《信号与系统》学习笔记精编

合集下载

奥本海姆《信号与系统》(第2版)笔记和课后习题(含考研真题)详解(上册)-第3章 周期信号的傅里叶级

奥本海姆《信号与系统》(第2版)笔记和课后习题(含考研真题)详解(上册)-第3章 周期信号的傅里叶级
6.共轭及共轭对称 将一个周期信号 x(t)叏它的复数共轭,在它的傅里叶级数系数上就会有复数共轭幵迚行 时间反转的结果。即若

(1)弼 x(t)为实函数时,由亍 x(t)=x*(t),傅里叶级数系数一定是共轭对称的,即
(2)若 x(t)为实偶函数,那么它的傅里叶级数系数也为实偶函数。 (3)若 x(t)为实奇函数,那么它的傅里叶级数系数为纯虚奇函数。 7.连续时间周期信号的帕斯瓦尔定理 (1)连续时间周期信号的帕斯瓦尔定理:
8.连续时间傅里叶级数性质列表 表 3-1 连续时间傅里叶级数性质
/ 106
圣才电子书 十万种考研考证电子书、题库规频学习平台

1.成谐波关系的复指数信号的线性组合 一般的周期序列的线性组合就有如下:
序列φk[n]只在 k 的 N 个相继值的匙间上是丌同的,因此上式的求和仅仅需要包括 N 项。 因此将求和限表示成 k=(N),即离散时间傅里叶级数为
三、傅里叶级数的收敛 连续时间信号的傅里叶级数收敛的条件——狄里赫利条件: 1.条件 1 在仸何周期内,x(t)必须绝对可积,即
这一条件保证了每一系数 ak 都是有限值。 2.条件 2 在仸意有限匙间内,x(t)具有有限个起伏发化;也就是说,在仸何单个周期内,x(t)的
最大值和最小值的数目有限。 3.条件 3 在 x(t)的仸何有限匙间内,只有有限个丌连续点,而丏在这些丌连续点上,函数是有限

(1)施加亍连续时间信号上的时间反转会导致其对应的傅里叶级数系数序列的时间反 转。
(2)若 x(t)为偶函数,则其傅里叶级数系数也为偶,若 x(t)为奇函数,则其傅里叶级 数系数也为奇。
4.时域尺度发换 时间尺度运算是直接加在 x(t)的每一次谐波分量上的,傅里叶系数仍是相同的。 x(αt)的傅里叶级数表示:

