排列组合公式及恒等式推导、证明(word版)
排列组合讲义
排列组合方法篇一、两个原理及区别二、排列数公式三、组合数公式四、排列数与组合数的关系五、二项式定理公式:六、排列组合应用排列组合解法特殊元素优先排; 合理分类与分步; 先选后排解混合; 正难则反用转化; 相邻问题来捆绑; 间隔插空处理法; 定序需要用除法; 分排问题直接法; 集团问题先整体; 有的问题选模型。
○1排列数公式 m n A=)1()1(+--m n n n =!!)(m n n -.(n ,m ∈N *,且m n ≤).注:规定1!0=. ○2排列恒等式 (1)11m m n n A nA--=;(2)11m m m n n nAA mA-+=+.○3会推以下恒等式 (1)1(1)mm nnA n m A -=-+; (2)1m mnn n A A n m-=-; (3)11nn n nn n nA A A ++=-; (4)1!22!33!!(1)!1n n n +⋅+⋅++⋅=+-.○1组合数公式 mn C =m n mmA A =m m n n n ⨯⨯⨯+-- 21)1()1(=!!!)(m n m n -⋅(n ∈N *,m N ∈,且m n ≤). ○2组合数的两个性质 (1)m n C =m n n C - ; (2)m n C +1-m n C =m n C 1+. 注:规定10=n C . 1.分类计数原理(加法原理) 12n N m m m =+++ 2.分步计数原理(乘法原理) 12n N m m m =⨯⨯⨯m mn n A m C =⋅!. (1)0111()......n n n k n k k n n n n n n a b C a C a b C a b C b --+=+++ *()n N ∈ (2)1k n k k k n T C a b -+= (3)∑=nr rnC=n2(4)13502412n n n n n n n C C C C C C -+++=+++=.解决排列组合一般思路: 1.审题要清2.分步还是分类3.排列还是组合4.牢记右侧方法常见题型归类及决策:一.特殊元素和特殊位置优先策略1、由0,1,2,3,4,5可以组成多少个没有重复数字五位奇数. 位置分析法和元素分析法2、有7种不同的花种在排成一列的花盆里,若两种葵花不种在中间,也不种在两端的花盆里,问有多少不同的种法?二.相邻元素捆绑策略1. 7人站成一排 ,其中甲乙相邻且丙丁相邻, 共有多少种不同的排法.乙甲丁丙2.某人射击8枪,命中4枪,4枪命中恰好有3枪连在一起的情形的不同种数为 。
排列组合公式排列组合公式
推论
• 方程x1+x2+…+xn=r 的非负整数解的个数。 • n≤r时,此方程的正整数解的个数 • n元集合的r-可重组合数,要求每个元素至少
出现一次。 • 正整数r的n-长有序分拆的个数 • 求x1+x2+x3+x4=20的整数解的数目,其中x1 ≥
3, x2 ≥ 1,x3 ≥ 0,x4 ≥ 5。
排列组合公式排列组合公式
有约束条件的排列:引例
• 用两面红旗、三面黄旗依次悬挂在一根旗杆 上,问可以组成多少种不同的标志?
排列组合公式排列组合公式
5、有约束条件的排列
• 设有k个元素a1,a2,…,ak,由它们组成一 个n-长的排列,其中对1≤i≤k,ai出现的次数 为ni,n1+n2 +… +nk=n,求排列的总数。
。
(2x13x25x3)6
x13x2 x32
(x1x2 xr)n
项,其中
n n1 1, nn 22, ,n r为 nrn非负 n1整 n2n 数 nrx1n1x2n2 xrnr
排列组合公式排列组合公式
例题
• 数1400有多少个正因数? • 1400=23 × 52 × 7 • (3+1)(2+1)(1+1)=24
排列组合公式排列组合公式
多边形
排列组合公式排列组合公式
例题
• 对角线的条数为C(10,2)-10=45-10=35 • 任选两条对角线,可能相交在多边形内部,可能
