的关系式,即可求解.解:(1)当03000x <≤时, 1.5y x =;当3000x >时,()3000 1.53000 2.4 2.42700y x x =⨯+-⨯=-,∴y 与x 之间的函数关系式为 1.5(03000)2.42700(3000)x x y x x <≤⎧=⎨->⎩;(2)∵32003000>,∴ 2.4320027004980y =⨯-=(元),∵28003000<∴ 1.528004200y =⨯=(元),答:该单位1、2月份分别用水3200吨和2800吨,水费分别为4980元和4200元.【点拨】本题考查了列函数关系式,求函数值,根据题意分别列出函数关系式解题的关键.【举一反三】【变式1】(2022秋·福建漳州·八年级校考期中)某商店11月11日举行促销优惠活动,当天到店购买商品,有以下两种优惠方案,方案一:用168元购买会员卡后,则购买商店内任何商品,一律按商品价格的8折优惠;方案二:若不购买会员卡,则购买商店内任何商品,一律按商品价格的9折优惠.已知小敏不是该商店的会员,设她所购买商品总价格为x 元,实际支付费用为y 元.(1)若小敏不购买会员卡,则y 与x 之间的函数关系式是________;若小敏购买会员卡,则y 与x 之间的函数关系式是________;(2)小敏准备购买的商品总价格为1080元,请问她选用哪种方案较为合算?【答案】(1)0.9y x =;0.8168y x =+;(2)选用方案一较为合算【分析】(1)根据所购买商品的价格和折扣直接计算出实际应付的钱;(2)分别求出两种不同方案的实际支付费用,再比较,即可.(1)解:小敏不购买会员卡,y 与x 之间的函数关系式是0.9y x =;小敏购买会员卡,y 与x 之间的函数关系式是0.8168y x =+;故答案为:0.9y x =;0.8168y x =+(2)解:方案一:实际支付费用为0.91080972y =⨯=元;方案二:实际支付费用为0.810801681032y =⨯+=元,∵1032972>,∴小敏选用方案一较为合算.【点拨】本题考查的是列函数关系式,明确题意,准确列出函数关系式是解题的关键.【变式2】(2023春·广东茂名·七年级校考阶段练习)小明用的练习本可以到甲超市购买,也可以到乙超市购买.已知两超市的标价都是每本1元,但甲超市的优惠条件是购买10本或少于10本按标价卖,10本以上,从第11本开始按标价的70%卖.乙超市的优惠条件是从第1本开始就按标价的85%卖.(1)当小明要买28本时,到哪家超市购买较省钱?(2)写出甲超市中,收款y 甲(元)与购买本数x (本)的关系式.(3)小明现有24元钱,最多可买多少本练习本?【答案】(1)甲家超市买收费省钱;(2)()100.73(10)x x y x x ⎧≤=⎨+>⎩甲;(3)拿24元钱最多可以买30本练习本(在甲超市购买)【分析】(1)根据甲超市所需要的费用=前10本的总费用+后18本的总费用70%⨯得出甲所需要的费用,根据乙超市所需要的费用=28本的总费用85%⨯得出乙所需要的费用,然后进行比较大小得出答案;(2)甲超市所需要的费用=前10本的总费用+超出10本的总费用70%⨯得出函数解析式;(3)首先求出乙的函数解析式,然后分别求出甲和乙超市分别能买到几本练习本,从而得出答案.(1)解:买28本时,在甲超市购买需用10118170%22.6⨯+⨯⨯=(元),在乙超市购买需用28185%23.8⨯⨯=(元),22.623.8<,所以买28本到甲家超市买收费省钱;(2)解:()10y x x =≤甲101(10)170%0.73(10)y x x x =⨯+-⨯⨯=+>甲;答:()100.73(10)x x y x x ⎧≤=⎨+>⎩甲;(3)解:由题知乙超市收款y 乙(元)与购买本数x (本)间的关系式为.17185%20乙=⨯⨯=y x x 所以当24y =甲时,240.73x =+甲,解得:30x =甲;当24y =乙时,172420x =乙,28x ≈乙.所以拿24元钱最多可以买30本练习本(在甲超市购买).【点拨】此题考查了一次函数关系式及一元一次方程等知识;求出总价y 甲与购买本数()10x x >的关系式是解题的关键.。