信号与系统复习知识总结

信号与系统复习知识总结

重难点1.信号的概念与分类 按所具有的时间特性划分:确定信号和随机信号; 连续信号和离散信号; 周期信号和非周期信号; 能量信号与功率信号; 因果信号与反因果信号;正弦信号是最常用的周期信号,正弦信号组合后在任一对频率或周期的比值是有理分数时才是周期的;其周期为各个周期的最小公倍数;① 连续正弦信号一定是周期信号;② 两连续周期信号之和不一定是周期信号;周期信号是功率信号;除了具有无限能量及无限功率的信号外,时限的或,∞→t 0)(=t f 的非周期信号就是能量信号,当∞→t ,0)(≠t f 的非周期信号是功率信号;1. 典型信号① 指数信号: ()at f t Ke =,a ∈R ② 正弦信号: ()sin()f t K t ωθ=+ ③ 复指数信号: ()st f t Ke =,s j σω=+ ④ 抽样信号: sin ()tSa t t= 奇异信号(1) 单位阶跃信号1()u t ={ 0t =是()u t 的跳变点;(2) 单位冲激信号单位冲激信号的性质:1取样性 11()()(0)()()()f t t dt f t t f t dt f t δδ∞∞-∞-∞=-=⎰⎰()0t δ=当0t ≠时相乘性质:()()(0)()f t t f t δδ= 2是偶函数 ()()t t δδ=- 3比例性 ()1()at t aδδ=4微积分性质 d ()()d u t t tδ= ; ()d ()t u t δττ-∞=⎰5冲激偶 ()()(0)()(0)()f t t f t f t δδδ'''=- ; ()()d (0)f t t t f δ∞-∞''=-⎰ ()d ()tt t t δδ-∞'=⎰ ;带跳变点的分段信号的导数,必含有冲激函数,其跳变幅度就是冲激函数的强度;正跳变对应着正冲激;负跳变对应着负冲激;重难点2.信号的时域运算 ① 移位: 0()f t t +, 0t 为常数当0t >0时,0()f t t +相当于()f t 波形在t 轴上左移0t ;当0t <0时, 0()f t t +相当于()f t 波形在t 轴上右移0t ;② 反褶: ()f t - ()f t -的波形相当于将()f t 以t =0为轴反褶; ③ 尺度变换: ()f at ,a 为常数当a >1时,()f at 的波形时将()f t 的波形在时间轴上压缩为原来的1a; 当0<a <1时,()f at 的波形在时间轴上扩展为原来的1a; ④ 微分运算: ()df t dt信号经微分运算后会突出其变化部分; 2. 系统的分类根据其数学模型的差异,可将系统划分为不同的类型:连续时间系统与离散时间系统;线性系统与非线性系统;时变系统与时不变系统; 重难点3.系统的特性(1) 线性性若同时满足叠加性与均匀性,则称满足线性性;当激励为1122()()C f t C f t +1C 、2C 分别为常数时,系统的响应为1122()()C y t C y t +;线性系统具有分解特性:)()()(t y t y t y zs zi +=零输入响应是初始值的线性函数,零状态响应是输入信号的线性函数,但全响应既不是输入信号也不是初始值的线性函数;(2) 时不变性 :对于时不变系统,当激励为0()f t t -时,响应为0()f t t -; (3) 因果性线性非时变系统具有微分特性、积分特性; 重难点4.系统的全响应可按三种方式分解:各响应分量的关系:重难点5.系统的零输入响应就是解齐次方程,形式由特征根确定,待定系数由-0初始状态确定;零输入响应必然是自由响应的一部分;重难点6.任意信号可分解为无穷多个冲激函数的连续和:那么系统的的零状态响应为激励信号与单位冲激响应的卷积积分,即)()()(t h t f t y zs *=;零状态响应可分解为自由响应和强迫响应两部分;重难点7.单位冲激响应的求解;冲激响应)(t h 是冲激信号作用系统的零状态响应; 重难点8.卷积积分(1) 定义 ττττττd f t f d t f f t f t f )()()()()(*)(212121-=-=⎰⎰∞∞-∞∞-(2) 卷积代数① 交换律 )(*)()(*)((1221t f t f t f t f =② 分配率 )(*)()(*)()]()([*)(3121321t f t f t f t f t f t f t f +=+ ③ 结合律 )](*)([*)()(*)](*)([321321t f t f t f t f t f t f = 重难点9.卷积的图解法 求某一时刻卷积值 卷积过程可分解为四步:1换元: t 换为τ→得 f 1τ, f 2τ2反转平移:由f 2τ反转→ f 2–τ 右移t → f 2t-τ 3乘积: f 1τ f 2t-τ4积分: τ从 –∞到∞对乘积项积分; 3性质1ft δt=δtft = ft )()(*)(00t t f t t t f -=-δ)()(*)(2121t t t f t t t t f --=--δ 210,,t t t 为常数2ft δ’t = f’t 3ftut ()()d ()d tf u t f τττττ∞-∞-∞=-=⎰⎰ut ut = tut4[]121221d ()d ()d ()*()*()()*d d d n n nn n nf t f t f t f t f t f t t t t ==5121212[()*()]d [()d ]*()()*[()d ]t t tf f f f t f t f τττττττ-∞-∞-∞==⎰⎰⎰6 f 1t –t 1 f 2t –t 2 = f 1t –t 1 –t 2 f 2t = f 1t f 2t –t 1 –t 2 = f t –t 1 –t 27 两个因果信号的卷积,其积分限是从0到t ; 8系统全响应的求解方法过程归纳如下:a.根据系统建立微分方程;b.由特征根求系统的零输入响应)(t y zi ;c.求冲激响应)(t h ;d.求系统的零状态响应)()()(t h t f t y zs *=;e.求系统的全响应)()()(t y t y t y zs zi +=;重难点10.周期信号的傅里叶级数任一满足狄利克雷条件的周期信号()f t 1T 为其周期可展开为傅里叶级数; 1三角函数形式的傅里叶级数0111()[cos()sin()]n n n f t a a n t b n t ωω∞==++∑ 式中112T πω=,n 为正整数;直流分量010011()t T t a f t dt T +=⎰ 余弦分量的幅度01112()cos()t T n t a f t n t dt T ω+=⎰ 正弦分量的幅度01112()sin()t T n t b f t n t dt T ω+=⎰三角函数形式的傅里叶级数的另一种形式为011()cos()n n n f t a A n t ωϕ∞==++∑2指数形式的傅里叶级数 1()jn tnn f t F eω∞=-∞=∑ 式中,n 为从-∞到+∞的整数;复数频谱011011()t T jn t n t F f t e dt T ω+-=⎰利用周期信号的对称性可以简化傅里叶级数中系数的计算;从而可知周期信号所包含的频率成分;有些周期信号的对称性是隐藏的,删除直流分量后就可以显示其对称性;①实偶函数的傅里叶级数中不包含正弦项,只可能包含直流项和余弦项; ②实奇数的傅里叶级数中不包含余弦项和直流项,只可能包含正弦项;③实奇谐函数的傅里叶级数中只可能包含基波和奇次谐波的正弦、余弦项,而不包含偶次谐波项;重难点11.从对周期矩形脉冲信号的分析可知:1 信号的持续时间与频带宽度成反比;2 周期T 越大,谱线越密,离散频谱将变成连续频谱;3 周期信号频谱的三大特点:离散性、谐波性、收敛性;重难点12.傅里叶变换 傅里叶变换定义为正变换()[()]()j t F f f t f t e dt ωω∞--∞==⎰逆变换11()[()]()2j t f t f F F e d ωωωωπ∞--∞==⎰频谱密度函数()F ω一般是复函数,可以写作 ()()()j F F e ϕωωω=其中()F ω是()F ω的模,它代表信号中个频谱分量的相对大小,是ω的偶函数;()ϕω是()F ω的相位函数,它表示信号中各频率分量之间的相位关系,是ω的奇函数;常用函数 F 变换对:δtπδωut 1()j πδωω+e -t ut 1j ωα+ g τt2Sa ωττ⎛⎫⎪⎝⎭sgn t 2j ωe –|t |222ααω+ 重难点13.傅里叶变换的基本性质 1 线性特性1212()()()()af t bf t aF j bF j ωω+↔+2 对称特性 ()2()F jt f πω↔-3 展缩特性 1()()f at F j a aω←−→ 4 时移特性0-j t 0()()f t t F j e ωω-←→⋅5 频移特性 0j 0()[()]t f t e F j ωωω⋅←→- 6 时域卷积特性 1212()()()()f t f t F j F j ωω*←→⋅ 7 频域卷积特性 12121()()[()()]2f t f t F j F j ωωπ⋅←→*8 时域微分特性 ()()n n n d fj F j dtωω←→⋅9 积分特性1()()(0)()tf d F j F j ττωπδωω-∞←→+⎰10.