交点为多边形的顶点,可能无交点(交点在多边 形外) • 任选四个顶点,对应一个交点,每个对角线分成 两段 • 每个对角线是一段 • 35+C(10,4) × 2=455
排列组合数相关公式
排列组合数相关公式在咱们学习数学的道路上,排列组合数相关公式那可是相当重要的一部分。
就像一把神奇的钥匙,能帮咱们打开很多复杂问题的大门。
咱们先来说说排列数的公式。
排列数,简单说就是从 n 个不同元素中取出 m 个元素进行排列的方式总数。
排列数的公式是:A(n, m) = n!/ (n - m)! 这里的“!”表示阶乘,比如说 5! 就是 5×4×3×2×1。
给大家举个例子哈。
比如说学校要从 10 个同学中选出 3 个参加演讲比赛,并且要考虑他们上台的顺序,这时候就得用排列数来计算了。
那就是 A(10, 3) = 10! / (10 - 3)! = 10×9×8 = 720 种方式。
再来说说组合数的公式。
组合数呢,是从 n 个不同元素中取出 m 个元素组成一组,不考虑它们的顺序。
组合数的公式是:C(n, m) = n! / [m!(n - m)!] 。
我记得有一次,班级里组织活动,要从 20 个同学中选出 5 个组成一个小组,这时候就不用考虑这 5 个人的顺序,只关心选出这 5 个人的组合情况,那就是 C(20, 5) = 20! / [5!(20 - 5)!] ,算出来有 15504 种组合方式。
在实际生活中,排列组合数的应用那可太多了。
比如说彩票抽奖,从一堆数字中选出几个数字,这就是组合数的应用。
再比如密码设置,不同数字、字母的排列组合,增加了密码的安全性,这就用到了排列数。
咱们做排列组合数的题目时,一定要仔细分析题目是要考虑顺序还是不考虑顺序,不然很容易出错哦。
总之,排列组合数相关公式虽然看起来有点复杂,但只要咱们多做练习,多结合实际例子去理解,就一定能掌握好,让它成为咱们解决数学问题的有力武器!。
排列组合公式
排列组合公式[编辑本段]定义公式P是指排列,从N个元素取R个进行排列(即排序)。
(P是旧用法,现在教材上多用A,Arrangement)公式C是指组合,从N个元素取R个,不进行排列(即不排序)。
[编辑本段]符号常见的一道题目C-组合数P-排列数(现在教材为A)N-元素的总个数R-参与选择的元素个数!-阶乘,如5!=5*4*3*2*1=120C-Combination 组合P-Permutation排列(现在教材为A-Arrangement)一些组合恒等式组合恒等式排列组合常见公式排列组合常见公式[编辑本段]历史1772年,旺德蒙德以[n]p表示由n个不同的元素中每次取p个的排列数。
而欧拉则于1771年以及于1778年以表示由n个不同元素中每次取出p个元素的组合数。
至1872年,埃汀肖森引入了以表相同之意,这组合符号(Signs of Combinations)一直沿用至今。
1830年,皮科克引入符号Cr以表示由n个元素中每次取出r个元素的组合数;1869年或稍早些,剑桥的古德文以符号nPr 表示由n个元素中每次取r个元素的排列数,这用法亦延用至今。
按此法,nPn便相当於现在的n!。
1880年,鲍茨以nCr及nPr分别表示由n个元素取出r个的组合数与排列数;六年后,惠特渥斯以及表示相同之意,而且,他还以表示可重复的组合数。
至1899年,克里斯托尔以nPr及nCr分别表示由n个不同元素中每次取出r个不重复之元素的排列数与组合数,并以nHr表示相同意义下之可重复的排列数,这三种符号也通用至今。
1904年,内托为一本百科辞典所写的辞条中,以表示上述nPr之意,以表示上述nCr之意,后者亦同时采用了。
这些符号也一直用到现代。
[编辑本段]组合数的奇偶对组合数C(n,k) (n>=k):将n,k分别化为二进制,若某二进制位对应的n为0,而k为1 ,则C(n,k)为偶数;否则为奇数。
组合数的奇偶性判定方法为:结论:对于C(n,k),若n&k == k 则c(n,k)为奇数,否则为偶数。
(word完整版)排列组合和排列组合计算公式.
