2021届步步高数学大一轮复习讲义(文科)第十章 10.3变量间的相关关系、统计案例

合集下载

高考数学一轮复习 10.3变量间的相关关系、统计案例课件 文 湘教版

高考数学一轮复习 10.3变量间的相关关系、统计案例课件 文 湘教版

3/24/2019
2.回归方程 (1)最小二乘法 求回归直线使得样本数据的点到回归直线的 距离的平方和 最小 的方法叫做最小二乘法. (2)回归方程 ˆ bx a 是两个具有线性相关关系的变量的一组数据 方程 y (x1,y1) , (x2,y2) ,…, (xn,yn)的回归方程,其中 a,b 是待定参数.
3/24/2019
3/24/2019
*5.独立性检验 不同类别 (1)分类变量:变量的不同“值”表示个体所属的 __________, 像这样的变量称为分类变量. 频数表 ,称为列联表. (2)列联表:列出两个分类变量的________ 假设有两个分类变量X和Y,它们的可能取值分别为{x1,x2}和 {y1,y2},其样本频数列联表(称为2×2列联表)为 2×2列联表
3.回归分析 相关关系 的两个变量进行统计分析的 (1)定义:对具有__________ 一种常用方法. (2)随机误差:线性回归模型用y=bx+a+e表示,其中a 未知参数 ,___ e 称为随机误差. 和b为模型的__________
3/24/2019
(4)相关系数
xi- x yi- y
【解析】 据相关指数的定义可知,相关指数R2的值越大,
残差平方和越小,即模型的拟合效果越好.
【答案】 A
3/24/2019
3.有关线性回归的方法,不正确的是 ( ) A.相关关系的两个变量是非确定关系 B.散点图能直观地反映数据的相关程度 C.回归直线最能代表线性相关的两个变量之间的关系 D.散点图中的点越集中,两个变量的相关性越强
【解析】( x0 , y0 )为这 10 组数据的平均值,又因为回归直线=x +必过样本中心点( x, y ),因此( x0 , y0 )一定满足线性回归方程, 但坐标满足线性回归方程的点不一定是( x, y ). 【答案】B

《步步高》2021届高考数学大一轮复习(人教A版)专题训练:专题一函数图象与性质的综合应用

《步步高》2021届高考数学大一轮复习(人教A版)专题训练:专题一函数图象与性质的综合应用

题型四
函数的值域与不等式恒成立问题
思维启迪 解析
探究提高
题型分类·深度剖析
题型四
函数的值域与不等式恒成立问题
思维启迪 解析
探究提高
题型分类·深度剖析
题型四
函数的值域与不等式恒成立问题
思维启迪 解析
探究提高
题型分类·深度剖析
题型四
函数的值域与不等式恒成立问题
思维启迪 解析
探究提高
题型分类·深度剖析
6
7
8
9
A
练出高分
A组 专项基础训练
1
2
3
4
5
6
7
8
9
解析
练出高分
A组 专项基础训练
1
2
3
4
5
6
7
8
9
解析
(2,+∞)
练出高分
A组 专项基础训练
1
2
3
4
5
6
7
8
9
解析
练出高分
A组 专项基础训练
1
2
3
4
5
6
7
8
9
解析
练出高分
A组 专项基础训练
1
2
3
4
5
6
7
8
9
解析
练出高分
A组 专项基础训练
题型分类·深度剖析
高考圈题
2.高考中的函数零点问题
考点分析
求解策略
解析
解后反思
题型分类·深度剖析
高考圈题
2.高考中的函数零点问题
考点分析
求解策略
解析
解后反思
题型分类·深度剖析

【步步高】届高三数学大一轮复习 变量间的相关关系学案 理 新人教A版

【步步高】届高三数学大一轮复习 变量间的相关关系学案 理 新人教A版

学案58 变量间的相关关系导学目标: 1.会作两个有关联变量的数据的散点图,会利用散点图认识变量间的相关关系.2.了解最小二乘法的思想,能根据给出的线性回归方程系数公式建立线性回归方程.自主梳理1.两个变量的线性相关 (1)正相关 在散点图中,点散布在从__________到________的区域,对于两个变量的这种相关关系,我们将它称为正相关.(2)负相关 在散点图中,点散布在从________到________的区域,两个变量的这种相关关系称为负相关.(3)线性相关关系、回归直线如果散点图中点的分布从整体上看大致在一条直线附近,我们就称这两个变量之间具有线性相关关系,这条直线叫做回归直线.2.回归方程 (1)最小二乘法求回归直线使得样本数据的点到它的________________________的方法叫做最小二乘法.(2)回归方程方程y ^=b ^x +a ^是两个具有线性相关关系的变量的一组数据(x 1,y 1),(x 2,y 2),…,(x n ,y n )的回归方程,其中a ^,b ^是待定参数.自我检测1.下列有关线性回归的说法,不正确的是( ) A .相关关系的两个变量不一定是因果关系 B .散点图能直观地反映数据的相关程度C .回归直线最能代表线性相关的两个变量之间的关系D .任一组数据都有回归直线方程2.(2009·海南,宁夏)对变量x ,y 有观测数据(x i ,y i )(i =1,2,…,10),得散点图(1);对变量u ,v 有观测数据(u i ,v i )(i =1,2,…,10),得散点图(2).由这两个散点图可以判断( )A .变量x 与y 正相关,u 与v 正相关B .变量x 与y 正相关,u 与v 负相关C .变量x 与y 负相关,u 与v 正相关D .变量x 与y 负相关,u 与v 负相关3.(2011·银川模拟)下表是某厂1~4月份用水量(单位:百吨)的一组数据:由散点图可知,用水量y 与月份x 之间有较好的线性相关关系,其回归直线方程是y ^=-0.7x +a ^,则a ^等于( )A .10.5B .5.15C .5.2D .5.254.(2010·广东)某市居民2005~2009年家庭年平均收入x(单位:万元)与年平均支出Y(单位:万元)的统计资料如下表所示:, 家庭年平均收入与年平均支出有______线性相关关系.5.(2011·金陵中学模拟)已知三点(3,10),(7,20),(11,24)的横坐标x 与纵坐标y 具有线性关系,则其回归方程是________________.探究点一 利用散点图判断两个变量的相关性例1 有一位同学家开了一个小卖部,他为了研究气温对热饮销售的影响,经过统计,得到一个卖出热饮杯数与当天气温的对比表:(1)(2)你能从散点图中发现气温与热饮销售杯数之间关系的一般规律吗?变式迁移1 某班5个学生的数学和物理成绩如表:探究点二求回归直线方程例2假设关于某设备的使用年限x和所支出的维修费用y(万元)有以下统计资料:若由资料知y对x呈线性相关关系.试求回归方程y=b x+a .变式迁移2 已知变量x与变量y有下列对应数据:且y对x探究点三利用回归方程对总体进行估计例3下表提供了某厂节能降耗技术改造后生产甲产品过程中记录的产量x(吨)与相应的生产能耗y(吨标准煤)的几组对照数据.(1)(2)请根据上表提供的数据,用最小二乘法求出y 关于x 的回归方程y ^=b ^x +a ^; (3)已知该厂技改前100吨甲产品的生产能耗为90吨标准煤.试根据(2)求出的回归方程,预测生产100吨甲产品的生产能耗比技改前降低多少吨标准煤?(参考数值:3×2.5+4×3+5×4+6×4.5=66.5)变式迁移3 (2011·盐城期末)某单位为了了解用电量y 度与气温x ℃之间的关系,随机统计了某4天的用电量与当天气温,并制作了对照表:由表中数据得回归方程y =b x +a 中b =-2,预测当气温为-4℃时,用电量的度数约为________.点大致分布在某一条直线的附近,就可以认为y 对x 的回归函数的类型为直线型:其中(满分:75分)一、选择题(每小题5分,共25分) 1.下列命题:①线性回归方法就是由样本点去寻找一条贴近这些样本点的直线的数学方法; ②利用样本点的散点图可以直观判断两个变量的关系是否可以用线性关系表示;③通过回归直线y ^=b ^x +a ^及回归系数b ^,可以估计和预测变量的取值和变化趋势. 其中正确的命题是( )A .①②B .①③C .②③D .①②③2.设有一个回归直线方程为y ^=2-1.5x ,则变量x 增加一个单位时( ) A .y 平均增加1.5个单位 B .y 平均增加2个单位 C .y 平均减少1.5个单位 D .y 平均减少2个单位3.(2011·陕西)设(x 1,y 1),(x 2,y 2),…,(x n ,y n )是变量x 和y 的n 个样本点,直线l 是由这些样本点通过最小二乘法得到的线性回归直线(如图),以下结论中正确的是( )A .x 和y 的相关系数为直线l 的斜率B .x 和y 的相关系数在0到1之间C .当n 为偶数时,分布在l 两侧的样本点的个数一定相同D .直线l 过点(x ,y )4.(2011·山东)某产品的广告费用x 与销售额y 的统计数据如下表:根据上表可得线性回归方程y =b x +a 中的b 为9.4,据此模型预报广告费用为6万元时销售额为( )A .63.6万元B .65.5万元C .67.7万元D .72.0万元5.(2011·青岛模拟)为了考察两个变量x 和y 之间的线性相关性,甲、乙两位同学各自独立做了10次和15次试验,并且利用线性回归方法,求得回归直线分别为l 1、l 2,已知两人所得的试验数据中,变量x 和y 的数据的平均值都相等,且分别是s 、t ,那么下列说法中正确的是( )A .直线l 1和l 2一定有公共点(s ,t)B .直线l 1和l 2相交,但交点不一定是(s ,t)C .必有l 1∥l 2D .l 1与l 2必定重合二、填空题(每小题4分,共12分)6.下列关系中,是相关关系的为________.(填序号) ①学生的学习态度与学习成绩之间的关系;②教师的执教水平与学生的学习成绩之间的关系; ③学生的身高与学生的学习成绩之间的关系; ④家庭的经济条件与学生的学习成绩之间的关系.7.已知回归直线的斜率的估计值是0.73,样本点的中心为(12.5,8.25),则回归直线的回归方程是______________.8.(2011·茂名月考)在研究硝酸钠的可溶性程度时,观测它在不同温度的水中的溶解度,得观测结果如下表:三、解答题(共38分)9.(12分)(2011·威海模拟)某车间为了规定工时定额,需要确定加工零件所花费的时间,为此做了四次试验,得到的数据如下:(1)(2)求出y 关于x 的回归方程y ^ =b ^ x +a ^,并在坐标系中画出回归直线; (3)试预测加工10个零件需要多少时间?(注:b ^=∑ni =1x i y i -n x y∑n i =1x 2i-n x2,a ^ =y -b ^x )10.(12分)(2010·许昌模拟)某种产品的宣传费支出x 与销售额y(单位:万元)之间有如下对应数据:(1)画出散点图; (2)求回归直线方程;(3)试预测宣传费支出为10万元时,销售额多大?11.(14分)(1)(2)指出产量每增加1 000件时,单位成本平均变动多少? (3)假定产量为6 000件时,单位成本为多少元?学案58 变量间的相关关系自主梳理1.(1)左下角 右上角 (2)左上角 右下角 2.(1)距离的平方和最小(2)∑ni =1x i -x y i -y ∑n i =1 x i -x 2∑ni =1x i y i -n x y∑n i =1x 2i-n x2y -b ^x 自我检测1.D 2.C 3.D4.13 正 5.y ^=74x +234课堂活动区例1 解题导引 判断变量间是否线性相关,一种常用的简便可行的方法就是作散点图.散点图是由大量数据点分布构成的,是定义在具有相关关系的两个变量基础之上的,对于性质不明确的两组数据可先作散点图,直观地分析它们有无关系及关系的密切程度.解 (1)以x 轴表示温度,以y 轴表示热饮杯数,可作散点图,如图所示.(2)从图中可以看出,各点散布在从左上角到右下角的区域里,因此,气温与热饮销售杯数之间是负相关关系,即气温越高,卖出去的热饮杯数越少.从散点图可以看出,这些点大致分布在一条直线附近.变式迁移1 解 以x 轴表示数学成绩,y 轴表示物理成绩,可得相应的散点图如下图所示:由散点图可见,两者之间具有相关关系.例2 解题导引 根据题目给出的数据,利用公式求回归系数,然后获得回归方程. 解 制表如下:于是有b ^=90-5×42=10=1.23; a ^=y -b ^x =5-1.23×4=0.08.∴回归直线方程为y ^=1.23x +0.08.变式迁移2 解 x =1+2+3+44=52,y =12+32+2+34=74,∑ni =1x 2i =12+22+32+42=30, ∑n i =1x i y i =1×12+2×32+3×2+4×3=432, ∴b ^ =∑n i =1x i y i -n x y ∑ni =1x 2i -n x 2=432-4×52×7430-4×254=0.8, a ^ =y -b ^x =74-0.8×52=-0.25,∴y ^=0.8x -0.25.例3 解题导引 利用描点法得到散点图,按求回归方程的步骤和公式,写出回归方程,最后对总体进行估计.利用回归方程可以进行预测,回归方程将部分观测值所反映的规律进行延伸,是我们对有线性相关关系的两个变量进行分析和控制,依据自变量的取值估计和预报因变量值的基础和依据,有广泛的应用.解 (1)散点图:(2)x =3+4+5+64=4.5,y =2.5+3+4+4.54=3.5, ∑4i =1x i y i =3×2.5+4×3+5×4+6×4.5=66.5.∑4i =1x 2i =32+42+52+62=86, ∴b ^=∑4i =1x i y i -4x y∑4i =1x 2i-4x2=66.5-4×4.5×3.586-4×4.52=0.7, a ^=y -b ^x =3.5-0.7×4.5=0.35. ∴所求的回归方程为y ^=0.7x +0.35. (3)现在生产100吨甲产品用煤y ^=0.7×100+0.35=70.35,∴降低90-70.35=19.65(吨标准煤). 变式迁移3 68解析 x =10,y =40,回归方程过点(x ,y ),∴40=-2×10+a ^.∴a ^=60.∴y ^=-2x +60.令x =-4,y ^=(-2)×(-4)+60=68. 课后练习区1.D [根据线性回归的含义、方法、作用分析这三个命题都是正确的.] 2.C [设(x 1,y 1),(x 2,y 2)在直线上,若x 2=x 1+1,则y 2-y 1=(2-1.5x 2)-(2-1.5x 1)=1.5(x 1-x 2)=-1.5,y 平均减少1.5个单位.]3.D [因为相关系数是表示两个变量是否具有线性相关关系的一个值,它的绝对值越接近1,两个变量的线性相关程度越强,所以A 、B 错误.C 中n 为偶数时,分布在l 两侧的样本点的个数可以不相同,所以C 错误.根据线性回归方程一定经过样本中心点可知D 正确.所以选D .]4.B [∵x =4+2+3+54=72,y =49+26+39+544=42,又y ^ =b ^ x +a ^ 必过(x ,y ),∴42=72×9.4+a ^ ,∴a ^=9.1.∴线性回归方程为y ^=9.4x +9.1.∴当x =6时,y ^=9.4×6+9.1=65.5(万元).]5.A [回归直线方程为y ^=b ^x +a ^.而a ^=y -b ^x ,即a ^=t -b ^s ,t =b ^s +a ^.∴(s,t)在回归直线上. ∴直线l 1和l 2一定有公共点(s ,t).] 6.①②解析 ①中学生的学习态度与学习成绩之间不是因果关系,但具有相关性,是相关关系.②教师的执教水平与学生的学习成绩之间的关系是相关关系.③④都不具备相关关系.7.y ^=0.73x -0.875解析 a ^=y -b ^x =8.25-0.73×12.5=-0.875. 8.0.880 9解析 x =30,y =93.6,∑5i =1x 2i=7 900,∑5i =1x i y i =17 035, ∴回归直线的斜率为 b ^=∑5i =1x i y i -5x y∑5i =1x 2i -5x 2=17 035-5×30×93.67 900-4 500≈0.880 9.9.解(1)散点图如图所示.(4分)(2)由表中数据得∑4i =1x i y i =52.5, x =3.5,y =3.5,∑4i =1x 2i =54, ∴b ^=0.7.∴a ^=y -b ^x =1.05.∴y ^=0.7x +1.05.回归直线如图中所示.(10分) (3)将x =10代入回归直线方程, 得y =0.7×10+1.05=8.05(小时),∴预测加工10个零件需要8.05小时.(12分)10.解 (1)根据表中所列数据可得散点图如图所示:(4分)(2)计算得:x =255=5,y =2505=50, ∑5i =1x 2i=145,∑5i =1x i y i =1 380. 于是可得b ^=∑5i =1x i y i -5x y∑5i =1x 2i -5x 2=1 380-5×5×50145-5×52=6.5, a ^=y -b ^x =50-6.5×5=17.5,因此,所求回归直线方程是y ^=6.5x +17.5.(10分)(3)由上面求得的回归直线方程可知,当宣传费支出为10万元时,y ^=6.5×10+17.5=82.5(万元),即这种产品的销售大约为82.5万元.(12分)11.解 (1)n =6,∑6i =1x i =21,∑6i =1y i =426,x =3.5,y =71, ∑6i =1x 2i=79,∑6i =1x i y i =1 481, b ^=∑6i =1x i y i -6x y∑6i =1x 2i -6x 2=1 481-6×3.5×7179-6×3.52≈-1.82. (3分)a ^=y -b ^x =71+1.82×3.5=77.37.(5分)∴回归方程为y ^=a ^+b ^x =77.37-1.82x.(6分)(2)因为单位成本平均变动b ^=-1.82<0,且产量x 的计量单位是千件,所以根据回归11 系数b 的意义有:产量每增加一个单位即1 000件时,单位成本平均减少1.82元.(10分)(3)当产量为6 000件时,即x =6,代入回归方程:y ^=77.37-1.82×6=66.45(元).∴当产量为6 000件时,单位成本为66.45元.(14分)。

【步步高】届高三数学大一轮复习 变量间的相关关系学案 理 新人教A版

【步步高】届高三数学大一轮复习 变量间的相关关系学案 理 新人教A版

学案58 变量间的相关关系导学目标: 1.会作两个有关联变量的数据的散点图,会利用散点图认识变量间的相关关系.2.了解最小二乘法的思想,能根据给出的线性回归方程系数公式建立线性回归方程.自主梳理1.两个变量的线性相关 (1)正相关 在散点图中,点散布在从__________到________的区域,对于两个变量的这种相关关系,我们将它称为正相关.(2)负相关 在散点图中,点散布在从________到________的区域,两个变量的这种相关关系称为负相关.(3)线性相关关系、回归直线如果散点图中点的分布从整体上看大致在一条直线附近,我们就称这两个变量之间具有线性相关关系,这条直线叫做回归直线.2.回归方程 (1)最小二乘法求回归直线使得样本数据的点到它的________________________的方法叫做最小二乘法.(2)回归方程方程y ^=b ^x +a ^是两个具有线性相关关系的变量的一组数据(x 1,y 1),(x 2,y 2),…,(x n ,y n )的回归方程,其中a ^,b ^是待定参数.自我检测1.下列有关线性回归的说法,不正确的是( ) A .相关关系的两个变量不一定是因果关系 B .散点图能直观地反映数据的相关程度C .回归直线最能代表线性相关的两个变量之间的关系D .任一组数据都有回归直线方程2.(2009·海南,宁夏)对变量x ,y 有观测数据(x i ,y i )(i =1,2,…,10),得散点图(1);对变量u ,v 有观测数据(u i ,v i )(i =1,2,…,10),得散点图(2).由这两个散点图可以判断( )A .变量x 与y 正相关,u 与v 正相关B .变量x 与y 正相关,u 与v 负相关C .变量x 与y 负相关,u 与v 正相关D .变量x 与y 负相关,u 与v 负相关3.(2011·银川模拟)下表是某厂1~4月份用水量(单位:百吨)的一组数据:由散点图可知,用水量y 与月份x 之间有较好的线性相关关系,其回归直线方程是y ^=-0.7x +a ^,则a ^等于( )A .10.5B .5.15C .5.2D .5.254.(2010·广东)某市居民2005~2009年家庭年平均收入x(单位:万元)与年平均支出Y(单位:万元)的统计资料如下表所示:, 家庭年平均收入与年平均支出有______线性相关关系.5.(2011·金陵中学模拟)已知三点(3,10),(7,20),(11,24)的横坐标x 与纵坐标y 具有线性关系,则其回归方程是________________.探究点一 利用散点图判断两个变量的相关性例1 有一位同学家开了一个小卖部,他为了研究气温对热饮销售的影响,经过统计,得到一个卖出热饮杯数与当天气温的对比表:(1)(2)你能从散点图中发现气温与热饮销售杯数之间关系的一般规律吗?变式迁移1 某班5个学生的数学和物理成绩如表:探究点二求回归直线方程例2假设关于某设备的使用年限x和所支出的维修费用y(万元)有以下统计资料:若由资料知y对x呈线性相关关系.试求回归方程y=b x+a .变式迁移2 已知变量x与变量y有下列对应数据:且y对x探究点三利用回归方程对总体进行估计例3下表提供了某厂节能降耗技术改造后生产甲产品过程中记录的产量x(吨)与相应的生产能耗y(吨标准煤)的几组对照数据.(1)(2)请根据上表提供的数据,用最小二乘法求出y 关于x 的回归方程y ^=b ^x +a ^; (3)已知该厂技改前100吨甲产品的生产能耗为90吨标准煤.试根据(2)求出的回归方程,预测生产100吨甲产品的生产能耗比技改前降低多少吨标准煤?(参考数值:3×2.5+4×3+5×4+6×4.5=66.5)变式迁移3 (2011·盐城期末)某单位为了了解用电量y 度与气温x ℃之间的关系,随机统计了某4天的用电量与当天气温,并制作了对照表:由表中数据得回归方程y =b x +a 中b =-2,预测当气温为-4℃时,用电量的度数约为________.点大致分布在某一条直线的附近,就可以认为y 对x 的回归函数的类型为直线型:其中(满分:75分)一、选择题(每小题5分,共25分) 1.下列命题:①线性回归方法就是由样本点去寻找一条贴近这些样本点的直线的数学方法; ②利用样本点的散点图可以直观判断两个变量的关系是否可以用线性关系表示;③通过回归直线y ^=b ^x +a ^及回归系数b ^,可以估计和预测变量的取值和变化趋势. 其中正确的命题是( )A .①②B .①③C .②③D .①②③2.设有一个回归直线方程为y ^=2-1.5x ,则变量x 增加一个单位时( ) A .y 平均增加1.5个单位 B .y 平均增加2个单位 C .y 平均减少1.5个单位 D .y 平均减少2个单位3.(2011·陕西)设(x 1,y 1),(x 2,y 2),…,(x n ,y n )是变量x 和y 的n 个样本点,直线l 是由这些样本点通过最小二乘法得到的线性回归直线(如图),以下结论中正确的是( )A .x 和y 的相关系数为直线l 的斜率B .x 和y 的相关系数在0到1之间C .当n 为偶数时,分布在l 两侧的样本点的个数一定相同D .直线l 过点(x ,y )4.(2011·山东)某产品的广告费用x 与销售额y 的统计数据如下表:根据上表可得线性回归方程y =b x +a 中的b 为9.4,据此模型预报广告费用为6万元时销售额为( )A .63.6万元B .65.5万元C .67.7万元D .72.0万元5.(2011·青岛模拟)为了考察两个变量x 和y 之间的线性相关性,甲、乙两位同学各自独立做了10次和15次试验,并且利用线性回归方法,求得回归直线分别为l 1、l 2,已知两人所得的试验数据中,变量x 和y 的数据的平均值都相等,且分别是s 、t ,那么下列说法中正确的是( )A .直线l 1和l 2一定有公共点(s ,t)B .直线l 1和l 2相交,但交点不一定是(s ,t)C .必有l 1∥l 2D .l 1与l 2必定重合二、填空题(每小题4分,共12分)6.下列关系中,是相关关系的为________.(填序号) ①学生的学习态度与学习成绩之间的关系;②教师的执教水平与学生的学习成绩之间的关系; ③学生的身高与学生的学习成绩之间的关系; ④家庭的经济条件与学生的学习成绩之间的关系.7.已知回归直线的斜率的估计值是0.73,样本点的中心为(12.5,8.25),则回归直线的回归方程是______________.8.(2011·茂名月考)在研究硝酸钠的可溶性程度时,观测它在不同温度的水中的溶解度,得观测结果如下表:三、解答题(共38分)9.(12分)(2011·威海模拟)某车间为了规定工时定额,需要确定加工零件所花费的时间,为此做了四次试验,得到的数据如下:(1)(2)求出y 关于x 的回归方程y ^ =b ^ x +a ^,并在坐标系中画出回归直线; (3)试预测加工10个零件需要多少时间?(注:b ^=∑ni =1x i y i -n x y∑n i =1x 2i-n x2,a ^ =y -b ^x )10.(12分)(2010·许昌模拟)某种产品的宣传费支出x 与销售额y(单位:万元)之间有如下对应数据:(1)画出散点图; (2)求回归直线方程;(3)试预测宣传费支出为10万元时,销售额多大?11.(14分)(1)(2)指出产量每增加1 000件时,单位成本平均变动多少? (3)假定产量为6 000件时,单位成本为多少元?学案58 变量间的相关关系自主梳理1.(1)左下角 右上角 (2)左上角 右下角 2.(1)距离的平方和最小(2)∑ni =1i -xi-y∑n i =1 i-x 2∑ni =1x i y i -n x y∑n i =1x 2i-n x2y -b ^x 自我检测1.D 2.C 3.D4.13 正 5.y ^=74x +234课堂活动区例1 解题导引 判断变量间是否线性相关,一种常用的简便可行的方法就是作散点图.散点图是由大量数据点分布构成的,是定义在具有相关关系的两个变量基础之上的,对于性质不明确的两组数据可先作散点图,直观地分析它们有无关系及关系的密切程度.解 (1)以x 轴表示温度,以y 轴表示热饮杯数,可作散点图,如图所示.(2)从图中可以看出,各点散布在从左上角到右下角的区域里,因此,气温与热饮销售杯数之间是负相关关系,即气温越高,卖出去的热饮杯数越少.从散点图可以看出,这些点大致分布在一条直线附近.变式迁移1 解 以x 轴表示数学成绩,y 轴表示物理成绩,可得相应的散点图如下图所示:由散点图可见,两者之间具有相关关系.例2 解题导引 根据题目给出的数据,利用公式求回归系数,然后获得回归方程. 解 制表如下:于是有b ^=90-5×42=10=1.23; a ^=y -b ^x =5-1.23×4=0.08.∴回归直线方程为y ^=1.23x +0.08.变式迁移2 解 x =1+2+3+44=52,y =12+32+2+34=74,∑ni =1x 2i =12+22+32+42=30, ∑n i =1x i y i =1×12+2×32+3×2+4×3=432, ∴b ^ =∑n i =1x i y i -n x y ∑ni =1x 2i -n x 2=432-4×52×7430-4×254=0.8, a ^ =y -b ^x =74-0.8×52=-0.25,∴y ^=0.8x -0.25.例3 解题导引 利用描点法得到散点图,按求回归方程的步骤和公式,写出回归方程,最后对总体进行估计.利用回归方程可以进行预测,回归方程将部分观测值所反映的规律进行延伸,是我们对有线性相关关系的两个变量进行分析和控制,依据自变量的取值估计和预报因变量值的基础和依据,有广泛的应用.解 (1)散点图:(2)x =3+4+5+64=4.5,y =2.5+3+4+4.54=3.5, ∑4i =1x i y i =3×2.5+4×3+5×4+6×4.5=66.5.∑4i =1x 2i =32+42+52+62=86, ∴b ^=∑4i =1x i y i -4x y∑4i =1x 2i-4x2=66.5-4×4.5×3.586-4×4.52=0.7, a ^=y -b ^x =3.5-0.7×4.5=0.35. ∴所求的回归方程为y ^=0.7x +0.35. (3)现在生产100吨甲产品用煤y ^=0.7×100+0.35=70.35,∴降低90-70.35=19.65(吨标准煤). 变式迁移3 68解析 x =10,y =40,回归方程过点(x ,y ),∴40=-2×10+a ^.∴a ^=60.∴y ^=-2x +60.令x =-4,y ^=(-2)×(-4)+60=68. 课后练习区1.D [根据线性回归的含义、方法、作用分析这三个命题都是正确的.] 2.C [设(x 1,y 1),(x 2,y 2)在直线上,若x 2=x 1+1,则y 2-y 1=(2-1.5x 2)-(2-1.5x 1)=1.5(x 1-x 2)=-1.5,y 平均减少1.5个单位.]3.D [因为相关系数是表示两个变量是否具有线性相关关系的一个值,它的绝对值越接近1,两个变量的线性相关程度越强,所以A 、B 错误.C 中n 为偶数时,分布在l 两侧的样本点的个数可以不相同,所以C 错误.根据线性回归方程一定经过样本中心点可知D 正确.所以选D .]4.B [∵x =4+2+3+54=72,y =49+26+39+544=42,又y ^ =b ^ x +a ^ 必过(x ,y ),∴42=72×9.4+a ^ ,∴a ^=9.1.∴线性回归方程为y ^=9.4x +9.1.∴当x =6时,y ^=9.4×6+9.1=65.5(万元).]5.A [回归直线方程为y ^=b ^x +a ^.而a ^=y -b ^x ,即a ^=t -b ^s ,t =b ^s +a ^.∴(s,t)在回归直线上. ∴直线l 1和l 2一定有公共点(s ,t).] 6.①②解析 ①中学生的学习态度与学习成绩之间不是因果关系,但具有相关性,是相关关系.②教师的执教水平与学生的学习成绩之间的关系是相关关系.③④都不具备相关关系.7.y ^=0.73x -0.875解析 a ^=y -b ^x =8.25-0.73×12.5=-0.875. 8.0.880 9解析 x =30,y =93.6,∑5i =1x 2i=7 900,∑5i =1x i y i =17 035, ∴回归直线的斜率为 b ^=∑5i =1x i y i -5x y∑5i =1x 2i -5x 2=17 035-5×30×93.67 900-4 500≈0.880 9.9.解(1)散点图如图所示.(4分)(2)由表中数据得∑4i =1x i y i =52.5, x =3.5,y =3.5,∑4i =1x 2i =54, ∴b ^=0.7.∴a ^=y -b ^x =1.05.∴y ^=0.7x +1.05.回归直线如图中所示.(10分) (3)将x =10代入回归直线方程, 得y =0.7×10+1.05=8.05(小时),∴预测加工10个零件需要8.05小时.(12分)10.解 (1)根据表中所列数据可得散点图如图所示:(4分)(2)计算得:x =255=5,y =2505=50, ∑5i =1x 2i=145,∑5i =1x i y i =1 380. 于是可得b ^=∑5i =1x i y i -5x y∑5i =1x 2i -5x 2=1 380-5×5×50145-5×52=6.5, a ^=y -b ^x =50-6.5×5=17.5,因此,所求回归直线方程是y ^=6.5x +17.5.(10分)(3)由上面求得的回归直线方程可知,当宣传费支出为10万元时,y ^=6.5×10+17.5=82.5(万元),即这种产品的销售大约为82.5万元.(12分)11.解 (1)n =6,∑6i =1x i =21,∑6i =1y i =426,x =3.5,y =71, ∑6i =1x 2i=79,∑6i =1x i y i =1 481, b ^=∑6i =1x i y i -6x y∑6i =1x 2i -6x 2=1 481-6×3.5×7179-6×3.52≈-1.82. (3分)a ^=y -b ^x =71+1.82×3.5=77.37.(5分)∴回归方程为y ^=a ^+b ^x =77.37-1.82x.(6分)(2)因为单位成本平均变动b ^=-1.82<0,且产量x 的计量单位是千件,所以根据回归系数b 的意义有:产量每增加一个单位即1 000件时,单位成本平均减少1.82元.(10分)(3)当产量为6 000件时,即x =6,代入回归方程:y ^=77.37-1.82×6=66.45(元).∴当产量为6 000件时,单位成本为66.45元.(14分)。