频域微分特性 ()()n nnndF j t f t j d ωω←→⋅ 11奇偶虚实性若()()()F R jX ωωω=+,则①()f t 是实偶函数()()f R ωω=,即()f ω为ω的实偶函数; ②()f t 是实奇函数()()f jX ωω=,即()f ω为ω的虚奇函数; 重难点14.周期信号的傅里叶变换周期信号()f t 的傅里叶变换是由一些冲激函数组成的,这些冲激位于信号的谐频11(0,,2,)ωω±±处,每个冲激的强度等于()f t 的傅里叶级数的相应系数n F 的2π倍;即重难点15.冲激抽样信号的频谱冲激抽样信号()s f t 的频谱为1()()s sn sf F n T ωωω∞=-∞=-∑其中s T 为抽样周期,()f ω为被抽样信号()f t 的频谱;上式表明,信号在时域被冲激序列抽样后,它的频谱()s F ω是连续信号频谱()f ω以抽样频谱s ω为周期等幅地重复;重难点16.对于线性非时变系统,若输入为非周期信号,系统的零状态响可用傅里叶变换求得;其方法为:1 求激励ft 的傅里叶变换F j;2 求频域系统函数H j;3 求零状态响应y zs t 的傅里叶变换Y zs j,即Y zs j= H j F j;4 求零状态响应的时域解,即y zs t = F -1Y zs j重难点17.对于线性非时变稳定系统,若输入为正弦信号)cos()(0t A t f ω=,则稳态响应为其中,)()(00ϕωωj e j H j H =为频域系统函数;重难点18.对于线性非时变系统,若输入为非正弦的周期信号,则系统的稳态响应的频谱为其中,n F 是输入信号的频谱,即)(t f 的指数傅里叶级数的复系统;)(Ωjn H 是系统函数,为基波;n Y 是输出信号的频谱;时间响应为重难点19.在时域中,无失真传输的条件是 )()(0t t f K t y -=在频域中,无失真传输系统的特性为 0)(t j e K j H ωω-=20.理想滤波器是指可使通带之内的输入信号的所有频率分量以相同的增益和延时完全通过,且完全阻止通带之外的输入信号的所有频率分量的滤波器;理想滤波器是非因果性的,物理上不可实现的;重难点21.理想低通滤波器的阶跃响应的上升时间与系统的截止频率带宽成反比;重难点22.时域取样定理注意:为恢复原信号,必须满足两个条件:1f t 必须是带限信号;2取样频率不能太低,必须f s ≥2f m,或者说,取样间隔不能太大,必须T s ≤1/2f m ;否则将发生混叠; 通常把最低允许的取样频率f s=2f m 称为奈奎斯特Nyquist 频率; 把最大允许的取样间隔T s=1/2f m 称为奈奎斯特间隔;重难点23.单边拉氏变换的定义为积分下限定义为-=0t ;因此,单位冲激函数1)(⇔t δ,求解微分方程时,初始条件取为-=0t ;重难点24.拉普拉斯变换收敛域:使得拉氏变换存在的S 平面上σ的取值范围称为拉氏变换的收敛域;)(t f 是有限长时,收敛域整个S 平面;)(t f 是右边信号时,收敛域0σσ>的右边区域;)(t f 是左边信号时,收敛域0σσ<的左边区域;)(t f 是双边信号时,收敛域是S 平面上一条带状区域;要说明的是,我们讨论单边拉氏变换,只要σ取得足够大总是满足绝对可积条件,因此一般不写收敛域;单边拉氏变换,只要σ取得足够大总是满足绝对可积条件,因此一般不写收敛域;重难点25.拉普拉斯正变换求解:常用信号的单边拉氏变换 重难点26.拉普拉斯变换的性质6时域卷积定理 f 1t f 2t ←→ F 1s F 2s7周期信号,只要求出第一周期的拉氏变换1()F s ,1()()1sTF s F s e-=- 频域微分性: d ()()()d F s t f t s-←→频域积分性: ()()s f t F d tηη∞←→⎰初值定理:0(0)lim ()lim ()t s f f t sF s →+→∞+==终值定理若ft 当t →∞时存在,并且 ft ← → F s , Res>0, 0<0,则 0()lim ()s f sF s →∞=拉氏变换的性质及应用;一般规律:有t 相乘时,用频域微分性质; 有实指数t e α相乘时,用频移性质; 分段直线组成的波形,用时域微分性质;周期信号,只要求出第一周期的拉氏变换1()F s ,1()()1sTF s F s e-=- 由于拉氏变换均指单边拉氏变换,对于非因果信号,在求其拉氏变换时应当作因果信号处理;重难点27.拉普拉斯反变换求解:掌握部分分式展开法求解拉普拉斯逆变换的方法1单实根时 )(t Ke a s Kt a ε-⇔+2二重根时2()()t KKte t s αεα-↔+ 重难点28.微分方程的拉普拉斯变换分析:当线性时不变系统用线性常系数微分方程描述时,可对方程取拉氏变换,并代入初始条件,从而将时域方程转化为S 域代数方程,求出响应的象函数,再对其求反变换得到系统的响应;重难点29.动态电路的S 域模型:由时域电路模型能正确画出S 域电路模型,是用拉普拉斯变换分析电路的基础; 引入复频域阻抗后,电路定律的复频域形式与其相量形式相似;重难点30.系统的零状态响应为 )()()(s F s H s Y zs =其中,)()(s H t h ⇔,)(s H 是冲激响应的象函数,称为系统函数;系统函数定义为)()()(s F s Y s H zs =重难点31.系统函数的定义重难点32.系统函数的零、极点分布图重难点33.系统函数H ·与时域响应h · :LTI 连续因果系统的h t 的函数形式由H s 的极点确定;① Hs 在左半平面的极点无论一阶极点或重极点,它们对应的时域函数都是按指数规律衰减的;结论:极点全部在左半开平面的系统因果是稳定的系统;② Hs 在虚轴上的一阶极点对应的时域函数是幅度不随时间变化的阶跃函数或正弦函数;Hs 在虚轴上的二阶极点或二阶以上极点对应的时域函数随时间的增长而增大;③ H s 在虚轴上的高阶极点或右半平面上的极点,其所对应的响应函数都是递增的;重难点34.系统的稳定性:稳定系统 Hs 的极点都在左半开平面,)θ+边界稳定系统 Hs 的极点都在虚轴上,且为一阶, 不稳定系统 Hs 的极点都在右半开平面或虚轴上二阶以上;H s=11101110()()m m m m n n n n b s b s b s b N s D s a s a s a s a ----++++=++++ 判断准则:1多项式的全部系数i a 符号相同为正数;2无缺项;3对三阶系统,323210()D s a s a s a s a =+++的各项系数全为正,且满足1203a a a a > 重难点35、常用的典型信号 1.单位抽样序列)(n δ)(n δ的延迟形式: 1,()0,n m n m n mδ=⎧-=⎨≠⎩推出一般式: ∑∞-∞=-=k k n k x n x )()()(δ2.单位阶跃序列()n ε✧ 与)(n δ的关系: ()()(1)n n n δεε=-- ✧ 延迟的表达式()n m ε-; 3. 矩形序列)(n R N -----有限长序列 4. 实指数序列----实指数序列)(n u a n 重难点36、离散系统的时域模拟它的基本单元是延时器,乘法器,相加器; 重难点37、系统的零输入响应若其特征根均为单根,则其零输入响应为:1()nkx xi i i y k c λ==∑C 由初始状态定相当于0-的条件 重难点38、卷积和的定义12()()()k f n f k f n k ∞=-∞=-∑=f 1n f 2n卷积和的性质1 交换律:()()()()1221f n f n f n f n *=*2 分配律:()()()()()()123123f n f n f n f n f n f n **=**⎡⎤⎡⎤⎣⎦⎣⎦3 结合律.:()()()()()()()1231213f n f n f n f n f n f n f n *+=*+*⎡⎤⎣⎦f n δn = f n , f n δn – n 0 = f n – n 0 f n εn =()nk f k =-∞∑f 1n – n 1 f 2n – n 2 = f 1n – n 1 – n 2 f 2n卷和的计算:不进位乘法求卷积、利用列表法计算、卷积的图解法 重难点39、离散系统的零状态响应离散系统的零状态响应等于系统激励与系统单位序列响应的卷积和;即 重难点40.z 变换定义()()n n F z f n z ∞-=-∞=∑称为序列f k 的双边z 变换()()n n F z f n z ∞-==∑ 称为序列f k 的单边z 变换重难点41.收敛域因果序列的收敛域是半径为|a|的圆外部分; 重难点42.熟悉基本序列的Z 变换;k ←→ 1 , z>0 k ←→1zz -, z>1 重难点43.z 变换的性质 1移位特性双边z 变换的移位:()n z F z -↔f(k -n)单边z 变换的移位: f k-2 ←→ z -2F z + f -2 + f -1z -1 2序列乘a k z 域尺度变换 a k f k ←→ F z/a3卷积定理 f 1k f 2k ←→ F 1z F 2z 重难点44.掌握部分分式法求逆Z 变换; 重难点45.掌握离散系统Z 域的分析方法; 1差分方程的变换解 2系统的z 域框图 3稳定性Hz 按其极点在z 平面上的位置可分为:在单位圆内、在单位圆上和在单位圆外三类;① 极点全部在单位圆内的系统因果是稳定系统;② Hz 在单位圆上是一阶极点,单位圆外无极点,系统是临界稳定系统;③ Hz 在单位圆上的高阶极点或单位圆外的极点,系统是不稳定系统;。