排列组合公式/排列组合计算公式排列 P--—--—和顺序有关组合 C ——-—-—-不牵涉到顺序的问题排列分顺序,组合不分例如把5本不同的书分给3个人,有几种分法。
"排列”把5本书分给3个人,有几种分法 "组合"1.排列及计算公式从n个不同元素中,任取m(m≤n)个元素按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列;从n个不同元素中取出m(m≤n)个元素的所有排列的个数,叫做从n个不同元素中取出m个元素的排列数,用符号p(n,m)表示。
p(n,m)=n(n—1)(n-2)……(n-m+1)= n!/(n-m)!(规定0!=1).2.组合及计算公式从n个不同元素中,任取m(m≤n)个元素并成一组,叫做从n个不同元素中取出m个元素的一个组合;从n个不同元素中取出m(m≤n)个元素的所有组合的个数,叫做从n个不同元素中取出m个元素的组合数。
用符号c(n,m)表示.c(n,m)=p(n,m)/m!=n!/((n-m)!*m!);c(n,m)=c(n,n—m);3.其他排列与组合公式从n个元素中取出r个元素的循环排列数=p(n,r)/r=n!/r(n-r)!.n个元素被分成k类,每类的个数分别是n1,n2,。
..nk这n个元素的全排列数为n!/(n1!*n2!*...*nk!)。
k类元素,每类的个数无限,从中取出m个元素的组合数为c(m+k-1,m)。
排列(Pnm(n为下标,m为上标))Pnm=n×(n-1)。
(n—m+1);Pnm=n!/(n-m)!(注:!是阶乘符号);Pnn(两个n分别为上标和下标) =n!;0!=1;Pn1(n为下标1为上标)=n组合(Cnm(n为下标,m为上标))Cnm=Pnm/Pmm ;Cnm=n!/m!(n-m)!;Cnn(两个n分别为上标和下标) =1 ;Cn1(n为下标1为上标)=n;Cnm=Cnn-m2008—07-08 13:30公式P是指排列,从N个元素取R个进行排列。
排列组合的求和公式
排列组合的求和公式排列组合是组合数学中的一个重要问题,涉及到的知识点包括排列和组合的概念,以及求和公式的推导和应用。
在这篇文章中,我们将详细介绍排列组合的概念和求和公式的相关内容。
一、排列与组合的概念1. 排列排列是将若干个元素按照一定的顺序进行排列的方式。
在排列中,元素的顺序是重要的,即不同的顺序会得到不同的排列结果。
假设有n个元素,选择其中m个元素进行排列,则排列的种数表示为P(n, m)。
排列的计算公式为:P(n, m) = n! / (n-m)!其中,n!表示n的阶乘,即n! = n * (n-1) * (n-2) * … * 2 * 1。
2. 组合组合是从若干个元素中选取若干个元素进行组合的方式。
在组合中,元素的顺序是不重要的,即不同的顺序不会改变组合的结果。
假设有n个元素,选择其中m个元素进行组合,则组合的种数表示为C(n, m)。
组合的计算公式为:C(n, m) = n! / (m! * (n-m)!)二、排列组合的求和公式在排列组合问题中,有时候我们需要计算一系列排列组合的和,这时就需要用到排列组合的求和公式。
1. 排列的求和公式当我们需要计算所有n个元素的全排列的和时,可以利用排列的性质进行推导。
具体推导如下:设S表示n个元素的全排列的和,即S = P(n, 1) + P(n, 2) + …+ P(n, n)。
则根据排列的计算公式,有:S = n! / (n-1)! + n! / (n-2)! + … + n! / 0!= n! * (1/(n-1)! + 1/(n-2)! + … + 1/0!)由于1/(n-1)! + 1/(n-2)! + … + 1/0!可以写成Σ(1/(n-i)!),其中i的范围是从0到n-1。
因此,排列的求和公式可以表示为:S = n! * Σ(1/(n-i)!)2. 组合的求和公式与排列的求和类似,当我们需要计算所有n个元素的组合的和时,可以通过组合的性质进行推导。
排列组合解法公式
排列组合解法公式排列组合在数学中可是个很有趣的部分呢!它能帮我们解决好多生活中的问题。
先来说说排列的公式吧。
排列呢,就是从 n 个不同元素中,取出 m 个元素按照一定的顺序排成一列。
这时候的排列数记作 A(n, m) ,它的计算公式就是 A(n, m) = n! / (n - m)! 。
比如说,从 5 个不同的水果里选3 个排成一排,那就是 A(5, 3) = 5! / (5 - 3)! = 60 种排法。
再讲讲组合的公式。
组合就是从 n 个不同元素中,取出 m 个元素组成一组,不考虑顺序。
组合数记作 C(n, m) ,计算公式是 C(n, m) = n! / [m!×(n - m)!] 。
还是拿水果举例,从 5 个不同的水果里选 3 个组成一组,不考虑顺序,那就是 C(5, 3) = 5! / [3!×(5 - 3)!] = 10 种组合。
我还记得之前给学生们讲这部分知识的时候,发生了一件有趣的事儿。