[数学]步步高大一轮复习讲义数学文科a版【答案解析】版-精品文档

[数学]步步高大一轮复习讲义数学文科a版【答案解析】版-精品文档

§1.1 集合的概念及其基本运算要点梳理1.(1)确定性 互异性 无序性 (2)属于 不属于 ∈ ∉ (3)列举法 描述法 图示法 区间法 (5)有限集 无限集 空集2.(1)A B B A ⊆ ⊆ ⊆ 2n 2n -1 2n -23.(1){x |x ∈A ,且x ∈B } {x |x ∈U ,且x ∉A } 基础自测 1.{2,4} 2.{x |0<x <1} 3.(2,3)4.⎩⎨⎧⎭⎬⎫0,1,-12 5.B题型分类·深度剖析例1 解 (1)当a +2=1,即a =-1时,(a +1)2=0,a 2+3a +3=1与a +2相同,∴不符合题意.当(a +1)2=1,即a =0或a =-2时,①a =0符合要求. ②a =-2时,a 2+3a +3=1与(a +1)2相同,不符合题意. 当a 2+3a +3=1,即a =-2或a =-1.①当a =-2时,a 2+3a +3=(a +1)2=1,不符合题意. ②当a =-1时,a 2+3a +3=a +2=1,不符合题意. 综上所述,a =0,∴2 013a =1.(2) ∵当x =0时,x =x 2-x =x 3-3x =0,∴它不一定能表示一个有三个元素的集合.要使它表示一个有三个元素的集合,则应有⎩⎪⎨⎪⎧x ≠x 2-x ,x 2-x ≠x 3-3x ,x ≠x 3-3x .∴x ≠0且x ≠2且x ≠-1且x ≠-2时,{x ,x 2-x ,x 3-3x }能表示一个有三个元素的集合. 变式训练 1 0或98例2 解 A 中不等式的解集应分三种情况讨论:①若a =0,则A =R ;②若a <0,则A =⎩⎨⎧⎭⎬⎫x |4a ≤x <-1a ;③若a >0,则A =⎩⎨⎧⎭⎬⎫x |-1a <x ≤4a .(1)当a =0时,若A ⊆B ,此种情况不存在.当a <0时,若A ⊆B ,如图:,则⎩⎨⎧4a >-12-1a ≤2,∴⎩⎪⎨⎪⎧a >0或a <-8a >0或a ≤-12,又a <0,∴a <-8.当a >0时,若A ⊆B ,如图:,则⎩⎨⎧-1a ≥-124a ≤2,∴⎩⎪⎨⎪⎧a ≥2或a <0a ≥2或a <0.又∵a >0,∴a ≥2.综上知,当A ⊆B 时,a <-8或a ≥2. (2)当a =0时,显然B ⊆A ;当a <0时,若B ⊆A ,如图:,则⎩⎨⎧4a ≤-12-1a >2,∴⎩⎪⎨⎪⎧-8≤a <0-12<a <0.又∵a <0,∴-12<a <0.当a >0时,若B ⊆A ,如图:,则⎩⎨⎧-1a ≤-124a ≥2,∴⎩⎪⎨⎪⎧0<a ≤20<a ≤2.又∵a >0,∴0<a ≤2.综上知,当B ⊆A 时,-12<a ≤2.(3)当且仅当A 、B 两个集合互相包含时,A =B ,由(1)、(2)知,a =2.变式训练 2 4 例3 1或2变式训练3 解 (1)∵A ={x |12≤x ≤3},当a =-4时,B ={x |-2<x <2},∴A ∩B ={x |12≤x <2},A ∪B ={x |-2<x ≤3}.(2)∁R A ={x |x <12或x >3},当(∁R A )∩B =B 时,B ⊆∁R A ,即A ∩B =∅.①当B =∅,即a ≥0时,满足B ⊆∁R A ;②当B ≠∅,即a <0时, B ={x |--a <x <-a },要使B ⊆∁R A ,需-a ≤12,解得-14≤a <0.综上可得,实数a 的取值范围是a ≥-14.例4 A变式训练 4 6 {0,1,2,3}课时规范训练 A 组1.C2.C3.A4.-1或25.{(0,1),(-1,2)}6.187.解 由已知得A ={x |-1≤x ≤3},B ={x |m -2≤x ≤m +2}.(1)∵A ∩B =[0,3],∴⎩⎪⎨⎪⎧m -2=0,m +2≥3.∴m =2.(2)∁R B ={x |x <m -2或x >m +2},∵A ⊆∁R B ,∴m -2>3或m +2<-1,即m >5或m <-3. 8.解 ∵M ={y |y =x 2,x ∈R }={y |y ≥0},N ={y |y =3sin x ,x ∈R }={y |-3≤y ≤3},∴M -N ={y |y >3},N -M ={y |-3≤y <0},∴M *N =(M -N )∪(N -M )={y |y >3}∪{y |-3≤y <0}={y |y >3或-3≤y <0}. B 组1.C2.B3.A4.A5.a ≤06.-37.(-∞,-3)8.解 由x -5x +1≤0,∴-1<x ≤5,∴A ={x |-1<x ≤5}.(1)当m =3时,B ={x |-1<x <3},则∁R B ={x |x ≤-1或x ≥3},∴A ∩(∁R B )={x |3≤x ≤5}. (2)∵A ={x |-1<x ≤5},A ∩B ={x |-1<x <4},∴有42-2×4-m =0,解得m =8. 此时B ={x |-2<x <4},符合题意,故实数m 的值为8.§1.2 命题及其关系、充分条件与必要条件要点梳理1.判断真假 判断为真 判断为假2.(1)若q ,则p 若綈p ,则綈q 若綈q ,则綈p ,(2)逆命题 否命题 逆否命题 (3)①相同 ②没有3.(1)充分条件 必要条件 (2)充要条件基础自测 1.3 2.②③ 3.充分不必要 4.C 5.D 题型分类·深度剖析 例1 ②④ 变式训练1 ①③例2 解 (1)在△ABC 中,∠A =∠B ⇒sin A =sin B ,反之,若sin A =sin B ,∵A 与B 不可能互补(∵三角形三个内角和为180°),∴只有A =B .故p 是q 的充要条件.(2)易知,綈p :x +y =8,綈q :x =2且y =6,显然綈q ⇒綈p ,但綈p 綈q ,即綈q 是綈p 的充分不必要条件,根据原命题和逆否命题的等价性知,p 是q 的充分不必要条件.(3)显然x ∈A ∪B 不一定有x ∈B ,但x ∈B 一定有x ∈A ∪B ,∴p 是q 的必要不充分条件.(4)条件p :x =1且y =2,条件q :x =1或y =2,∴p ⇒q 但q p ,故p 是q 的充分不必要条件. 变式训练2 ①④例3 证明 充分性:当a =0时,方程为2x +1=0,其根为x =-12,方程有一个负根,符合题意.当a <0时,Δ=4-4a >0,方程ax 2+2x +1=0有两个不相等的实根,且1a <0,方程有一正一负根,符合题意.当0<a ≤1时,Δ=4-4a ≥0,方程ax 2+2x +1=0有实根,且⎩⎨⎧-2a<01a >0,故方程有两个负根,符合题意.综上知:当a ≤1时,方程ax 2+2x +1=0至少有一个负根. 必要性:若方程ax 2+2x +1=0至少有一个负根. 当a =0时,方程为2x +1=0符合题意.当a ≠0时,方程ax 2+2x +1=0应有一正一负根或两个负根.则1a<0或⎩⎨⎧Δ=4-4a ≥0-2a <01a>0,解得a <0或0<a ≤1.综上知:若方程ax 2+2x +1=0至少有一负根,则a ≤1.故关于x 的方程ax 2+2x +1=0至少有一个负根的充要条件是a ≤1.变式训练3 证明 充分性:当q =-1时,a 1=S 1=p +q =p -1.当n ≥2时,a n =S n -S n -1=p n -1(p -1),当n =1时也成立,于是a n +1a n =p n(p -1)p n -1(p -1)=p (n ∈N *)即数列{a n }为等比数列.必要性:当n =1时,a 1=S 1=p +q ,当n ≥2时,a n =S n -S n -1=p n -1(p -1). ∵p ≠0,p ≠1,∴a n +1a n=p n (p -1)p n -1(p -1)=p .∵{a n }为等比数列,∴a 2a 1=a n +1a n =p ,又S 2=a 1+a 2=p 2+q ,∴a 2=p 2-p =p (p -1),∴p (p -1)p +q =p ,即p -1=p +q .∴q =-1.综上所述,q =-1是数列{a n }为等比数列的充要条件.课时规范训练 A 组1.D2.B3.A4.充分不必要5.①③④6.[3,8)7.解 由题意p :-2≤x -3≤2,∴1≤x ≤5,∴綈p :x <1或x >5,q :m -1≤x ≤m +1,∴綈q :x <m -1或x >m +1.又∵綈p 是綈q 的充分而不必要条件,∴⎩⎪⎨⎪⎧m -1≥1,m +1≤5.∴2≤m ≤4.8.解 设A ={x |p }={x |x 2-4ax +3a 2<0,a <0}={x |3a <x <a ,a <0},B ={x |q }={x |x 2-x -6≤0或x 2+2x -8>0}={x |x 2-x -6≤0}∪{x |x 2+2x -8>0} ={x |-2≤x ≤3}∪{x |x <-4或x >2}={x |x <-4或x ≥-2}.∵綈p 是綈q 的必要不充分条件,∴綈q ⇒綈p ,且綈pD ⇒/綈q ,则{x |綈q x |綈p },而{x |綈q }=∁R B ={x |-4≤x <-2},{x |綈p }=∁R A ={x |x ≤3a 或x ≥a ,a <0}, ∴{x |-4≤x <-x |x ≤3a 或x ≥a ,a <0},则⎩⎨⎧ 3a ≥-2,a <0或⎩⎨⎧a ≤-4,a <0.综上,可得-23≤a <0或a ≤-4.B 组1.A2.C3.B4.⎝⎛⎭⎫34,1∪(1,+∞) 5.[1,2) 6.①③②④ 7.3或48.解 (1)当a =12时,A =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x |x -2x -52<0=⎩⎨⎧⎭⎬⎫x |2<x <52,B =⎩⎨⎧⎭⎬⎫x |x -94x -12<0=⎩⎨⎧⎭⎬⎫x |12<x <94, ∴∁U B =⎩⎨⎧⎭⎬⎫x |x ≤12或x ≥94,∴(∁U B )∩A =⎩⎨⎧⎭⎬⎫x |94≤x <52.(2)∵a 2+2>a ,∴B ={x |a <x <a 2+2}.①当3a +1>2,即a >13时,A ={x |2<x <3a +1}.∵p 是q 的充分条件,∴A ⊆B .∴⎩⎨⎧a ≤23a +1≤a 2+2,即13<a ≤3-52. ②当3a +1=2,即a =13时,A =∅,不符合题意;③当3a +1<2,即a <13时,A ={x |3a +1<x <2},由A ⊆B 得⎩⎪⎨⎪⎧a ≤3a +1a 2+2≥2,∴-12≤a <13.综上所述,实数a 的取值范围是⎣⎡⎭⎫-12,13∪⎝ ⎛⎦⎥⎤13,3-52.§1.3 简单的逻辑联结词、全称量词与存在量词要点梳理1.(1)或 且 非 (2)真 假 假 真 假 假 真 真 假 真 假 真 真 2.(3)∀ ∃ (4)①含有全称量词 ②含有存在量词 基础自测1.所有的三角形都不是等边三角形 2.[-4,0] 3.①② 4.A 5.C 题型分类·深度剖析 例1 q 1,q 4变式训练1 解 (1)p ∨q :1是素数或是方程x 2+2x -3=0的根.真命题.p ∧q :1既是素数又是方程x 2+2x -3=0的根.假命题. 綈p :1不是素数.真命题.(2)p ∨q :平行四边形的对角线相等或互相垂直.假命题. p ∧q :平行四边形的对角相等且互相垂直.假命题. 綈p :有些平行四边形的对角线不相等.真命题.(3)p ∨q :方程x 2+x -1=0的两实根的符号相同或绝对值相等.假命题. p ∧q :方程x 2+x -1=0的两实根的符号相同且绝对值相等.假命题. 綈p :方程x 2+x -1=0的两实根的符号不相同.真命题.例2 解 (1)綈p :∃x 0∈R ,x 20-x 0+14<0,假命题.(2)綈q :至少存在一个正方形不是矩形,假 命题.(3)綈r :∀x ∈R ,x 2+2x +2>0,真命题.(4)綈s :∀x ∈R ,x 3+1≠0,假命题. 变式训练2 解 (1)綈p :∃x >0,使x 2-x >0,为真命题.(2)綈q :∀x ∈R,2x +x 2>1,为假命题. 例3 解 ①若p 正确,则由0<⎝⎛⎭⎫12|x -1|≤1,得a >1.②若q 正确,则ax 2+(a -2)x +98>0解集为R .当a =0时,-2x +98>0不合题意,舍去;当a ≠0时,则⎩⎪⎨⎪⎧a >0(a -2)2-4a ×98<0,解得12<a <8. ③∵p 和q 中有且仅有一个正确,∴⎩⎪⎨⎪⎧a >1a ≤12或a ≥8或⎩⎪⎨⎪⎧a ≤112<a <8,∴a ≥8或12<a ≤1.变式训练3 解 ∵函数y =a x 在R 上单调递增,∴p :a >1,不等式ax 2-ax +1>0对∀x ∈R 恒成立,∴a >0且a 2-4a <0,解得0<a <4,∴q :0<a <4.∵“p ∧q ”为假,“p ∨q ”为真,∴p 、q 中必有一真一假.①当p 真,q 假时,⎩⎪⎨⎪⎧ a >1a ≥4,得a ≥4;②当p 假,q 真时,⎩⎪⎨⎪⎧0<a ≤10<a <4,得0<a ≤1.故a 的取值范围为(0,1]∪[4,+∞).课时规范训练 A 组1.C 2.A 3.C 4.-22≤a ≤22 5.a >1 6.綈p 、綈q7.解 由命题p 为真知,0<c <1,由命题q 为真知,2≤x +1x ≤52,要使此式恒成立,需1c <2,即c >12,若p 或q 为真命题,p 且q 为假命题,则p 、q 中必有一真一假,当p 真q 假时,c 的取值范围是0<c ≤12;当p 假q 真时,c 的取值范围是c ≥1. 综上可知,c 的取值范围是⎩⎨⎧⎭⎬⎫c |0<c ≤12或c ≥1.8.解 设g (x )=x 2+2ax +4,由于关于x 的不等式x 2+2ax +4>0对一切x ∈R 恒成立,∴函数g (x )的图象开口向上且与x 轴没有交点,故Δ=4a 2-16<0,∴-2<a <2.又∵函数f (x )=(3-2a )x 是增函数,∴3-2a >1,∴a <1. 又由于p 或q 为真,p 且q 为假,可知p 和q 一真一假.(1)若p 真q 假,则⎩⎪⎨⎪⎧-2<a <2,a ≥1,,∴1≤a <2;(2)若p 假q 真,则⎩⎪⎨⎪⎧a ≤-2或a ≥2,a <1,,∴a ≤-2.综上可知,所求实数a 的取值范围为1≤a <2,或a ≤-2. B 组1.C 2.D 3.D 4.⎣⎡⎦⎤0,12 5.(-∞,1] 6.(-∞,-2]∪[-1,3) 7.①③ 8.解 由2x 2+ax -a 2=0得(2x -a )(x +a )=0, ∴x =a2或x =-a ,∴当命题p 为真命题时⎪⎪⎪⎪a 2≤1或|-a |≤1,∴|a |≤2.又“只有一个实数x 0满足x 20+2ax 0+2a ≤0”,即抛物线y =x 2+2ax +2a 与x 轴只有一个交点,∴Δ=4a 2-8a =0,∴a =0或a =2,∴当命题q 为真命题时,a =0或a =2. ∴命题“p 或q ”为真命题时,|a |≤2,∵命题“p 或q ”为假命题,∴a >2或a <-2. 即a 的取值范围为{a |a >2或a <-2}.§2.1 函数及其表示要点梳理1.(1)数集 任意 唯一确定 y =f (x ),x ∈A (2)定义域 值域 (3)定义域 值域 对应关系 (4)定义域 对应关系2.解析法 图象法 列表法3.都有唯一 一个映射4.函数 非空数集 基础自测1.⎩⎨⎧⎭⎬⎫-2,-12,1,522.①②3.-1 104.23或-1题型分类·深度剖析 例1 (2)(3)变式训练1 解 (1)y =1的定义域为R ,y =x 0的定义域为{x |x ∈R 且x ≠0},∴它们不是同一函数.(2)y =x -2·x +2的定义域为{x |x ≥2},y =x 2-4的定义域为{x |x ≥2或x ≤-2},∴它们不是同一函数.(3)y =x ,y =3t 3=t ,它们的定义域和对应关系都相同,∴它们是同一函数. (4)y =|x |的定义域为R ,y =(x )2的定义域为{x |x ≥0},∴它们不是同一函数.例2 (2) 变式训练2 (1)D (2)A 例3 C 变式训练3 B 例4 0 变式训练4 D 课时规范训练 A 组1.D2.D3.A4.65.16.-347.解 当x ∈[0,30]时,设y =k 1x +b 1,由已知得⎩⎪⎨⎪⎧b 1=030k 1+b 1=2,解得⎩⎪⎨⎪⎧k 1=115b 1=0,∴y =115x .当x ∈(30,40)时,y =2;当x ∈[40,60]时,设y =k 2x +b 2, 由已知得⎩⎪⎨⎪⎧40k 2+b 2=260k 2+b 2=4,解得⎩⎪⎨⎪⎧k 2=110b 2=-2,∴y =110x -2.综上,f (x )=⎩⎨⎧115x , x ∈[0,30]2, x ∈(30,40)110x -2, x ∈[40,60].8.解 当f (x )≤0时,由x 2+2x -3≤0,可得-3≤x ≤1,此时,g (x )=0;当f (x )>0时,由x 2+2x -3>0可得x <-3或x >1,此时g (x )=f (x )=(x +1)2-4.∴g (x )=⎩⎪⎨⎪⎧0 (-3≤x ≤1)(x +1)2-4 (x <-3或x >1),其图象如图所示:B 组1.C2.D3.D4.②④5.(1)a (a 为正整数) (2)166.-27.[-4,2]8.解 (1)∵x =716时,4x =74,∴f 1(x )=⎣⎡⎦⎤74=1,g (x )=74-⎣⎡⎦⎤74=34,∴f 2(x )=f 1[g (x )]=f 1⎝⎛⎭⎫34=[3]=3. (2)∵f 1(x )=[4x ]=1,g (x )=4x -1,∴f 2(x )=f 1(4x -1)=[16x -4]=3,∴⎩⎪⎨⎪⎧1≤4x <2,3≤16x -4<4.∴716≤x <12.§2.2 函数的定义域、值域及函数的解析式要点梳理1.(1)使函数有意义的自变量的取值范围 (3)③R ④R ⑤⎩⎨⎧⎭⎬⎫x |x ∈R 且x ≠k π+π2,k ∈Z⑥{x |x ∈R 且x ≠0}2.(1)函数值 函数值的集合 (2)①R ②⎣⎡⎭⎫4ac -b 24a ,+∞ ⎝⎛⎦⎤-∞,4ac -b 24a ③{y |y ∈R 且y ≠0} ④(0,+∞) ⑤R ⑥[-1,1] ⑦R 基础自测1.[-1,2)∪(2,+∞)2.{x |-3<x <2}3.(0,+∞)4.x 2+1x 2-1(x ≠0)题型分类·深度剖析 例1 (1)⎝⎛⎭⎫-13,1 (2)(-1,1) 变式训练1 (1)A (2)⎣⎡⎦⎤0,34 例2 解 ∵f (2x )的定义域是[-1,1],∴12≤2x ≤2,即y =f (x )的定义域是⎣⎡⎦⎤12,2,由12≤log 2x ≤2⇒2≤x ≤4.∴f (log 2x )的定义域是[2,4].变式训练2 解 ∵f (x )的定义域为[0,4],(1)有0≤x 2≤4,∴-2≤x ≤2,故f (x 2)的定义域为[-2,2];(2)有⎩⎪⎨⎪⎧0≤x +1≤4,0≤x -1≤4,∴1≤x ≤3.故f (x +1)+f (x -1)的定义域为[1,3].例3 解 (1)(配方法) y =x 2+2x =(x +1)2-1,y =(x +1)2-1在[0,3]上为增函数,∴0≤y ≤15,即函数y =x 2+2x (x ∈[0,3])的值域为[0,15].(2)(分离常数法) y =x -3x +1=x +1-4x +1=1-4x +1,∵4x +1≠0,∴1-4x +1≠1,即函数的值域是{y |y ∈R ,y ≠1}.(3)方法一 (换元法) 令1-2x =t ,则t ≥0且x =1-t 22,于是y =1-t 22-t =-12(t +1)2+1,由于t ≥0,∴y ≤12,故函数的值域是⎩⎨⎧⎭⎬⎫y |y ≤12.方法二 (单调性法) 容易判断函数y =f (x )为增函数,而其定义域应满足1-2x ≥0,即x ≤12,∴y ≤f ⎝⎛⎭⎫12=12,即函数的值域是⎩⎨⎧⎭⎬⎫y |y ≤12. (4)(基本不等式法) 函数定义域为{x |x ∈R ,x >0,且x ≠1},当x >1时,log 3x >0, 于是y =log 3x +1log 3x-1≥2log 3x ·1log 3x-1=1;当0<x <1时,log 3x <0,于是y =log 3x +1log 3x -1=-⎣⎢⎡⎦⎥⎤(-log 3x )+⎝ ⎛⎭⎪⎫1-log 3x -1 ≤-2-1=-3.故函数的值域是(-∞,-3]∪[1,+∞).变式训练3 解 (1)方法一 (配方法) ∵y =1-1x 2-x +1,又x 2-x +1=⎝⎛⎭⎫x -122+34≥34, ∴0<1x 2-x +1≤43,∴-13≤y <1,∴函数的值域为⎣⎡⎭⎫-13,1. 方法二 (判别式法) 由y =x 2-xx 2-x +1,x ∈R ,得(y -1)x 2+(1-y )x +y =0.∵y =1时,x ∈∅,∴y ≠1,又∵x ∈R ,∴Δ=(1-y )2-4y (y -1)≥0,解得-13≤y ≤1.综上得-13≤y <1,∴函数的值域为⎣⎡⎭⎫-13,1. (2)方法一 (换元法):设13-4x =t ,则t ≥0,x =13-t 24,于是f (x )=g (t )=2·13-t 24-1-t =-12t 2-t +112=-12(t +1)2+6,显然函数g (t )在[0,+∞)上是单调递减函数,∴g (t )≤g (0)=112,因此原函数的值域是⎝⎛⎦⎤-∞,112. 方法二 (单调性法):函数定义域是⎩⎨⎧⎭⎬⎫x |x ≤134,当自变量x 增大时,2x -1增大,13-4x 减小,∴2x -1-13-4x 增大,因此函数f (x )=2x -1-13-4x 在其定义域上是一个单调递增函数,∴当x =134时,函数取得最大值f ⎝⎛⎭⎫134=112,故原函数的值域是⎝⎛⎦⎤-∞,112. 例4 解 (1)令x +1x =t ,则t 2=x 2+1x 2+2≥4,∴t ≥2或t ≤-2且x 2+1x2=t 2-2,∴f (t )=t 2-2,即f (x )=x 2-2 (x ≥2或x ≤-2).(2)令2x +1=t ,由于x >0,∴t >1且x =2t -1,∴f (t )=lg 2t -1,即f (x )=lg 2x -1 (x >1).(3)设f (x )=kx +b ,∴3f (x +1)-2f (x -1)=3[k (x +1)+b ]-2[k (x -1)+b ]=kx +5k +b =2x +17.∴⎩⎪⎨⎪⎧ k =25k +b =17,即⎩⎪⎨⎪⎧k =2b =7.∴f (x )=2x +7. (4)∵2f (x )+f ⎝⎛⎭⎫1x =3x ,∴2f ⎝⎛⎭⎫1x +f (x )=3x .∴f (x )=2x -1x(x ≠0). 变式训练4 解 (1)令t =x +1,∴t ≥1,x =(t -1)2.则f (t )=(t -1)2+2(t -1)=t 2-1,∴f (x )=x 2-1 (x ≥1).(2)设f (x )=ax 2+bx +c ,又f (0)=c =3,∴f (x )=ax 2+bx +3,∴f (x +2)-f (x )=a (x +2)2+b (x +2)+3-(ax 2+bx +3)=4ax +4a +2b =4x +2.∴⎩⎪⎨⎪⎧ 4a =44a +2b =2,∴⎩⎪⎨⎪⎧a =1b =-1,∴f (x )=x 2-x +3. 课时规范训练 A 组1.C2.B3.C4.C5.(-∞,3]6.⎣⎡⎦⎤2,103 7.[-2,7] 8.解 (1)设f (x )=ax 2+bx +c (a ≠0),又f (0)=0,∴c =0,即f (x )=ax 2+bx ,又f (x +1)=f (x )+x +1.∴a (x +1)2+b (x +1)=ax 2+bx +x +1.∴(2a +b )x +a +b =(b +1)x +1,∴⎩⎪⎨⎪⎧2a +b =b +1a +b =1,解得⎩⎨⎧a =12b =12,∴f (x )=12x 2+12x .(2)由(1)知y =f (x 2-2)=12(x 2-2)2+12(x 2-2)=12(x 4-3x 2+2)=12⎝⎛⎭⎫x 2-322-18, 当x 2=32时,y 取最小值-18,∴函数y =f (x 2-2)的值域为⎣⎡⎭⎫-18,+∞. B 组1.B2.C3.A4.(-1,-910)∪(-910,2] 5.22 6.2837.解 ∵f (x )=12(x -1)2+a -12.∴其对称轴为x =1,即[1,b ]为f (x )的单调递增区间.∴f (x )min =f (1)=a -12=1① f (x )max =f (b )=12b 2-b +a =b②又b >1,由①②解得⎩⎪⎨⎪⎧a =32,b =3.∴a 、b 的值分别为32、3.8.解 (1)∵函数的值域为[0,+∞),∴Δ=16a 2-4(2a +6)=0,∴2a 2-a -3=0,∴a =-1或a =32.(2)∵对一切x ∈R 函数值均为非负,∴Δ=16a 2-4(2a +6)=8(2a 2-a -3)≤0.∴-1≤a ≤32.∴a +3>0,∴g (a )=2-a |a +3|=-a 2-3a +2=-⎝⎛⎭⎫a +322+174 ⎝⎛⎭⎫a ∈⎣⎡⎦⎤-1,32. ∵二次函数g (a )在⎣⎡⎦⎤-1,32上单调递减,∴g ⎝⎛⎭⎫32≤g (a )≤g (-1),即-194≤g (a )≤4. ∴g (a )的值域为⎣⎡⎦⎤-194,4.§2.3 函数的单调性与最值要点梳理1.(1)f (x 1)<f (x 2) f (x 1)>f (x 2) 上升的 下降的 (2)增函数 减函数 区间D2.(1)f (x )≤M (2)f (x 0)=M (3)f (x )≥M (4)f (x 0)=M 基础自测 1.[1,4] 8 2.43,1 3.(-3,0) 4.A 5.C题型分类·深度剖析例1 (1)解 由2f (1)=f (-1),可得22-2a =2+a ,得a =23. (2)证明 任取x 1,x 2∈[0,+∞),且x 1<x 2,f (x 1)-f (x 2)=x 21+1-ax 1-x 22+1+ax 2=x 21+1-x 22+1-a (x 1-x 2)=x 21-x 22x 21+1+x 22+1-a (x 1-x 2)=(x 1-x 2)⎝ ⎛⎭⎪⎪⎫x 1+x 2x 21+1+x 22+1-a . ∵0≤x 1<x 21+1,0<x 2<x 22+1,∴0<x 1+x 2x 21+1+x 22+1<1.又∵a ≥1,∴f (x 1)-f (x 2)>0,∴f (x )在[0,+∞)上单调递减.(3)解 任取1≤x 1<x 2,f (x 1)-f (x 2)=(x 1-x 2)⎝ ⎛⎭⎪⎪⎫x 1+x 2x 21+1+x 22+1-a , ∵f (x )单调递增,∴f (x 1)-f (x 2)<0,又x 1-x 2<0,那么必须x 1+x 2x 21+1+x 22+1-a >0恒成立.∵1≤x 1<x 2⇒2x 21≥x 21+1,2x 22>x 22+1,∴2x 1≥x 21+1,2x 2>x 22+1.