高考数学第四章指数函数、对数函数与幂函数4.1指数与指数函数4.1.1实数指数幂及其运算

高考数学第四章指数函数、对数函数与幂函数4.1指数与指数函数4.1.1实数指数幂及其运算

4.1.1 实数指数幂及其运算课标解读课标要求核心素养1.理解n次方根及根式的概念.2.正确运用根式的运算性质进行根式运算.(重点)3.掌握根式与分数指数幂的互化.(重点、易错点)4.掌握有理指数幂的运算性质.(重点、难点)1.通过根式与分数指数幂互化的学习,培养数学运算的核心素养.2.通过利用指数式的条件解决求值问题,提升逻辑推理的核心素养.公元前五世纪,古希腊有一个数学学派名叫毕达哥拉斯学派,其学派中的一个成员希帕索斯思考了一个问题:边长为1的正方形的对角线的长度是多少呢?他发现这一长度既不能用整数表示,也不能用分数表示,希帕索斯的发现使数学史上第一个无理数诞生了.问题:若x2=3,则这样的x有几个?它们叫做3的什么?如何表示?答案这样的x有2个,它们都称为3的平方根,记作±.1.有关幂的概念一般地,a n中的a 称为①底数,n称为②指数.2.根式的相关概念和性质(1)根式的概念:一般地,给定大于1的正整数n和实数a,如果存在实数x,使得x n=a,则③x称为a的n 次方根;当有意义的时候,④称为根式,n称为⑤根指数,a称为⑥被开方数.(2)根式的性质:(i)()n=⑦a.(ii)=思考1:类比平方根、立方根,猜想:当n为偶数时,一个数的n次方根有多少个?当n为奇数时呢?提示a为正数:a为负数:零的n次方根为零,记为=0.3.分数指数幂(1)定义:一般地,如果n是正整数,那么:当有意义时,规定=⑧;当没有意义时,称没有意义.(2)意义:分数指数幂正分数指数幂=(a>0),=()m =⑨负分数指数幂a-s =⑩(a s有意义且a≠0)0的分数指数幂0的正分数指数幂等于0,0的负分数指数幂没有意义(3)运算法则:(i)前提:s,t为任意有理数.(ii)法则:a s a t=a s+t;(a s)t=a st;(ab)s=a s b s.思考2:分数指数幂的运算性质是什么?提示分数指数幂的运算性质形式上与整数指数幂的运算性质完全一样.记忆分数指数幂的运算性质的口诀:乘相加,除相减,幂相乘.4.实数指数幂一般地,无理指数幂a t(a>0,t是无理数)是一个确定的实数,有理指数幂的运算性质对于无理指数幂同样适用.因此当a>0,t为任意实数时,实数指数幂a t 都有意义,对任意实数s和t,类似有理指数幂的运算法则仍然成立.探究一n次方根的化简与求值例1 (易错题)化简:(1);(2)()2++(a-1≥0).解析(1)=|3-π|=π-3.(2)原式=a-1+|1-a|+1-a=a-1+a-1+1-a=a-1.易错点拨n的奇偶性a的n次方根的表示a的取值范围n为奇数a∈Rn为偶数±[0,+∞)1.已知-3<x<3,求-的值.解析原式=-=|x-1|-|x+3|,∵-3<x<3,∴当-3<x<1时,原式=-(x-1)-(x+3)=-2x-2;当1≤x<3时,原式=x-1-(x+3)=-4,∴原式=探究二根式与指数幂的互化例2 (1)下列根式与分数指数幂的互化正确的是( )A.-=(-x(x>0)B.=(y<0)C.=(x>0)D.=-(x≠0)(2)用指数幂的形式表示(x>0,y>0).答案(1)C解析(1)A选项,-=-(x>0);B选项,=(y2=-(y<0);C选项,=(x-3=(x>0);D选项,=(x≠0).故C正确.(2)解法一:由里向外化为分数指数幂.===.解法二:由外向里化为分数指数幂.===·=.思维突破(1)记结论:=和==(a>0).(2)明途径:一是由里向外化为分数指数幂;二是由外向里化为分数指数幂.2.化简:(1)(a>0);(2)(2)(-6)÷(-3).解析(1)===(=.(2)原式=[2×(-6)÷(-3)]·=4ab0=4a.探究三指数幂的化简与求值例3 已知x+x-1=3,求x2+x-2的值.解析∵(x+x-1)2=x2+x-2+2,∴x2+x-2=(x+x-1)2-2=9-2=7.思维突破式子中包含的指数互为相反数时,通常用平方法进行解决,平方后观察条件和结论的关系,变形求解即可.3.(1)(变结论)已知x+x-1=3,求x2-x-2的值.(2)(变条件)已知x-x-1=3,求x2+x-2的值.解析(1)由例3知x2+x-2=7,∴x4+x-4=47,∴(x2-x-2)2=x4-2+x-4=45,即x2-x-2=±3.(2)∵(x-x-1)2=x2+x-2-2=9,∴x2+x-2=11.1.下列各式正确的是( )A.=-3B.=aC.()3=-2D.=2答案 C2.已知a>0,则=( )A. B.C. D.答案 D =,则===.故选D.3.化简(a3÷()(a>0,b>0)结果为( )A.aB.bC.D.答案 A 原式=÷()==a.故选A.4.化简:(x>0,y>0)= .答案2x2y解析∵x>0,y>0,∴==(24·x8y4=2x2y.5.若10m=2,10n=3,则103m-n= .答案解析由已知得103m=(10m)3=23=8,∴103m-n==.逻辑推理——指数运算与均值不等式的应用已知a>0,b>0,若2a·2b=2,则ab的最大值是.审:由指数运算法则以及2a·2b=2,可得a+b=1,再根据均值不等式ab≤,当且仅当a=b时取得最大值得出答案.联:求积的最值,会联想到基本不等式,那就需要和为常数,这个和刚好由指数运算求得.解:∵函数g(x)=2x,且有g(a)·g(b)=2,∴①2=2a·2b=2a+b,∴a+b=1,∵a>0且b>0,∴②ab≤=,当且仅当a=b=时,ab取得最大值.思:从已知条件中解出字母的值,然后代入求值,这种方法一般是不可取的,应设法从整体寻求结果与条件的联系,进而整体代入求值,体现了数据分析、逻辑推理的核心素养.设x∈R且x≠0,若x+x-1=3,猜想x2n+x-2n(n∈N*)的个位数字是( )A.2B.5C.6D.7答案 D ∵x+x-1=3,∴当n=1时,x2+x-2=(x+x-1)2-2=32-2=7,当n=2时,x4+x-4=(x2+x-2)2-2=72-2=47,当n=3时,x8+x-8=(x4+x-4)2-2=472-2=2207,……则x2n+x-2n(n∈N*)的个位数字是7.——————————————课时达标训练—————————————1.计算:++(2019)0=( )A.6B.7C.8D.答案 B2.下列各式正确的是( )A.=aB.a0=1C.=-4D.=-π答案 D 对于A,当a为负数时等式不成立,故不正确;对于B,当a=0时,a0无意义,故不正确;对于C,=4,故不正确.故选D.3.若(3-2x有意义,则实数x的取值范围是( )A.(-∞,+∞)B.∪C. D.答案 C 要使(3-2x=有意义,需使3-2x>0,解得x<,即实数x的取值范围是.故选C.4.化简(2a-3)·(-3a-1b)÷(4a-4)=( )A.-b2B.b2C.-D.答案 A 原式==-b2.5.设α,β是方程2x2+3x+1=0的两根,则的值为( )A.8B.C.-8D.-答案 A 由题意可知α+β=-,则====8,故选A.6.(x>0)用分数指数幂表示为.答案解析=(x·=·=·==.7.化简:(1)π0+2-2×= ;(2)()4()4(a>0)= .答案(1)(2)a4解析(1)π0+2-2×=1+×=1+×=.(2)()4()4=()4()4=()4()4=a2×a2=a4.8.已知2x=8y+1,9y=3x-9,则x+y= .答案27解析由2x=8y+1得2x=23y+3,所以x=3y+3,①由9y=3x-9得32y=3x-9,所以2y=x-9,②由①②解得x=21,y=6,所以x+y=27.9.计算下列各式的值:(1)(×(÷;(2)2(×)6+(-4×-×80.25+(-2019)0.解析(1)原式=(×(1÷1=2-1×103×1=2-1×1=.(2)原式=2(×)6+(×-4×-×+1=2×22×33+2-7-2+1=210.10.(多选)下列各式中正确的是( )A.=n7B.=C.=(x+yD.=答案BD =n7m-7,A错误;==,B正确;=(x3+y3,C错误;=(=(=,D正确.故选BD.11.x=1+2b,y=1+2-b,则y=( )A. B.C. D.答案 D ∵x=1+2b,∴2b=x-1.∴y=1+2-b=1+==.12.化简(1+)(1+)(1+)(1+)(1+)的结果是( )A.(1-)-1B.(1-)-1C.1-D.(1-)答案 B 因为(1+)(1-)=1-,故将原式化为分数形式,并且分子、分母同乘(1-),得原式===(1-)-1.故选B.13.已知实数x满足x2-3x+1=0,则x2+x-2= ;= .答案7;4解析因为实数x满足x2-3x+1=0,所以x2+1=3x,即x+x-1=3,两边平方,得x2+x-2+2=9,所以x2+x-2=7.又===x+x-1+1=4.14.若x>0,y>0,且x--2y=0,求的值.解析∵x--2y=0,x>0,y>0,∴()2--2()2=0,∴(+)(-2)=0,由x>0,y>0得+>0,∴-2=0,∴x=4y,∴==.15.若a,b,c为正实数,a x=b y=c z,++=0,则abc= .答案 1解析设a x=b y=c z=k,则k>0,则a=,b=,c=,因此abc===k0=1.16.已知实数x,y满足(x+2y)3+x3+2x+2y=0,则x+y-1= .答案-1解析因为(x+2y)3+x3+2x+2y=(2x+2y)[(x+2y)2-x(x+2y)+x2]+2(x+y)=2(x+y)[(x+2y)2-x(x+2y)+x2+1] =2(x+y)(x2+2xy+4y2+1)=2(x+y)[(x+y)2+3y2+1]=0,又易知(x+y)2+3y2+1>0,所以x+y=0,所以x+y-1=-1.。

八年级数学函数常考知识点

八年级数学函数常考知识点

八年级数学函数常考知识点在八年级数学的学习中,函数是一个非常重要的知识点。

下面我们将对八年级数学函数常考的知识点进行详细的讲解。

1. 函数的定义函数是指一个自变量的值,决定一个因变量的值。

通俗来说,就是输入一个值,输出另外一个值的过程。

它通常表示为y = f(x),其中 y 是因变量,x 是自变量,f 表示函数。

在实际生活中,函数的应用非常广泛,如:温度随时间的变化、小明的身高随年龄的增长等等。

2. 函数的表示方法函数的表示方法有三种:图像表示法、数学符号表示法和函数表达式表示法。

图像表示法是指将函数的自变量和因变量用坐标轴的形式呈现出来。

这种表示方法可以直观地展示函数的变化趋势和特征,以便更好地理解函数。

数学符号表示法是指将函数用简单的符号表示出来,例如 y = x + 2,y = 2x - 1 等等。

这种表示方法不仅简单明了,而且便于进行计算和推导。

函数表达式表示法是指将函数用公式的形式表示出来,例如 y = 2x + 1, y = x^2 - 3x + 5等等。

这种表示方法可以通过具体的数值,直接确定函数的值。

3. 函数的性质3.1 奇偶性函数的奇偶性是指当自变量取相反数时,因变量是否相等。

如果因变量相等,则函数为偶函数;如果因变量相反,则函数为奇函数;如果函数既不是偶函数也不是奇函数,则函数为既非偶函数也非奇函数。

3.2 周期性周期性是指函数在一定的范围内重复出现相同的数值。

如果函数具有周期性,则周期为函数在一个周期内的最小正数值。

例如正弦函数就是一个周期性函数,其周期为2π。

3.3 单调性单调性是指函数随自变量的增大或减小时,因变量的变化趋势。

如果函数在自变量的某个区间内单调递增,则函数为单调递增函数;如果函数在自变量的某个区间内单调递减,则函数为单调递减函数。

4. 函数的图像及其性质函数的图像是指函数在坐标系中的表现形式。

我们可以通过函数的图像来了解函数的性质和特征。

例如随 x 增大,y 的变化趋势如何、函数是否具有单调性、是否具有极值点等等。

湘教版数学八年级下册4.1.2《函数的表示法》说课稿

湘教版数学八年级下册4.1.2《函数的表示法》说课稿

湘教版数学八年级下册4.1.2《函数的表示法》说课稿一. 教材分析湘教版数学八年级下册4.1.2《函数的表示法》这一节主要介绍了函数的三种表示方法:列表法、关系式法和图象法。