信号与系统期末考试重点知识点梳理

信号与系统期末考试重点知识点梳理

信号与系统知识点综合CT:连续信号DT:离散信号第一章信号与系统1、功率信号与能量信号性质:(1)能量有限信号的平均功率必为0;(2)非0功率信号的能量无限;(3)存在信号既不是能量信号也不是功率信号。

2、自变量变换(1)时移变换x(t)→x(t-t0),x[n]→x[n-n0](2)时间反转变换x(t)→x(-t),x[n]→x[-n](3)尺度变换x(t)→x(kt)3、CT、DT复指数信号周期频率CT 所有的w对应唯一TDT 为有理数4、单位脉冲、单位冲激、单位阶跃(1)DT信号关系(2)CT信号t=0时无定义关系(3)筛选性质(a)CT信号(b)DT信号5、系统性质(1)记忆系统y[n]=y[n-1]+x[n]无记忆系统y(t)=2x(t)(2)可逆系统y(t)=2x(t)不可逆系统y(t)=x2(t)(3)因果系统y(t)=2x(t)非因果系统y(t)=x(-t)(4)稳定系统y[n]=x[n]+x[n-1]不稳定系统(5)线性系统(零输入必定零输出)齐次性ax(t)→ay(t)可加性x1(t)+x2(t)→y1(t)+y2(t)(6)时不变系统x(t-t o)→y(t-t0)第二章1、DT卷积和,CT卷积积分2、图解法(1)换元;(2)反转平移;(3)相乘;(4)求和第三章CFS DFS1、CFS收敛条件:x(t)平方可积;Dirichlet条件。

存在“吉伯斯现象”。

DFS无收敛条件无吉伯斯现象2、三角函数表示第四、五章CTFT DTFT1、(1)CTFT(a)非周期收敛条件(充分非必要条件):x(t)平方可积;Dirichlet条件。