相加得2(x 1+x 2)>x 21+1+x 22+1⇒x 1+x 2x 21+1x 22+1>22,∴0<a ≤22. 变式训练1 (1)证明 任设x 1<x 2<-2,则f (x 1)-f (x 2)=x 1x 1+2-x 2x 2+2=2(x 1-x 2)(x 1+2)(x 2+2).∵(x 1+2)(x 2+2)>0,x 1-x 2<0,∴f (x 1)<f (x 2),∴f (x )在(-∞,-2)内单调递增. (2)解 任设1<x 1<x 2,则f (x 1)-f (x 2)=x 1x 1-a -x 2x 2-a =a (x 2-x 1)(x 1-a )(x 2-a ). ∵a >0,x 2-x 1>0,∴要使f (x 1)-f (x 2)>0,只需(x 1-a )(x 2-a )>0恒成立,∴a ≤1. 综上所述知0<a ≤1.例2 解 令u =x 2-3x +2,则原函数可以看作y =12log u 与u =x 2-3x +2的复合函数.令u =x 2-3x +2>0,则x <1或x >2,∴函数y =212log (32)x x -+的定义域为(-∞,1)∪(2,+∞).又u =x 2-3x +2的对称轴x =32,且开口向上.∴u =x 2-3x +2在(-∞,1)上是单调减函数,在(2,+∞)上是单调增函数. 而y =12log u 在(0,+∞)上是单调减函数,∴y =212log (32)x x -+的单调减区间为(2,+∞),单调增区间为(-∞,1).变式训练2 解 令u =x 2+x -6,y =x 2+x -6可以看作有y =u 与u =x 2+x -6的复合函数.由u =x 2+x -6≥0,得x ≤-3或x ≥2.∵u =x 2+x -6在(-∞,-3]上是减函数,在[2,+∞)上是增函数,而y =u 在(0,+∞)上是增函数,∴y =x 2+x -6的单调减区间为(-∞,-3],单调增区间为[2,+∞).例3 (1)证明 方法一 ∵函数f (x )对于任意x ,y ∈R 总有f (x )+f (y )=f (x +y ),∴令x =y =0,得f (0)=0,再令y =-x ,得f (-x )=-f (x ),在R 上任取x 1>x 2,则x 1-x 2>0, f (x 1)-f (x 2)=f (x 1)+f (-x 2)=f (x 1-x 2).又∵x >0时,f (x )<0,而x 1-x 2>0,∴f (x 1-x 2)<0,即f (x 1)<f (x 2),因此f (x )在R 上是减函数. 方法二 设x 1>x 2,则f (x 1)-f (x 2)=f (x 1-x 2+x 2)-f (x 2)=f (x 1-x 2)+f (x 2)-f (x 2)=f (x 1-x 2). 又∵x >0时,f (x )<0,而x 1-x 2>0,∴f (x 1-x 2)<0,即f (x 1)<f (x 2),∴f (x )在R 上为减函数. (2)解 ∵f (x )在R 上是减函数,∴f (x )在[-3,3]上也是减函数, ∴f (x )在[-3,3]上的最大值和最小值分别为f (-3)与f (3).而f (3)=3f (1)=-2,f (-3)=-f (3)=2,∴f (x )在[-3,3]上的最大值为2,最小值为-2. 变式训练3 解 (1)∵当x >0,y >0时,f ⎝⎛⎭⎫x y =f (x )-f (y ),∴令x =y >0,则f (1)=f (x )-f (x )=0.(2)设x 1,x 2∈(0,+∞),且x 1<x 2,则f (x 2)-f (x 1)=f ⎝⎛⎭⎫x 2x 1,∵x 2>x 1>0.∴x 2x 1>1,∴f ⎝⎛⎭⎫x 2x 1>0,∴f (x 2)>f (x 1),即f (x )在(0,+∞)上是增函数. (3)由(2)知f (x )在[1,16]上是增函数.∴f (x )min =f (1)=0,f (x )max =f (16),∵f (4)=2,由f ⎝⎛⎭⎫x y =f (x )-f (y ), 知f ⎝⎛⎭⎫164=f (16)-f (4),∴f (16)=2f (4)=4,∴f (x )在[1,16]上的值域为[2,4]. 课时规范训练 A 组1.B2.D3.A4.[3,+∞)5.①③6.(1,+∞)7.(1)证明 设x 2>x 1>0,设x 2-x 1>0,x 1x 2>0,∵f (x 2)-f (x 1)=⎝⎛⎭⎫1a -1x 2-⎝⎛⎭⎫1a -1x 1=1x 1-1x 2=x 2-x 1x 1x 2>0,∴f (x 2)>f (x 1),∴f (x )在(0,+∞)上是单调递增的.(2)解 ∵f (x )在⎣⎡⎦⎤12,2上的值域是⎣⎡⎦⎤12,2,又f (x )在⎣⎡⎦⎤12,2上单调递增, ∴f ⎝⎛⎭⎫12=12,f (2)=2.∴易得a =25. 8.解 设-1<x 1<x 2<1,则f (x 1)-f (x 2)=ax 1x 21-1-ax 2x 22-1=a (x 2-x 1)(x 1x 2+1)(x 21-1)(x 22-1). ∵-1<x 1<x 2<1,∴x 2-x 1>0,x 21-1<0,x 22-1<0.-1<x 1x 2<1,∴x 1x 2+1>0,∴(x 2-x 1)(x 2x 1+1)(x 21-1)(x 22-1)>0. 因此,当a >0时,f (x 1)-f (x 2)>0,即f (x 1)>f (x 2),此时函数在(-1,1)上为减函数;当a <0时,f (x 1)-f (x 2)<0,即f (x 1)<f (x 2),此时函数在(-1,1)上为增函数.B 组1.B2.B3.C4.(-∞,0)∪(1,3]5.a >0且b ≤06.[1,+∞)7.①③④8.解 (1)任取x 1,x 2∈[-1,1],且x 1<x 2,则-x 2∈[-1,1],∵f (x )为奇函数,∴f (x 1)-f (x 2)=f (x 1)+f (-x 2)=f (x 1)+f (-x 2)x 1+(-x 2)·(x 1-x 2),由已知得f (x 1)+f (-x 2)x 1+(-x 2)>0,x 1-x 2<0,∴f (x 1)-f (x 2)<0,即f (x 1)<f (x 2).∴f (x )在[-1,1]上单调递增.(2)∵f (x )在[-1,1]上单调递增,∴⎩⎪⎨⎪⎧x +12<1x -1,-1≤x +12≤1,-1≤1x -1≤1.∴-32≤x <-1.(3)∵f (1)=1,f (x )在[-1,1]上单调递增.∴在[-1,1]上,f (x )≤1.问题转化为m 2-2am +1≥1,即m 2-2am ≥0,对a ∈[-1,1]成立,下面来求m 的取值范围. 设g (a )=-2m ·a +m 2≥0.①若m =0,则g (a )=0≥0,对a ∈[-1,1]恒成立.②若m ≠0,则g (a )为a 的一次函数,若g (a )≥0,对a ∈[-1,1]恒成立,必须g (-1)≥0,且g (1)≥0, ∴m ≤-2,或m ≥2,∴m 的取值范围是m =0或m ≥2或m ≤-2.§2.4 函数的奇偶性与周期性要点梳理1.f (-x )=f (x ) f (-x )=-f (x ) 2.(1)相同 相反 (2)①奇函数 ②偶函数 ③奇函数 3.(1)f (x ) (2)存在一个最小 基础自测1.132.②③3.-9 4.(-1,0)∪(1,+∞) 5.C 题型分类·深度剖析例1 解 (1)由⎩⎪⎨⎪⎧9-x 2≥0x 2-9≥0,得x =±3,∴f (x )的定义域为{-3,3}.又f (3)+f (-3)=0,f (3)-f (-3)=0,即f (x )=±f (-x ).∴f (x )既是奇函数,又是偶函数. (2)由⎩⎪⎨⎪⎧1-x 1+x ≥01+x ≠0,得-1<x ≤1.∵f (x )的定义域(-1,1]不关于原点对称,∴f (x )既不是奇函数,也不是偶函数.(3)由⎩⎪⎨⎪⎧4-x 2≥0|x +3|-3≠0,得-2≤x ≤2且x ≠0,∴f (x )的定义域为[-2,0)∪(0,2],关于原点对称.∴f (x )=4-x 2(x +3)-3=4-x 2x,∴f (x )=-f (-x ),∴f (x )是奇函数. 变式训练1 解 (1)由1-x1+x>0⇒-1<x <1,定义域关于原点对称.又f (-x )=lg 1+x 1-x =lg ⎝ ⎛⎭⎪⎫1-x 1+x -1=-lg 1-x1+x =-f (x ),故原函数是奇函数. (2)由2+x2-x≥0且2-x ≠0⇒-2≤x <2,定义域关于原点不对称,故原函数是非奇非偶函数. (3)函数定义域为(-∞,0)∪(0,+∞),关于原点对称,又当x >0时,f (x )=x 2+x ,则当x <0时,-x >0,故f (-x )=x 2-x =f (x );当x <0时,f (x )=x 2-x ,则当x >0时,-x <0,故f (-x )=x 2+x =f (x ),故原函数是偶函数.(4)由⎩⎪⎨⎪⎧1-x 2>0,|x 2-2|-2≠0得定义域为(-1,0)∪(0,1),关于原点对称,∴f (x )=lg (1-x 2)-(x 2-2)-2=-lg (1-x 2)x 2. ∵f (-x )=-lg[1-(-x )2](-x )2=-lg (1-x 2)x 2=f (x ),∴f (x )为偶函数.例2 解 (1)令x =y =0⇒f (0)=0,令y =-x ,则f (x )+f (-x )=0⇒f (-x )=-f (x )⇒f (x )在(-1,1)上是奇函数.(2)设0<x 1<x 2<1,则f (x 1)-f (x 2)=f (x 1)+f (-x 2)=f ⎝⎛⎭⎪⎫x 1-x 21-x 1x 2,而x 1-x 2<0,0<x 1x 2<1⇒x 1-x 21-x 1x 2<0⇒f ⎝ ⎛⎭⎪⎫x 1-x 21-x 1x 2>0,即当0<x 1<x 2<1时,f (x 1)>f (x 2),∴f (x )在(0,1)上单调递减.(3)由于f ⎝⎛⎭⎫12-f ⎝⎛⎭⎫15=f ⎝⎛⎭⎫12+f ⎝⎛⎭⎫-15=f ⎝ ⎛⎭⎪⎫12-151-12×5=f ⎝⎛⎭⎫13, 同理,f ⎝⎛⎭⎫13-f ⎝⎛⎭⎫111=f ⎝⎛⎭⎫14,f ⎝⎛⎭⎫14-f ⎝⎛⎭⎫119=f ⎝⎛⎭⎫15,∴f ⎝⎛⎭⎫12-f ⎝⎛⎭⎫111-f ⎝⎛⎭⎫119=2f ⎝⎛⎭⎫15=2×12=1. 变式训练2 解 ∵y =f (x )为奇函数,且在(0,+∞)上为增函数, ∴y =f (x )在(-∞,0)上也是增函数,且由f (1)=0得f (-1)=0.若f [x (x -12)]<0=f (1),则⎩⎨⎧x (x -12)>0x (x -12)<1即0<x (x -12)<1,解得12<x <1+174或1-174<x <0.若f [x (x -12)]<0=f (-1),则⎩⎨⎧x (x -12)<0x (x -12)<-1,由x (x -12)<-1,解得x ∈∅.∴原不等式的解集是{x |12<x <1+174或1-174<x <0}.例3 (1)证明 ∵f (x +2)=-f (x ),∴f (x +4)=-f (x +2)=f (x ).∴f (x )是周期为4的周期函数.(2)解 ∵x ∈[2,4],∴-x ∈[-4,-2],∴4-x ∈[0,2],∴f (4-x )=2(4-x )-(4-x )2=-x 2+6x -8,又f (4-x )=f (-x )=-f (x ), ∴-f (x )=-x 2+6x -8,即f (x )=x 2-6x +8,x ∈[2,4].(3)解 ∵f (0)=0,f (2)=0,f (1)=1,f (3)=-1.又f (x )是周期为4的周期函数,∴f (0)+f (1)+f (2)+f (3)=f (4)+f (5)+f (6)+f (7)=…=f (2 008)+f (2 009)+f (2 010)+f (2 011)=0,∴f (0)+f (1)+f (2)+…+f (2 011)=0. 变式训练3 2.5 课时规范训练 A 组1.B2.A3.B4.A5.-16.-1 7.-38.解 (1)当a =0时,f (x )=x 2,f (-x )=f (x ) ,函数是偶函数.当a ≠0时,f (x )=x 2+ax (x ≠0,常数a ∈R ),取x =±1,得f (-1)+f (1)=2≠0;f (-1)-f (1)=-2a ≠0,∴f (-1)≠-f (1),f (-1)≠f (1). ∴函数f (x )既不是奇函数也不是偶函数.(2)若f (1)=2,即1+a =2,解得a =1,这时f (x )=x 2+1x ,任取x 1,x 2∈[2,+∞),且x 1<x 2,则f (x 1)-f (x 2)=(x 21+1x 1)-⎝⎛⎭⎫x 22+1x 2=(x 1+x 2)(x 1-x 2)+x 2-x 1x 1x 2=(x 1-x 2)⎝⎛⎭⎫x 1+x 2-1x 1x 2. 由于x 1≥2,x 2≥2,且x 1<x 2,∴x 1-x 2<0,x 1+x 2>1x 1x 2,∴f (x 1)<f (x 2), 故f (x )在[2,+∞)上是单调递增函数. B 组1.A2.C3.B4.(1)(2)(3) 5.0 6.②③⑤7.(1)证明 由函数f (x )的图象关于直线x =1对称,有f (x +1)=f (1-x ),即有f (-x )=f (x +2).又函数f (x )是定义在R 上的奇函数,故有f (-x )=-f (x ).故f (x +2)=-f (x ). 从而f (x +4)=-f (x +2)=f (x ),即f (x )是周期为4的周期函数. (2)解 由函数f (x )是定义在R 上的奇函数,有f (0)=0. x ∈[-1,0)时,-x ∈(0,1],f (x )=-f (-x )=--x ,故x ∈[-1,0]时,f (x )=--x .x ∈[-5,-4]时,x +4∈[-1,0],f (x )=f (x +4)=--x -4.从而,x ∈[-5,-4]时,函数f (x )=--x -4.8.解 (1)∵对于任意x 1,x 2∈D ,有f (x 1·x 2)=f (x 1)+f (x 2),∴令x 1=x 2=1,得f (1)=2f (1),∴f (1)=0.(2)令x 1=x 2=-1,有f (1)=f (-1)+f (-1),∴f (-1)=12f (1)=0.令x 1=-1,x 2=x 有f (-x )=f (-1)+f (x ),∴f (-x )=f (x ),∴f (x )为偶函数.(3)依题设有f (4×4)=f (4)+f (4)=2,由(2)知,f (x )是偶函数,∴f (x -1)<2⇔f (|x -1|)<f (16). 又f (x )在(0,+∞)上是增函数.∴0<|x -1|<16,解之得-15<x <17且x ≠1. ∴x 的取值范围是{x |-15<x <17且x ≠1}.§2.5 二次函数要点梳理 1.(2)①ax 2+bx +c (a ≠0) ②a (x -m )2+n (a ≠0) ③a (x -x 1)(x -x 2) (a ≠0) 基础自测 1.2 2.[1,2] 3.6 4.(-∞,-2] 5.B 题型分类·深度剖析例1 解 方法一 设f (x )=ax 2+bx +c (a ≠0),依题意有⎩⎨⎧4a +2b +c =-1,a -b +c =-1,4ac -b24a =8,解之,得⎩⎪⎨⎪⎧a =-4,b =4,c =7,,∴所求二次函数为y =-4x 2+4x +7.方法二 设f (x )=a (x -m )2+n ,a ≠0,∵f (2)=f (-1),,∴抛物线对称轴为x =2+(-1)2=12.∴m =12,又根据题意函数有最大值为n =8,∴y =f (x )=a ⎝⎛⎭⎫x -122+8. ∵f (2)=-1,∴a ⎝⎛⎭⎫2-122+8=-1,解之,得a =-4.∴f (x )=-4⎝⎛⎭⎫x -122+8=-4x 2+4x +7. 方法三 依题意知:f (x )+1=0的两根为x 1=2,x 2=-1,故可设f (x )+1=a (x -2)(x +1),a ≠0.即f (x )=ax 2-ax -2a -1.又函数有最大值y max =8,即4a (-2a -1)-a24a=8,解之,得a =-4或a =0(舍去).∴函数解析式为f (x )=-4x 2+4x +7.变式训练1 解 (1)设顶点为P (3,4)且过点A (2,2)的抛物线的方程为y =a (x -3)2+4,将(2,2)代入可得a =-2,∴y=-2(x -3)2+4,即x >2时,f (x )=-2x 2+12x -14.当x <-2时,即-x >2,又f (x )为偶函数,f (x )=f (-x )=-2×(-x )2-12x -14, 即f (x )=-2x 2-12x -14.∴函数f (x )在(-∞,-2)上的解析式为f (x )=-2x 2-12x -14.(2)函数f (x )的图象如图:(3)由图象可知,函数f (x )的值域为(-∞,4].例2 解 (1)当a =-2时,f (x )=x 2-4x +3=(x -2)2-1,由于x ∈[-4,6],∴f (x )在[-4,2]上单调递减,在[2,6]上单调递增,∴f (x )的最小值是f (2)=-1,又f (-4)=35,f (6)=15,故f (x )的最大值是35.(2)由于函数f (x )的图象开口向上,对称轴是x =-a ,∴要使f (x )在[-4,6]上是单调函数,应有-a ≤-4或-a ≥6,即a ≤-6或a ≥4.(3)当a =1时,f (x )=x 2+2x +3,∴f (|x |)=x 2+2|x |+3,此时定义域为x ∈[-6,6],且f (x )=⎩⎪⎨⎪⎧x 2+2x +3,x ∈(0,6]x 2-2x +3,x ∈[-6,0],∴f (|x |)的单调递增区间是(0,6],单调递减区间是[-6,0].变式训练2 解 f (x )=-4⎝⎛⎭⎫x -a 22-4a ,对称轴为x =a2,顶点为⎝⎛⎭⎫a 2,-4a . ①当a2≥1,即a ≥2时,f (x )在区间[0,1]上递增.∴y max =f (1)=-4-a 2.令-4-a 2=-5,∴a =±1<2(舍去).②当0<a 2<1,即0<a <2时,y max =f ⎝⎛⎭⎫a 2=-4a ,令-4a =-5,∴a =54∈(0,2). ③当a2≤0,即a ≤0时,f (x )在区间[0,1]上递减,此时f (x )max =f (0)=-4a -a 2.令-4a -a 2=-5,即a 2+4a -5=0,∴a =-5或a =1(舍去).综上所述,a =54或a =-5.例3 解 (1)由f (0)=1得,c =1.∴f (x )=ax 2+bx +1.又f (x +1)-f (x )=2x ,∴a (x +1)2+b (x +1)+1-(ax 2+bx +1)=2x ,即2ax +a +b =2x ,∴⎩⎪⎨⎪⎧ 2a =2,a +b =0,∴⎩⎪⎨⎪⎧a =1b =-1.因此,f (x )=x 2-x +1.(2)f (x )>2x +m 等价于x 2-x +1>2x +m ,即x 2-3x +1-m >0,要使此不等式在[-1,1]上恒成立,只需使函数g (x )=x 2-3x +1-m 在[-1,1]上的最小值大于0即可.∵g (x )=x 2-3x +1-m 在[-1,1]上单调递减,∴g (x )min =g (1)=-m -1,由-m -1>0得,m <-1. 因此满足条件的实数m 的取值范围是(-∞,-1). 变式训练3 解 (1)∵f (x )=x 2+mx +n ,∴f (-1+x )=(-1+x )2+m (-1+x )+n =x 2-2x +1+mx +n -m =x 2+(m -2)x +n -m +1, f (-1-x )=(-1-x )2+m (-1-x )+n =x 2+2x +1-mx -m +n =x 2+(2-m )x +n -m +1. 又f (-1+x )=f (-1-x ),∴m -2=2-m ,即m =2.又f (x )的图象过点(1,3), ∴3=12+m +n ,即m +n =2,∴n =0,∴f (x )=x 2+2x ,又y =g (x )与y =f (x )的图象关于原点对称,∴-g (x )=(-x )2+2×(-x ),∴g (x )=-x 2+2x . (2)∵F (x )=g (x )-λf (x )=-(1+λ)x 2+(2-2λ)x ,当λ+1≠0时,F (x )的对称轴为x =2-2λ2(1+λ)=1-λλ+1,又∵F (x )在(-1,1]上是增函数.∴⎩⎪⎨⎪⎧ 1+λ<01-λ1+λ≤-1或⎩⎪⎨⎪⎧1+λ>01-λ1+λ≥1,∴λ<-1或-1<λ≤0.当λ+1=0,即λ=-1时,F (x )=4x 显然在(-1,1]上是增函数. 综上所述,λ的取值范围为(-∞,0]. 课时规范训练 A 组1.D2.A3.B4.y =12(x -2)2-1 5.0≤m ≤146.0或-17.解 f (x )=(x -a )2+a -a 2,当a <-1时,f (x )在[-1,1]上为增函数,∴⎩⎪⎨⎪⎧ f (-1)=1+3a =-2,f (1)=1-a =2⇒a =-1(舍去);当-1≤a ≤0时,⎩⎪⎨⎪⎧f (a )=a -a 2=-2,f (1)=1-a =2⇒a =-1; 当0<a ≤1时,⎩⎪⎨⎪⎧f (a )=a -a 2=-2,f (-1)=1+3a =2⇒a 不存在;当a >1时,f (x )在[-1,1]上为减函数,∴⎩⎪⎨⎪⎧f (-1)=1+3a =2,f (1)=1-a =-2⇒a 不存在.综上可得a =-1.8.解 (1)∵f (x )满足f (1+x )=f (1-x ),∴f (x )的图象关于直线x =1对称. 而二次函数f (x )的对称轴为x =-b2a ,∴-b2a=1.① 又f (x )=x 有等根,即ax 2+(b -1)x =0有等根,∴Δ=(b -1)2=0.②由①②得b =1,a =-12.∴f (x )=-12x 2+x .(2)∵f (x )=-12x 2+x =-12(x -1)2+12≤12,如果存在满足要求的m ,n ,则必需3n ≤12,∴n ≤16.从而m <n ≤16<1,而x ≤1,f (x )单调递增,∴⎩⎨⎧f (m )=-12m 2+m =3mf (n )=-12n 2+n =3n ,可解得m =-4,n =0满足要求.∴存在m =-4,n =0满足要求. B 组1.D2.B3.C4.⎝⎛⎭⎫2,525.0<a ≤146.⎣⎡⎦⎤1,31277.[1,+∞)8.证明 (1)由于f (x )=x 2+(2t -1)x +1-2t .∴f (x )=1⇔(x +2t )(x -1)=0,(*)∴x =1是方程(*)的根,即f (1)=1,因此x =1是f (x )=1的实根,即f (x )必有实根. (2)当12<t <34时,f (-1)=3-4t >0,f (0)=1-2t =2⎝⎛⎭⎫12-t <0. f ⎝⎛⎭⎫12=14+12(2t -1)+1-2t =34-t >0,又函数f (x )的图象连续不间断.因此f (x )=0在区间(-1,0)及⎝⎛⎭⎫0,12上各有一个实根.§2.6 指数与指数函数要点梳理1.(1)a 的n 次方根 根式 根指数 被开方数 (2)①n a ②n a - n a ± na ③a④a ⎩⎪⎨⎪⎧a (a ≥0)-a (a <0)2.(1)②1 ③1a p ④n a m ⑤1a m n 1na m ⑥0 没有意义 (2)①a r +s ②a rs ③a r b r3.(1)R (2)(0,+∞) (3)(0,1) (4)y >1 0<y <1 (5)0<y <1 y >1 (6)增函数 (7)减函数 基础自测1.(1)x 23 (2)(a +b )34 (3)m 52 2.7 3.(-2,-1)∪(1,2) 4.3 5.B题型分类·深度剖析例1 解 (1)原式=23278-⎛⎫- ⎪⎝⎭+121500-⎛⎫ ⎪⎝⎭-105-2+1=23827⎛⎫- ⎪⎝⎭+12500-10(5+2)+1=49+105-105-20+1=-1679. (2)原式=5-2-1-(5-2)2=(5-2)-1-(5-2)=-1.(3)原式=1122323311233ba b a b ab a -⎛⎫ ⎪⎝⎭=3111111226333a b +-++--=ab -1. 变式训练1 解 (1)原式=1323⎛⎫⎪⎝⎭×1+()1342×142+(132×123)6-1323⎛⎫⎪⎝⎭=2+4×27=110. (2)令13a =m ,13b =n ,则原式=m 4-8mn 3m 2+2mn +4n 2÷⎝⎛⎭⎫1-2n m ·m =m (m 3-8n 3)m 2+2mn +4n 2·m 2m -2n=m 3(m -2n )(m 2+2mn +4n 2)(m 2+2mn +4n 2)(m -2n )=m 3=a . 例2 (1)D (2)0<a <1、b <0 (3)1 变式训练2 (1)A(2)解 函数y =|3x -1|的图象是由函数y =3x 的图象向下平移一个单位后,再把位于x 轴下方的图象沿x 轴翻折到x 轴 上方得到的,函数图象如图所示.当k <0时,直线y =k 与函数y =|3x -1|的图象无交点,即方 程无解;当k =0或k ≥1时,直线y =k 与函数y =|3x -1|的 图象有唯一的交点,∴方程有一解;当0<k <1时,直线y =k 与函数y =|3x -1|的图象有两个不同交点,∴方程有两解. 例3 解 令t =a x (a >0且a ≠1),则原函数化为y =(t +1)2-2 (t >0). ①当0<a <1时,x ∈[-1,1],t =a x ∈⎣⎡⎦⎤a ,1a ,此时f (t )在⎣⎡⎦⎤a ,1a 上为增函数. ∴f (t )max =f ⎝⎛⎭⎫1a =⎝⎛⎭⎫1a +12-2=14,∴⎝⎛⎭⎫1a +12=16,∴a =-15或a =13. 又∵a >0,∴a =13.②当a >1时,x ∈[-1,1],t =a x ∈⎣⎡⎦⎤1a ,a ,此时f (t )在⎣⎡⎦⎤1a ,a 上是增函数. ∴f (t )max =f (a )=(a +1)2-2=14,解得a =3(a =-5舍去). 综上得a =13或3.变式训练3 解 (1)当x <0时,f (x )=0,无解;当x ≥0时,f (x )=2x -12x ,由2x -12x =32,得2·22x -3·2x -2=0,看成关于2x 的一元二次方程,解得2x =2或-12,∵2x >0,∴x =1.(2)当t ∈[1,2]时,2t ⎝⎛⎭⎫22t -122t +m ⎝⎛⎭⎫2t -12t ≥0,即m (22t -1)≥-(24t -1),∵22t -1>0, ∴m ≥-(22t +1),∵t ∈[1,2],∴-(22t +1)∈[-17,-5], 故m 的取值范围是[-5,+∞). 课时规范训练 A 组1.B2.D3.D4.m <n5.16.12或327.-2。