通过这一节的学习,使学生能够理解函数的概念,掌握函数的表示方法,并能够运用这些方法解决实际问题。

二. 学情分析学生在学习这一节之前,已经学习了代数、几何等基础知识,对数学概念有一定的理解。

但是,对于函数这一概念,学生可能还比较陌生,需要通过具体例子和实际操作来加深理解。

同时,学生可能对图象法的理解不够深入,需要通过实际操作和练习来提高。

三. 说教学目标1.知识与技能目标:学生能够理解函数的概念,掌握函数的三种表示方法,并能够运用这些方法解决实际问题。

2.过程与方法目标:学生通过观察、操作、思考、交流等过程,培养抽象思维能力和解决问题的能力。

3.情感态度与价值观目标:学生能够积极参与课堂活动,克服困难,体验成功,增强对数学学习的兴趣和信心。

四. 说教学重难点1.教学重点:函数的概念,函数的三种表示方法。

2.教学难点:函数图象法的理解和运用。

五. 说教学方法与手段1.教学方法:采用问题驱动法、案例教学法、合作学习法等。

2.教学手段:多媒体课件、黑板、粉笔、教学卡片等。

六. 说教学过程1.导入:通过一个实际问题,引导学生思考如何表示两个变量之间的关系。

2.自主学习:学生通过阅读教材,了解函数的概念和三种表示方法。

3.案例分析:教师通过展示典型案例,引导学生分析、讨论函数的表示方法。

4.小组合作:学生分组讨论,总结函数的表示方法,并展示成果。

5.教师讲解:教师针对学生的讨论结果,进行讲解和总结。

6.练习巩固:学生进行课堂练习,巩固所学知识。

7.课堂小结:教师引导学生总结本节课所学内容。

8.课后作业:学生完成课后作业,巩固所学知识。

七. 说板书设计板书设计如下:函数的表示法2.关系式法八. 说教学评价教学评价主要通过以下几个方面进行:1.学生的课堂参与程度:观察学生在课堂上的发言、提问、讨论等情况,了解学生的参与程度。

北师大版八年级数学上册第四章一次函数知识点总结

北师大版八年级数学上册第四章一次函数知识点总结

第四章一次函数学问点总结4.1.1 变量和函数1、变量:在一个改变过程中可以取不同数值的量。

常量:在一个改变过程中只能取同一数值的量。

2、函数:一般的,在一个改变过程中,假如有两个变量x和y,并且对于x的每一个确定的值,y都有唯一确定的值与其对应,那么我们就把x称为自变量,把y称为因变量,y 是x的函数。

例如:y=±x,当x=1时,y有两个对应值,所以y=±x不是函数关系。

对于不同的自变量x的取值,y的值可以一样,例如,函数:y=|x|,当x=±1时,y的对应值都是13、定义域:一般的,一个函数的自变量允许取值的范围,叫做这个函数的定义域。

4、确定函数取值范围的方法:(1)关系式为整式时,函数定义域为全体实数;(2)关系式含有分式时,分式的分母不等于零;(3)关系式含有二次根式时,被开方数大于等于零;(4)关系式中含有指数为零的式子时,底数不等于零;(5)实际问题中,函数定义域还要和实际状况相符合,使之有意义4.1.2 函数的表示法1、三种表示方法列表法:一目了然,运用起来便利,但列出的对应值是有限的,不易看出自变量与函数之间的对应规律。

公式法:即函数解析式,简洁明了,可以精确地反映整个改变过程中自变量与函数之间的相依关系,但有些实际问题中的函数关系,不能用解析式表示。

图象法:形象直观,但只能近似地表达两个变量之间的函数关系。

2、列表法:列一张表,第一行表示自变量取的各个值,第二行表示相应的函数值(即应变量的对应值)3、公式法:用含有表示自变量的字母的代数式表示因变量的式子叫做解析式。

一般状况下,等号右边的变量是自变量,等号左边的变量是因变量。

用函数解析式表示函数关系的方法就是公式法。

4、函数的图像一般来说,对于一个函数,假如把自变量与函数的每对对应值分别作为点的横、纵坐标,那么坐标平面内由这些点组成的图形,就是这个函数的图象.5、描点法画函数图形的一般步骤(通常选五点法)第一步:列表(根据自变量的取值范围从小到大或从中间向两边取值);第二步:描点(在直角坐标系中,以自变量的值为横坐标,相应的函数值为纵坐标,描出表格中数值对应的各点);第三步:连线(根据横坐标由小到大的依次把所描出的各点用平滑曲线连接起来)。