存在“吉伯斯现象”。

(b)周期(2)DTFT(a)非周期存在收敛条件不存在吉伯斯现象(b)周期2、对偶(1)CTFT、DFS 自身对偶CTFT的对偶性DFS的对偶性(2)DTFT与CFS 对偶3、时域、频域特性4、性质(1)时移与频移(a)CT信号(b)DT信号(2)时域微分(差分)和频域微分(求和)(a)CT信号(b)DT信号(3)时域扩展(内插)(a)CT信号(b)DT信号(4)共轭性质(a)CT信号(b)DT信号5、系统稳定系统才存在H(jw) y(t)=x(t)*h(t)Y(jw)=X(jw)H(jw)第六章时频特性1、模、相位2、无失真条件3、理想滤波器非因果,是物理不可能实现的。

信号与系统笔记pdf

信号与系统笔记pdf

信号与系统笔记一、基本概念信号:信号是运载信息的物理量,是消息的表现形式与传送载体。

它可以随时间或空间而变化。

常见的信号有:模拟信号和数字信号。

系统:系统是由一个或若干个相互关联的单元组成的具有特定功能的整体。

系统处理的内容可以是信号,也可以是信号的处理与变换。

二、信号的分类常见分类方式:按时间是否连续,信号可分为连续时间信号和离散时间信号;按幅度是否变化,信号可分为确知信号和随机信号。

信号的能量与功率:能量是指信号的幅度平方的积分,表示信号的总能量;功率是指单位时间内信号的能量,表示信号的平均功率。

三、基本信号变化线性变化:如果一个信号经过系统后,其输出仍然是输入的线性组合,则称该系统为线性系统。

线性系统具有叠加性和均匀性。

奇偶变化:如果一个信号在时间上关于原点对称,则称为奇对称信号;如果一个信号在时间上关于其最大或最小值点对称,则称为偶对称信号。

信号的运算:信号的加、减、乘运算对应于时间域的相加、相减、相乘运算。

此外,还包括信号的平移、反转、尺度变换等运算。

四、指数信号与正弦信号周期复指数信号:形如ejwt的信号,其中w为角频率,t为时间。

它是复数指数函数在时间域的表示。

一般的复指数信号:形如a*ejwt的信号,其中a为幅度,w为角频率,t为时间。

它是复数指数函数在时间域的表示。

五、系统分析方法时不变性:系统的行为不随时间而变,即系统的冲激响应不变。

线性时不变系统:满足叠加性和均匀性的系统。

其冲激响应h(t)和输入信号x(t)的卷积就是输出信号y(t)。

线性时不变系统的输出由输入和系统的冲激响应共同决定。

信号与系统知识点总结

信号与系统知识点总结

信号与系统知识点总结一、信号的分类:1.连续时间信号与离散时间信号:连续时间信号是在连续时间范围内存在的信号,如声音、电流;离散时间信号是在离散时间点上存在的信号,如数字音频信号、数字图像信号。

2.狄拉克脉冲信号与单位脉冲序列:狄拉克脉冲信号是一种无限大振幅、无限短时间持续的信号,用以表示一个突变或冲击,常用于信号的表示与合成;单位脉冲序列是一种以离散单位间隔的脉冲序列。

二、系统的分类:1.连续时间系统与离散时间系统:与信号的分类类似,系统也可以分为连续时间系统和离散时间系统。

2.线性系统与非线性系统:线性系统遵循线性叠加原理,输出响应与输入信号成正比,如线性滤波器;非线性系统在输入信号改变时,输出响应不满足比例关系。

3.时变系统与时不变系统:时变系统的特性随时间变化,而时不变系统的特性与时间无关。

三、信号的基本运算:1.基本信号的表示与合成:可以将任意信号表示为一系列基本信号的线性组合;2.信号的时移、尺度变换与反褶:时移操作将信号在时间轴上整体左移或右移;尺度变换通过拉伸或压缩信号的时间轴来改变信号长度和时间刻度;反褶操作是将信号沿时间轴进行翻转。

四、系统的基本性质:1.因果系统与非因果系统:因果系统的输出只依赖于过去或当前的输入,而不依赖未来的输入;非因果系统的输出可能依赖于未来或当前输入。

2.稳定系统与非稳定系统:稳定系统的输出有界,输入有界就会导致输出有界;非稳定系统的输出可能会趋向无穷。

3.线性时不变系统的冲击响应与频率响应:冲击响应是输入为单位脉冲时的输出响应;频率响应是输入为正弦波时的输出响应,常用于分析系统的频率特性。

五、信号与系统的分析方法:1.时域分析与频域分析:时域分析是通过对信号在时间上的变化进行分析,如冲击响应、脉冲响应、单位阶跃响应等;频域分析是通过对信号在频率上的特性进行分析,如频谱、频率响应等。