2021年高考文科数学(人教A版)一轮复习讲义:第3讲变量间的相关关系、统计案例

2021年高考文科数学(人教A版)一轮复习讲义:第3讲变量间的相关关系、统计案例

第 3 讲变量间的相关关系、统计案例、知识梳理1 •变量间的相关关系常见的两变量之间的关系有两类:一类是函数关系,另一类是相关关系;与函数关系不同,相关关系是一种非确定性关系.2. 两个变量的线性相关(1) 从散点图上看,如果这些点从整体上看大致分布在通过散点图中心的一条直线附近,称两个变量之间具有线性相关关系,这条直线叫回归直线.(2) 从散点图上看,点分布在从左下角到右上角的区域内,两个变量的这种相关关系称为正相关,点分布在左上角到右下角的区域内,两个变量的相关关系为负相关. _______n ______^x i y i —nx y A A—AAA A i(3) 回归方程为y= bx+ a,其中b=—n , a= y —b x •i皆 x 2—n x 2(4) 相关系数当r>0时,表明两个变量正相关;当r<0时,表明两个变量负相关.r的绝对值越接近于1,表明两个变量的线性相关性越弓—r的绝对值越接近于0,表明两个变量之间几乎不存在线性相关关系,通常|r|大于0.75时,认为两个变量有很强的线性相关性.3. 独立性检验(1) 2X 2列联表:假设有两个分类变量X和Y,它们的取值分别为{x i, x2}和{y i, y2},其样本频数列联表(称2 X 2列联表)为:⑵K2统计量n (ad —be) 2 K =(a + b)( e+ d)( a+ e)( b+ d)(其中n= a+ b+ e+ d为样本容量).常用结论1. 求解回归方程的关键是确定回归系数a, b,应充分利用回归直线过样本中心点(—,y).2.根据K 2的值可以判断两个分类变量有关的可信程度 ,若K 2越大,则两分类变量有 关的把握越大.3.根据回归方程计算的y 值,仅是一个预报值,不是真实发生的值.二、习题改编 1.(必修3P90例题改编)已知x 与y 之间的一组数据如表:x 0 1 2 3 ym35.57已求得y 关于x 的线性回归方程为y = 2.1x + 0.85,则m 的值为 ____________ 答案:0.5 2.(选修1-2P16习题1.2T2改编)为了判断高中三年级学生是否选修文科与性别的关系, 现随机抽取50名学生,得到如下 2 X 2列联表:理科文科 男 13 10 女720已知 P(K 2> 3.841) ~ 0.05, P(K 2> 5.024) ~ 0.025.根据表中数据,得到 K 2的观测值解析:K 2的观测值k ~ 4.844>3.841,这表明小概率事件发生. 根据假设检验的基本原理应该断定“是否选修文科与性别之间有关系”成立,并且这种判断出错的可能性约为5%.答案:5%50 X( 13X 20— 10X 7) 23X 27X 20X 302-〜4.844.则认为选修文科与性别有关系出错的可能性一、思考辨析判断正误(正确的打“V”,错误的打“X”)(1)相关关系与函数关系都是一种确定性的关系,也是一种因果关系.( )(2)利用散点图可以直观判断两个变量的关系是否可以用线性关系表示.( )(3)只有两个变量有相关关系,所得到的回归模型才有预测价值.( )(4)事件X,Y 的关系越密切,由观测数据计算得到的K 2的观测值越大.( )(5)通过回归方程y= bx+a可以估计和观测变量的取值和变化趋势.()答案:(1)X (2)V (3)V (4)V(5)V二、易错纠偏常见误区(1)混淆相关关系与函数关系;(2) 对独立性检验K2值的意义不清楚;(3) 不知道回归直线必过样本点中心.1.两个变量的相关关系有①正相关,②负相关,③不相关,则下列散点图从左到右分别反映的变量间的相关关系是( )A .①②③B.②③①C.②①③D.①③②解析:选D.第一个散点图中,散点图中的点是从左下角区域分布到右上角区域,则是正相关;第三个散点图中,散点图中的点是从左上角区域分布到右下角区域,则是负相关;第二个散点图中,散点图中的点的分布没有什么规律,则是不相关,所以应该是①③②•2•某校为了研究学生的性别和对待某一活动的态度(支持和不支持两种态度)的关系,运用2X 2列联表进行独立性检验,经计算K2= 7.069,则所得到的统计学结论是:有多少的把握认为“学生性别与支持该活动有关系”.()附:A. 0.1%B. 1%C. 99%D. 99.9%解析:选C.因为7.069与附表中的6.635最接近,所以得到的统计学结论是:有1—0.010 =0.99 = 99%的把握认为“学生性别与支持该活动有关系”.3. 已知x, y的取值如下表,从散点图可以看出y与x线性相关,且回归方程为y= 0.95xA A+ a,贝U a = ______ .解析:由已知得乂 = 2, y = 4.5,因为回归方程经过点& , y ),所以a = 4.5 —0.95X 2=2.6.答案:2.6相关关系的判断(师生共研)已知变量x和y满足关系y=—0.1x + 1,变量y 与z 正相关.下列结论中正确的是( )A . x与y正相关,x与z负相关B. x与y正相关,x与z正相关C. x与y负相关,x与z负相关D. x与y负相关,x与z正相关【解析】因为y=—0.1x+ 1的斜率小于0,故x与y负相关•因为y与z正相关,可A A A A A 八八八丄j —宀丄乂设z= by+ a, b>0,贝y z= by+ a =—O.lbx + b + a,故x 与z 负相关.【答案】C判定两个变量正、负相关性的方法(1)画散点图:点的分布从左下角到右上角,两个变量正相关;点的分布从左上角到右下角,两个变量负相关.(2)相关系数:r>0 时,正相关;r<0 时,负相关.⑶线性回归方程中:b>0时,正相关;b<0时,负相关.1.对变量x, y有观测数据(x i, y i)(i= 1, 2,…,10),得散点图如图①,对变量u, v 有观测数据(u i, v i)(i = 1, 2,…,10),得散点图如图②•由这两个散点图可以判断()A .变量x 与y 正相关,u 与v 正相关B .变量x与y正相关,u与v负相关C.变量x与y负相关,u与v正相关 D •变量x与y负相关,u与v负相关解析:选C.由散点图可得两组数据均线性相关,且图①的线性回归方程斜率为负,图②的线性回归方程斜率为正,则由散点图可判断变量x与y负相关,u与v正相关.2.对变量x, y有观测数据(x i, y i)(i = 1, 2, 3, 4, 5),得表1 ;对变量u, v有观测数据(U i, v i)(i = 1, 2, 3, 4, 5),得表2•由这两个表可以判断()表1 :A.变量x与y正相关,u与v正相关B .变量x与y负相关,u与v正相关C.变量x与y负相关,u与v负相关D .变量x与y正相关,u与v负相关解析:选D.由题可知,随着x的增大,对应的y值增大,其散点图呈上升趋势,故x 与y正相关;随着u的增大,v减小,其散点图呈下降趋势,故u与v负相关.线性回归方程及其应用(师生共研)(2020福州市第一学期抽测)随着我国中医学的发展,药用昆虫的使用相应愈来愈多. 每年春暖以后至寒冬前,昆虫大量活动与繁殖,易于采集各种药用昆虫•已知一只药用昆虫的产卵数y(单位:个)与一定范围内的温度x(单位:C )有关,于是科研人员在3月份的31天中随机挑选了5天进行研究,现收集了该种药用昆虫的5组观测数据如下表:科研人员确定的研究方案是:先从这5组数据中任选2组,用剩下的3组数据建立y关于x的线性回归方程,再对被选取的2组数据进行检验.(1)若选取的是3月2日与30日这2组的数据,请根据3月7日15日和22日这3组的数据,求出y关于x的线性回归方程;(2)若由线性回归方程得到的估计数据与所选出的检验数据的误差均不超过2个,则认为得到的线性回归方程是可靠的,试问(1)中所得的线性回归方程是否可靠?n _ _A 附:回归直线的斜率和截距的最小二乘估计公式分别为苕(X i—X )( y i- y ) A b = n —, a =苕(X i —X ) 2y ― b x .3 —— 3 ———【解】(1)由已知数据得亍=12, 了= 27,其1 (x i—x)(y i —y ) = 5,若1(x i —x)2=2.3反映样本数据的相关程度,|r|越大,则相关性越强.A i = 1所以b =(x i — x ) ( y i — y )3 i t1(xi — x ) 2A — 5— 5a = 7 — |x = 27 — |x 12= — 3. 5 所以y 关于x的线性回归方程为y = 2x — 3.A5(2)由(1)知,y 关于x 的线性回归方程为y = -x — 3. A 5当 x = 10 时,y = 2 X 10— 3 = 22, |22— 23|<2, A5当 x = 8 时,y = |X 8 — 3 = 17, |17— 16|<2.A5所以(1)中所得的线性回归方程 y = |x — 3是可靠的.线性回归分析问题的类型及解题方法(1)求线性回归方程①利用公式,求出回归系数b , a ;②待定系数法:利用回归直线过样本点的中心求系数. (2)样本数据的相关系数n1 •对两个变量x, y进行线性回归分析,计算得到相关系数r =- 0.996 2,则下列说法中正确的是()A • x与y正相关B • x与y具有较强的线性相关关系C. x与y几乎不具有线性相关关系D. x与y的线性相关关系还需进一步确定解析:选B.因为相关系数r =- 0.996 2,所以x与y负相关,因为|r|= 0.996 2,非常接近1,所以相关性很强,故选B.2. (2020成都第一次诊断性检测)在2018年俄罗斯世界杯期间,莫斯科的部分餐厅销售了来自中国的小龙虾,这些小龙虾均标有等级代码. 为得到小龙虾等级代码数值x与销售单价y(单位:元)之间的关系,经统计得到如下数据:(1)已知销售单价y与等级代码数值x之间存在线性相关关系,求y关于x的线性回归方程(系数精确到0.1);(2)若莫斯科某餐厅销售的中国小龙虾的等级代码数值为98,请估计该等级的中国小龙虾销售单价为多少元?参考公式:对于一组数据(X1 , y1),(X2, y2),…,(x n, y n),其回归直线y= bx+ a的斜率n_ _Xx i y i — n xy 人 _ A _ 和截距的最小二乘估计分别为b = n — , a = y — b x .g x i 2— n x 26 6参考数据:斗=侧=8 440, g 1x 2= 25 564.8 440 — 6 X 63 X 21.5~ 0.2,25 564 — 6 X 63 X 63a = y —b x = 21.5— 0.2 X 63= 8.9.故所求线性回归方程为 y = 0.2x + 8.9.⑵由(1),知当 x = 98 时,y = 0.2X 98 + 8.9= 28.5. 所以估计该等级的中国小龙虾销售单价为28.5元.38 + 48 + 58 + 68 + 78 + 88解:(1)由题意,得x = =63,16.8+ 18.8 + 20.8+ 22.8+ 24 + 25.8=21.5,独立性检验(师生共研)(2019高考全国卷I )某商场为提高服 务质量,随机调查了 50名男顾客和50名女顾客,每位顾客对该商场的服务给出满意或不满 意的评价,得到下面列联表:(1)分别估计男、女顾客对该商场服务满意的概率; (2)能否有95%的把握认为男、女顾客对该商场服务的评价有差异? 附:K 2= n (ad — be ) (a + b ) (c + d )( a + e )( b + d ) 【解】(1)由调查数据知,男顾客中对该商场服务满意的比率为 詐0.8,因此男顾客 对该商场服务满意的概率的估计值为 0.8. 女顾客中对该商场服务满意的比率为 30 沪0.6,因此女顾客对该商场服务满意的概率的 估计值为06 ⑵K 2= 100 X (40X 20— 30X 10) 50 X 50 X 70 X 302=4.762. 由于4.762>3.841 ,故有95%的把握认为男、女顾客对该商场服务的评价有差异.⑴独立性检验的一般步骤①根据样本数据制成2X2列联表;②根据公式c n (ad —be) 2oK2= 计算K2的值;(a+ b)( c+ d) ( a + e)( b+ d)③查表比较K2与临界值的大小关系,作出统计判断.⑵解独立性检验的应用问题的关注点①两个明确:(i )明确两类主体;(ii )明确研究的两个问题;②两个准确:(i )准确画出2 X 2列联表;(i )准确理解K2.(2020长沙市统一模拟考试)为了解某校学生参加社区服务的情况,采用按性别分层抽样的方法进行调查,已知该校共有学生。

步步高届高三数学大一轮温习 变量间的相关关系学案 理 新人教A版

步步高届高三数学大一轮温习 变量间的相关关系学案 理 新人教A版

求回归直线使得样本数据的点到它的________________________的方法叫做最小二乘
(2)回归方程
y^ b^
a^
方程 = x+ 是两个具有线性相关关系的变量的一组数据(x1,y1),(x2,y2),
…,(xn,yn)的回归方程,其中 , 是待定参数.
a^ b^
自我检测 1.下列有关线性回归的说法,不正确的是( ) A.相关关系的两个变量不一定是因果关系 B.散点图能直观地反映数据的相关程度 C.回归直线最能代表线性相关的两个变量之间的关系 D.任一组数据都有回归直线方程 2.(2009·海南,宁夏)对变量 x,y 有观测数据(xi,yi)(i=1,2,…,10),得散点 图(1);对变量 u,v 有观测数据(ui,vi)(i=1,2,…,10),得散点图(2).由这两个散点 图可以判断( )
温度 -5 0 4 7 12 15 19 23 27 31 36
(℃) 热饮 杯数 156 150 132 128 130 116 104 89 93 76 54 (1)画出散点图; (2)你能从散点图中发现气温与热饮销售杯数之间关系的一般规律吗?
变式迁移 1 某班 5 个学生的数学和物理成绩如表:
4.(2010·广东)某市居民 2005~2009 年家庭年平均收入 x(单位:万元)与年平均支
出 Y(单位:万元)的统计资料如下表所示:
年份 2005 2006 2007 2008 2009
收入 x 11.5 12.1 13 13.3 15
支出 Y 6.8 8.8 9.8
根据统计资料,居民家庭年平均收入的中位数是
3.(2011·银川模拟)下表是某厂 1~4 月份用水量(单位:百吨)的一组数据:
月份 x

2021版数学攻略大一轮复习新高考(新课标版)精练:§11.5 变量间的相关关系、统计案例(试题部分)

2021版数学攻略大一轮复习新高考(新课标版)精练:§11.5 变量间的相关关系、统计案例(试题部分)