函数的基本概念和表示方法

函数的基本概念和表示方法

函数的概念及其表示方法【知识点一】函数的概念1.函数的定义设A、B是非空的数集,如果按照某个确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:A→B为从集合A到集合B的一个函数.记作:y=f(x),x A.其中,x叫做自变量,x的取值范围A叫做函数的定义域;与x的值相对应的y值叫做函数值,函数值的集合{f(x)|x A}叫做函数的值域.2.构成函数的三要素:定义域、对应关系和值域①构成函数的三个要素是定义域、对应关系和值域.由于值域是由定义域和对应关系决定的,所以,如果两个函数的定义域和对应关系完全—致,即称这两个函数相等(或为同一函数);②两个函数相等当且仅当它们的定义域和对应关系完全—致,而与表示自变量和函数值的字母无关.3.区间的概念(1)区间的分类:开区间、闭区间、半开半闭区间;(2)无穷区间;(3)区间的数轴表示.区间表示:{x|a≤x≤b}=[a,b];;;.【知识点二】函数的表示法1.函数的三种表示方法:解析法:用数学表达式表示两个变量之间的对应关系.优点:简明,给自变量求函数值.图象法:用图象表示两个变量之间的对应关系.优点:直观形象,反应变化趋势.列表法:列出表格来表示两个变量之间的对应关系.优点:不需计算就可看出函数值. 2.分段函数:分段函数的解析式不能写成几个不同的方程,而应写函数几种不同的表达式并用个左大括号括起来,并分别注明各部分的自变量的取值情况.【知识点三】映射与函数1.映射定义:设A、B是两个非空集合,如果按照某个对应法则f,对于集合A中的任何一个元素,在集合B中都有唯一的元素和它对应,这样的对应叫做从A到B的映射;记为f:A→B.象与原象:如果给定一个从集合A到集合B的映射,那么A中的元素a对应的B中的元素b 叫做a的象,a叫做b的原象.注意:(1)A中的每一个元素都有象,且唯一;(2)B中的元素未必有原象,即使有,也未必唯一;(3)a的象记为f(a).2.函数:设A、B是两个非空数集,若f:A→B是从集合A到集合B的映射,这个映射叫做从集合A 到集合B的函数,记为y=f(x).注意:(1)函数一定是映射,映射不一定是函数;(2)函数三要素:定义域、值域、对应法则;(3)B中的元素未必有原象,即使有原象,也未必唯一;(4)原象集合=定义域,值域=象集合.规律方法指导1.函数定义域的求法(1)当函数是以解析式的形式给出时,其定义域就是使函数解析式有意义的自变量的取值的集合.具体地讲,就是考虑分母不为零,偶次根号的被开方数、式大于或等于零,零次幂的底数不为零以及我们在后面学习时碰到的所有有意义的限制条件.(2)当函数是由实际问题给出时,其定义域不仅要考虑使其解析式有意义,还要有实际意义.(3)求函数的定义域,一般是转化为解不等式或不等式组的问题,注意定义域是一个集合,其结果必须用集合或区间来表示.2.如何确定象与原象对于给出原象要求象的问题,只需将原象代入对应关系中,即可求出象.对于给出象,要求原象的问题,可先假设原象,再代入对应关系中得已知的象,从而求出原象;也可根据对应关系,由象逆推出原象.3.函数值域的求法实际上求函数的值域是个比较复杂的问题,虽然给定了函数的定义域及其对应法则以后,值域就完全确定了,但求值域还是特别要注意讲究方法,常用的方法有:观察法:通过对函数解析式的简单变形,利用熟知的基本函数的值域,或利用函数的图象的"最高点"和"最低点",观察求得函数的值域;配方法:对二次函数型的解析式可先进行配方,在充分注意到自变量取值范围的情况下,利用求二次函数的值域方法求函数的值域;判别式法:将函数视为关于自变量的二次方程,利用判别式求函数值的范围,常用于一些"分式"函数等;此外,使用此方法要特别注意自变量的取值范围;换元法:通过对函数的解析式进行适当换元,将复杂的函数化归为几个简单的函数,从而利用基本函数的取值范围来求函数的值域.求函数的值域没有通用的方法和固定的模式,除了上述常用方法外,还有最值法、数形结合法等.总之,求函数的值域关键是重视对应法则的作用,还要特别注意定义域对值域的制约.经典例题透析类型一、函数概念1.下列各组函数是否表示同一个函数?(1)(2)(3)(4)思路点拨:对于根式、分式、绝对值式,要先化简再判断,在化简时要注意等价变形,否则等号不成立.解:(1),对应关系不同,因此是不同的函数;(2)的定义域不同,因此是不同的函数;(3)的定义域相同,对应关系相同,因此是相同的函数;(4)定义域相同,对应关系相同,自变量用不同字面表示,仍为同一函数.总结升华:函数概念含有三个要素,即定义域,值域和对应法则,其中核心是对应法则,它是函数关系的本质特征.只有当两个函数的定义域和对应法则都分别相同时,这两个函数才是同一函数,换言之就是:(1)定义域不同,两个函数也就不同;(2)对应法则不同,两个函数也是不同的.(3)即使定义域和值域都分别相同的两个函数,它们也不一定是同一函数,因为函数的定义域和值域不能唯一地确定函数的对应法则.举一反三:【变式1】判断下列命题的真假(1)y=x-1与是同一函数;(2)与y=|x|是同一函数;(3)是同一函数;(4)与g(x)=x2-|x|是同一函数.答:从函数的定义及三要素入手判断是否是同一函数,有(1)、(3)是假命题,(2)、(4)是真命题.2.求下列函数的定义域(用区间表示).(1);(2);(3).思路点拨:由定义域概念可知定义域是使函数有意义的自变量的取值范围.解:(1)的定义域为x2-2≠0,;(2);(3).总结升华:使解析式有意义的常见形式有①分式分母不为零;②偶次根式中,被开方数非负.当函数解析式是由多个式子构成时,要使这多个式子对同一个自变量x有意义,必须取使得各式有意义的各个不等式的解集的交集,因此,要列不等式组求解.举一反三:【变式1】求下列函数的定义域:(1);(2);(3).思路点拨:(1)中有分式,只要分母不为0即可;(2)中既有分式又有二次根式,需使分式和根式都有意义;(3)只要使得两个根式都有意义即可.解:(1)当|x-2|-3=0,即x=-1或x=5时,无意义,当|x-2|-3≠0,即x≠-1且x≠5时,分式有意义,所以函数的定义域是(-∞,-1)∪(-1,5)∪(5,+∞);(2)要使函数有意义,须使,所以函数的定义域是;(3)要使函数有意义,须使,所以函数的定义域为{-2}.总结升华:小结几类函数的定义域:(1)如果f(x)是整式,那么函数的定义域是实数集R;(2)如果f(x)是分式,那么函数的定义域是使分母不等于零的实数的集合;(3)如果f(x)是二次根式,那么函数的定义域是使根号内的式子大于或等于零的实数的集合;(4)如果f(x)是由几个部分的数学式子构成的,那么函数定义域是使各部分式子都有意义的实数集合;(即求各集合的交集)(5)满足实际问题有意义.3.已知函数f(x)=3x2+5x-2,求f(3),,f(a),f(a+1).思路点拨:由函数f(x)符号的含义,f(3)表示在x=3时,f(x)表达式的函数值.解:f(3)=3×32+5×3-2=27+15-2=40;;;.举一反三:【变式1】已知函数.(1)求函数的定义域;(2)求f(-3),的值;(3)当a>0时,求f(a)×f(a-1)的值.解:(1)由;(2);;(3)当a>0时,.【变式2】已知f(x)=2x2-3x-25,g(x)=2x-5,求:(1)f(2),g(2);(2)f(g(2)),g(f(2));(3)f(g(x)),g(f(x))思路点拨:根据函数符号的意义,可以知道f(g(2))表示的是函数f(x)在x=g(2)处的函数值,其它同理可得.解:(1)f(2)=2×22-3×2-25=-23;g(2)=2×2-5=-1;(2)f(g(2))=f(-1)=2×(-1)2-3×(-1)-25=-20;g(f(2))=g(-23)=2×(-23)-5=-51;(3)f(g(x))=f(2x-5)=2×(2x-5)2-3×(2x-5)-25=8x2-46x+40;g(f(x))=g(2x2-3x-25)=2×(2x2-3x-25)-5=4x2-6x-55.总结升华:求函数值时,遇到本例题中(2)(3)(这种类型的函数称为复合函数,一般有里层函数与外层函数之分,如f(g(x)),里层函数就是g(x),外层函数就是f(x),其对应关系可以理解为,类似的g(f(x))为,类似的函数,需要先求出最里层的函数值,再求出倒数第二层,直到最后求出最终结果.4. 求值域(用区间表示):(1)y=x2-2x+4;.思路点拨:求函数的值域必须合理利用旧知识,把现有问题进行转化.解:(1)y=x2-2x+4=(x-1)2+3≥3,∴值域为[3,+∞);(2);(3);(4),∴函数的值域为(-∞,1)∪(1,+∞). 类型二、映射与函数5. 下列对应关系中,哪些是从A到B的映射,哪些不是?如果不是映射,如何修改可以使其成为映射?(1)A=R,B=R,对应法则f:取倒数;(2)A={平面内的三角形},B={平面内的圆},对应法则f:作三角形的外接圆;(3)A={平面内的圆},B={平面内的三角形},对应法则f:作圆的内接三角形.思路点拨:根据定义分析是否满足“A中任意”和“B中唯一”.解:(1)不是映射,集合A中的元素0在集合B中没有元素与之对应,不满足“A中任意”;若把A改为A={x|x≠0}或者把对应法则改为“加1”等就可成为映射;(2)是映射,集合A中的任意一个元素(三角形),在集合B中都有唯一的元素(该三角形的外接圆)与之对应,这是因为不共线的三点可以确定一个圆;(3)不是映射,集合A中的任意一个元素(圆),在集合B中有无穷多个元素(该圆的内接三角形有无数个)与之对应,不满足“B中唯一”的限制;若将对应法则改为:以该圆上某定点为顶点作正三角形便可成为映射.总结升华:将不是映射的对应改为映射可以从出发集A、终止集B和对应法则f三个角度入手.