那是一个阳光明媚的上午,我在黑板上写下了一道排列组合的题目:在一个班级里有 10 个同学,要选出 4 个同学去参加比赛,有多少种选法?我让同学们先自己思考,然后讨论。
一开始,大家都有点懵,各种答案都有。
有的同学直接用 10 乘以 4 ,有的同学乱写一通。
我看着他们抓耳挠腮的样子,心里偷笑,但也知道这对于他们来说确实是个有点难的知识点。
我开始慢慢引导他们,“同学们,咱们先想想,如果要考虑选出的同学的顺序,那就是排列问题;如果不考虑顺序,那就是组合问题。
那这道题,我们需不需要考虑选出同学的顺序呢?”同学们开始七嘴八舌地讨论起来。
有的说要,有的说不要。
最后,我们一起分析得出,这里不需要考虑顺序,是组合问题。
于是,我们按照组合的公式 C(10, 4) = 10! / [4!×(10 - 4)!] 一起计算,算出结果是 210 种选法。
这时候,同学们恍然大悟,脸上露出了开心的笑容。
排列组合公式(全)
欢迎阅读排列组合公式排列定义??? 从n个不同的元素中,取r个不重复的元素,按次序排列,称为从n个中取r个的无重排列。
排列的全体组成的集合用 P(n,r)表示。
排列的个数用P(n,r)表示。
当r=n时称为全排列。
一般不说可重即无重。
可重排列的相应记号为 P(n,r),P(n,r)。
组合定义从n个不同元素中取r个不重复的元素组成一个子集,而不考虑其元素的顺序,称为从n个中取r个的无重组合。
组合的全体组成的集合用C(n,r)表示,组合的个数用C(n,r)表示,对应于可重组合有记号(1)(2)准确理解;(3)(4)(1)12.加法原理的集合形式3.分类的要求每一类中的每一种方法都可以独立地完成此任务;两类不同办法中的具体方法,互不相同(即分类不重);完成此任务的任何一种方法,都属于某一类(即分类不漏)(2)乘法原理和分步计数法1.乘法原理2各步计例1:用集合A集合B把集合AS(A)S(B)例2:从编号为1-9的队员中选6人组成一个队,问有多少种选法?设不同选法构成的集合为C,集合B为数字不重复的六位数的集合。
把集合B分为子集的集合,规则为全部由相同数字组成的数组成一个子集,则每个子集都是某6个数的全排列,即每个子集有6!个元素。
这时集合C的元素与B的子集存在一一对应关系,则S(B)=S(C)*6!S(C)=9!/3!/6!这就是我们用以前的方法求出的C(9,6)以上都是简单的例子,似乎不用弄得这么复杂。
但是集合的观念才是排列组合公式的来源,也是对公式更深刻的认识。
大家可能没有意识到,在我们平时数物品的数量时,说1,2,3,4,5,一共有5个,这时我们就是在把物品的集合与集合(1,2,3,4,5)建立一一对应的关系,正是因为物品数量与集合(1, 2,3,4,5)的元素个数相等,所以我们才说物品共有5个。
我写这篇文章的目的是把这些潜在的思路变得清晰,从而能用它解决更复杂的问题。
例3:999所以集合D例4:用集合A中1排在2在集合B C 中相同数字。
排列组合公式(全)
排列组合公式排列定义从n个不同的元素中,取r个不重复的元素,按次序排列,称为从n个中取r个的无重排列。
排列的全体组成的集合用 P(n,r)表示。
排列的个数用P(n,r)表示.当r=n时称为全排列.一般不说可重即无重.可重排列的相应记号为 P(n,r),P(n,r)。
组合定义从n个不同元素中取r个不重复的元素组成一个子集,而不考虑其元素的顺序,称为从n个中取r个的无重组合。
组合的全体组成的集合用C(n,r)表示,组合的个数用C(n,r)表示,对应于可重组合有记号C(n,r),C(n,r)。
一、排列组合部分是中学数学中的难点之一,原因在于(1)从千差万别的实际问题中抽象出几种特定的数学模型,需要较强的抽象思维能力;(2)限制条件有时比较隐晦,需要我们对问题中的关键性词(特别是逻辑关联词和量词)准确理解;(3)计算手段简单,与旧知识联系少,但选择正确合理的计算方案时需要的思维量较大;(4)计算方案是否正确,往往不可用直观方法来检验,要求我们搞清概念、原理,并具有较强的分析能力.二、两个基本计数原理及应用(1)加法原理和分类计数法1.加法原理2.加法原理的集合形式3.分类的要求每一类中的每一种方法都可以独立地完成此任务;两类不同办法中的具体方法,互不相同(即分类不重);完成此任务的任何一种方法,都属于某一类(即分类不漏)(2)乘法原理和分步计数法1.乘法原理2.合理分步的要求任何一步的一种方法都不能完成此任务,必须且只须连续完成这n步才能完成此任务;各步计数相互独立;只要有一步中所采取的方法不同,则对应的完成此事的方法也不同例1:用1、2、3、4、5、6、7、8、9组成数字不重复的六位数集合A为数字不重复的九位数的集合,S(A)=9!集合B为数字不重复的六位数的集合.把集合A分为子集的集合,规则为前6位数相同的元素构成一个子集.显然各子集没有共同元素。