§11.5 变量间的相关关系、统计案例基础篇固本夯基【基础集训】考点一 变量间的相关关系1.已知x 与y 之间的一组数据如下表:x 1 2 3 4 y0.5 3.2 4.8 7.5若y 关于x 的线性回归方程为y ^=b ^x+a ^,,则a ^的值为( ) A.1.25 B.-1.25 C.1.65 D.-1.65 答案 D2.已知某产品的销售额y(万元)与广告费用x(万元)之间的关系如下表:x(单位:万元) 0 1 2 3 4 y(单位:万元)1015203035若求得其线性回归方程为y ^=6.5x+a ^,则预计当广告费用为6万元时的销售额为( ) A.42万元 B.45万元 C.48万元 D.51万元 答案 C3.下列说法错误的是( ) A.回归直线过样本点的中心(x ,y )B.两个随机变量的线性相关性越强,则相关系数的绝对值就越接近1C.在回归直线方程y ^=0.2x+0.8中,当解释变量x 每增加1个单位时,预报变量y ^平均增加0.2个单位 D.对于分类变量X 与Y,随机变量K 2的观测值k 越大,则判断“X 与Y 有关系”的把握程度越小答案 D4.已知下表所示数据的回归直线方程为y ^=4x+242,则实数a= .x 2 3 4 5 6 y 251 254 257 a 266答案 2625.某学校为倡导全体学生为特困学生捐款,举行“一元钱,一片心,诚信用水”活动,学生在购水处每领取一瓶矿泉水,便自觉向捐款箱中至少投入一元钱.现统计了连续5天的售出和收益情况,如下表:售出水量x(单位:箱) 7 6 6 5 6 收益y(单位:元)165142148125150(1)若x 与y 线性相关,则某天售出8箱水时,预计收益为多少元;(2)期中考试以后,学校决定将诚信用水的收益以奖学金的形式奖励给品学兼优的特困生,规定:特困生考入年级前200名,获一等奖学金500元;考入年级201~500名,获二等奖学金300元;考入年级501名以后的特困生将不获得奖学金.甲、乙两名学生获一等奖学金的概率均为25,获二等奖学金的概率均为13,不获得奖学金的概率均为415. ①在学生甲获得奖学金的条件下,求他获得一等奖学金的概率;②已知甲、乙两名学生获得哪个等级的奖学金是相互独立的,求甲、乙两名学生所获得奖学金总金额X(元)的分布列及数学期望. 附:b ^=∑i=1n(x i -x)(y i -y)∑i=1n(x i -x)2,a ^=y -b ^x .解析 (1)∵x =7+6+6+5+65=6,y =165+142+148+125+1505=146, ∴b ^=∑i=1n(x i -x)(y i -y)∑i=1n (x i-x)2=19+0+0+21+01+0+0+1+0=20,则a ^=y -b ^x =146-20×6=26, ∴y ^=20x+26,当x=8时,y ^=20×8+26=186, 故某天售出8箱水时,预计收益是186元.(2)①设事件A 为“学生甲获得奖学金”,事件B 为“学生甲获得一等奖学金”, 则P(B|A)=P(AB)P(A)=251115=611,即在学生甲获得奖学金的条件下,他获得一等奖学金的概率为611. ②X 的可能取值(单位:元)为0,300,500,600,800,1 000, P(X=0)=415×415=16225,P(X=300)=C 21×13×415=845, P(X=500)=C 21×25×415=1675,P(X=600)=(13)2=19, P(X=800)=C 21×13×25=415,P(X=1 000)=(25)2=425. X 的分布列为X 0 3005006008001 000P16225845167519415425E(X)=0×16225+300×845+500×1675+600×19+800×415+1 000×425=600(元). 考点二 独立性检验6.随着国家二孩政策的全面放开,为了调查一线城市和非一线城市的二孩生育意愿,某机构用简单随机抽样方法从不同地区调查了100位育龄妇女,结果如下表.非一线城市 一线城市总计 愿生 45 20 65 不愿生 13 22 35 总计58 42 100 附表:P(K 2≥k) 0.0500.010 0.001 k3.8416.63510.828由K 2=n(ad -bc)2(a+b)(c+d)(a+c)(b+d)算得,K 2=100×(45×22-20×13)258×42×35×65≈9.616,参照附表,得到的正确结论是()A.在犯错误的概率不超过0.1%的前提下,认为“生育意愿与城市级别有关”B.在犯错误的概率不超过0.1%的前提下,认为“生育意愿与城市级别无关”C.有99%以上的把握认为“生育意愿与城市级别有关”D.有99%以上的把握认为“生育意愿与城市级别无关” 答案 C7.假设有两个分类变量X 和Y 的2×2列联表:y 1 y 2 总计 x 1 a 10 a+10 x 2c 30 c+30 总计6040100对同一样本,以下数据能说明X 与Y 有关系的可能性最大的一组为( )A.a=45,c=15B.a=40,c=20C.a=35,c=25D.a=30,c=30 答案 A8.为调查了解某省属师范大学师范类毕业生参加工作后从事的工作与教育是否有关的情况,随机调查了该校80位性别不都相同的2019年师范类毕业大学生,得到具体数据如下表:与教育有关与教育无关合计 男 30 10 40 女 35 5 40 合计651580(1)能否在犯错误的概率不超过5%的前提下,认为“师范类毕业生从事与教育有关的工作与性别有关”? (2)求这80位师范类毕业生从事与教育有关工作的频率;(3)以(2)中的频率作为概率,从该校近几年毕业的2 000名师范类大学生中随机选取4名,记这4名毕业生从事与教育有关工作的人数为X,求X 的数学期望E(X). 参考公式:K 2=n(ad -bc)2(a+b)(c+d)(a+c)(b+d)(n=a+b+c+d).附表:P(K 2≥k 0) 0.50 0.40 0.25 0.15 0.10 0.05 0.025 0.010k 0 0.455 0.708 1.323 2.072 2.706 3.841 5.0246.635解析 (1)根据题意得K2=80×(30×5-35×10)240×40×65×15≈2.051 3,因为K 2<3.841,所以在犯错误的概率不超过5%的前提下,不能认为“师范类毕业生从事与教育有关的工作与性别有关”.(2)由题表知这80位师范类毕业生从事与教育有关工作的频率为6580=1316. (3)由题意知X~B (4,1316),得E(X)=4×1316=134.综合篇知能转换【综合集训】考法一 线性回归分析的应用1.(2018广东七校期末联考,5)某单位为了了解用电量y(千瓦时)与气温x(℃)之间的关系,随机统计了某4天的用电量与当天气温,并制作了如下对照表:气温(℃)1813 10 -1 用电量(千瓦时) 24343864由表中数据得回归直线方程y ^=b ^x+a ^中的b ^=-2,预测当气温为-4 ℃时,用电量为( ) A.68千瓦时 B.67千瓦时 C.65千瓦时 D.64千瓦时 答案 A2.(2018湖南张家界三模,4)已知变量x,y 之间的线性回归方程为y ^=-0.7x+10.3,且变量x,y 之间的一组相关数据如下表所示,则下列说法错误..的是( ) x6 8 10 12 y6m32A.变量x,y 之间呈负相关关系B.可以预测,当x=20时,y ^=-3.7 C.m=4D.该回归直线必过点(9,4) 答案 C3.(2019河南濮阳一模)根据下表中的数据,得到的回归方程为y ^=b ^x+9,则b ^=( )x 4 5 6 7 8 y54321A.2B.1C.0D.-1 答案 D4.(2018广东化州二模,19)在“一带一路”的建设中,中石化集团获得了某地深海油田区块的开采权,集团在该地区随机初步勘探了几口井,取得了地质资料.进入全面勘探时期后,集团按网络点来布置井位进行全面勘探.由于勘探一口井的费用很高,如果新设计的井位与原有井位重合或接近,便利用旧井的地质资料,不必打这口新井,以节约勘探费用,勘探初期数据资料见下表:井号i 1 2 3 4 5 6 坐标(x,y)(km) (2,30) (4,40) (5,60) (6,50) (8,70)(1,y) 钻探深度(km) 2 4 5 6 8 10 出油量(L)407011090160205(1)在散点图中,1~6号旧井的位置大致分布在一条直线附近,借助前5组数据求得回归直线方程为y=6.5x+a,求a,并估计y 的预报值;(2)现准备勘探新井7(1,25),若通过1、3、5、7号井计算出的b ^,a ^的值(b ^,a ^精确到0.01)与(1)中b,a的值的差(即b ^-b b ,a ^-aa)不超过10%,则使用位置最接近的已有旧井6(1,y),否则在新位置打井,请判断可否使用旧井;参考公式和计算结果:b ^=∑i=1nx i y i -nx ·y ∑i=1nx i 2-nx2,a ^=y -b ^x ,∑i=14x 2i -12=94,∑i=14x 2i-1·y 2i-1=945(3)设出油量与钻探深度的比值k 不低于20的勘探井称为优质井,那么在原有6口井中任意勘探4口井,求勘探优质井数X 的分布列与数学期望.解析 (1)利用前5组数据得到x =15×(2+4+5+6+8)=5,y =15×(30+40+60+50+70)=50,∵y=6.5x+a,∴a=50-6.5×5=17.5, ∴回归直线方程为y=6.5x+17.5.当x=1时,y=6.5+17.5=24,∴y 的预报值为24. (2)利用1、3、5、7号井的数据得x =2+5+8+14=4,y =30+60+70+254=46.25, 又∑i=14x 2i -12=94,∑i=14x 2i-1y 2i-1=945,∴b ^=∑i=14x 2i -1y 2i -1-4x ·y ∑i=14x 2i -12-4x2=945-4×4×46.2594-4×42≈6.83,又∵a ^=y -b ^x ,∴a ^=46.25-6.83×4=18.93,又b=6.5,a=17.5,∴b ^-b b ≈5%,a ^-aa≈8%,均不超过10%,∴可使用位置最接近的已有旧井6(1,24).(3)由题意知,1、3、5、6这4口井是优质井,2,4这两口井是非优质井,∴勘探优质井数X 的可能取值为2,3,4, 由P(X=k)=C 4k C 24-kC 64(k=2,3,4),可得P(X=2)=25,P(X=3)=815,P(X=4)=115.∴X 的分布列为X 234P25815115E(X)=2×25+3×815+4×115=83.考法二 独立性检验的应用5.(2018安徽黄山一模,3)在吸烟与患肺癌这两个分类变量的独立性检验的计算中,下列说法正确的是( )A.若K 2的观测值k=6.635,在犯错误的概率不超过0.01的前提下认为吸烟与患肺癌有关系,那么在100个吸烟的人中必有99人患有肺癌B.由独立性检验可知,在犯错误的概率不超过0.01的前提下认为吸烟与患肺癌有关系时,我们说某人吸烟,那么他有99%的可能患有肺癌C.若从统计量中求出在犯错误的概率不超过0.01的前提下认为吸烟与患肺癌有关系,是指有1%的可能性使得判断出现错误D.以上三种说法都不正确 答案 C6.(2018山东实验中学上学期第二次诊断,11)某中学学生会为了调查爱好游泳运动与性别是否有关,通过随机询问110名性别不都相同的高中生是否爱好游泳运动得到如下2×2列联表:男 女 总计 爱好 40 20 60 不爱好 20 30 50 总计60 50110由K 2=n(ad -bc)2(a+b)(c+d)(a+c)(b+d)并参照附表,得到的正确结论是( )附表:P(K 2≥k)0.050 0.010 0.001 k3.841 6.635 10.828A.在犯错误的概率不超过1%的前提下,认为“爱好游泳运动与性别有关”B.在犯错误的概率不超过1%的前提下,认为“爱好游泳运动与性别无关”C.有99.9%的把握认为“爱好游泳运动与性别有关”D.有99.9%的把握认为“爱好游泳运动与性别无关” 答案 A7.(2020届西南名校联盟高考适应性月考(一),19)为了实现文化脱贫,某高校鼓励即将毕业的大学生到西部偏远山区去支教,校学生就业部针对即将毕业的男女生是否愿意到西部支教进行问卷调查,得到的情况如下表所示:愿意去支教不愿意去支教 总计女生 20男生 40总计70100(1)完成上述列联表;(2)根据表中的数据,试通过计算,判断是否有95%的把握说明是否愿意去西部支教与性别有关;(3)若在接受调查的所有男生中按照“是否愿意去支教”进行分层抽样,随机抽取10人,再从10人中抽取3人进行面谈,记面谈的男生中,不愿意去支教的人数为ξ,求ξ的分布列及数学期望. 参考数据及公式如下:P(K 2≥k 0) 0.050 0.010 0.001 k 03.841 6.635 10.828K 2=n(ad -bc)2(a+b)(c+d)(a+c)(b+d),其中n=a+b+c+d.解析 (1)所求列联表如下:愿意去支教不愿意去支教 总计女生 30 20 50 男生 40 10 50 总计7030100(2)因为K 2的观测值k 0=100×(30×10-40×20)250×50×30×70=10021≈4.762>3.841.所以有95%的把握说明是否愿意去西部支教与性别有关.(3)由题意,抽取的10人中有8人愿意去西部支教,2人不愿意去西部支教,于是ξ=0,1,2. P(ξ=0)=C 20C 83C 103=715,P(ξ=1)=C 21C 82C 103=715,P(ξ=2)=C 22C 81C 103=115,∴ξ的分布列为ξ 012P715715115∴Eξ=0×715+1×715+2×115=35.8.(2020届四川邻水实验学校第一次月考,20)通过随机询问某地100名高中学生在选择座位时是否挑同桌,得到如下2×2列联表:男生 女生 总计 挑同桌 30 40 70 不挑同桌 20 10 30 总计5050100(1)从这50名男生中按是否挑同桌采取分层抽样的方法抽取一个容量为5的样本,现从这5人中随机选取3人做深度采访,求这3名学生中至少有2名要挑同桌的概率;(2)根据以上2×2列联表,判断是否有95%以上的把握认为“性别与在选择座位时是否挑同桌”有关. 下面的临界值表供参考:P(K 2≥k 0) 0.10 0.05 0.025 0.010 0.005 0.001 k 0 2.706 3.841 5.024 6.635 7.879 10.828(参考公式:K 2=n(ad-bc)2(a +b)(c +d)(a +c)(b +d),其中n =a +b +c +d) 解析 (1)根据分层抽样方法可知抽取容量为5的样本中,挑同桌的有3人,记为A 、B 、C,不挑同桌的有2人,记为d 、e;从这5人中随机选取3人,基本事件为ABC,ABd,ABe,ACd,ACe,Ade,BCd,BCe,Bde,Cde,共10种, 这3名学生中至少有2名要挑同桌的基本事件为ABC,ABd,ABe,ACd,ACe,BCd,BCe,共7种, 故所求的概率P=710.(2)根据2×2列联表,计算K2=100×(30×10-20×40)270×30×50×50≈4.761 9>3.841,对照临界值表知,有95%以上的把握认为“性别与在选择座位时是否挑同桌”有关.思路分析 (1)根据分层抽样原理求出样本中挑同桌的有3人,不挑同桌的有2人,利用列举法求出基本事件数,从而求概率; (2)根据2×2列联表计算K 2,对照临界值表得出结论.【五年高考】考点一 变量间的相关关系1.(2017山东,5,5分)为了研究某班学生的脚长x(单位:厘米)和身高y(单位:厘米)的关系,从该班随机抽取10名学生,根据测量数据的散点图可以看出y 与x 之间有线性相关关系,设其回归直线方程为y ^=b ^x+a ^.已知∑i=110x i =225,∑i=110y i =1 600,b ^=4.该班某学生的脚长为24,据此估计其身高为( ) A.160 B.163 C.166 D.170 答案 C2.(2015福建,4,5分)为了解某社区居民的家庭年收入与年支出的关系,随机调查了该社区5户家庭,得到如下统计数据表:收入x(万元) 8.2 8.6 10.0 11.3 11.9 支出y(万元)6.27.58.08.59.8根据上表可得回归直线方程y ^=b ^x+a ^,其中b ^=0.76,a ^=y -b ^x . 据此估计,该社区一户年收入为15万元家庭的年支出为( )A.11.4万元B.11.8万元C.12.0万元D.12.2万元答案 B3.(2018课标Ⅱ,18,12分)下图是某地区2000年至2016年环境基础设施投资额y(单位:亿元)的折线图.为了预测该地区2018年的环境基础设施投资额,建立了y 与时间变量t 的两个线性回归模型.根据2000年至2016年的数据(时间变量t 的值依次为1,2,…,17)建立模型①:y ^=-30.4+13.5t;根据2010年至2016年的数据(时间变量t 的值依次为1,2,…,7)建立模型②:y ^=99+17.5t.(1)分别利用这两个模型,求该地区2018年的环境基础设施投资额的预测值; (2)你认为用哪个模型得到的预测值更可靠?并说明理由.解析 (1)利用模型①,该地区2018年的环境基础设施投资额的预测值为y ^=-30.4+13.5×19=226.1(亿元). 利用模型②,该地区2018年的环境基础设施投资额的预测值为y ^=99+17.5×9=256.5(亿元). (2)利用模型②得到的预测值更可靠. 理由如下:(i)从折线图可以看出,2000年至2016年的数据对应的点没有随机散布在直线y=-30.4+13.5t 上下,这说明利用2000年至2016年的数据建立的线性模型①不能很好地描述环境基础设施投资额的变化趋势.2010年相对2009年的环境基础设施投资额有明显增加,2010年至2016年的数据对应的点位于一条直线的附近,这说明从2010年开始环境基础设施投资额的变化规律呈线性增长趋势,利用2010年至2016年的数据建立的线性模型y ^=99+17.5t 可以较好地描述2010年以后的环境基础设施投资额的变化趋势,因此利用模型②得到的预测值更可靠.(ii)从计算结果看,相对于2016年的环境基础设施投资额220亿元,由模型①得到的预测值226.1亿元的增幅明显偏低,而利用模型②得到的预测值的增幅比较合理,说明利用模型②得到的预测值更可靠. 以上给出了2种理由,考生答出其中任意一种或其他合理理由均可得分.方法总结 利用直线方程进行预测是对总体的估计,此估计值不是准确值;利用回归方程进行预测(把自变量代入回归直线方程)是对因变量的估计,此时,需要注意自变量的取值范围.4.(2015课标Ⅰ,19,12分)某公司为确定下一年度投入某种产品的宣传费,需了解年宣传费x(单位:千元)对年销售量y(单位:t)和年利润z(单位:千元)的影响.对近8年的年宣传费x i 和年销售量y i (i=1,2,…,8)数据作了初步处理,得到下面的散点图及一些统计量的值.x y w ∑i=18(x i-x )2∑i=18(w i-w )2∑i=18(x i-x )(y i-y )∑i=18(w i-w )(y i-y )46.6 563 6.8 289.8 1.6 1 469108.8表中w i =√x ,w =18∑i=18w i .(1)根据散点图判断,y=a+bx 与y=c+d √x 哪一个适宜作为年销售量y 关于年宣传费x 的回归方程类型?(给出判断即可,不必说明理由)(2)根据(1)的判断结果及表中数据,建立y 关于x 的回归方程;(3)已知这种产品的年利润z 与x,y 的关系为z=0.2y-x.根据(2)的结果回答下列问题: (i)年宣传费x=49时,年销售量及年利润的预报值是多少? (ii)年宣传费x 为何值时,年利润的预报值最大?附:对于一组数据(u 1,v 1),(u 2,v 2),…,(u n ,v n ),其回归直线v=α+βu 的斜率和截距的最小二乘估计分别为 β^=∑i=1n(u i -u)(v i -v)∑i=1n(u i -u)2,α^=v -β^u .解析 (1)由散点图可以判断,y=c+d √x 适宜作为年销售量y 关于年宣传费x 的回归方程类型.(2分) (2)令w=√x ,先建立y 关于w 的线性回归方程.由于d ^=∑i=18(w i -w)(y i -y)∑i=18(w i -w)2=108.81.6=68,c ^=y -d ^w =563-68×6.8=100.6,所以y 关于w 的线性回归方程为y ^=100.6+68w,因此y 关于x 的回归方程为y ^=100.6+68√x .(6分) (3)(i)由(2)知,当x=49时,年销售量y 的预报值 y ^=100.6+68√49=576.6,年利润z 的预报值z ^=576.6×0.2-49=66.32.(9分) (ii)根据(2)的结果知,年利润z 的预报值 z ^=0.2(100.6+68√x )-x=-x+13.6√x +20.12. 所以当√x =13.62=6.8, 即x=46.24时,z ^取得最大值.故年宣传费为46.24千元时,年利润的预报值最大.(12分)思路分析 (1)根据散点图中点的分布趋势进行判断.(2)先设中间量w=√x ,建立y 关于w 的线性回归方程,进而得y 关于x 的回归方程.(3)(i)将x=49代入回归方程求出y 的预报值,进而得z 的预报值,(ii)求出z 关于x 的回归方程,进而利用函数方法求最大值.考点二 独立性检验5.(2018课标Ⅲ,18,12分)某工厂为提高生产效率,开展技术创新活动,提出了完成某项生产任务的两种新的生产方式.为比较两种生产方式的效率,选取40名工人,将他们随机分成两组,每组20人.第一组工人用第一种生产方式,第二组工人用第二种生产方式.根据工人完成生产任务的工作时间(单位:min)绘制了如下茎叶图:(1)根据茎叶图判断哪种生产方式的效率更高,并说明理由;(2)求40名工人完成生产任务所需时间的中位数m,并将完成生产任务所需时间超过m 和不超过m 的工人数填入下面的列联表:超过m不超过m第一种生产方式 第二种生产方式(3)根据(2)中的列联表,能否有99%的把握认为两种生产方式的效率有差异?附:K 2=n(ad -bc)2(a+b)(c+d)(a+c)(b+d),P(K 2≥k) 0.050 0.010 0.001 k 3.841 6.635 10.828.解析 (1)第二种生产方式的效率更高. 理由如下:(i)由茎叶图可知:用第一种生产方式的工人中,有75%的工人完成生产任务所需时间至少80分钟,用第二种生产方式的工人中,有75%的工人完成生产任务所需时间至多79分钟.因此第二种生产方式的效率更高.(ii)由茎叶图可知:用第一种生产方式的工人完成生产任务所需时间的中位数为85.5分钟,用第二种生产方式的工人完成生产任务所需时间的中位数为73.5分钟.因此第二种生产方式的效率更高.(iii)由茎叶图可知:用第一种生产方式的工人完成生产任务平均所需时间高于80分钟;用第二种生产方式的工人完成生产任务平均所需时间低于80分钟.因此第二种生产方式的效率更高.(iv)由茎叶图可知:用第一种生产方式的工人完成生产任务所需时间分布在茎8上的最多,关于茎8大致呈对称分布;用第二种生产方式的工人完成生产任务所需时间分布在茎7上的最多,关于茎7大致呈对称分布.又用两种生产方式的工人完成生产任务所需时间分布的区间相同,故可以认为用第二种生产方式完成生产任务所需的时间比用第一种生产方式完成生产任务所需的时间更少.因此第二种生产方式的效率更高.以上给出了4种理由,考生答出其中任意一种或其他合理理由均可得分. (2)由茎叶图知m=79+812=80. 列联表如下:超过m 不超过m 第一种生产方式 15 5 第二种生产方式515(3)由于 K 2=40×(15×15-5×5)220×20×20×20=10>6.635,所以有99%的把握认为两种生产方式的效率有差异.思路分析 (1)根据茎叶图中的数据大致集中在哪个茎,作出判断; (2)通过茎叶图确定数据的中位数,按要求完成2×2列联表;(3)根据(2)中的列联表,将有关数据代入公式计算得K 2的值,查表作出统计推断.解后反思 独立性检验问题的常见类型及解题策略(1)已知分类变量的数据,判断两个分类变量的相关性,可依据数据及公式计算K 2,然后作出判断;(2)独立性检验与概率统计的综合问题,关键是根据独立性检验的一般步骤,作出判断,再根据概率统计的相关知识求解. 6.(2017课标Ⅱ,18,12分)海水养殖场进行某水产品的新、旧网箱养殖方法的产量对比,收获时各随机抽取了100个网箱,测量各箱水产品的产量(单位:kg),其频率分布直方图如下:(1)设两种养殖方法的箱产量相互独立,记A 表示事件“旧养殖法的箱产量低于50 kg,新养殖法的箱产量不低于50 kg ”,估计A 的概率;(2)填写下面列联表,并根据列联表判断是否有99%的把握认为箱产量与养殖方法有关;箱产量<50 kg箱产量≥50 kg旧养殖法 新养殖法(3)根据箱产量的频率分布直方图,求新养殖法箱产量的中位数的估计值(精确到0.01). 附:P(K 2≥k)0.050 0.010 0.001 k3.841 6.635 10.828, K 2=n(ad -bc)2(a+b)(c+d)(a+c)(b+d).解析 (1)记B 表示事件“旧养殖法的箱产量低于50 kg ”,C 表示事件“新养殖法的箱产量不低于50 kg ”. 由题意知P(A)=P(BC)=P(B)P(C).旧养殖法的箱产量低于50 kg 的频率为(0.012+0.014+0.024+0.034+0.040)×5=0.62, 故P(B)的估计值为0.62.新养殖法的箱产量不低于50 kg 的频率为(0.068+0.046+0.010+0.008)×5=0.66,故P(C)的估计值为0.66. 因此,事件A 的概率估计值为0.62×0.66=0.409 2. (2)根据箱产量的频率分布直方图得列联表箱产量<50 kg箱产量≥50 kg旧养殖法 62 38 新养殖法3466K2=200×(62×66-34×38)2100×100×96×104≈15.705. 由于15.705>6.635,故有99%的把握认为箱产量与养殖方法有关.(3)因为新养殖法的箱产量频率分布直方图中,箱产量低于50 kg 的直方图面积为(0.004+0.020+0.044)×5=0.34<0.5,箱产量低于55 kg 的直方图面积为(0.004+0.020+0.044+0.068)×5=0.68>0.5,故新养殖法箱产量的中位数的估计值为50+0.5-0.340.068≈52.35(kg). 解后反思 解独立性检验问题的关注点:(1)两个明确:①明确两类主体;②明确研究的两个问题. (2)两个关键:①准确画出2×2列联表;②准确理解K 2.教师专用题组1.(2014湖北,4,5分)根据如下样本数据x 3 4 5 6 7 8 y4.02.5-0.50.5-2.0-3.0得到的回归方程为y ^=bx+a,则( ) A.a>0,b>0 B.a>0,b<0 C.a<0,b>0 D.a<0,b<0答案 B2.(2014重庆,3,5分)已知变量x 与y 正相关,且由观测数据算得样本平均数x =3,y =3.5,则由该观测数据算得的线性回归方程可能是( )A.y ^=0.4x+2.3 B.y ^=2x-2.4 C.y ^=-2x+9.5 D.y ^=-0.3x+4.4 答案 A3.(2014课标Ⅱ,19,12分,0.311)某地区2007年至2013年农村居民家庭人均纯收入y(单位:千元)的数据如下表:年 份 2007 2008 2009 2010 2011 2012 2013 年份代号t12 3 4 5 6 7 人均纯收入y 2.93.33.64.44.85.25.9(1)求y 关于t 的线性回归方程;(2)利用(1)中的回归方程,分析2007年至2013年该地区农村居民家庭人均纯收入的变化情况,并预测该地区2015年农村居民家庭人均纯收入.附:回归直线的斜率和截距的最小二乘估计公式分别为: b ^=∑i=1n(t i -t)(y i -y)∑i=1n(t i -t)2,a ^=y -b ^t .解析 (1)由所给数据计算得t =17×(1+2+3+4+5+6+7)=4,y =17×(2.9+3.3+3.6+4.4+4.8+5.2+5.9)=4.3,∑i=17(t i -t )2=9+4+1+0+1+4+9=28,∑i=17(t i -t )(y i -y )=(-3)×(-1.4)+(-2)×(-1)+(-1)×(-0.7)+0×0.1+1×0.5+2×0.9+3×1.6=14,b ^=∑i=17(t i -t)(y i -y)∑i=17(t i -t)2=1428=0.5,a ^=y -b ^t =4.3-0.5×4=2.3,所求回归方程为y ^=0.5t+2.3.(2)由(1)知,b ^=0.5>0,故2007年至2013年该地区农村居民家庭人均纯收入逐年增加,平均每年增加0.5千元. 将2015年的年份代号t=9代入(1)中的回归方程,得y ^=0.5×9+2.3=6.8, 故预测该地区2015年农村居民家庭人均纯收入为6.8千元. 易错警示 解题时容易出现计算错误,计算时一定要仔细.【三年模拟】一、单项选择题(每题5分,共15分)1.(2019湖南长沙雅礼中学月考(一),5)已知回归直线方程的斜率的估计值是1.23,样本点的中心为(4,5),则回归直线的方程是( )A.y ^=1.23x+4B.y ^=1.23x+0.8 C.y ^=1.23x+0.08 D.y ^=1.23x-0.08 答案 C2.(2018辽宁丹东期末教学质量监测,7)某校为了研究学生的性别和对待某一活动的态度(支持与不支持)的关系,运用2×2列联表进行独立性检验,经计算K 2=6.705,则所得到的统计学结论是:有 的把握认为“学生性别与支持该活动没有..关系”.( ) 附:P(K 2≥k) 0.100 0.050 0.025 0.010 0.001k 2.706 3.841 5.024 6.635 10.828A.99.9%B.99%C.1%D.0.1% 答案 C3.(2020届辽宁阜新高级中学10月月考,3)某饮料店某5天的日销售收入y(单位:百元)与当天平均气温x(单位:℃)之间的数据如下表:x -2 -1 0 1 2 y542 2 1若x 与y 之间是线性相关关系,且y 关于x 的线性回归方程是y ^=-x+m,则实数m 的值是( ) A.3 B.2.8 C.2.6 D.2.4 答案 B二、多项选择题(每题5分,共10分)4.(改编题)下列说法中正确的是( )A.在频率分布直方图中,中位数左边和右边的直方图的面积相等B.若A,B 为互斥事件,则A 的对立事件与B 的对立事件一定互斥C.某个班级内有40名学生,抽10名学生去参加某项活动,则每4人中必有1人被抽中D.若回归直线y ^=b ^x+a ^的斜率b ^>0,则变量x 与y 正相关 答案 AD5.(改编题)如图是国家统计局发布的2018年3月到2019年3月全国居民消费价格的涨跌幅情况折线图(注:2019年3月与2018年3月相比较称为同比,2019年2月与2019年1月相比较称为环比),根据该折线图,下列结论正确的是( )A.2018年3月至2019年3月全国居民消费价格同比均上涨B.2018年3月至2019年3月全国居民消费价格环比有涨有跌C.2019年3月全国居民消费价格同比涨幅最大D.2019年3月全国居民消费价格环比变化最大 答案 ABD三、填空题(共5分)6.(2018湖南师大附中月考(三),14)在西非肆虐的“埃博拉病毒”的传播速度很快,这已经成为全球性的威胁,为了考察某种埃博拉病毒疫苗的效果,现随机抽取100只小鼠进行试验,得到如下列联表:感染 未感染 总计 服用 10 40 50 未服用 20 30 50 总计3070100参照附表,在犯错误的概率不超过 (填百分比)的前提下,可认为“该种疫苗有预防埃博拉病毒感染的效果”. 参考公式:K 2=n(ad -bc)2(a+b)(c+d)(a+c)(b+d),其中n=a+b+c+d.附表:P(K 2≥k 0) 0.10 0.05 0.025 0.010 0.005 0.001 k 0 2.706 3.841 5.024 6.635 7.879 10.828答案 5%四、解答题(共70分)7.(2020届山东夏季高考模拟,20)下面给出了根据我国2012年—2018年水果人均占有量y(单位:kg)和年份代码x 绘制的散点图和线性回归方程的残差图(2012年—2018年的年份代码x 分别为1—7).(1)根据散点图分析y 与x 之间的相关关系;(2)根据散点图相应数据计算得∑i=17y i =1 074,∑i=17x i y i =4 517,求y 关于x 的线性回归方程;(精确到0.01)(3)根据线性回归方程的残差图,分析线性回归方程的拟合效果. 附:回归方程y ^=a ^+b ^x 中斜率和截距的最小二乘估计公式分别为:b ^=∑i=1n(x i -x)(y i -y)∑i=1n(x i -x)2,a ^=y -b ^x .解析 (1)根据散点图可知y 与x 正线性相关. (2)由所给数据计算得 x =17×(1+2+…+7)=4, ∑i=17(x i -x )2=28,∑i=17(x i -x )(y i -y )=∑i=17x i y i -x ∑i=17y i =4 517-4×1 074=221,b ^=∑i=17(x i -x)(y i -y)∑i=17(x i -x)2=22128≈7.89.a ^=y -b ^x =1 0747-7.89×4≈121.87. 所以所求线性回归方程为y ^=7.89x+121.87.(3)由题中给出的残差图知历年数据的残差均在-2到2之间,说明线性回归方程的拟合效果较好.8.(2019湖南娄底二模,19)随着食品安全问题逐渐引起人们的重视,有机、健康的高端绿色蔬菜越来越受到消费者的欢迎,同时生产—运输—销售一体化的直销供应模式,不仅减少了成本,而且减去了蔬菜的二次污染等问题.(1)在有机蔬菜的种植过程中,有机肥料使用是必不可少的.根据统计,某种有机蔬菜的产量与有机肥料的用量有关系,每个有机蔬菜大棚产量的增加量y(百千克)与使用堆沤肥料x(千克)之间对应数据如表:使用堆沤肥料x(千克) 2 4 5 6 8 产量增加量y(百千克)34445依据表中的数据,用最小二乘法求出y 关于x 的线性回归方程y ^=b ^x+a ^,并根据所求线性回归方程估计如果每个有机蔬菜大棚使用堆沤肥料10千克,则每个有机蔬菜大棚产量增加量y 是多少百千克;(2)某大棚蔬菜种植基地将采摘的有机蔬菜以每份三千克称重并保鲜分装,以每份10元的价格销售到生鲜超市.“乐购”生鲜超市以每份15元的价格卖给顾客,如果当天前8小时卖不完,则超市通过促销以每份5元的价格卖给顾客(根据经验,当天能够把剩余的有机蔬菜都低价处理完毕,且处理完毕后,当天不再进货).该生鲜超市统计了100天有机蔬菜在每天的前8小时内的销售量(单位:份),制成如下表格(注:x,y ∈N *,且x+y=30):每日前8个小时 销售量(单位:份)15 16 17 18 19 20 21 频数10x16 16 15 13y若以100天记录的频率作为每日前8小时销售量发生的概率,以该生鲜超市当天销售有机蔬菜利润的期望为决策依据,当购进17份比购进18份的利润的期望大时,求x 的取值范围. 附:回归方程系数公式b ^=∑i=1nx i y i -nxy ∑i=1nx i 2-nx2,a ^=y ^-b ^x .解析 (1)x =2+4+5+6+85=5,y =3+4+4+4+55=4, 计算得b ^=0.3,a ^=2.5,所以y 关于x 的线性回归方程为y ^=0.3x+2.5, 当x=10时,y ^=0.3×10+2.5=5.5,所以如果每个有机蔬菜大棚使用堆沤肥料10千克,估计每个有机蔬菜大棚产量的增加量是5.5百千克. (2)若该超市一天购进17份这种有机蔬菜,设Y 1表示当天的利润(单位:元),那么Y 1的分布列为Y 1 65 75 85P10100 x 100 90-x 100Y 1的数学期望E(Y 1)=65×10100+75×x 100+85×90-x 100=8 300-10x 100; 若该超市一天购进18份这种有机蔬菜,设Y 2表示当天的利润(单位:元),那么Y 2的分布列为Y 2 60 70 80 90P10100 x 100 16100 74-x100Y 2的数学期望E(Y 2)=60×10100+70×x 100+80×16100+90×74-x 100=8 540-20x 100, 又购进17份比购进18份的利润的期望大,故8 300-10x 100>8 540-20x100,解得x>24,故x 的取值范围是(24,30)且x ∈N *.9.(2019届安徽黄山11月“八校联考”,19)2018年7月24日,长春长生生物科技有限责任公司先被查出狂犬病疫苗生产记录造假,后又被测出百白破疫苗“效价测定”项不符合规定,由此引发的疫苗事件牵动了无数中国人的心.疫苗直接用于健康人群,尤其是新生儿和青少年,与人民的健康联系紧密.因此,疫苗在上市前必须经过严格的检测,并通过临床实验获得相关数据,以保证疫苗使用的安全和有效.某生物制品研究所将某一型号疫苗用在小白鼠身上进行科研和临床实验,得到统计数据如下:未感染病毒感染病毒总计 未注射疫苗 20 x A 注射疫苗30yB。