举一反三:【变式1】判断下列两个对应是否是集合A到集合B的映射?①A={1,2,3,4},B={3,4,5,6,7,8,9},对应法则②A=N*,B={0,1},对应法则f:x→x除以2得的余数;③A=N,B={0,1,2},f:x→x被3除所得的余数;④设X={0,1,2,3,4},思路点拨:判断是否构成映射应注意:①A中元素的剩余;②“多对一”“一对一”构成,而“一对多”不构成映射.解:①构成映射,②构成映射,③构成映射,④不构成映射,0没有象.【变式2】已知映射f:A→B,在f的作用下,判断下列说法是否正确?(1)任取x∈A,都有唯一的y∈B与x对应;(2)A中的某个元素在B中可以没有象;(3)A中的某个元素在B中可以有两个以上的象;(4)A中的不同的元素在B中有不同的象;(5)B中的元素在A中都有原象;(6)B中的元素在A中可以有两个或两个以上的原象.答:(1)、(6)的说法是正确的,(2)、(3)、(4)、(5)说法不正确.【变式3】下列对应哪些是从A到B的映射?是从A到B的一一映射吗?是从A到B的函数吗?(1)A=N,B={1,-1},f:x→y=(-1)x;(2)A=N,B=N+,f:x→y=|x-3|;(3)A=R,B=R,(4)A=Z,B=N,f:x→y=|x|;(5)A=N,B=Z,f:x→y=|x|;(6)A=N,B=N,f:x→y=|x|.答:(1)、(4)、(5)、(6)是从A到B的映射也是从A到B的函数,但只有(6)是从A到B的一一映射;(2)、(3)不是从A到B的映射也不是从A到B的函数.6. 已知A=R,B={(x,y)|x,y R},f:A→B是从集合A到集合B的映射,f:x→(x+1,x2+1),求A中的元素的象,B中元素的原象.解:∴A中元素的象为故.举一反三:【变式1】设f:A→B是集合A到集合B的映射,其中(1)A={x|x>0},B=R,f:x→x2-2x-1,则A中元素的象及B中元素-1的原象分别为什么?(2)A=B={(x,y)|x∈R,y∈R},f:(x,y)→(x-y,x+y),则A中元素(1,3)的象及B中元素(1,3)的原象分别为什么?解:(1)由已知f:x→x2-2x-1,所以A中元素的象为;又因为x2-2x-1=-1有x=0或x=2,因为A={x|x>0},所以B中元素-1的原象为2;(2)由已知f:(x,y)→(x-y,x+y),所以A中元素(1,3)的象为(1-3,1+3),即(-2,4);又因为由有x=2,y=1,所以B中元素(1,3)的原象为(2,1).类型三、函数的表示方法7. 求函数的解析式(1)若f(2x-1)=x2,求f(x);(2)若f(x+1)=2x2+1,求f(x).思路点拨:求函数的表达式可由两种途径.解:(1)∵f(2x-1)=x2,∴令t=2x-1,则;(2)f(x+1)=2x2+1,由对应法则特征可得:f(x)=2(x-1)2+1即:f(x)=2x2-4x+3.举一反三:【变式1】(1) 已知f(x+1)=x2+4x+2,求f(x);(2)已知:,求f[f(-1)].解:(1)(法1)f(x+1)=x2+4x+2=(x+1)2+2(x+1)-1∴f(x)=x2+2x-1;(法2)令x+1=t,∴x=t-1,∴f(t)=(t-1)2+4(t-1)+2=t2+2t-1∴f(x)=x2+2x-1;(法3)设f(x)=ax2+bx+c则f(x+1)=a(x+1)2+b(x+1)+c∴a(x+1)2+b(x+1)+c=x2+4x+2;(2)∵-1<0,∴f(-1)=2·(-1)+6=4f[f(-1)]=f(4)=16.总结升华:求函数解析式常用方法:(1)换元法;(2)配凑法;(3)定义法;(4)待定系数法等.注意:用换元法解求对应法则问题时,要关注新变元的范围.8.作出下列函数的图象.(1);(2);(3);(4).思路点拨:(1)直接画出图象上孤立的点;(2)(3)先去掉绝对值符号化为分段函数.解:(1),∴图象为一条直线上5个孤立的点;(2)为分段函数,图象是两条射线;(3)为分段函数,图象是去掉端点的两条射线;(4)图象是抛物线.所作函数图象分别如图所示:类型四、分段函数9. 已知,求f(0),f[f(-1)]的值.思路点拨:分段函数求值,必须注意自变量在不同范围内取值时的不同对应关系.解:f(0)=2×02+1=1f[f(-1)]=f[2×(-1)+3]=f(1)=2×12+1=3.举一反三:【变式1】已知,作出f(x)的图象,求f(1),f(-1),f(0),f{f[f(-1)+1]}的值.解:由分段函数特点,作出f(x)图象如下:∴如图,可得:f(1)=2;f(-1)=-1;f(0)=;f{f[f(-1)+1]}=f{f[-1+1]}=f{f(0)}=f()=+1.10. 某市郊空调公共汽车的票价按下列规则制定:(1)乘坐汽车5公里以内,票价2元;(2)5公里以上,每增加5公里,票价增加1元(不足5公里按5公里计算),已知两个相邻的公共汽车站间相距约为1公里,如果沿途(包括起点站和终点站)设20个汽车站,请根据题意,写出票价与里程之间的函数解析式,并画出函数的图象.解:设票价为y元,里程为x公里,由空调汽车票价制定的规定,可得到以下函数解析式:根据这个函数解析式,可画出函数图象,如下图所示:举一反三:【变式1】移动公司开展了两种通讯业务:“全球通”,月租50元,每通话1分钟,付费0.4元;“神州行”不缴月租,每通话1分钟,付费0.6元,若一个月内通话x分钟,两种通讯方式的费用分别为y1,y2(元),Ⅰ. 写出y1,y2与x之间的函数关系式?Ⅱ. 一个月内通话多少分钟,两种通讯方式的费用相同?Ⅲ. 若某人预计一个月内使用话费200元,应选择哪种通讯方式?解:Ⅰ:y1=50+0.4x,y2=0.6x;Ⅱ:当y1=y2时,50+0.4x=0.6x,∴0.2x=50,x=250∴当一个月内通话250分钟时,两种通讯方式费用相同;Ⅲ:若某人预计月付资费200元,采用第一种方式:200=50+0.4x,0.4x=150 ∴x=375(分钟)采用第二种方式:200=0.6x,∴应采用第一种(全球通)方式.基础达标一、选择题1.判断下列各组中的两个函数是同一函数的为( )⑴,;⑵,;⑶,;⑷,;⑸,.A.⑴、⑵B.⑵、⑶C.⑷D.⑶、⑸2.函数y=的定义域是()A.-1≤x≤1B.x≤-1或x≥1 C.0≤x≤1 D.{-1,1}3.函数的值域是( )A.(-∞,)∪(,+∞)B.(-∞,)∪(,+∞)C.R D.(-∞,)∪(,+∞)4.下列从集合A到集合B的对应中:①A=R,B=(0,+∞),f:x→y=x2;②③④A=[-2,1],B=[2,5],f:x→y=x2+1;⑤A=[-3,3],B=[1,3],f:x→y=|x|其中,不是从集合A到集合B的映射的个数是( )A. 1 B. 2 C. 3 D. 45.已知映射f:A→B,在f的作用下,下列说法中不正确的是( )A.A中每个元素必有象,但B中元素不一定有原象B.B中元素可以有两个原象C.A中的任何元素有且只能有唯一的象D.A与B必须是非空的数集6.点(x,y)在映射f下的象是(2x-y,2x+y),求点(4,6)在f下的原象( )A.(,1)B.(1,3) C.(2,6)D.(-1,-3)7.已知集合P={x|0≤x≤4},Q={y|0≤y≤2},下列各表达式中不表示从P到Q的映射的是( ) A.y=B.y=C.y=x D.y=x28.下列图象能够成为某个函数图象的是( )9.函数的图象与直线的公共点数目是( )A.B.C.或D.或10.已知集合,且,使中元素和中的元素对应,则的值分别为( )A.B.C.D.11.已知,若,则的值是( )A.B.或C.,或D.12.为了得到函数的图象,可以把函数的图象适当平移,这个平移是( ) A.沿轴向右平移个单位B.沿轴向右平移个单位C.沿轴向左平移个单位D.沿轴向左平移个单位二、填空题1.设函数则实数的取值范围是_______________.2.函数的定义域_______________.3.函数f(x)=3x-5在区间上的值域是_________.4.若二次函数的图象与x轴交于,且函数的最大值为,则这个二次函数的表达式是_______________.5.函数的定义域是_____________________.6.函数的最小值是_________________.三、解答题1.求函数的定义域.2.求函数的值域.3.根据下列条件,求函数的解析式:(1)已知f(x)是二次函数,且f(2)=-3,f(-2)=-7,f(0)=-3,求f(x);(2)已知f(x-3)=x2+2x+1,求f(x+3);(3)已知;能力提升一、选择题1.设函数,则的表达式是( )A.B.C.D.2.函数满足则常数等于( )A.3 B.-3 C.D.3.已知,那么等于( )A.15 B.1 C.3 D.304.已知函数定义域是,则的定义域是( ) A.B.C.D.5.函数的值域是( )A.B.C.D.6.已知,则的解析式为( )A.B.C.D.二、填空题1.若函数,则=_______________.2.若函数,则=_______________.3.函数的值域是_______________.4.已知,则不等式的解集是_______________.5.设函数,当时,的值有正有负,则实数的范围_______________.三、解答题1.设是方程的两实根,当为何值时,有最小值?求出这个最小值.2.求下列函数的定义域(1);(2).3.求下列函数的值域(1);(2).综合探究1.某学生离家去学校,由于怕迟到,所以一开始就跑步,等跑累了再走余下的路程.在下图中,纵轴表示离学校的距离,横轴表示出发后的时间,如图四个图象中较符合该学生走法的是( )2.如图所表示的函数解析式是( )A. B.C. D.3.函数的图象是( )。