每个子集元素的个数,等于剩余的3个数的全排列,即3!这时集合B的元素与A的子集存在一一对应关系,则S(A)=S(B)*3!S(B)=9!/3!这就是我们用以前的方法求出的P(9,6)例2:从编号为1—9的队员中选6人组成一个队,问有多少种选法?设不同选法构成的集合为C,集合B为数字不重复的六位数的集合。
排列组合计算公式怎么算
排列组合计算公式怎么算排列组合是概率和统计中的一个基本概念。
它与对象的排列和组合方式有关,用于计算可能的结果的数量。
在实际应用中,排列组合常被用于数学、计算机科学、工程等领域。
本文将介绍排列和组合的基本概念,以及如何计算排列组合的公式。
排列是指从给定的对象集合中选取若干对象,按照一定的顺序进行排列。
组合是指从给定的对象集合中选取若干对象,不考虑其顺序。
下面将详细介绍这两种概念。
一、排列:排列是指从给定的对象集合中选取若干对象,按照一定的顺序进行排列。
假设有n个不同的对象,要从中选取r个对象进行排列,可以得到排列的公式为:P(n,r) = n! / (n-r)!其中,P(n,r)表示从n个对象中选取r个对象进行排列的可能性,n!表示n的阶乘,即n×(n-1)×(n-2)×...×2×1。
例如,假设有5个不同的球,要从中选取3个进行排列,那么可计算得到:P(5,3) = 5! / (5-3)!= 5! / 2!= 5×4×3×2×1 / 2×1= 5×4×3= 60所以,从5个不同的球中选取3个进行排列的可能性有60种。
排列也可以用数学符号表示为P(n,r)。
二、组合:组合是指从给定的对象集合中选取若干对象,不考虑其顺序。
假设有n个不同的对象,要从中选取r个对象进行组合,可以得到组合的公式为:C(n,r) = n! / (r!(n-r)!)其中,C(n,r)表示从n个对象中选取r个对象进行组合的可能性,n!表示n的阶乘,r!表示r的阶乘。
例如,假设有5个不同的球,要从中选取3个进行组合,那么可计算得到:C(5,3) = 5! / (3!(5-3)!)= 5! / (3!×2!)= 5×4 / (2×1)= 10所以,从5个不同的球中选取3个进行组合的可能性有10种。
排列组合的一些公式及推导(非常详细易懂)
排列组合的⼀些公式及推导(⾮常详细易懂)绪论:加法原理、乘法原理分类计数原理:做⼀件事,有n类办法,在第1类办法中有m1种不同的⽅法,在第2类办法中有m2种不同的⽅法,…,在第n类办法中有m n种不同的⽅法,那么完成这件事共有N=m1+m2+…+m n种不同的⽅法。
分步计数原理:完成⼀件事,需要分成n个步骤,做第1步有m1种不同的⽅法,做第2步有m2种不同的⽅法,…,做第n步有m n种不同的⽅法,那么完成这件事共有N=m1×m2×⋯×m n种不同的⽅法。
区别:分类计数原理是加法原理,不同的类加起来就是我要得到的总数;分步计数原理是乘法原理,是同⼀事件分成若⼲步骤,每个步骤的⽅法数相乘才是总数。
排列问题排列数从n个不同元素种取出m(m≤n)个元素的所有不同排列的个数,叫做从n个不同元素种取出m个元素的排列数,⽤符号A m n表⽰。
排列数公式A m n=n(n−1)(n−2)⋯(n−m+1)=n!(n−m)!,n,m∈N∗,并且m≤n(规定0!=1)推导:把n个不同的元素任选m个排序,按计数原理分步进⾏:取第⼀个:有n种取法;取第⼆个:有(n−1)种取法;取第三个:有(n−2)种取法;……取第m个:有(n−m+1)种取法;根据分步乘法原理,得出上述公式。
排列数性质A m n=n A m−1n−1可理解为“某特定位置”先安排,再安排其余位置。
A m n=m A m−1n−1+A m n−1可理解为:含特定元素的排列有m A m−1n−1,不含特定元素的排列为Amn−1。
组合问题组合数从n个不同元素种取出m(m≤n)个元素的所有不同组合的个数,叫做从n个不同元素种取出m个元素的组合数,⽤符号C m n表⽰。
组合数公式C m n=A m nA m m=n(n−1)(n−2)⋯(n−m+1)m!=n!m!(n−m)!,n,m∈N∗,并且m≤nC0n=C n n=1证明:利⽤排列和组合之间的关系以及排列的公式来推导证明。
排列组合公式及恒等式推导、证明(word版)
nC
n n
=n
2n- 1
证明:
由
mC
m n
=
nC
m n-
-1 1
可得
:(还记得这个恒等式吗,不记得就回过头去看③的证明)
左边
=nCn0-1 +nCn1-1 +nCn2-1 +nCn3-1 + nCnn--11 =n(Cn0-1 +Cn1- 1 +Cn2-1 +Cn3-1 + Cnn--11) =n 2n-1
n!=n
n! = nAnn
右边 =左边
⑤
A
m n +1
=
A
m n
+
mA
m n
-
1
A = A + mA m
m
m-
n +1 证明:n右边 = n! n +m
n!
= (n - m +1)n!- m n! =
(n +1)!
=
Am n +1
(n - m)! (n - m +1)! (n- m +1)! (n - m +1)!