(旧教材适用)2023高考数学一轮总复习第十章统计统计案例第3讲变量间的相关关系与统计案例课件

(旧教材适用)2023高考数学一轮总复习第十章统计统计案例第3讲变量间的相关关系与统计案例课件

抽取次序 9 10 11 12 13 14 15 16 零件尺寸 10.26 9.91 10.13 10.02 9.22 10.04 10.05 9.95




-x

1 16
16
x
i

9.97

s

i=1
1 16
16
xi--x 2

i=1
0.050 0.010
k0
3.841 6.635
附:K2=a+bcn+add-ab+cc2b+d.
0.005 7.879
0.001 10.828
解析 根据题目所给数据得到如下 2×2 列联表:
乐观
不乐观
总计
国内代表
60
40
100
国外代表
40
60
100
总计
100
100
200
则 K2=20100×0×6100×0×601-004×0×104002=8>6.635,所以有 99%的把握认为是否
∵y 与 x 的相关系数近似为 0.9966,说明 y 与 x 的线性相关程度相当强,
∴可以用线性回归模型拟合 y 与 x 的关系.
(3)建立 y 关于 x 的回归方程,预测第 5 年的销售量约为多少?
参考数据:
∑4
i=1
yi--y 2≈32.7,
5≈2.24,i∑=4 1xiyi=418.
参考公式:
(3)回归分析 ①定义:对具有 □06 相关关系的两个变量进行统计分析的一种常用方法. ②样本点的中心:在具有线性相关关系的数据(x1,y1),(x2,y2),…, (xn,yn)中,-x =1n(x1+…+xn),-y =1n(y1+…+yn),a^ =-y -b^ -x ,(-x ,-y ) 称为样本点的中心.

2025数学大一轮复习讲义人教版 第十章 离散型随机变量及其分布列、数字特征

2025数学大一轮复习讲义人教版   第十章  离散型随机变量及其分布列、数字特征
第十章
§10.5 离散型随机变量 及其分布列、数字特征
课标要求
1.理解取有限个值的离散型随机变量及其分布列的概念. 2.理解并会求离散型随机变量的数字特征.
内容索引
第一部分 落实主干知识 第二部分 探究核心题型
课时精练
第一部分
落实主干知识
知识梳理
1.离散型随机变量 一般地,如果随机试验的样本空间为Ω,而且对于Ω中的每一个样本点, 变量X都对应有 唯一确定的 实数值,就称X为一个随机变量.其所有可能 的取值都是可以一一列举的随机变量称为离散型随机变量.
因为 E(X)=1×12+2×13+5×16=2,
所以E(3X+2)=3E(X)+2=3×2+2=8,故B不正确;
数学期望简称期望.它反映了离散型随机变量取值的 平均水平 .
知识梳理
(2)方差
n
[xi-E(X)]2pi
称D(X)=[x1-E(X)]2p1+[x2-E(X)]2p2+…+[xn-E(X)]2pn=_i_=_1____________
为随机变量X的方差,并称 DX 为随机变量X的 标准差 ,它们都可以
则 D(X)=1-2 p12+p2+1212+p-12+p221+p-22=-p2+p+41=-p-122
+12,因为 0<p<1,所以 D(X)先增后减.
微拓展
(2)(多选)已知某商场销售一种商品的单件销售利润为X=0,a,2,根据
以往销售经验可得0<a<2,随机变量X的分布列为
下列结论正确的是
返回
第二部分
探究核心题型
题型一 分布列的性质
例1 (1)(多选)已知随机变量X的分布列如表(其中a为常数):
X0 1 2 34 P 0.1 0.2 0.4 0.2 a

2021届步步高数学大一轮复习讲义(文科)第十章 10.3变量间的相关关系、统计案例

2021届步步高数学大一轮复习讲义(文科)第十章 10.3变量间的相关关系、统计案例

§10.3变量间的相关关系、统计案例1.相关关系与回归方程(1)相关关系的分类①正相关在散点图中,点散布在从左下角到右上角的区域,对于两个变量的这种相关关系,我们将它称为正相关; ②负相关在散点图中,点散布在从左上角到右下角的区域,两个变量的这种相关关系称为负相关. (2)线性相关关系如果散点图中点的分布从整体上看大致在一条直线附近,就称这两个变量之间具有线性相关关系,这条直线叫做回归直线. (3)回归方程 ①最小二乘法求回归直线,使得样本数据的点到它的距离的平方和最小的方法叫做最小二乘法; ②回归方程方程y ^=b ^x +a ^是两个具有线性相关关系的变量的一组数据(x 1,y 1),(x 2,y 2),…,(x n ,y n )的回归方程,其中a ^,b ^是待定参数.⎩⎪⎨⎪⎧b ^=∑i =1n(x i-x )(y i-y )∑i =1n(x i-x )2=∑i =1nx i y i-n x y ∑i =1nx 2i-n x 2,a ^=y -b ^x .(4)回归分析①定义:对具有相关关系的两个变量进行统计分析的一种常用方法; ②样本点的中心对于一组具有线性相关关系的数据(x 1,y 1),(x 2,y 2),…,(x n ,y n ),其中(x ,y )称为样本点的中心; ③相关系数当r >0时,表明两个变量正相关; 当r <0时,表明两个变量负相关.r 的绝对值越接近于1,表明两个变量的线性相关性越强.r 的绝对值越接近于0,表明两个变量之间几乎不存在线性相关关系.通常|r |大于0.75时,认为两个变量有很强的线性相关性. 2.独立性检验(1)分类变量:变量的不同“值”表示个体所属的不同类别,像这样的变量称为分类变量. (2)列联表:列出的两个分类变量的频数表,称为列联表.假设有两个分类变量X 和Y ,它们的可能取值分别为{x1,x2}和{y1,y2},其样本频数列联表(称为2×2列联表)为2×2列联表构造一个随机变量K2=n(ad-bc)2(a+b)(c+d)(a+c)(b+d),其中n=a+b+c+d为样本容量.(3)独立性检验利用随机变量K2来判断“两个分类变量有关系”的方法称为独立性检验.概念方法微思考1.变量的相关关系与变量的函数关系有什么区别?提示 相同点:两者均是指两个变量的关系.不同点:①函数关系是一种确定的关系,相关关系是一种非确定的关系. ②函数关系是一种因果关系,而相关关系不一定是因果关系,也可能是伴随关系. 2.线性回归方程是否都有实际意义?根据回归方程进行预报是否一定准确?提示 (1)不一定都有实际意义.回归分析是对具有相关关系的两个变量进行统计分析的方法,只有在散点图大致呈线性时,求出的线性回归方程才有实际意义,否则,求出的线性回归方程毫无意义.(2)根据回归方程进行预报,仅是一个预报值,而不是真实发生的值.题组一 思考辨析1.判断下列结论是否正确(请在括号中打“√”或“×”)(1)散点图是判断两个变量是否相关的一种重要方法和手段.( √ )(2)线性回归方程y ^=b ^x +a ^至少经过点(x 1,y 1),(x 2,y 2),…,(x n ,y n )中的一个点.( × ) (3)若事件X ,Y 关系越密切,则由观测数据计算得到的K 2的观测值越小.( × ) (4)两个变量的相关系数的绝对值越接近于1,它们的相关性越强.( √ ) 题组二 教材改编2.为调查中学生近视情况,测得某校150名男生中有80名近视,在140名女生中有70名近视.在检验这些学生眼睛近视是否与性别有关时,用下列哪种方法最有说服力( ) A .回归分析 B .均值与方差 C .独立性检验 D .概率答案 C解析 “近视”与“性别”是两类变量,其是否有关,应用独立性检验判断. 3.下面是2×2列联表:则表中a ,b 的值分别为( ) A .94,72 B .52,50 C .52,74 D .74,52答案 C解析 ∵a +21=73,∴a =52. 又a +22=b ,∴b =74.4.某车间为了规定工时定额,需要确定加工零件所花费的时间,为此进行了5次试验.根据收集到的数据(如下表),由最小二乘法求得回归方程y ^=0.67x +54.9.现发现表中有一个数据看不清,请你推断出该数据的值为________. 答案 68解析 由x =30,得y =0.67×30+54.9=75. 设表中的“模糊数字”为a ,则62+a +75+81+89=75×5,∴a =68. 题组三 易错自纠5.某医疗机构通过抽样调查(样本容量n =1 000),利用2×2列联表和K 2统计量研究患肺病是否与吸烟有关.计算得K 2=4.453,经查阅临界值表知P (K 2≥3.841)≈0.05,现给出四个结论,其中正确的是( )A .在100个吸烟的人中约有95个人患肺病B .若某人吸烟,那么他有95%的可能性患肺病C .有95%的把握认为“患肺病与吸烟有关”D .只有5%的把握认为“患肺病与吸烟有关” 答案 C解析 由已知数据可得,有1-0.05=95%的把握认为“患肺病与吸烟有关”.6.设某大学的女生体重y (单位:kg)与身高x (单位:cm)具有线性相关关系,根据一组样本数据(x i ,y i )(i =1,2,…,n ),用最小二乘法建立的回归方程为y ^=0.85x -85.71,则下列结论中不正确的是________.(填序号). ①y 与x 具有正的线性相关关系; ②回归直线过样本点的中心(x ,y );③若该大学某女生身高增加1 cm ,则其体重约增加0.85 kg ; ④若该大学某女生身高为170 cm ,则可断定其体重必为58.79 kg. 答案 ④解析 ①正确;②正确;③正确.对于④,当x =170 cm 时,y ^=0.85×170-85.71=58.79,但这是预测值,不可断定其体重为58.79 kg.故不正确.相关关系的判断1.在一次对人体脂肪含量和年龄关系的研究中,研究人员获得了一组样本数据,并制作成如图所示的人体脂肪含量与年龄关系的散点图.根据该图,下列结论中正确的是()A.人体脂肪含量与年龄正相关,且脂肪含量的中位数等于20%B.人体脂肪含量与年龄正相关,且脂肪含量的中位数小于20%C.人体脂肪含量与年龄负相关,且脂肪含量的中位数等于20%D.人体脂肪含量与年龄负相关,且脂肪含量的中位数小于20%答案 B解析观察图形,可知人体脂肪含量与年龄正相关,且脂肪含量的中位数小于20%,故选B. 2.(2020·云南昆明诊断)某商家今年上半年各月的人均销售额(单位:千元)与利润率统计表如下:根据表中数据,下列说法正确的是()A.利润率与人均销售额成正相关关系B.利润率与人均销售额成负相关关系C.利润率与人均销售额成正比例函数关系D.利润率与人均销售额成反比例函数关系答案 A解析由统计表可得利润率与人均销售额不是正比例关系,也不是反比例关系,排除C和D;其属于正相关关系,A正确,B错误.思维升华判定两个变量正、负相关性的方法(1)画散点图:点的分布从左下角到右上角,两个变量正相关;点的分布从左上角到右下角,两个变量负相关.(2)相关系数:当r >0时,两个变量正相关;当r <0时,两个变量负相关. (3)线性回归方程:当b ^>0时,两个变量正相关;当b ^<0时,两个变量负相关.回归分析命题点1 线性回归分析例1 (2020·广西南宁模拟)某地区某农产品近几年的产量统计如下表:(1)根据表中数据,建立y 关于t 的线性回归方程y ^=b ^t +a ^; (2)根据线性回归方程预测2020年该地区该农产品的年产量.附:对于一组数据(t 1,y 1),(t 2,y 2),…,(t n ,y n ),其回归直线y ^=b ^t +a ^的斜率和截距的最小二乘估计分别为b ^=∑i =1n(t i -t )(y i -y )∑i =1n(t i -t )2,a ^=y -b ^t .(参考数据:∑i =16(t i -t )(y i -y )=2.80,计算结果保留小数点后两位)解 (1)由题意可知,t =1+2+3+4+5+66=3.5,y =6.6+6.7+7+7.1+7.2+7.46=7,∑i =16(t i -t )2=(-2.5)2+(-1.5)2+(-0.5)2+0.52+1.52+2.52=17.50,∴b ^=∑i =16(t i -t )(y i -y )∑i =16(t i -t )2=2.8017.50=0.16, 又a ^=y -b ^t =7-0.16×3.5=6.44, ∴y 关于t 的线性回归方程为y ^=0.16t +6.44.(2)由(1)可得,当年份为2020年时,年份代码t =9,此时y ^=0.16×9+6.44=7.88, ∴可预测2020年该地区该农产品的年产量约为7.88万吨. 命题点2 非线性回归例2 某公司为确定下一年度投入某种产品的宣传费,需了解年宣传费x (单位:千元)对年销售量y (单位:t)和年利润z (单位:千元)的影响,对近8年的年宣传费x i 和年销售量y i (i =1,2,…,8)数据作了初步处理,得到下面的散点图及一些统计量的值.表中w i =x i ,w =18∑i =18w i .(1)根据散点图判断y =a +bx 与y =c +d x 哪一个适宜作为年销售量y 关于年宣传费x 的回归方程类型?(给出判断即可,不必说明理由)(2)根据(1)的判断结果及表中数据,建立y 关于x 的回归方程;(3)已知这种产品的年利润z 与x ,y 的关系为z =0.2y -x .根据(2)的结果回答下列问题: ①年宣传费x =49时,年销售量及年利润的预报值是多少? ②年宣传费x 为何值时,年利润的预报值最大?附:对于一组数据(u 1,v 1),(u 2,v 2),…,(u n ,v n ),其回归直线v ^=α^+β^u 的斜率和截距的最小二乘估计分别为β^=∑i =1n(u i -u )(v i -v )∑i =1n(u i -u )2,α^=v -β^u .解 (1)由散点图可以判断,y =c +d x 适宜作为年销售量y 关于年宣传费x 的回归方程类型. (2)令w =x ,先建立y 关于w 的线性回归方程,由于d ^=∑i =18(w i -w )·(y i -y )∑i =18 (w i -w )2=108.81.6=68, c ^=y -d ^w =563-68×6.8=100.6,所以y 关于w 的线性回归方程为y ^=100.6+68w , 因此y 关于x 的回归方程为y ^=100.6+68x . (3)①由(2)知,当x =49时,年销售量y 的预报值y ^=100.6+6849=576.6, 年利润z 的预报值z ^=576.6×0.2-49=66.32. ②根据(2)的结果知,年利润z 的预报值 z ^=0.2(100.6+68x )-x =-x +13.6x +20.12.所以当x =13.62=6.8,即x =46.24时,z ^ 取得最大值.故年宣传费为46.24千元时,年利润的预报值最大. 思维升华 回归分析问题的类型及解题方法 (1)求回归方程①根据散点图判断两变量是否线性相关,如不是,应通过换元构造线性相关. ②利用公式,求出回归系数b ^.③待定系数法:利用回归直线过样本点的中心求系数a ^.(2)利用回归方程进行预测,把线性回归方程看作一次函数,求函数值. (3)利用回归直线判断正、负相关,决定正相关还是负相关的是系数b ^.(4)回归方程的拟合效果,可以利用相关系数判断,当|r |越趋近于1时,两变量的线性相关性越强.跟踪训练1 (2018·全国Ⅱ)下图是某地区2000年至2016年环境基础设施投资额y (单位:亿元)的折线图.为了预测该地区2018年的环境基础设施投资额,建立了y 与时间变量t 的两个线性回归模型.根据2000年至2016年的数据(时间变量t 的值依次为1,2,…,17)建立模型①:y ^=-30.4+13.5t ;根据2010年至2016年的数据(时间变量t 的值依次为1,2,…,7)建立模型②:y ^=99+17.5t .(1)分别利用这两个模型,求该地区2018年的环境基础设施投资额的预测值; (2)你认为用哪个模型得到的预测值更可靠?并说明理由.解 (1)利用模型①,可得该地区2018年的环境基础设施投资额的预测值为y ^=-30.4+13.5×19=226.1(亿元).利用模型②,可得该地区2018年的环境基础设施投资额的预测值为y ^=99+17.5×9=256.5(亿元).(2)利用模型②得到的预测值更可靠. 理由如下:(ⅰ)从折线图可以看出,2000年至2016年的数据对应的点没有随机散布在直线y =-30.4+13.5t 上下,这说明利用2000年至2016年的数据建立的线性模型①不能很好地描述环境基础设施投资额的变化趋势.2010年相对2009年的环境基础设施投资额有明显增加,2010年至2016年的数据对应的点位于一条直线的附近,这说明从2010年开始环境基础设施投资额的变化规律呈线性增长趋势,利用2010年至2016年的数据建立的线性模型y ^=99+17.5t 可以较好地描述2010年以后的环境基础设施投资额的变化趋势,因此利用模型②得到的预测值更可靠.(ⅱ)从计算结果看,相对于2016年的环境基础设施投资额220亿元,由模型①得到的预测值226.1亿元的增幅明显偏低,而利用模型②得到的预测值的增幅比较合理,说明利用模型②得到的预测值更可靠.独立性检验例3 (2019·全国Ⅰ)某商场为提高服务质量,随机调查了50名男顾客和50名女顾客,每位顾客对该商场的服务给出满意或不满意的评价,得到下面列联表:(1)分别估计男、女顾客对该商场服务满意的概率;(2)能否有95%的把握认为男、女顾客对该商场服务的评价有差异? 附:K 2=n (ad -bc )2(a +b )(c +d )(a +c )(b +d ).解 (1)由调查数据,男顾客中对该商场服务满意的频率为4050=0.8,因此男顾客对该商场服务满意的概率的估计值为0.8. 女顾客中对该商场服务满意的频率为3050=0.6,因此女顾客对该商场服务满意的概率的估计值为0.6. (2)K 2的观测值k =100×(40×20-30×10)250×50×70×30≈4.762.由于4.762>3.841,故有95%的把握认为男、女顾客对该商场服务的评价有差异. 思维升华 独立性检验的一般步骤 (1)根据样本数据制成2×2列联表. (2)根据公式K 2=n (ad -bc )2(a +b )(a +c )(b +d )(c +d )计算K 2的观测值k .(3)比较k 与临界值的大小关系,作统计推断.跟踪训练2 (2017·全国Ⅱ)海水养殖场进行某水产品的新、旧网箱养殖方法的产量对比,收获时各随机抽取了100个网箱,测量各箱水产品的产量(单位:kg),其频率分布直方图如下:(1)记A 表示事件“旧养殖法的箱产量低于50 kg ”,估计A 的概率;(2)填写下面列联表,并根据列联表判断是否有99%的把握认为箱产量与养殖方法有关:(3)根据箱产量的频率分布直方图,对两种养殖方法的优劣进行比较. 附:K 2=n (ad -bc )2(a +b )(c +d )(a +c )(b +d ).解 (1)旧养殖法的箱产量低于50 kg 的频率为 (0.012+0.014+0.024+0.034+0.040)×5=0.62. 因此,事件A 的概率估计值为0.62.(2)根据箱产量的频率分布直方图得列联表如下:K 2的观测值k =200×(62×66-34×38)2100×100×96×104≈15.705.由于15.705>6.635,故有99%的把握认为箱产量与养殖方法有关.(3)箱产量的频率分布直方图表明:新养殖法的箱产量平均值(或中位数)在50 kg到55 kg之间,旧养殖法的箱产量平均值(或中位数)在45 kg到50 kg之间,且新养殖法的箱产量分布集中程度较旧养殖法的箱产量分布集中程度高,因此,可以认为新养殖法的箱产量较高且稳定,从而新养殖法优于旧养殖法.数据分析是指针对研究对象获得相关数据,运用统计方法对数据中的有用信息进行分析和推断,形成知识的过程.主要包括:收集数据、整理数据、提取信息、构建模型对信息进行分析、推断、获得结论.例(2019·全国Ⅲ)为了解甲、乙两种离子在小鼠体内的残留程度,进行如下试验:将200只小鼠随机分成A,B两组,每组100只,其中A组小鼠给服甲离子溶液,B组小鼠给服乙离子溶液.每只小鼠给服的溶液体积相同、摩尔浓度相同.经过一段时间后用某种科学方法测算出残留在小鼠体内离子的百分比.根据试验数据分别得到如下直方图:记C为事件“乙离子残留在体内的百分比不低于5.5”,根据直方图得到P(C)的估计值为0.70.(1)求乙离子残留百分比直方图中a ,b 的值;(2)分别估计甲、乙离子残留百分比的平均值(同一组中的数据用该组区间的中点值为代表). 解 (1)由已知得0.70=a +0.20+0.15, 故a =0.35.b =1-0.05-0.15-0.70=0.10.(2)甲离子残留百分比的平均值的估计值为2×0.15+3×0.20+4×0.30+5×0.20+6×0.10+7×0.05=4.05. 乙离子残留百分比的平均值的估计值为3×0.05+4×0.10+5×0.15+6×0.35+7×0.20+8×0.15=6.00.素养提升 考题从所给直方图中的数据来进行求甲、乙离子残留百分化的平均值的过程体现的就是数据分析素养.1.已知变量x 和y 满足关系y ^=-0.1x +1,变量y 与z 正相关.下列结论中正确的是( )A .x 与y 正相关,x 与z 负相关B .x 与y 正相关,x 与z 正相关C .x 与y 负相关,x 与z 负相关D .x 与y 负相关,x 与z 正相关 答案 C解析 因为y ^=-0.1x +1,-0.1<0,所以x 与y 负相关.又y 与z 正相关,故可设z ^=b ^y +a ^(b ^>0),所以z ^=-0.1b ^x +b ^+a ^,-0.1b ^<0,所以x 与z 负相关.故选C. 2.(2020·四川成都外国语学校诊断)根据如表所示的样本数据:得到了回归方程y ^=b ^x +a ^,则( ) A.a ^>0,b ^>0 B.a ^<0,b ^>0 C.a ^>0,b ^<0 D.a ^<0,b ^<0答案 C解析 由表中的数据可知,随着x 的增大,y 逐渐减小,则b ^<0; 因为当x =0时,y ^=a ^,由表中数据可推出a ^>0.3.(2020·蓉城名校联盟联考)某校高三数学月活动记录了4名学生改进数学学习方法后,每天增加学习时间x (分钟)与月考成绩增加分数y (分)的几组对应数据:根据表中提供的数据,若求出y 关于x 的线性回归方程为y ^=0.8x +0.35,则表中m 的值为( ) A .4 B .4.15 C .4.8 D .4.35 答案 C解析 根据线性回归方程过样本点的中心⎝⎛⎭⎫3+4+5+64,2+4+m +54,即⎝⎛⎭⎫92,11+m 4, 可得11+m 4=0.8×92+0.35⇒11+m =15.8⇒m =4.8.4.以下五个命题:①在匀速传递的产品生产流水线上,质检员每20分钟从中抽取一件产品进行某项指标检测,这样的抽样是分层抽样;②两个随机变量相关性越强,则相关系数的绝对值越接近于1;③回归直线y ^=b ^x +a ^必过点(x ,y );④在线性回归方程y ^=0.2x +12中,当解释变量x 每增加1个单位时,预报变量平均增加0.2个单位;⑤分类变量X 与Y ,对它们的随机变量K 2的观测值k 来说,k 越小,“X 与Y 有关系”的把握程度越大. 其中假命题为( )A .①④B .①⑤C .②③D .③④ 答案 B解析 ①为系统抽样;⑤分类变量X 与Y ,对它们的随机变量K 2的观测值k 来说,k 越大,“X 与Y 有关系”的把握程度越大.5.下表是我国某城市在2017年1月份至10月份期间各月最低温度与最高温度(单位:℃)的数据一览表.已知该城市的各月最低温与最高温具有相关关系,根据该一览表,则下列结论错误的是( ) A .最低温度与最高温度为正相关B .每月最高温度与最低温度的平均值在前8个月逐月增加C .月温差(最高温度减最低温度)的最大值出现在1月D .1月至4月的月温差(最高温度减最低温度)相对于7月至10月,波动性更大 答案 B解析 将最高温度、最低温度、温差列表如下:由表格可知,最低温度大致随最高温度的升高而升高,A 正确; 每月最高温度与最低温度的平均值在前8个月不是逐月增加,B 错误; 月温差的最大值出现在1月,C 正确;1月至4月的月温差相对于7月至10月,波动性更大,D 正确.6.2018世界特色魅力城市200强新鲜出炉,包括黄山市在内的28个中国城市入选,美丽的黄山风景和人文景观迎来众多宾客.现在很多人喜欢“自助游”,某调查机构为了了解“自助游”是否与性别有关,在黄山旅游节期间,随机抽取了100人,得如下所示的列联表:参考公式:K 2=n (ad -bc )2(a +b )(c +d )(a +c )(b +d ),其中n =a +b +c +d .参照公式,得到的正确结论是( )A .有99.5%以上的把握认为“赞成‘自助游’与性别无关”B .有99.5%以上的把握认为“赞成‘自助游’与性别有关”C .在犯错误的概率不超过0.1的前提下,认为“赞成‘自助游’与性别无关”D .在犯错误的概率不超过0.1的前提下,认为“赞成‘自助游’与性别有关” 答案 D解析 将2×2列联表中的数据代入计算,得K 2=100×(30×10-45×15)245×55×75×25≈3.030,∵2.706<3.030<3.841,∴在犯错误的概率不超过0.1的前提下,可以认为“赞成‘自助游’与性别有关”.7.根据下表中的数据可以得到线性回归方程y ^=0.7x +0.35,则实数m ,n 应满足( )A.n -0.7m =1.7 B .n -0.7m =1.5 C .n +0.7m =1.7 D .n +0.7m =1.5 答案 A解析 x =14(3+m +5+6)=14(14+m ),y =14(2.5+3+4+n )=14(9.5+n ),故14(9.5+n )=0.7×14(14+m )+0.35, 解得n -0.7m =1.7.8.某市居民2015~2019年家庭年平均收入x (单位:万元)与年平均支出y (单位:万元)的统计资料如下表所示:根据统计资料,居民家庭年平均收入的中位数是______,家庭年平均收入与年平均支出有________相关关系.(填“正”或“负”) 答案 13 正解析 中位数是13.由相关性知识,根据统计资料可以看出,当年平均收入增多时,年平均支出也增多,因此两者之间具有正相关关系.9.为了判断高中三年级学生选修文科是否与性别有关,现随机抽取50名学生,得到如图所示2×2列联表:已知P (K 2≥3.841)≈0.05,P (K 2≥5.024)≈0.025.根据表中数据,得到K 2的观测值k =50×(13×20-10×7)223×27×20×30≈4.844,则有________的把握认为选修文科与性别有关.答案 95% 解析由题意,K 2=50×(13×20-10×7)223×27×20×30≈4.844,因为4.844>3.841,所以有95%的把握认为选修文科与性别有关.10.某公司为确定明年投入某产品的广告支出,对近5年的年广告支出m 与年销售额t (单位:百万元)进行了初步统计,得到下列表格中的数据:经测算,年广告支出m 与年销售额t 满足线性回归方程t ^=6.5m +17.5,则p =________. 答案 60解析 由于回归直线过样本点的中心,m =5,t =190+p5,代入t ^=6.5m +17.5,解得p =60.11.(2020·西南大学附中月考)下表是某地一家超市在2017年一月份某一周内周2到周6的时间x 与每天获得的利润y (单位:万元)的有关数据.(1)根据上表提供的数据,用最小二乘法求线性回归方程y ^=b ^x +a ^; (2)估计星期日获得的利润为多少万元. 参考公式:线性回归方程是:y ^=b ^x +a ^,⎩⎪⎨⎪⎧b ^=∑i =1n(x i-x )(y i-y )∑i =1n(x i-x )2=∑i =1nx i y i-n x y ∑i =1nx 2i-n x 2,a ^=y -b ^x .解 (1)由题意可得x =2+3+4+5+65=4,y =2+3+5+6+95=5,因此b ^=2×2+3×3+4×5+5×6+6×9-5×4×54+9+16+25+36-5×16=1.7,所以a ^=y -b ^x =5-6.8=-1.8,所以y ^=1.7x -1.8. (2)由(1)可得,当x =7时,y ^=1.7×7-1.8=10.1(万元), 即估计星期日获得的利润为10.1万元.12.某淘宝店经过对春节七天假期的消费者的消费金额进行统计,发现在消费金额不超过1 000元的消费者中男女比例为1∶4,该店按此比例抽取了100名消费者进行进一步分析,得到下表: 女性消费情况:男性消费情况:若消费金额不低于600元的网购者为“网购达人”,低于600元的网购者为“非网购达人”. (1)分别计算女性和男性消费的平均数,并判断平均消费水平高的一方“网购达人”出手是否更阔绰?(2)根据列表中统计数据填写如下2×2列联表,并判断能否在犯错误的概率不超过0.005的前提下认为“是否为‘网购达人’与性别有关”.附:K 2=n (ad -bc )2(a +b )(c +d )(a +c )(b +d ),其中n =a +b +c +d .解 (1)女性消费者消费的平均数为180×(100×5+300×10+500×15+700×47+900×3)=582.5.男性消费者消费的平均数为120×(100×2+300×3+500×10+700×3+900×2)=500. “女网购达人”消费的平均数为150×(700×47+900×3)=712.“男网购达人”消费的平均数为15×(700×3+900×2)=780.虽然女性消费者平均消费水平较高,但“女网购达人”平均消费水平低于“男网购达人”平均消费水平,所以“平均消费水平”高的一方“网购达人”出手不一定更阔绰. (2)2×2列联表如下所示:K 2的观测值k =100×(50×15-30×5)280×20×55×45≈9.091,因为9.091>7.879,所以能在犯错误的概率不超过0.005的前提下认为“是否为‘网购达人’与性别有关”.13.某汽车的使用年数x 与所支出的维修总费用y 的统计数据如表:根据上表可得y 关于x 的线性回归方程y ^=b ^x -0.69,若该汽车维修总费用超过10万元就不再维修,直接报废,据此模型预测该汽车最多可使用(不足1年按1年计算)( ) A .8年 B .9年 C .10年 D .11年 答案 D解析 由回归直线y ^=b ^x -0.69过样本点的中心(3,2.34),得b ^=1.01, 即线性回归方程为y ^=1.01x -0.69, 由y ^=1.01x -0.69=10得x ≈10.6, 所以预测该汽车最多可使用11年,故选D.14.某工厂为了对一种新研究的产品进行合理定价,将该产品按事先拟定的价格进行试销,得到如下数据:由表中数据,求得线性回归方程为y ^=-4x +a ^.若在这些样本点中任取一点,则它在回归直线左下方的概率为________. 答案 13解析 由表中数据得x =6.5,y =80,由y =-4x +a ^,得a ^=106,故线性回归方程为y ^=-4x +106.将(4,90),(5,84),(6,83),(7,80),(8,75),(9,68)分别代入回归方程,可知有6个基本事件,因84<-4×5+106=86,68<-4×9+106=70,故(5,84)和(9,68)在回归直线的左下方,满足条件的只有2个,故所求概率为26=13.15.在一组样本数据(x 1,y 1),(x 2,y 2),…,(x 6,y 6)的散点图中,若所有样本点(x i ,y i )(i =1,2,…,6)都在曲线y =bx 2-12附近波动.经计算∑6i =1x i =12,∑6i =1y i =14,∑6i =1x 2i =23,则实数b 的值为______. 答案1723解析 令t =x 2,则曲线的回归方程变为线性的回归方程,即y =bt -12,此时t =∑6i =1x 2i 6=236,y =∑6i =1y i 6=146,代入y =bt -12,得146=b ×236-12,解得b =1723.16.某电视厂家准备在元旦举行促销活动,现根据近七年的广告费与销售量的数据确定此次广告费支出.广告费支出x (万元)和销售量y (万台)的数据如下:(1)若用线性回归模型拟合y 与x 的关系,求出y 关于x 的线性回归方程;(2)若用y =c +d x 模型拟合y 与x 的关系,可得回归方程y ^=1.63+0.99x ,经计算线性回归模型和该模型的R 2分别为0.75和0.88,请用R 2说明选择哪个回归模型更好; (3)已知利润z 与x ,y 的关系为z =200y -x .根据(2)的结果回答下列问题: ①广告费x =20时,销售量及利润的预报值是多少? ②广告费x 为何值时,利润的预报值最大?(精确到0.01)参考公式:回归直线y ^=a ^+b ^x 的斜率和截距的最小二乘估计值分别为b ^=∑i =1nx i y i -n x y∑i =1nx 2i -n x2=∑i =1n(x i -x )(y i -y )∑i =1n(x i -x )2,a ^=y -b ^x .参考数据:5≈2.24.解 (1)∵x =8,y =4.2,∑i =17x i y i =279.4,∑i =17x 2i =708,∴b ^=∑i =17x i y i -7x y∑i =17x 2i -7x2=279.4-7×8×4.2708-7×82=0.17,a ^=y -b ^x =4.2-0.17×8=2.84, ∴y 关于x 的线性回归方程为y ^=0.17x +2.84.(2)∵0.75<0.88且R 2越大,反映残差平方和越小,模型的拟合效果越好, ∴选用y ^=1.63+0.99x 更好. (3)由(2)知,①当x =20时,销售量的预报值y ^=1.63+0.9920≈6.07(万台), 利润的预报值z =200×(1.63+0.9920)-20≈1 193.04(万元). ②z =200(1.63+0.99x )-x =-x +198x +326 =-(x )2+198x +326=-(x -99)2+10 127, ∴当x =99,即x =9 801时,利润的预报值最大, 故广告费为9 801万元时,利润的预报值最大.。