2.傅里叶变换与傅里叶级数:傅里叶变换是将时间域信号转换为频域信号,常用于连续时间信号的分析;傅里叶级数是将周期性信号分解为多个正弦和余弦信号的叠加。

信号与系统知识点总结

信号与系统知识点总结

信号与系统知识点总结信号与系统是电子信息类专业中非常重要的一门课程,它涉及到了信号的产生、传输、处理以及系统的特性和响应等内容。

在学习这门课程时,我们需要掌握一系列的知识点,下面我将对信号与系统的知识点进行总结,希望能够帮助大家更好地理解和掌握这门课程。

首先,我们需要了解信号的基本概念。

信号可以分为连续信号和离散信号两种类型,连续信号是定义在连续时间范围内的信号,而离散信号则是定义在离散时间点上的信号。

在实际应用中,我们会遇到各种各样的信号,比如周期信号、非周期信号、有限长信号和无限长信号等,对于每种类型的信号,我们都需要了解其特点和数学描述。

其次,系统的概念和分类也是信号与系统课程中的重要内容。

系统可以分为线性系统和非线性系统,时不变系统和时变系统,因果系统和非因果系统等。

对于不同类型的系统,其特性和数学描述也会有所不同,我们需要学会如何对系统进行分类和分析。

另外,信号与系统课程还涉及到了信号的时域分析和频域分析。

在时域分析中,我们会学习到信号的重要特性,比如能量、功率、自相关函数、互相关函数等,这些内容对于理解信号的性质和特点非常重要。

而在频域分析中,我们会学习到傅里叶变换、傅里叶级数、频谱分析等知识,这些内容对于分析信号的频率特性和频域响应非常有帮助。

此外,我们还需要了解系统的时域响应和频域响应。

时域响应包括脉冲响应、阶跃响应等,频域响应则包括系统的幅频特性和相频特性等。

通过对系统的时域响应和频域响应进行分析,我们可以了解系统的动态特性和频率特性,这对于系统的设计和应用非常重要。

最后,我们还需要掌握信号与系统的应用。

信号与系统在通信、控制、信号处理等领域都有着重要的应用,比如调制解调、滤波器设计、信号采集与重构等。

通过学习信号与系统课程,我们可以掌握这些应用的基本原理和方法,为将来的工程实践打下坚实的基础。

总的来说,信号与系统是一门理论性和实践性都很强的课程,通过对信号与系统的知识点进行总结,希望能够帮助大家更好地理解和掌握这门课程。

信号与系统知识点总结

信号与系统知识点总结

信号与系统知识点总结一、信号与系统概念1. 信号的基本概念信号是指传输信息的载体,可以是任意形式的能量,例如声音、图像、视频等。

信号分为连续信号和离散信号两种类型。

连续信号是指在任意时间范围内都有定义的信号,离散信号是指只在某些离散点上有定义的信号。

2. 系统的概念系统是指对输入信号进行处理并产生输出信号的过程。

系统分为线性系统和非线性系统两种类型。

线性系统满足叠加原理和齐次性质,而非线性系统不满足这两个性质。

3. 信号与系统的分类信号与系统可以按照不同的分类方式进行划分。

例如,按时间域和频率域可以将信号和系统分为时域信号和系统以及频域信号和系统。

二、时域分析1. 时域中的基本概念在时域中,信号经常被表示为在时间轴上的波形。

对信号进行时域分析,可以揭示信号的变化规律和特征。

例如,信号的幅度、频率、相位等特征。

2. 时域信号的表示时域信号可以分为连续信号和离散信号两种类型。

连续信号通常可以由函数来表示,而离散信号则可以用序列或数组来表示。

3. 线性时不变系统线性时不变系统是指系统具有线性和时不变两个性质。

线性性质意味着系统满足叠加原理和齐次性质,时不变性质意味着系统的响应与输入信号的时移无关。

三、频域分析1. 傅里叶变换傅里叶变换是将信号在时域中的表示转换为频域中的表示的数学工具。

它可以将信号转换为频谱,揭示信号的频率成分和能量分布。

傅里叶变换分为连续傅里叶变换和离散傅里叶变换两种。

2. 滤波器的频域特性滤波器可以用来对信号进行频域处理。

常见的滤波器包括低通滤波器、高通滤波器、带通滤波器和带阻滤波器。

滤波器对不同频率成分的信号有不同的响应,能够用来滤除不需要的频率分量,或者突出需要的频率分量。

3. 抽样定理抽样定理是指在进行模拟信号的离散化表示时,需要保证抽样率足够高,以避免混叠失真。

根据抽样定理,模拟信号进行离散化表示的采样频率需要大于信号最高频率的两倍。

四、系统响应分析1. 系统的时域响应系统的时域响应是指系统对输入信号的时域响应。

郑君里《信号与系统》(第3版)笔记和课后习题(含考研真题)详解(1-2章)【圣才出品】

郑君里《信号与系统》(第3版)笔记和课后习题(含考研真题)详解(1-2章)【圣才出品】

第1章绪论
1.1复习笔记
本章作为《信号与系统》的开篇章节,是整个信号与系统学习的基础。

本章介绍了有关信号与系统的基本概念和术语,给出几种典型的信号和系统的表现形式,讲述了各信号与系统的特点以及信号之间的运算和转换。

通过本章学习,读者应掌握:如何判断信号类型、不同信号之间的运算、信号的分解以及系统类型的判断。

一、信号概述
1.信号的概念及分类(见表1-1-1)
表1-1-1信号的概念及分类
2.典型的连续信号(见表1-1-2)
表1-1-2典型的信号及表示形式
3.信号的运算(见表1-1-3)
表1-1-3信号的运算
4.阶跃函数和冲激函数
阶跃信号和冲激信号是信号与系统中最基础的两种信号,许多复杂信号皆可由二者或二者的线性组合表示。

具体见表1-1-4及表1-1-5。

(1)单位阶跃信号u(t)
表1-1-4单位阶跃信号u(t)
(2)单位冲激信号δ(t)
表1-1-5单位冲激信号δ(t)表示形式及性质
5.信号的分解
一个一般信号根据不同类型可分解为以下几种分量,具体见表1-1-6。

表1-1-6信号的分解
二、系统
1.系统概念及分类(见表1-1-7)
表1-1-7系统的概念及分类
系统模型如下:
输入信号经过不同系统可得到不同输出信号,具体见表1-1-8。

表1-1-8不同系统特性
1.2课后习题详解
1-1分别判断图1-2-1所示各波形是连续时间信号还是离散时间信号,若是离散时间信号是否为数字信号?
(a)
(b)
(c)
(d)
(e)
(f)。