4.1.1函数和它的表示法

4.1.1函数和它的表示法
本章内容 第4章
一次函数
本课内容 本节内容 4.1
函数和它的表示法
例1 一辆汽车以60千米/时的速度匀速行驶,行驶里 程为s千米,行驶时间为t小时,以下为汽车在每小时 行驶过的路程的情况:
时间t (小时) 路程s (千米) 1 60 2 120 3 180 4 240 5 300 … …
在一个变化过程中,我们称数值发生变化的量为变量; 有些量的数值是始终不变的,我们称它为常量.
你能写出s与t的表达式吗?
时间t(小时) 路程s(千米)
1 60
2 120
3 180
4 240
5 300
… …
s=60t
例2
姚明职业生涯赛季场均得分统计
赛季(n)
场均得分(p)
02-03
03-04 04-05
13.5
17.5 18.3
05-06
06-07
22.3
25.0
例3 观察某地一天内的气温变化情况:
变量与常量的例子
设圆的面积为s,半径为r,写出s与r的表达式,并 指出其中的变量与常量.
s = π ×r
2
已知圆柱体的底面积为9(平方单位),高为h,写 出体积V与高度h的表达式,并指出其中的变量与常量. V=9h 已知圆柱体的高为9,底面积为s,写出体积V与底 面积s的表达式,并指出其中的变量与常量. V=9s
困惑的邮差
function
北京二中
XX老师收
北京四中
XX老师收
从邮差的困惑中,我们知道一封信只能 有一个地址,可我们的信箱中可以收到很多 人的来信,这里蕴含着特殊的对应。 李善兰就是发现寄信中的特殊对应,而 这种特殊对应就是函数的本质,由于信在古 代称为“函”,因此就把他翻译成函数。

北师大版八年级数学上册4.1 函数

北师大版八年级数学上册4.1 函数

(单位:米),试写出 y 与 x 的函数关系式;
(3)将 446 米的跑道周长作为 400 米跑道场地的最外 沿,那么它与最内圈(跑道周长 400 米)形成的区域最多能 铺设道宽为 1.2 米的跑道多少条?
解 : (1)400 米 跑 道 中 一 段 直 道 的 长 度 = (400 - 2×36×3.14)÷2=86.96 米.
11. (教材 P77 习题 T1 变式)蛇的体温随外部环境温 度的变化而变化.如图表示一条蛇在两昼夜之间体温变 化情况.问:
(1)第一天,蛇体温的变化范围是什么?它的体温从 最低上升到最高需要多少时间?
(2)若用 x 表示时间(h),y 表示蛇的体温(℃),将相应 数据填入下表:
x/h 4 12 20 28 32 40 48 y/℃ 35 39 39 35 37 40 36 (3)y 是 x 的函数吗?
D.G 是 s 的函数
2. 火车以 40 千米/小时的速度行驶,它走过的路程 s(千米)与时间 t(小时)之间的关系是 s=40t ,其中自 变量是 t ,因变量是 s .
3. 根据你对函数概念的理解,下列图象中,不能表 示 y 是 x 的函数图象有哪些?为什么?
(1)
(2)
(3)
(4)
解:不能表示 y 是 x 的函数图象有(3)(4);原因(略).
第四章 一次函数
4.1 函数
1. 函数的有关概念:一般地,如果在一个变化过程 中有两个 变量 x 和 y,并且对于变量 x 的每一个值, 变量 y 都有唯一的值与它对应,那么我们称 y 是 x 的函数,其中 x 是自变量, y 是因变量.
2. 求函数自变量的取值范围是考虑分式的 分母 不为 0;二次根式的被开方数为 非负 数;如果函数 表达式为整式,则自变量可以取 任何实数 ;对于实 际问题和几何问题则要考虑自变量的取值是否符合实际

变量与函数 课件

变量与函数 课件
正方形的边长x,面积S是变量
“动脑筋” 问题3:某城市居民用的天然气,1 m3 收费2.88元,使 用x(m3)天然气应缴纳的费用y(元)为 y = 2.88 x. 当x=10时,缴纳的费用为多少? 第3个问题中,使用天然气缴纳的费用y随着所用 天然气的体积x的变化而变化. 当x=10时,y= 28.8(元);当x=20时,y=__5_7_.6 (元)
使用天然气的体积x,应缴纳的费用y等都是变量
使用每一方米天然气应交纳2.88元,2.88是常量
生活中,在什么问题里面有变量或常量?
半径是R的圆周长C=2πR,下列说法正确 的是( D ) A. π、R是变量,2是常量 B. C是变量,2,π,R是常量 C. R是变量,2,π ,C是常量 D. C,R是变量,2,π是常量
第4章 一次函数
4.1 函数和它的表示法
4.1.1 变量与函数
湘教版 八年级下册
新课导入
抢椅子游戏 游戏规则: 玩家边唱歌边围着椅子转,歌声一结束就 抢椅子坐,谁先坐下就胜出
刚刚的游戏过程中什么事物的数量在变,什么没有 变?
玩家数、椅子数在变 每轮淘汰的玩家没变 每轮抽去的椅子数没变 玩家与椅子的差没变
在考虑两个变量间的函数时,还要注意自变量 的取值范围. 如上述第1个问题中,自变量t的取值范 围是0≤t≤24;而第2、3个问题中,自变量x的取值范 围分别是x>0,x≥0.
小刀试牛
下列各题中,哪些是函数关系?哪些不是函数关 系?为什么?
(1)x、y是变量, y2 x
(2)三角形的面积与底边长; (3)m、n是变量,m=│n│; (4)速度一定的汽车所行驶的路程和时间;
1. 每个变化的过程中都存在着两个变量;
2.当其中的一个变量变化时,另一个变量也在随着变化; 3.当一个变量确定一个值时,另一个变量有唯一的一个值与它 对应。

4_1指数函数与对数函数

4_1指数函数与对数函数

指数函数与对数函数4.1指数4.1.1 n 次方根与分数指数幂 第一课时教学目标1、知识与技能:理解根式的概念及性质,能实行根式的运算,提升根式的运算水平。

2、过程与方法:通过由特殊到一般,由平方根、立方根,采用类比的方法过渡到n 次方根;通过对“当n 是偶数时,⎩⎨⎧<≥-==)0()0(||a a a a a a n n ”的理解 ,培养学生分类讨论的意识。

3、态度情感价值关:通过运算训练,培养学生严谨的思维,一丝不苟的学习习惯。

教学重点:对根式概念、性质的理解,使用根式的性质化简、运算。

教学难点:当n 是偶数时,⎩⎨⎧<≥-==)0()0(||a a a a a a n n 的得出及使用教学过程一、师生互动,新课讲解: 1、问题引入:(1)若a x =2,则x 叫a 的 .如:2±是4的平方根一个正数的平方根有 个,它们互为 数;负数没有平方根;零的平方根是 .(2)若a x =3,则x 叫a 的 .如:2是8的立方根,-2是-8的立方根。