2021届步步高数学大一轮复习讲义(理科)第十章 10.3二项式定理

2021届步步高数学大一轮复习讲义(理科)第十章 10.3二项式定理

§10.3二项式定理1.二项式定理2.二项式系数的性质(1)C 0n =1,C n n =1,C m n +1=C m -1n +C m n . C m n =C n -mn(0≤m ≤n ).(2)二项式系数先增后减中间项最大.当n 为偶数时,第n 2+1项的二项式系数最大,最大值为2C nn ,当n 为奇数时,第n +12项和第n +32项的二项式系数最大,最大值为12Cn n -或12Cn n+.(3)各二项式系数和:C 0n +C 1n +C 2n +…+C n n =2n ,C 0n +C 2n +C 4n +…=C 1n +C 3n +C 5n+…=2n -1. 概念方法微思考1.(a +b )n 与(b +a )n 的展开式有何区别与联系?提示 (a +b )n 的展开式与(b +a )n 的展开式的项完全相同,但对应的项不相同而且两个展开式的通项不同.2.二项展开式中二项式系数最大时该项的系数就最大吗?提示 不一定最大,当二项式中a ,b 的系数为1时,此时二项式系数等于项的系数,否则不一定.题组一 思考辨析1.判断下列结论是否正确(请在括号中打“√”或“×”)(1)C k n an -k b k 是(a +b )n 的展开式的第k 项.( × ) (2)(a +b )n 的展开式中某一项的二项式系数与a ,b 无关.( √ ) (3)二项展开式中,系数最大的项为中间一项或中间两项.( × )(4)(a +b )n 某项的系数是该项中非字母因数部分,包括符号等,与该项的二项式系数不同.( √ )题组二 教材改编2.(1+2x )5的展开式中,x 2的系数等于( ) A .80 B .40 C .20 D .10 答案 B解析 T k +1=C k 5(2x )k =C k 52k x k ,当k =2时,x 2的系数为C 25·22=40. 3.若⎝⎛⎭⎫x +1x n 展开式的二项式系数之和为64,则展开式的常数项为( ) A .10 B .20 C .30 D .120 答案 B解析 二项式系数之和2n =64,所以n =6,T k +1=C k 6·x 6-k ·⎝⎛⎭⎫1x k=C k 6x 6-2k ,当6-2k =0,即当k =3时为常数项,T 4=C 36=20.4.若(x -1)4=a 0+a 1x +a 2x 2+a 3x 3+a 4x 4,则a 0+a 2+a 4的值为( ) A .9 B .8 C .7 D .6 答案 B解析 令x =1,则a 0+a 1+a 2+a 3+a 4=0,令x =-1,则a 0-a 1+a 2-a 3+a 4=16,两式相加得a 0+a 2+a 4=8. 题组三 易错自纠5.(x -y )n 的二项展开式中,第m 项的系数是( ) A .C m nB .C m +1nC .C m -1nD .(-1)m -1C m -1n答案 D解析 (x -y )n 二项展开式第m 项的通项为T m =C m -1n (-y )m -1x n -m +1, 所以系数为C m -1n(-1)m -1. 6.在⎝⎛⎭⎫2x 2-1x n 的展开式中,所有二项式系数的和是32,则展开式中各项系数的和为________. 答案 1解析 因为所有二项式系数的和是32,所以2n =32,解得n =5. 在⎝⎛⎭⎫2x 2-1x 5中,令x =1可得展开式中各项系数的和为(2-1)5=1.多项展开式的特定项命题点1 二项展开式问题例1 (1)(2019·天津)⎝⎛⎭⎫2x -18x 38的展开式中的常数项为________. 答案 28解析 二项展开式的通项T k +1=C k 8(2x )8-k ⎝⎛⎭⎫-18x 3k =⎝⎛⎭⎫-18k ·28-k C k 8x 8-4k,令8-4k =0可得k =2,故常数项为⎝⎛⎭⎫-182×26×C 28=28. (2)(2019·浙江)在二项式(2+x )9的展开式中,常数项是________,系数为有理数的项的个数是________. 答案 162 5解析 该二项展开式的第k +1项为T k +1=C k 9(2)9-k x k ,当k =0时,第1项为常数项,所以常数项为(2)9=162;当k =1,3,5,7,9时,展开式的项的系数为有理数,所以系数为有理数的项的个数为5.命题点2 两个多项式积的展开式问题例2 (1)(2019·全国Ⅲ)(1+2x 2)(1+x )4的展开式中x 3的系数为( ) A .12 B .16 C .20 D .24 答案 A解析 展开式中含x 3的项可以由“1与x 3”和“2x 2与x ”的乘积组成,则x 3的系数为C 34+2C 14=4+8=12.(2)(2017·全国Ⅰ)⎝⎛⎭⎫1+1x 2(1+x )6的展开式中x 2的系数为( )A .15B .20C .30D .35 答案 C解析 因为(1+x )6的通项为C k 6x k ,所以⎝⎛⎭⎫1+1x 2(1+x )6的展开式中含x 2的项为1·C 26x 2和1x 2·C 46x 4. 因为C 26+C 46=2C 26=2×6×52×1=30, 所以⎝⎛⎭⎫1+1x 2(1+x )6的展开式中x 2的系数为30. 故选C.命题点3 三项展开式问题例3 (1)(x 2+x +y )5的展开式中,x 5y 2的系数为( ) A .10 B .20 C .30 D .60 答案 C解析 方法一 利用二项展开式的通项公式求解. (x 2+x +y )5=[(x 2+x )+y ]5,含y 2的项为T 3=C 25(x 2+x )3·y 2. 其中(x 2+x )3中含x 5的项为C 13x 4·x =C 13x 5. 所以x 5y 2的系数为C 25C 13=30.故选C.方法二 利用排列组合知识求解.(x 2+x +y )5为5个x 2+x +y 之积,其中有两个因式取y ,剩余的三个因式中两个取x 2,一个取x 即可,所以x 5y 2的系数为C 25C 23C 11=30.故选C.(2)⎝⎛⎭⎫x -1x +15展开式中的常数项为( ) A .1 B .11 C .-19 D .51 答案 B解析 ⎝⎛⎭⎫x -1x +15=⎣⎡⎦⎤⎝⎛⎭⎫x -1x +15 展开式的通项为T k +1=C k 5⎝⎛⎭⎫x -1x 5-k 当k =5时,常数项为C 55=1,当k =3时,常数项为-C 12C 35=-20, 当k =1时,常数项为C 45C 24=30.综上所述,常数项为1-20+30=11.思维升华 (1)求二项展开式中的特定项,一般是化简通项公式后,令字母的指数符合要求(求常数项时,指数为零;求有理项时,指数为整数等),解出项数k +1,代回通项公式即可. (2)对于几个多项式积的展开式中的特定项问题,一般都可以根据因式连乘的规律,结合组合思想求解,但要注意适当地运用分类方法,以免重复或遗漏. (3)对于三项式问题一般先变形化为二项式再解决.跟踪训练1 (1)(x 2+x +1)(x -1)4的展开式中,x 3的系数为( ) A .-3 B .-2 C .1 D .4 答案 B解析 (x -1)4的通项为T k +1=C k 4x 4-k (-1)k ,(x 2+x +1)(x -1)4的展开式中, x 3的系数为C 34(-1)3+C 24(-1)2+C 14(-1)=-2,故选B.(2)(x +a )10的展开式中,x 7项的系数为15,则a =______.(用数字填写答案) 答案 12解析 通项为T k +1=C k 10x 10-k a k ,令10-k =7, ∴k =3,∴x 7项的系数为C 310a 3=15,∴a 3=18,∴a =12.(3)(1+2x -3x 2)5展开式中x 5的系数为________. 答案 92解析 方法一 (1+2x -3x 2)5=[(1+2x )-3x 2]5=C 05(1+2x )5+C 15(1+2x )4(-3x 2)+C 25(1+2x )3(-3x 2)2+…+C 55(-3x 2)5, 所以x 5的系数为C 05C 5525+C 15C 34×23×(-3)+C 25C 13×2×(-3)2=92.方法二 (1+2x -3x 2)5=(1-x )5(1+3x )5, 所以x 5的系数为C 05C 5535+C 15(-1)C 4534+C 25(-1)2C 3533+C 35(-1)3C 2532+C 45(-1)4C 1531+C 55(-1)5C 0530=92.二项式系数的和与各项系数的和问题命题点1 二项式系数和与系数和例4 (1)若二项式⎝⎛⎭⎫x 2-2x n 的展开式的二项式系数之和为8,则该展开式每一项的系数之和为( )A .-1B .1C .27D .-27 答案 A解析 依题意得2n =8,解得n =3.取x =1得, 该二项展开式每一项的系数之和为(1-2)3=-1.(2)若(2-x )7=a 0+a 1(1+x )+a 2(1+x )2+…+a 7(1+x )7,则a 0+a 1+a 2+…+a 6的值为( ) A .1 B .2 C .129 D .2 188答案 C解析 令x =0得a 0+a 1+a 2+…+a 7=27=128, 又(2-x )7=[3-(x +1)]7,则a 7(1+x )7=C 77·30·[-(x +1)]7,解得a 7=-1. 故a 0+a 1+a 2+…+a 6=128-a 7=128+1=129. 命题点2 二项式系数的最值问题例5 (2019·马鞍山模拟)二项式⎝⎛⎭⎪⎫3x +13x n的展开式中只有第11项的二项式系数最大,则展开式中x 的指数为整数的项的个数为( ) A .3 B .5 C .6 D .7解析 根据⎝⎛⎭⎪⎫3x +13x n的展开式中只有第11项的二项式系数最大,得n =20, ∴⎝ ⎛⎭⎪⎫3x +13x n 的展开式的通项为T k +1=C k 20·(3x )20-k ·⎝ ⎛⎭⎪⎫13x k =(3)20-k ·C k 20·4203kx -,要使x 的指数是整数,需k 是3的倍数,∴k =0,3,6,9,12,15,18,∴x 的指数是整数的项共有7项. 思维升华 (1)形如(ax +b )n ,(ax 3+bx +c )m (a ,b ,c ∈R )的式子求其展开式的各项系数之和,常采用赋值法,只需令x =1即可.(2)当n 为偶数时,展开式中第n 2+1项的二项式系数最大,最大值为2C nn ;当n 为奇数时,展开式中第n +12项和第n +32项的二项式系数最大,最大值为12C n n -或12C n n +.跟踪训练2 (1)已知(1+x )n 的展开式中第5项和第7项的二项式系数相等,则奇数项的二项式系数和为( )A .29B .210C .211D .212 答案 A解析 由题意知C 4n =C 6n ,由组合数性质得n =10,则奇数项的二项式系数和为2n -1=29. (2)(2020·广西重点高中模拟)已知(2+ax )·(1+x )5的展开式中x 2的系数为15,则展开式中x 的偶次方的系数和为( ) A .16 B .32 C .24 D .48 答案 A解析 (2+ax )(1+x )5的展开式中x 2的系数为15,即2C 25+a C 15=15,解得a =-1. 设(2-x )(1+x )5=a 0+a 1x +a 2x 2+a 3x 3+a 4x 4+a 5x 5+a 6x 6, 令x =1,得25=a 0+a 1+a 2+a 3+a 4+a 5+a 6, 令x =-1,得0=a 0-a 1+a 2-a 3+a 4-a 5+a 6, 两式相加得,a 0+a 2+a 4+a 6=24=16.(3)已知m 为正整数,(x +y )2m 展开式的二项式系数的最大值为a ,(x +y )2m +1展开式的二项式系数的最大值为b .若13a =7b ,则m 等于( ) A .5 B .6 C .7 D .8解析 由题意可知,a =C m 2m ,b =C m2m +1,∵13a =7b ,∴13·(2m )!m !m !=7·(2m +1)!m !(m +1)!,即137=2m +1m +1,解得m =6.1.在⎝⎛⎭⎫x 2-2x 6的展开式中,常数项为( ) A .-240 B .-60 C .60 D .240 答案 D解析 ⎝⎛⎭⎫x 2-2x 6的二项展开式的通项为T k +1=C k 6·(x 2)6-k ⎝⎛⎭⎫-2x k =C k 6(-2)k x 12-3k ,令12-3k =0得k =4,即常数项为T 5=C 46(-2)4=240.2.⎝⎛⎭⎫2x -1x 5的展开式中x 3项的系数为( ) A .80 B .-80 C .-40 D .48答案 B解析 ⎝⎛⎭⎫2x -1x 5的展开式的通项为T k +1=C k 5(2x )5-k ·⎝⎛⎭⎫-1x k =(-1)k ·25-k ·C k 5·x 5-2k , 令5-2k =3,得k =1.于是展开式中x 3项的系数为(-1)·25-1·C 15=-80,故选B.3.若⎝⎛⎭⎫x 6+1x x n 的展开式中含有常数项,则n 的最小值等于( ) A .3 B .4 C .5 D .6答案 C解析 ⎝⎛⎭⎫x 6+1x x n 展开式的通项为C k n (x 6)n -k ·32k x -⎛⎫ ⎪⎝⎭=1562C n k k n x -,k =0,1,2,…n , 则依题设,由6n -152k =0, 得n =54k ,∴n 的最小值等于5. 4.(2020·四川联合诊断)(1-x 3)(1-x )9的展开式中x 4的系数为( )A .124B .135C .615D .625答案 B解析 当第一个因式取1时,后面因式应取x 4对应的通项:C 4915(-x )4=126x 4,1×126x 4=126x 4,对应x 4的系数为126; 当第一个因式取-x 3时,后面因式应取x 对应的通项:C 1918(-x )1=-9x ,-x 3·(-9x )=9x 4,对应x 4的系数为9,所以(1-x 3)(1-x )9的展开式中x 4的系数为126+9=135.5.(x +y )(2x -y )6的展开式中x 4y 3的系数为( )A .-80B .-40C .40D .80答案 D解析 (2x -y )6的展开式的通项为T k +1=C k 6(2x )6-k (-y )k ,当k =2时,T 3=240x 4y 2, 当k =3时,T 4=-160x 3y 3,故x 4y 3的系数为240-160=80,故选D.6.(2020·安徽安庆期末)在二项式⎝⎛⎭⎫x -1xn 的展开式中恰好第五项的二项式系数最大,则展开式中含有x 2项的系数是( )A .35B .-35C .-56D .56答案 C解析 由于第五项的二项式系数最大,所以n =8.所以二项式⎝⎛⎭⎫x -1x 8展开式的通项为T k +1=C k 8x 8-k ·(-x -1)k =(-1)k C k 8x 8-2k ,令8-2k =2,得k =3,故展开式中含有x 2项的系数是(-1)3C 38=-56.7.(1+3x )n 的展开式中x 5与x 6的系数相等,则x 4的二项式系数为( )A .21B .35C .45D .28答案 B解析 ∵T k +1=C k n (3x )k =3k C k n x k ,由已知得35C 5n =36C 6n ,即C 5n =3C 6n ,∴n =7, 因此,x 4的二项式系数为C 47=35,故选B.8.在⎝⎛⎭⎫x +3x n 的展开式中,各项系数和与二项式系数和之比为32∶1,则x 2的系数为() A .50 B .70 C .90 D .120答案 C解析 令x =1,则⎝⎛⎭⎫x +3x n =4n ,所以⎝⎛⎭⎫x +3x n 的展开式中,各项系数和为4n , 又二项式系数和为2n ,所以4n2n =2n =32,解得n =5.二项展开式的通项T k +1=C k 5x 5-k ⎝⎛⎭⎫3x k =3525C 3k k k x -,令5-32k =2,得k =2,所以x 2的系数为C 2532=90.9.(2020·贵州贵阳检测)⎝⎛⎭⎫x -2x 4展开式中含x -2项的系数为________.(用数字作答)答案 -32解析 二项展开式的通项T k +1=C k 4x 4-k ⎝⎛⎭⎫-2x k =C k 4x 4-2k (-2)k ,根据4-2k =-2,得k =3,所以含x -2项的系数为C 34(-2)3=-32.10.(2020·四川成都检测)⎝⎛⎭⎫2x +1x 4展开式的常数项是________. 答案 24解析 ⎝⎛⎭⎫2x +1x 4展开式的通项为T k +1=C k 4(2x )4-k ⎝⎛⎭⎫1x k =24-k C k 4x 4-2k .令4-2k =0,得k =2,所以该展开式的常数项为22C 24=24.11.(2-3x )2(1-x )7的展开式中,x 3的系数为________. 答案 -455解析 依题意,x 3的系数为4C 37×(-1)3-12C 27(-1)2+9C 17(-1)=-455.12.若在⎝⎛⎭⎫2x +1x n 的二项展开式中,第3项和第4项的二项式系数相等且最大,则⎝⎛⎭⎫x -2x ·⎝⎛⎭⎫2x +1x n 的展开式中的常数项为________. 答案 -120解析 由⎝⎛⎭⎫2x +1x n 的二项展开式中二项式系数的最大项是第3项和第4项, 则展开式共6项,即n =6-1=5,又⎝⎛⎭⎫2x +1x n 展开式的通项为T k +1=C k 5(2x )5-k ⎝⎛⎭⎫1x k =25-k C k 5x 5-2k , 则⎝⎛⎭⎫x -2x ·⎝⎛⎭⎫2x +1x n 的展开式中的常数项为22C 35-2·23C 25=-120.13.已知(x cos θ+1)5的展开式中x 2的系数与⎝⎛⎭⎫x +544的展开式中x 3的系数相等,且θ∈(0,π),则θ等于( )A.π4B.π4或3π4C.π3D.π3或2π3答案 B 解析 由二项式定理知(x cos θ+1)5的展开式中x 2的系数为C 35cos 2θ,⎝⎛⎭⎫x +544的展开式中x 3的系数为C 14×54, 所以C 35cos 2θ=C 14×54,解得cos 2θ=12,解得cos θ=±22, 又θ∈(0,π),所以θ=π4或3π4,故选B. 14.⎝⎛⎭⎫2x +1x -35的展开式中常数项是________. 答案 -1 683解析 ⎝⎛⎭⎫2x +1x -35表示五个⎝⎛⎭⎫2x +1x -3相乘,则展开式中的常数项由三种情况产生,第一种是从五个⎝⎛⎭⎫2x +1x -3中分别抽取2x,2x ,1x ,1x,-3,则此时的常数项为C 25·C 23·22·(-3)=-360,第二种情况是从五个⎝⎛⎭⎫2x +1x -3中都抽取-3,则此时的常数项为(-3)5=-243,第三种情况是从五个⎝⎛⎭⎫2x +1x -3中分别抽取2x ,1x,-3,-3,-3, 则此时的常数项为C 15·C 14·21·(-3)3=-1 080, 则展开式中常数项为-360-243-1 080=-1 683.15.设a ,b ,m 为整数(m >0),若a 和b 被m 除得的余数相同,则称a 和b 对模m 同余,记为a ≡b (mod m ).若a =C 020+C 120·2+C 220·22+…+C 2020·220,a ≡b (mod10),则b 的值可以是( ) A .2 018 B .2 019 C .2 020 D .2 021答案 D解析 a =C 020+C 120·2+C 220·22+…+C 2020·220=(1+2)20=320=(80+1)5, 它被10除所得余数为1,又a ≡b (mod10),所以b 的值可以是2 021.16.若⎝ ⎛⎭⎪⎫x +24x n 展开式中前三项的系数和为163,求: (1)展开式中所有x 的有理项;(2)展开式中系数最大的项.解 易求得展开式前三项的系数为1,2C 1n ,4C 2n .由题意得1+2C 1n +4C 2n =163,可得n =9.(1)设展开式中的有理项为T k +1,由T k +1=C k 9(x )9-k ⎝ ⎛⎭⎪⎫24x k =2k C k 91834k x -, 又∵0≤k ≤9,∴k =2,6.故有理项为T 3=22C 29·18324x -⨯=144x 3, T 7=26·C 69·18364x -⨯=5 376.(2)设展开式中T k +1项的系数最大,则⎩⎪⎨⎪⎧2k C k 9≥2k +1C k +19,2k C k 9≥2k -1C k -19, ∴173≤k ≤203, 又∵k ∈N ,∴k =6,故展开式中系数最大的项为T 7=5 376.。