第三步,排第三位: 有(n-2 ) 种选法;
┋
第 m步,排第 m位: 有(n-m+1)种选法;
┋
最后一步,排最后一位:有 1 种选法。
根据分步乘法原理,得出上述公式。
二、组合数公式:
Cnm
=
Anm Amm
=
n(n
-
1)(n
-
2) m!
(n - m +1) = n! m!(n - m)!
C
n n
=1
《排列组合公式》课件
便确定排列或组合的基数。
区分排列与组合
02 排列组合公式包括排列公式和组合公式,使用时应明
确所需的是排列还是组合,并选择相应的公式。
考虑顺序
03
排列公式需要考虑元素的顺序,而组合公式则不考虑
元素的顺序。
公式应用范围的限制
元素互异
排列组合公式的应用前提是所涉及的 元素必须互不相同,否则公式不适用 。
组合公式的推导过程
组合公式的基本形式
C(n, k) = n! / (k!(n-k)!)
推导过程
通过排列与组合的数学关系,利用阶乘的性质进行推 导,最终得到组合公式的形式。
组合公式的数学证明
可以通过数学归纳法或组合恒等式进行证明,确保公 式的正确性。
组合公式的应用实例
概率计算
在概率论中,组合公式常用于计 算事件发生的可能性,如组合概 率和条件概率。
无限制条件
对于某些特定问题,可能需要添加额 外的限制条件,如去除重复、特定顺 序等,此时公式应用范围需相应调整 。
避免常见的计算错误
基数不为零
01
排列组合公式的基数不能为零,否则会导致计算错误。
重复计算
02
在使用排列组合公式时,应避免重复计算相同的情况,确保每
种情况只计算一次。
正确使用括号
03
在应用排列组合公式时,应正确使用括号,以确保计算的准确
排列公式的扩展形式
排列组合混合公式
除了单纯的排列公式外,还有排列组合混合公式, 可以用来计算同时涉及排列和组合的问题。
有限制条件的排列公式
在一些特定的问题中,可能需要对元素进行限制, 此时需要使用有限制条件的排列公式。
高阶排列公式
对于较大规模的排列问题,需要使用高阶排列公式 来计算。
排列组合公式讲解
排列组合公式讲解排列组合是数学中一个很有趣也很实用的部分,它能帮我们解决好多生活中的问题呢。
咱先来说说排列。
比如说,从 5 个不同的水果里选 3 个排成一排,有多少种排法?这就是排列问题。
排列的公式是:A(n, m) = n! / (n - m)! 这里的“!”表示阶乘,比如 5! = 5 × 4 × 3 × 2 × 1 。
举个例子吧,咱们班要选 3 个同学去参加比赛,有 5 个同学报名,那选法有多少种?按照排列公式,A(5, 3) = 5! / (5 - 3)! = 5 × 4 × 3 = 60 种。
这就意味着有 60 种不同的选人方式。
再来说说组合。
组合就是从一堆东西里选出几个,不考虑顺序。
比如说,从 5 个不同的水果里选 3 个,不管怎么排,有多少种选法?这就是组合问题。
组合的公式是:C(n, m) = n! / [m! × (n - m)!] 。
就像学校要从 10 个社团里选 4 个参加活动,有多少种选法?用组合公式 C(10, 4) = 10! / [4! × (10 - 4)!] = 210 种。
还记得有一次,我们学校组织运动会,要从 8 个比赛项目中选 3 个作为班级的参赛项目。
这时候就得用组合,因为选出来就行,不考虑比赛项目的顺序。
我们算出来有 56 种选法。
大家就开始讨论,到底选哪 3 个项目能让我们班更有优势。
有的同学说选跑步,因为咱们班短跑厉害;有的说选跳远,因为有个同学跳得特别远。
最后经过一番讨论和分析,我们选了跑步、跳远和跳绳。
其实排列组合在生活中的应用可多啦。
比如买彩票,号码的排列组合就决定了你中不中奖;还有安排座位,从一堆座位里选几个给特定的人坐,这也涉及到排列组合。
总之,排列组合虽然听起来有点复杂,但只要咱们掌握了公式,多做几道题,就能熟练运用啦。
说不定以后在解决实际问题的时候,它就能派上大用场呢!。
排列组合公式排列组合计算公式
排列组合公式/排列组合计算公式排列P------和顺序有关组合C -------不牵涉到顺序的问题排列分顺序,组合不分例如把5本不同的书分给3个人,有几种分法. "排列"把5本书分给3个人,有几种分法"组合"1.排列及计算公式从n个不同元素中,任取m(m≤n)个元素按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列;从n个不同元素中取出m(m≤n)个元素的所有排列的个数,叫做从n个不同元素中取出m个元素的排列数,用符号p(n,m)表示.p(n,m)=n(n-1)(n-2)……(n-m+1)= n!/(n-m)!(规定0!=1).2.组合及计算公式从n个不同元素中,任取m(m≤n)个元素并成一组,叫做从n个不同元素中取出m个元素的一个组合;从n个不同元素中取出m(m≤n)个元素的所有组合的个数,叫做从n个不同元素中取出m个元素的组合数.