信号与系统知识点概括总结

信号与系统知识点概括总结

理想低通滤波器:
c Sa[ c (t t0 )] 冲激响应: h(t )
H ( j) e jt0 [u( c ) u( c )]
取样信号的傅里叶变换
f s( t )
f s (t ) f (t )T (t )
T (t )
n
(t nT )
1 F f1 (t ) f 2 (t ) F1 (j ) F2 (j ) 2
周期信号的傅里叶变换:
2 Fn ( n 1 ) F ( j ) F f ( t ) n
1 其中 Fn T1


T1 / 2 T1 / 2
f (t )e
F ( j) E Sa( ) 2
E
Fn
1 21
2 4

4
F ( j )
2
2
4

对偶性: 若 F [ f (t )] F ( j), 则 F [ F ( jt )] 2
f ()
F ( j )
E
f (t )
E
/ 2
F sin 0t j ( 0 ) ( 0 )
卷积定理:
若F
f1 (t ) F1 (j ),F f2 (t ) F2 (j ) ,则
F
f1 (t ) f2 (t ) F1 (j )F2 (j )
零状态响应
(Azik Azsk )e k t y p (t )
k 1 强迫响应 自由响应
h(t ), g (t ) :
卷积:
dg (t ) h(t ) dt

g (t ) h( )d

信号与系统读书笔记

信号与系统读书笔记

信号与系统读书笔记【篇一:学习笔记(信号与系统)】学习笔记(信号与系统)第一章信号和系统信号的概念、描述和分类信号的基本运算典型信号系统的概念和分类1、常常把来自外界的各种报道统称为消息;信息是消息中有意义的内容;信号是反映信息的各种物理量,是系统直接进行加工、变换以实现通信的对象。

信号是信息的表现形式,信息是信号的具体内容;信号是信息的载体,通过信号传递信息。

2、系统(system):是指若干相互关联的事物组合而成具有特定功能的整体。

3、信号的描述——数学描述,波形描述。

信号的分类:1)确定信号(规则信号)和随机信号确定信号或规则信号——可以用确定时间函数表示的信号;随机信号——若信号不能用确切的函数描述,它在任意时刻的取值都具有不确定性,只可能知道它的统计特性。

2)连续信号和离散信号连续时间信号——在连续的时间范围内(-∞t∞)有定义的信号称为连续时间信号,简称连续信号,实际中也常称为模拟信号;离散时间信号——仅在一些离散的瞬间才有定义的信号称为离散时间信号,简称离散信号,实际中也常称为数字信号。

3)周期信号和非周期信号周期信号——是指一个每隔一定时间t,按相同规律重复变化的信号;非周期信号——不具有周期性的信号称为非周期信号。

4)能量信号与功率信号能量信号——信号总能量为有限值而信号平均功率为零;功率信号——平均功率为有限值而信号总能量为无限大。

5)一维信号与多维信号信号可以表示为一个或多个变量的函数,称为一维或多维函数。

6)因果信号若当t0时f(t)=0,当t0时f(t)≠0的信号,称为因果信号;非因果信号指的是在时间零点之前有非零值。

4、信号的基本运算:尺度变换(横坐标展缩):将f(t)→f(at),称为对信号f(t)的尺度变换。

若a1,则f(at)将f(t)的波形沿时间轴压缩至原来的1/a;若0a1,则f(at)将f(t)的波形沿时间轴扩展为原来的a倍。

微分:信号f(t)的微分运算指f(t)对t取导数,即:信号经过微分运算后突出显示了它的变化部分,起到了锐化的作用。

信号与系统知识点整理

信号与系统知识点整理

第一章1.什么是信号?是信息的载体,即信息的表现形式。

通过信号传递和处理信息,传达某种物理现象(事件)特性的一个函数。

2.什么是系统?系统是由若干相互作用和相互依赖的事物组合而成的具有特定功能的整体。

3.信号作用于系统产生什么反应?系统依赖于信号来表现,而系统对信号有选择做出的反应。

4.通常把信号分为五种:✓连续信号与离散信号✓偶信号和奇信号✓周期信号与非周期信号✓确定信号与随机信号✓能量信号与功率信号5.连续信号:在所有的时刻或位置都有定义的信号。

6.离散信号:只在某些离散的时刻或位置才有定义的信号。

通常考虑自变量取等间隔的离散值的情况。

7.确定信号:任何时候都有确定值的信号。

8.随机信号:出现之前具有不确定性的信号。

可以看作若干信号的集合,信号集中每一个信号出现的可能性(概率)是相对确定的,但何时出现及出现的状态是不确定的。

9.能量信号的平均功率为零,功率信号的能量为无穷大。

因此信号只能在能量信号与功率信号间取其一。

10.自变量线性变换的顺序:先时间平移,后时间变换做缩放.注意:对离散信号做自变量线性变换会产生信息的丢失!11.系统对阶跃输入信号的响应反映了系统对突然变化的输入信号的快速响应能力。

(开关效应)12.单位冲激信号的物理图景:持续时间极短、幅度极大的实际信号的数学近似。

对于储能状态为零的系统,系统在单位冲激信号作用下产生的零状态响应,可揭示系统的有关特性。

例:测试电路的瞬态响应。

13.冲激偶:即单位冲激信号的一阶导数,包含一对冲激信号,一个位于t=0-处,强度正无穷大;另一个位于t=0+处,强度负无穷大。

要求:冲激偶作为对时间积分的被积函数中一个因子,其他因子在冲激偶出现处存在时间的连续导数.14.斜升信号:单位阶跃信号对时间的积分即为单位斜率的斜升信号。

15.系统具有六个方面的特性:1、稳定性2、记忆性3、因果性4、可逆性5、时变性与非时变性6、线性性16.对于任意有界的输入都只产生有界的输出的系统,称为有界输入有界输出(BIBO )意义下的稳定系统。