【走向高考】高三数学一轮总复习 10-3变量间的相关关系课件 北师大版

【走向高考】高三数学一轮总复习 10-3变量间的相关关系课件 北师大版

(2)回归直线方程 回归直线方程 y=a+bx 中
i=1
xi- x yi- y xi- x 2
nnBiblioteka b=i=1i=1
xiyi-n x y
2 - n x x2 i n
n

i=1
a= y -b x x1+x2+…+xn y1+y2+…yn 其中 x = ,y= n n
走向高考· 数学
北师大版 ·高考一轮总复习
路漫漫其修远兮 吾将上下而求索
第十章
统计、统计案例
第十章
第三节 变量间的相关关系
高考目标
3
课堂典例讲练
课前自主预习
4
思想方法点拨
5
课后强化作业
高考目标
考纲解读 1.会作两个有关联变量的数据的散点图,会利用散点图 认识变量间的相关关系. 2.了解最小二乘法的思想,能根据给出的线性回归方程 系数公式建立线性回归方程.
3.(2012· 南昌模拟)某商品销售量 y(件)与销售价格 x(元/ 件)负相关,则其回归方程可能是( ^ A.y=-10x+200 ^ C.y=-10x-200 )
^ B.y=10x+200 ^ D.y=10x-200
[答案]
A
[解析]
因为销量与价格负相关,由函数关系考虑为减函
数,又因为 x,y 不能为负数,再排除 C,故选 A.
[答案] C
[解析]
回归直线必过点(4,5),故其方程为 y-5=1.23(x
-4),即 y=1.23x+0.08,故选 C.
5. (2011· 辽宁理, 14)调查了某地若干户家庭的年收入 x(单 位:万元)和年饮食支出 y(单位:万元),调查显示年收入 x 与 年饮食支出 y 具有线性相关关系, 并由调查数据得到 y 对 x 的 ^ 回归直线方程:y=0.254x+0.321.由回归直线方程可知,家庭 年收入每增加 1 万元,年饮食支出平均增加________万元.

【步步高】(广东专用)2021高考数学一轮温习 第2讲 变量间的相关关系与统计案例同步检测 文(1)

【步步高】(广东专用)2021高考数学一轮温习 第2讲 变量间的相关关系与统计案例同步检测 文(1)

第2讲 变量间的相关关系与统计案例一、选择题 1.有五组变量:①汽车的重量和汽车每消耗1升汽油所行驶的平均路程; ②平均日学习时刻和平均学习成绩; ③某人每日抽烟量和躯体健康情形; ④圆的半径与面积;⑤汽车的重量和每千米耗油量. 其中两个变量成正相关的是( )A .①③B .②④C .②⑤D .④⑤解析 由变量的相关关系的概念知,②⑤是正相关,①③是负相关,④为函数关系,应选C. 答案 C2.已知x ,y 取值如下表:从所得的散点图分析可知:y 与x 线性相关,且y =0.95x +a ,那么a =( ). A .1.30B .1.45C .1.65D .1.80解析 依题意得,x =16×(0+1+4+5+6+8)=4,y =16×(1.3+1.8+5.6+6.1+7.4+9.3)=5.25.又直线y ^=0.95x +a 必过样本中心点(x ,y ),即点(4,5.25),于是有5.25=0.95×4+a ,由此解得a =1.45,选B. 答案 B3.在研究抽烟与患肺癌的关系中,通过搜集数据、整理分析数据得“抽烟与患肺癌有关”的结论,而且有99%以上的把握以为那个结论是成立的,那么以下说法中正确的选项是( ). A .100个抽烟者中至少有99人患有肺癌 B .1个人抽烟,那么这人有99%的概率患有肺癌 C .在100个抽烟者中必然有患肺癌的人D .在100个抽烟者中可能一个患肺癌的人也没有解析 统计的结果只是说明事件发生可能性的大小,具体到一个个体不必然发生. 答案 D4.某产品的广告费用x 与销售额y 的统计数据如下表:依照上表可得回归方程y =b x +a 中的b 为9.4,据此模型预报广告费用为6万元时销售额为 ( ). A .63.6万元B .65.5万元C .67.7万元D .72.0万元解析x =4+2+3+54=3.5(万元), y =49+26+39+544=42(万元),∴a ^=y -b ^x =42-9.4×3.5=9.1, ∴回归方程为y ^=9.4x +9.1,∴当x =6(万元)时,y ^=9.4×6+9.1=65.5(万元). 答案 B5.为了解儿子身高与其父切身高的关系,随机抽取5对父子的身高数据如下:则y 对x A .y =x -1B .y =x +1C .y =88+12xD .y =176解析 由题意得x =174+176+176+176+1785=176(cm),y =175+175+176+177+1775=176(cm),由于(x ,y )必然知足线性回归方程,体会证知选C.答案 C6.已知数组(x 1,y 1),(x 2,y 2),…,(x 10,y 10)知足线性回归方程y ^=bx +a ,那么“(x 0,y 0)知足线性回归方程y ^=bx +a ”是“x 0=x 1+x 2+…+x 1010,y 0=y 1+y 2+…+y 1010”的( ).A .充分没必要要条件B .必要不充分条件C .充要条件D .既不充分也没必要要条件解析 x 0,y 0为这10组数据的平均值,又因为线性回归方程y ^=bx +a 必过样本中心(x ,y ),因此(x ,y )必然知足线性回归方程,但知足线性回归方程的除(x ,y )外,可能还有其他样本点.答案 B 二、填空题7.已知施化肥量x 与水稻产量y 的实验数据如下表,那么变量x 与变量y 是________相关(填“正”或“负”).解析 通过观看图象可知变量x 与变量y 是正相关. 答案 正8.考古学家通过始祖鸟化石标本发觉:其股骨长度x (cm)与肱骨长度y (cm)的线性回归方程为y ^=1.197x -3.660,由此估量,当股骨长度为50 cm 时,肱骨长度的估量值为________ cm.解析 依照线性回归方程y ^=1.197x -3.660,将x =50代入得y =56.19,那么肱骨长度的估量值为56.19 cm. 答案 56.199.某医疗研究所为了查验某种血清预防伤风的作用,把500名利用血清的人与另外500名未利用血清的人一年中的伤风记录作比较,提出假设H 0:“这种血清不能起到预防伤风的作用”,利用2×2列联表计算得K 2≈3.918,经查临界值表知P (K 2≥3.841)≈0.05.那么以下结论中,正确结论的序号是________.①有95%的把握以为“这种血清能起到预防伤风的作用”;②假设某人未利用该血清,那么他在一年中有95%的可能性得伤风; ③这种血清预防伤风的有效率为95%; ④这种血清预防伤风的有效率为5%.解析 K 2≈3.918>3.841,而P (K 2≥3.841)≈0.05,因此有95%的把握以为“这种血清能起到预防伤风的作用”;但查验的是假设是不是成立和该血清预防伤风的有效率是没有关系的,不是同一个问题,不要混淆,正确序号为①. 答案 ①10.某数学教师身高176 cm ,他爷爷、父亲和儿子的身高别离是173 cm 、170 cm 和182 cm.因儿子的身高与父亲的身高有关,该教师用线性回归分析的方式预测他孙子的身高为________ cm. 解析 由题意父切身高x cm 与儿子身高y cm 对应关系如下表:则x =173+170+1763=173,y =3=176,∑i =13(x i -x )(y i -y )=(173-173)×(170-176)+(170-173)×(176-176)+(176-173)(182-176)=18, ∑i =13(x i -x)2=(173-173)2+(170-173)2+(176-173)2=18.∴b ^=1818=1.∴a ^=y -b ^x =176-173=3.∴线性回归直线方程y ^=b ^x +a ^=x +3. ∴可估量孙子身高为182+3=185(cm). 答案 185 三、解答题7.某班主任对全班50名学生进行了作业量多少的调查.数据如下表:不喜欢玩游戏815合计(1)请完善上表中所缺的有关数据;(2)试通过计算说明在犯错误的概率不超过量少的前提下以为喜爱玩游戏与作业量的多少有关系?附:P(K2≥k0)0.050.0250.0100.0050.001k0 3.841 5.024 6.6357.87910.828K2=n ad-bc2a+b c+d a+c b+d解(1)认为作业多认为作业不多合计喜欢玩游戏18927不喜欢玩游戏81523合计262450(2)将表中的数据代入公式K2=n ad-bc2a+b c+d a+c b+d取得K2的观测值k=50×18×15-8×9226×24×27×23≈5.059>5.024,查表知P(K2≥5.024)=0.025,即说明在犯错误的概率不超过0.025的前提下以为喜爱玩游戏与作业量的多少有关系.8.下表提供了某厂节能降耗技术改造后生产甲产品进程中记录的产量x(吨)与相应的生产能耗y(吨标准煤)的几组对照数据.x3456y 2.534 4.5(1)请画出上表数据的散点图;(2)请依照上表提供的数据,用最小二乘法求出y关于x的线性回归方程y^=b^x+a^;(3)已知该厂技改前生产100吨甲产品的生产能耗为90吨标准煤.试依照(2)求出的线性回归方程,预测生产100吨甲产品的生产能耗比技改前降低多少吨标准煤?(参考数值:3×2.5+4×3+5×4+6×4.5=66.5) 解 (1)由题设所给数据,可得散点图如下图.(2)由对照数据,计算得:∑i =14x 2i =86,x =3+4+5+64=4.5(吨),y =2.5+3+4+4.54=3.5(吨).已知∑i =14x i y i =66.5,因此,由最小二乘法确信的回归方程的系数为:b ^=∑i =14x i y i -4x ·y∑i =14x 2i -4x2=66.5-4×4.5×3.586-4×4.52=0.7,a ^=y -b ^x =3.5-0.7×4.5=0.35.因此,所求的线性回归方程为y ^=0.7x +0.35.(3)由(2)的回归方程及技改前生产100吨甲产品的生产能耗,得降低的生产能耗为: 90-(0.7×100+0.35)=19.65(吨标准煤).5.某农科所对冬季日夜温差大小与某反季节大豆新品种发芽多少之间的关系进行分析研究,他们别离记录了12月1日至12月5日的天天日夜温差与实验室天天每100颗种子中的发芽数,取得如下资料:的2组数据进行查验.(1)求选取的2组数据恰好是不相邻2天数据的概率;(2)假设选取的是12月1日与12月5日的两组数据,请依照12月2日至12月4日的数据,求出y 关于x的线性回归方程y ^=b ^x +a ^.解 (1)设抽到不相邻两组数据为事件A ,因为从5组数据当选取2组数据共有10种情形,每种情形都是等可能显现的,其中抽到相邻两组数据的情形有4种,因此P (A )=1-410=35.(2)由数据,求得x =12,y =27.11×25+13×30+12×26=977,112+132+122=434, 由公式,求得b ^=52,a ^=y -b ^x =-3.因此y 关于x 的线性回归方程为y ^=52x -3.6.有甲、乙两个班级进行数学考试,依照大于等于85分为优秀,85分以下为非优秀统计成绩后,取得如下的列联表.优秀 非优秀 总计 甲班 10乙班30 合计105已知从全数105人中随机抽取1人为优秀的概率为27.(1)请完成上面的列联表;(2)依照列联表的数据,假设按95%的靠得住性要求,可否定为“成绩与班级有关系”;(3)假设按下面的方式从甲班优秀的学生中抽取一人:把甲班优秀的10名学生从2到11进行编号,前后两次抛掷一枚均匀的骰子,显现的点数之和为被抽取人的序号.试求抽到6号或10号的概率. 附 K 2=n ad -bc2a +bc +da +cb +d ,P (K 2≥k ) 0.05 0.01 k3.8416.635解 (1)优秀 非优秀 总计甲班 10 45 55 乙班 20 30 50 合计3075105(2)依照列联表中的数据,取得 k =105×10×30-20×45255×50×30×75≈6.109>3.841,因此有95%的把握以为“成绩与班级有关系”.(3)设“抽到6号或10号”为事件A ,前后两次抛掷一枚均匀的骰子,显现的点数为(x ,y ),那么所有的大体事件有(1,1)、(1,2)、(1,3)、…、(6,6),共36个.事件A 包括的大体事件有(1,5),(2,4),(3,3),(4,2),(5,1),(4,6),(5,5),(6,4),共8个, ∴P (A )=836=29.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(×) (4)两个变量的相关系数的绝对值越接近于1,它们的相关性越强.( √ )
题组二 教材改编
2.为调查中学生近视情况,测得某校150名男生中有80名近视,在140名女生
中有70名近视.在检验这些学生眼睛近视是否与性别有关时,用下列哪种方法
最有说服力
A.回归分析
√C.独立性检验
B.均值与方差 D.概率
n
n
xi- x yi- y xiyi-n x y
b^ =i=1
nxi- x 2i=1=,n
xi2-n x 2
i=1
i=1
a^ =_y___b_x_.
(4)回归分析 ①定义:对具有相关关系的两个变量进行统计分析的一种常用方法; ②样本点的中心 对于一组具有线性相关关系的数据(x1,y1),(x2,y2),…,(xn,yn),其中 _( _x_,__y_)_称为样本点的中心;
基础自测
题组一 思考辨析 1.判断下列结论是否正确(请在括号中打“√”或“×”)
(1)散点图是判断两个变量是否相关的一种重要方法和手段.( √ )
(2)线性回归方程y^=b^ x+a^至少经过点(x1,y1),(x2,y2),…,(xn,yn)中的一个
点.( × )
(3)若事件X,Y关系越密切,则由观测数据计算得到的K2的观测值越小.
1.变量的相关关系与变量的函数关系有什么区别? 提示 相同点:两者均是指两个变量的关系. 不同点:①函数关系是一种确定的关系,相关关系是一种非确定的关系. ②函数关系是一种因果关系,而相关关系不一定是因果关系,也可能是伴 随关系.
2.线性回归方程是否都有实际意义?根据回归方程进行预报是否一定准确? 提示 (1)不一定都有实际意义.回归分析是对具有相关关系的两个变量进行 统计分析的方法,只有在散点图大致呈线性时,求出的线性回归方程才有 实际意义,否则,求出的线性回归方程毫无意义. (2)根据回归方程进行预报,仅是一个预报值,而不是真实发生的值.
2×2列联表
x1 x2 总计
y1 a c a+c
y2 b d b+d
总计 a+b c+d a+b+c+d
nad-bc2
构造一个随机变量 K2=
,其中 n=a+b+c+d 为样本
a+bc+da+cb+d
容量.
(3)独立性检验 利用随机变量 K2 来判断“两个分类变量有关系”的方法称为独立性检验.
概念方法微思考
③相关系数 当r>0时,表明两个变量 正相关 ; 当r<0时,表明两个变量 负相关 . r的绝对值越接近于1,表明两个变量的线性相关性越强 .r的绝对值越接近于0, 表明两个变量之间几乎不存在线性相关关系.通常|r|大于 0.75 时,认为两个变 量有很强的线性相关性.
2.独立性检验 (1)分类变量:变量的不同“值”表示个体所属的不同类别,像这样的变量称 为分类变量. (2)列联表:列出的两个分类变量的频数表,称为列联表.假设有两个分类变 量X和Y,它们的可能取值分别为{x1,x2}和{y1,y2},其样本频数列联表(称 为2×2列联表)为
解析 由 x =30,得 y =0.67×30+54.9=75. 设表中的“模糊数字”为a, 则62+a+75+81+89=75×5,∴a=68.
题组三 易错自纠 5.某医疗机构通过抽样调查(样本容量n=1 000),利用2×2列联表和K2统计量 研 究 患 肺 病 是 否 与 吸 烟 有 关 . 计 算 得 K2 = 4.453 , 经 查 阅 临 界 值 表 知 P(K2≥3.841)≈0.05,现给出四个结论,其中正确的是 A.在100个吸烟的人中约有95个人患肺病 B.若某人吸烟,那么他有95%的可能性患肺病
解析 “近视”与“性别”是两类变量,其是否有关,应用独立性检验判断.
3.下面是2×2列联表:
y1
y2
总计
x1
a
21
73
x2
22
25
47
总计
b
46
120
则表中a,b的值分别为
A.94,72
√ B.52,50 C.52,74 D.74,52
解析 ∵a+21=73,∴a=52. 又a+22=b,∴b=74.
(2)线性相关关系 如果散点图中点的分布从整体上看大致在一条直线附近,就称这两个变量之 间具有线性相关关系,这条直线叫做 回归直线 . (3)回归方程 ①最小二乘法 求回归直线,使得样本数据的点到它的 距离的平方和最小 的方法叫做最小二 乘法;
②回归方程 方程y^=b^ x+a^ 是两个具有线性相关关系的变量的一组数据(x1,y1),(x2,y2),…, (xn,yn)的回归方程,其中a^ ,b^ 是待定参数.
√C.有95%的把握认为“患肺病与吸烟有关”
D.只有5%的把握认为“患肺病与吸烟有关”
解析 由已知数据可得,有1-0.05=95%的把握认为“患肺病与吸烟有关”.
6.设某大学的女生体重y(单位:kg)与身高x(单位:cm)具有线性相关关系,根 据一组样本数据(xi,yi)(i=1,2,…,n),用最小二乘法建立的回归方程为 y^ = 0.85x-85.71,则下列结论中不正确的是__④___.(填序号). ①y与x具有正的线性相关关系; ②回归直线过样本点的中心( x , y ); ③若该大学某女生身高增加1 cm,则其体重约增加0.85 kg; ④若该大学某女生身高为170 cm,则可断定其体重必为58.79 kg.
考情考向分析
回归分析,独立性检验是高考考查的重点,以解答题为主,常与概率结合考查. 难度中低档.
INDEX
基础落实 回扣基础知识 训练基础题目
知识梳理
1.相关关系与回归方程 (1)相关关系的分类 ①正相关 在散点图中,点散布在从左下角到右上角的区域,对于两个变量的这种相关 关系,我们将它称为正相关; ②负相关 在散点图中,点散布在从左上角到右下角的区域,两个变量的这种相关关系 称为负相关.
4.某车间为了规定工时定额,需要确定加工零件所花费的时间,为此进行了5次 试验.根据收集到的数据(如下表),由最小二乘法求得回归方程 y^=0.67x+54.9.
零件数x (个)
10
20
30 40 50
加工时间y (min)
62
75 81 89
现发现表中有一个数据看不清,请你推断出该数据的值为_6_8__.
大一轮复习讲义
§10.3 变量间的相关关系、统计案例
最新考纲
1.会作两个相关变量的数据的散点图,会利用散点图认识变量间的相关关系. 2.了解最小二乘法的思想,能根据给出的线性回归方程系数公式建立线性回归方程. 3.了解独立性检验的基本思想、方法及其初步应用. 4.了解回归分析的基本思想、方法及其简单应用.
相关文档
最新文档