用符号c(n,m) 表示.c(n,m)=p(n,m)/m!=n!/((n-m)!*m!);c(n,m)=c(n,n-m);3.其他排列与组合公式从n个元素中取出r个元素的循环排列数=p(n,r)/r=n!/r(n-r)!.n个元素被分成k类,每类的个数分别是n1,n2,...nk这n个元素的全排列数为n!/(n1!*n2!*...*nk!).k类元素,每类的个数无限,从中取出m个元素的组合数为c(m+k-1,m).排列(Pnm(n为下标,m为上标))Pnm=n×(n-1)....(n-m+1);Pnm=n!/(n-m)!(注:!是阶乘符号);Pnn(两个n 分别为上标和下标)=n!;0!=1;Pn1(n为下标1为上标)=n组合(Cnm(n为下标,m为上标))Cnm=Pnm/Pmm ;Cnm=n!/m!(n-m)!;Cnn(两个n分别为上标和下标)=1 ;Cn1(n为下标1为上标)=n;Cnm=Cnn-m2008-07-08 13:30公式P是指排列,从N个元素取R个进行排列。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
排列组合公式及恒等式推导、证明(WOrd 版)说明:因公式编辑需特定的公式编辑插件,不管是word 还是PPS 附带公式编辑经常是出错用不了。
下载此 word 版的,记得下载 MathTyPe 公式编辑器哦,否则乱码一堆。
如果 想偷懒可下截同名的截图版。
另外,还有 PPt 课件(包含了排列组合的精典解题方法和精典试题)供学友们下载。
一、排列数公式:An l =n (n -1)(n-1) 3创2 1推导:把n 个不同的元素任选m 个排次序或n 个全排序,按计数 原理分步进行:第步,排第位: 有 n种选法;第二步,排第二位:有(n-1)种选法; 第三步,排第三位:有(n-2)种选法;第m 步,排第m 位:有(n-m+1)种选法;I I I I最后一步,排最后一位:有1 种选法。
根据分步乘法原理,得出上述公式。
二、组合数公式:C m =A m = n(n- 1)(n- 2)…(n - m+1)= n! nA r m m! m!( n-m)!n JI C n= 1A m =n(n -1)(n - 2) (n - m +1) =n! (n - m)!推导:把n个不同的元素任选m个不排序,按计数原理分步进行:第步,取第个:有n种取法;第二步,取第二个:有(n-1)种取法;第三步,取第三个:II有(n-2) 种取法;II第m步,取第m个:II 有(n-m+1) 种取法;I I最后一步,取最后一个:有1种取法。
上述各步的取法相乘是排序的方法数,由于选m个,就有m!种排排法,选n个就有n!种排法。
故取m个的取法应当除以m!,取n 个的取法应当除以n!。
遂得出上述公式。
证明:利用排列和组合之间的关系以及排列的公式来推导证明将部分排列问题A n n分解为两个步骤:第一步,就是从n个球中抽m个出来,先不排序,此即定义的组合数问题C n n;第二步,则是把这m个被抽出来的球全部排序,即全排列A m。
根据乘法原理,A n n=C n n A m 即:C m A Tl n(n -1)0-2厂(n-m+1) n!A Tl m!m!(n- m)!组合公式也适用于全组合的情况,即求C(n, n)的问题。
根据m!上述公式,C( n, n)= n!∕n!( n-n)! = n! / n !0! = 1。
这一结果是完全合理的,因为从n个球中抽取所有n个出来,当然只有1种方法。
三、重复组合数公式:重复组合定义:从n个不同的元素中每次取一个,放回后再取下一个,如此连续m次所得的组合。
重复组合数公式:R n n=C n+m-1 (m可小于、大于、等于n,n ≥1)推导:可以把该过程看作是一个“放球模型”:n个不同的元素看作是n个格子,其间一共有(n-1 )块相同的隔板,用m个相同的小球代表取m次;则原问题可以简化为将m 个不加区别的小球放进n个格子里面,问有多少种放法;这相当于m个相同的小球和(n-1 )块相同的隔板先进行全排列:一共有(m+n-1 )!种排法,再由于m个小球和(n-1 )块隔板是分别不加以区分的,所以除以重复的情况:m ! *(n-1)!于是答案就是:R n n= (m+n-1)!=C n:m-1m !(n - 1)!四、不全相异的全排列在不全相异的n 个物体中,假设有n ι个物体是相同的,n 2个五 题是相同的,,,,n k 个物体是相同的。
n 个物体中不相同的物体种 类数一共有k 种。
那么,这些物体的全排列数是 n!∕(n ι!n 2!,n k !) O可以想成:n 个物体直接全排列,排列完了以后,去重,第一 种物体有n ι!种,第二种物体有n 2!种,以此类推。