一个正数的立方根是一个 数,一个负数的立方根是一个 数,0的立方根是 .(3)类比平方根、立方根的定义,你认为,一个数的四次方等于a ,则这个数叫a 的 ;一个数的五次方等于a ,则这个数叫a 的 ;一个数的六次方等于a ,则这个数叫a 的 ;……;一个数的n 次方等于a ,则这个数叫a 的 ;一般地,假设a x n =,则x 叫a 的n 次方根,其中1>n 且*N n ∈. 问:(1)16的四次方根是 .32的五次方根是 .-32的五次方根是 .(2)一个正数的n 次方根有几个?一个负数的n 次方根有几个?0的n 次方根是多少?(给学生留点时间实行探究)得出结论:(1)一个正数的偶次方根有两个,这两个数互为相反数;负数没有偶次方根。

(2)一个正数的奇次方根是一个正数,一个负数的奇次方根是一个负数。

(3)0的任何次方根都是0。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第4章一次函数4.1函数和它的表示法4.1.1变量与函数1.了解常量、变量的概念.2.了解函数的概念.3.确定简单问题的函数关系.重点借助简单实例,从两个变量间的特殊对应关系抽象出函数的概念.难点怎样理解“唯一对应”.一、创设情境,导入新课如图,水滴激起的波纹可以看成是一个不断向外扩展的圆,它的面积随着半径的变化而变化,随着半径的确定而确定.在上述例子中,每个变化过程中的两个变量:当其中一个变量变化时,另一个变量也随着发生变化;当一个变量确定时,另一个变量也随着确定.你能举出一些类似的实例吗?二、合作交流,探究新知1.气温问题:上图是北京春季某一天的气温T 随时间t 变化的图象,看图回答:(1)这天的8时的气温是____℃,14时的气温是____℃,最高气温是____℃,最低气温是____℃;(2)这一天中,在4时~12时,气温( ),在16时~24时,气温( ).A .持续升高B .持续降低C .持续不变思考:(1)天气温度随____的变化而变化,即T 随____的变化而变化;(2)当时间t 取定一个确定的值时,对应的温度T 的取值是否唯一确定?2.当正方形的边长x 分别取1,2,3,4,5,6,7,…时,正方形的面积S 分别是多少?3.某城市居民用的天然气,1 m 3收费2.88元,使用x (m 3)天然气应缴纳费用y =2.88x ,当x =10时,缴纳的费用为多少?思考:上述三个问题中,分别涉及哪些量的关系?哪些量是变化的?哪些量是不变的?哪个量的变化导致另一个量的变化而变化?在一个问题中,当一个量取了确定的值之后,另一个量对应的能取几个值?在上面的三个问题中,其中一个量的变化引起另一个量的变化(按照某种规律变化),变化的量叫做变量;有些量的值始终不变(例如正方形的面积……).并且当其中一个变量取定一个值时,另一个变量就随之确定,且它的对应值只有一个.教师根据学生的回答,在黑板上板书:时间——气温正方形边长——正方形面积天然气费用——天然气体积学生们会得出⎩⎪⎨⎪⎧都有两个变量x ,y 都是变量y 随着x 的变化而变化当x 取一个确定值的时候,y 只有一个 值与之对应师生对上述三个问题进行分析,找出它们的共性,归纳出函数的概念.在某一变化过程中有两个变量x 和y ,如果对于x 的每一个值,y 总有唯一的值与它对应,我们就说x 是自变量,y 是x 的函数.三、运用新知,深化理解例1 分析并指出下列关系中的变量与常量:(1)球的表面积S cm 2与球的半径R cm 的关系式是S =4πR 2;(2)以固定的速度v 0米/秒向上抛一个小球,小球的高度h 米与小球运动的时间t 秒之间的关系式是h =v 0t -4.9t 2;(3)一物体自高处自由落下,这个物体运动的距离h m 与它下落的时间t s 的关系式是h =12gt 2(其中g 取9.8 m/s 2);(4)已知橙子每千克的售价是1.8元,则购买数量w 千克与所付款x 元之间的关系式是x =1.8w .【分析】在一个变化的过程中,数值发生变化的量称为变量,数值始终不变的量称为常量.解:(1)球的表面积S cm 2与球的半径R cm 的关系式是S =4πR 2,其中,常量是4π,变量是S ,R ;(2)以固定的速度v 0米/秒向上抛一个小球,小球的高度h 米与小球运动的时间t 秒之间的关系式是h =v 0t -4.9t 2,常量是v 0,4.9,变量是h ,t ;(3)一物体自高处自由落下,这个物体运动的距离h m 与它下落的时间t s 的关系式是h =12gt 2(其中g 取9.8 m/s 2),其中常量是12g ,变量是h ,t ;(4)已知橙子每千克的售价是1.8元,则购买数量w 千克与所付款x 元之间的关系式是x =1.8w ,常量是1.8,变量是x ,w .【方法总结】常量与变量必须存在于同一个变化过程中,判断一个量是常量还是变量,需要看两个方面:一是它是否在一个变化过程中;二是看它在这个变化过程中的取值情况是否发生变化.例2 下列说法中正确的是( )A .变量x ,y 满足x +3y =1,则y 是x 的函数B .变量x ,y 满足y =-x 2-1,则y 可以是x 的函数C .变量x ,y 满足|y |=x ,则y 可以是x 的函数D .变量x ,y 满足y 2=x ,则y 可以是x 的函数【分析】A 中x +3y =1,y 可以看作x 的函数,因为y =1-x 3;B 中y =-x 2-1,因为-x 2-1<0,等式无意义,即对于变量x 的任何一个取值,变量y 都没有唯一确定的值,故y 不是x 的函数;C ,D 中的|y |=x 和y 2=x ,对于变量x 的任意一个正数值,变量y 都有两个(不唯一)值与其对应,故y 不是x 的函数.故选A.【方法总结】判断两个变量是否是函数关系,就看是否存在两个变量,并且在这两个变量中,确定好哪个是自变量,哪个是函数,然后再看看这两个变量是否是一一对应的关系.例3 水箱内原有水200升,7:30打开水龙头,以2升/分的速度放水,设经过t 分钟后,水箱内存水y 升.(1)求y 关于t 的函数关系式和自变量的取值范围;(2)7:55时,水箱内还有多少水?(3)几点几分水箱内的水恰好放完?【分析】(1)根据水箱内还有的水等于原有水减去放掉的水列式整理即可,再根据剩余水量不小于0列不等式求出t的取值范围;(2)7:55时,t=55-30=25,将t=25代入(1)中的关系式即可;(3)令y=0,求出t的值即可.解:(1)∵水箱内存有的水=原有水-放掉的水,∴y=200-2t.∵y≥0,∴200-2t≥0,解得t≤100,∴0≤t≤100,∴y关于t的函数关系式为y=200-2t(0≤t≤100);(2)∵7:55-7:30=25(分钟),∴当t=25时,y=200-2t=200-50=150(升),∴7:55时,水箱内还有水150升;(3)当y=0时,200-2t=0,解得t=100,而100分钟=1小时40分钟,7点30分+1小时40分钟=9点10分,故9点10分水箱内的水恰好放完.四、课堂练习,巩固提高1.教材P112练习.2.教师指导学生完成《·高效课堂》“随堂演练”内容.五、反思小结,梳理新知1.常量和变量的概念2.函数的概念3.函数关系式4.自变量的取值范围5.函数值六、布置作业1.学生完成《·高效课堂》“课时作业”.2.教材P116习题4.1第1,2,6,7题.4.1.2函数的表示法1.了解函数的三种表示法:(1)解析法;(2)列表法;(3)图象法.2.进一步理解函数值的概念.3.会在简单情况下,根据函数的表示式求函数的值.重点认清函数的不同表示方法,知道各自的优缺点,能按具体情况选用适当的方法.