例:有3个红球,2个白球,把这五个球排成一行,问有多少 种排法?红球和红球没有区别,白球和白球没有区别。
答:一共有10种,aaabb,aabab,aabba,abaab,ababa,baaab,baaba,abbaa,babaa,bba aa 0五、排列恒等式的证明:=(n - m +1)A左边=右边n ? (n - 1) 证明:右边=n - m (n - m - 1)!左边=右边A n m = nA n m --11证明:右边=n (n - I)!(n - m )!证明:右边=(n+ 1)____ n !(n - m + 1)!n ! (n - m )!n ! (n - m )!n !(n - m )!左边=右边n n+1 n④nA n =A n+ι-A n证明:右边=A n +11 -A n I =(n +1)- n! =(n+1>n!- n! = ngn! = nA右边=左边A nmI 证明:⅛mA m"+mn! = (n-m+1)n!-m⅛n!= (n +1)! =A m(n - m)! (n-m+1)! (n-m+1)! (n - m+1)!⑥1!+2?2! 3?3! +n?n! (n +1)!- 1证明:左边=(2-1)1 ! + (3-1) 2! + (4-1) 3!+, ( n+1-1) n!=2!-1!+3!-2!+4!-3! , (n+1)!-n!=(n+1)!-1 !=右边六、组合恒等式的证明首先明弄清组合的两个性质公式:mn- m Cn=Cn互补性质:取出有多少种,剩下就有多少种分类计数原m m m-1C n+1 =C n +Cn根据分类计数原理:要么含有新加元素要么不含新加元素A n m+ι = A nm+ mAr +1n +1m +1m+1C n = n - m(m +1)n!n!1)! = m!(n- m)! -C n m(n - m)(m +1)!(n -m - 证明:n - m+1 m -1 n - m+1n!n !C C n ---------------- 二----------------C n m m(m - 1)!(n -m +1)! m!(n- -m)!② C n m =nC n m-In - m卫(n- 1) != Jm ( m - 1 ) ! n- m ) ! m -n(=左边证明:根据组合性质,左边各式可写成:n- mn(n- 1)! n !=一n- m m!(n-m- 1)!m n!-(m③C m : n_nQ m - 1 "Cn-Im证明:右边=证明: ⑤C r r+C ;+i +C : + 2 ++c n右边=mm=C)n!左右两边相加即得:r rrr r +1C r +cr÷1+c r÷2+ +C n=C n+1证明:用数学归纳法证明。
1 )当n=1时,C 10+C 11=2 = 21所以等式成立。
2 )假设n=k 时,(k ≥ 1, k ∈时等式成立。
k即: C 0+C 1+C 2+…+C kk =2C r r=Cr +1 r+1 r r +1 =C r+1 r +2-C r +1 r +1 r r +2 =Cr +1 r+3-Cr +1 r +2 r r +3= C ;:4-C r +1 r +3r n-1=Cr+1 n-Cr +1 n-1C n =Cr +1 n+1r+1 n当n=k+1时,C k +1 +C k+1 +C k +1 + +C k +1 +C k +1= C0+ι+(C k0+C k)+(C k +Cf)+…+(C k k-1+cQ+c阳= (C k)+c k +c:+…+Cκ)+(C k)+C k +cf+…+C k k)= 22k=2k+1•••等式也成立由1)、2)得,等式对n ∈N*都成立。
也可用二项式定理证明(略)证明:用归纳法同上(略)也可利用上述结论证明(略)本课件尽量避开用二项式定理,但这比较简单,暂且用一下: 设a=c n+C;+C;+…设b=c°+c n2+c>∙由(1+1)n可得:a+b=2n=2× 2n-1由(1-1)n可得a-b=0二a=b=2n-1(不懂的去学学二项式定理)证明:由mC r m =nC m-I I可得:(还记得这个恒等式吗,不记得就回过头去看③的证明)左边=ιC0-1+nC n-1+nC: +nC 3 n-1 + nC n-1 n-1=n C n-I +C n-1 +C n-1 +C n-1 + C n-I)=n01注:同时利用了⑥的结论。
r ≤min {m,用二项式定理证明太麻烦了。
能偷懒就不要太勤快了。
观察左边的每一项,发现均是分别从m个不同素和n个不同元素中取r 个元素的一个组合,其各项之和就是所有取法,即所有组合数。
其所有组合数当然等于右边。
⑩C<)2+(c r1)2+…+(c:)2=c;n还是用偷懒法:根据第⑨的结论并结合组合的互补性质,若r=m=n即得些结论。