难点函数表示方法的应用.一、创设情境,导入新课问题 1 小明的哥哥是一名大学生,他利用暑假去一家公司打工,报酬按16元/时计算.设小明的哥哥这个月工作的时间为t时,应得报酬为m元,填写下表后回答下列问题:(1))(2)能用t的代数式来表示m的值吗?(能,m=16t)教师指出:在这个变化过程中,有两个变量t,m,对t的每一个确定的值,m都有唯一确定的值与它对应.问题 2 跳远运动员按一定的起跳姿势,其跳远的距离(米)与助跑的速度(米/秒)有关.根据经验,跳远的距离s=0.085v2(0<v<10.5)回答下列问题:(1)在上述问题中,哪些是常量?哪些是变量?(常量0.085,变量v,s);(2)计算当v 分别为7.5,8,8.5时,相应的跳远距离s是多少(结果精确到0.01)?(3)给定一个v的值,你能求出相应的s的值吗?教师指出:在这个变化过程中,有两个变量v,s,对v的每一个确定的值,s都有唯一确定的值与它对应.二、合作交流,探究新知函数的表示法:①解析式法:问题1,2中,m=16t和S=0.085v2这两个函数用等式来表示,这种表示函数关系的等式,叫做函数解析式,简称函数式.用函数解析式表示函数的方法也叫解析式法.②列表法:有时把自变量的一系列值和函数的对应值列成一个表.这种表示函数关系的方法是列表法.(如教材P110页“动脑筋”问题2表示的是正方形面积与边长的函数关系)③图象法:我们还可以用图象法来表示函数,例如图中的图象就表示骑车时热量消耗W(焦)与身体质量x(千克)之间的函数关系.解析式法、图象法和列表法是函数的三种常用的表示方法.教师指出:(1)解析式法、列表法、图象法是表示函数的三种方法,都很重要,不能有所偏颇.尤其是列表法、图象法在今后代数、统计领域的学习中经常用到,教学中应引起学生的重视.(2)函数值概念:与自变量对应的值叫作函数值,它与自变量的取值有关,通常函数值随着自变量的变化而变化.若函数用解析式法表示,只需把自变量的值代入函数式,就能得到相应的函数值.例如函数m=16t,当t=5时,把它代入函数解析式,得m=16×5=80(元).m=80叫作当自变量t=5时的函数值.由于函数值的概念是由函数的概念派生出来的,用列表法、图象法表示函数时同样存在函数值的概念,教学中也可以增加一些具体例子,来加深学生的印象.若函数用列表法表示.我们可以通过查表得到.例如正方形面积与边长的函数关系中,当x=2时,函数值S=4;当x=6时,函数值S=36.若函数用图象法表示.例如骑车时热量消耗W(焦)与身体质量x(千克)之间的函数关系中,对给定的自变量的值,怎样求它的函数值呢?如当x=50时,我们只要作一直线垂直于x轴,且垂足为点(50,0),这条直线与图象的交点P(50,399)的纵坐标就是当函数值x=50时的函数值,即W=399(焦).三、运用新知,深化理解例1 有一根弹簧原长10厘米,挂重物后(不超过50克),它的长度会改变,请根据下面表格中的一些数据回答下列问题:(1)要想使弹簧伸长5厘米,应挂重物多少克?(2)当所挂重物为x克时,用h表示总长度,请写出此时弹簧的总长度的函数表达式;(3)当弹簧的总长度为25厘米时,求此时所挂重物的质量为多少克?【分析】(1)根据挂重物每克弹簧伸长0.5厘米,可知要伸长5厘米需挂重物质量;(2)根据挂重物与弹簧伸长的关系,可得函数解析式;(3)根据题意求出函数值,可得所挂重物质量.解:(1)5÷0.5×1=10(克),答:要想使弹簧伸长5厘米,应挂重物10克;(2)函数的表达式为h=10+0.5x(0≤x≤50);(3)当h=25时,25=10+0.5x,x=30.答:当弹簧的总长度为25厘米时,此时所挂重物的质量为30克.【方法总结】列表法的优点:不需要计算就可以直接看出与自变量的值相对应的函数值,简洁明了.列表法在实际生产和生活中也有广泛应用.如成绩表、银行的利率表等.例2 如图所示,修建高速公路的过程中,施工队在工作了一段时间后,因暴雨被迫停工几天,暴雨过后施工队加快了施工进度,按时完成了工程任务,下面能反映该工程未修建的公路里程y(千米)与时间x(天)之间的函数关系的大致图象是( )A. B.C.D.【分析】∵y表示未修建的公路里程,x表示时间,∴y由大变小,∴选项A、D错误;∵施工队在工作了一段时间后,因暴雨被迫停工几天,随后加快了施工进度,∴y随x的增大减小得比开始的快,线段与x轴夹角变大.∴选项C错误,选项B正确.故选B.【方法总结】在选择合适图象时,要先弄清横纵坐标表示的意义,再根据描述找出关键转折点,分析转折前后是否都均匀变化,确定图象的线条是直线还是曲线.变化的趋势是快还是慢,可用与x轴的夹角表示出来.例3 如图描述了一辆汽车在某一直路上的行驶过程,汽车离出发地的距离s(km)和行驶时间t(h)之间的关系如图,请根据图象回答下列问题:(1)汽车共行驶的路程是多少?(2)汽车在行驶途中停留了多长时间?(3)汽车在每个行驶过程中的速度分别是多少?(4)汽车到达离出发地最远的地方后返回,则返回用了多长时间?解:(1)由纵坐标看出汽车最远行驶路程是120千米,往返共行驶的路程是120×2=240(千米).(2)由横坐标看出,2-1.5=0.5(小时),汽车在行驶途中停留了0.5小时.(3)由纵坐标看出汽车到达D点时的路程是120千米,由横坐标看出到达D点时的时间是3小时,由此算出平均速度120÷3=40(km/h);由纵坐标看出返回的路程是120千米,由横坐标看出,4.5-3=1.5(小时),汽车返回家用了 1.5小时,由此算出平均速度是120÷1.5=80(km/h).(4)由横坐标看出4.5-3=1.5(小时),返回用了1.5小时.【方法总结】图象法的优点:直观形象地表示自变量与相应的函数值变化的趋势,有利于我们通过图象来研究函数的性质.图象法在生产和生活中有许多应用,如企业生产图,股票指数走势图等.例4 一辆汽车油箱内有油48升,从某地出发,每行1 km,耗油0.6升,如果设剩油量为y(升),行驶路程为x(千米).(1)写出y与x的关系式;(2)这辆汽车行驶35 km时,剩油多少升?汽车剩油12升时,行驶了多千米?【分析】(1)根据总油量减去用油量等于剩余油量,可得函数解析式;(2)根据自变量,可得相应的函数值,根据函数值,可得相应自变量的值.解:(1)y=-0.6x+48;(2)当x=35时,y=48-0.6×35=27,∴这辆车行驶35千米时,剩油27升;当y=12时,48-0.6x=12,解得x=60,∴汽车剩油12升时,行驶了60千米.【方法总结】解析式法有两个优点:一是简明、精确地概括了变量间的关系;二是可以通过解析式求出任意一个自变量的值所对应的函数值.四、课堂练习,巩固提高1.教材P115练习.2.教师指导学生完成《·高效课堂》“随堂演练”内容.五、反思小结,梳理新知1.我们认识了函数的三种不同的表示方法:(1)解析式法;(2)列表法;(3)图象法.并归纳总结出三种表示方法的优缺点,学会根据实际情况和具体要求选择适当的表示方法来解决相关问题,进一步知道了函数三种不同表示方法之间可以转化.其实函数图象与函数性质之间存在着必然联系,我们可以归纳如下:图象特征函数变化规律由左至右曲线呈上升状态.y随x的增大而增大.由左至右曲线呈下降状态.y随x的增大而减小.曲线上的最高点是(a,b).x=a时,y有最大值b.曲线上的最低点是(a,b).x=a时,y有最小值b.2.能够分析图象信息,解答有关问题.通过例题学会了用描点法画出函数图象,这样我们又一次利用了数形结合的思想.六、布置作业1.学生完成《·高效课堂》“课时作业”.2.教材P116习题4.1第3~5题.。

相关文档
最新文档