信号与系统(Python) 学习笔记摘录 (2) 傅里叶 Fourier

信号与系统(Python) 学习笔记摘录 (2) 傅里叶 Fourier

信号与系统(Python) 学习笔记摘录 (2) 傅里叶 Fourier定义: 在 ( t 1 , t 2 ) (t_1,t_2) (t1,t2) 区间的两个函数φ 1 ( t ) \varphi_1(t) φ1(t) 和φ 2 ( t )\varphi_2(t) φ2(t), 若满足∫ t 1 t 2 φ 1 ( t ) φ 2 ∗ ( t ) d t = 0 , (两函数的内积为0)\int_{t_1}^{t_2} \varphi_1(t) \varphi_2^* (t)d t = 0, \, \text{(两函数的内积为0)} ∫t1t2φ1(t)φ2∗(t)dt=0,(两函数的内积为0)则称φ 1 ( t ) \varphi_1(t) φ1(t) 和φ 2 ( t ) \varphi_2(t) φ2(t) 在区间 ( t 1 , t 2 ) (t_1, t_2) (t1,t2) 内正交•实函数正交∫ t 1 t 2 φ 1 ( t ) φ 2 ( t ) d t =0 , (两函数的内积为0) \int_{t_1}^{t_2}\varphi_1(t) \varphi_2 (t)d t = 0, \, \text{(两函数的内积为0)} ∫t1t2φ1(t)φ2(t)dt=0,(两函数的内积为0)•正交函数集: 若 n n n 个函数φ 1 ( t ) , φ 2 ( t ) , ⋯ , φ n ( t ) \varphi_1(t), \varphi_2(t), \cdots , \varphi_n(t) φ1(t),φ2(t),⋯,φn(t) 构成一个函数集,当这些函数在区间 ( t 1 , t 2 ) (t_1,t_2) (t1,t2) 内满足∫ t i t j φ 1 ( t ) φ 2 ∗ ( t ) d t = { 0 , i ≠ j K j ≠ 0 , i = j\begin{aligned}\int_{t_i}^{t_j} \varphi_1(t)\varphi_2^* (t)d t ={\begin{cases} 0,\, & i\neq j \\K_j \neq 0 , \, & i=j \end{cases}}\end{aligned} ∫titj φ1(t)φ2∗(t)dt={0,Kj=0,i=ji=j则称此函数为函数集在区间 ( t 1 , t 2 ) (t_1,t_2) (t1,t2) 上的正交函数集。

信号与系统复习必备知识点

信号与系统复习必备知识点

⎧⎨⎩⎧⎪⎨⎪⎩⎧⎧⎪⎪⎨⎪⎪⎪⎩⎪⎪⎨⎪⎪⎪⎪⎪⎩⎧⎪⎪⎪⎨⎪⎪⎪⎩函数描述波形确定信号、随机信号分类周期信号、非周期信号(周期计算)连续信号、离散信号平移自变量变换尺度变换(含反褶)一般情况(尺度变换+平移)信号运算微分、积分相加、相乘直流分量、交流分量偶分量、奇分量分解脉冲分量(卷积)实部分量、虚部分量正交函数分量(变换域)正弦信号常规信号复指数信号(自变量分别取实数、纯虚数、复常见典型信号⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎧⎧⎪⎪⎨⎪⎪⎪⎩⎪⎪⎧⎪⎪⎪⎪⎪⎪⎧⎧⎪⎪⎪⎨⎪⎪⎩⎪⎪⎪⎪⎪⎧⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎨⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎧⎪⎪⎨⎪⎪⎩⎩⎩数)抽样信号斜变信号阶跃信号(因果信号、门信号、符号函数)矩形脉冲演变定义Dirac函数抽样性奇偶性(偶函数)冲激信号性质奇异信号尺度变换微积分应用(间断点处求导)抽样性冲激偶信号奇偶性(奇函数)⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩LTI LTI ⎧⎪⎧⎧⎪⎪⎪⎪⎨⎨⎪⎨⎪⎪⎩⎪⎪⎪⎪⎩⎩⎧⎪⎪⎪⎧⎪⎨⎨⎩⎪⎪⎪⎪⎩⎧⎪⎨⎪⎩微分方程加法器基本运算单元数乘器描述(建模)方框图积分器系统模拟连续系统、离散系统即时系统(无记忆)、动态系统(有记忆)均匀性(判定方法)系统分类线性系统、非线性系统叠加性(判定方法)时变系统、时不变系统(判定方法)因果系统、非因果系统(判定方法)响应可分解性线性零输入线性零状态线性系统时不变性系统分析方法⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎧⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩⎪⎪⎪⎧⎪⎧⎪⎨⎪⎪⎪⎪⎩⎪⎪⎨⎪⎧⎪⎪⎪⎨⎪⎪⎪⎩⎩⎩⎩微分特性经典法时域分析卷积法分析方法频域(傅氏变换)变换域分析s域(拉氏变换)KCL KVL 0000000t −++−−++⎧⎪⎨⎪⎩⎧⎪⎪⎪⎨⎪⎧⎪⎪⎨⎪⎪⎩⎩⎧⎨≤<+∞元件特性约束(伏安关系)建模(微分方程列写)系统结构约束(、)自由响应:齐次解(含待定系数)方法一强迫响应:特解由状态和激励求状态(冲激函数匹配法)完全响应=自由响应+强迫响应(含待定系数)由状态定待定系数求齐次解(含待定系数)零输入响应由状态定待定系数(此时状态与状态相同)时域分析求解(响应区间:)方法二()()0000000t m n t δδ−−++−++⎪⎪⎩⎧⎧⎪⎪⎨⎪⎪⎪⎩⎪⎪⎧⎧⎪⎪⎨⎪⎪⎪⎪⎨⎪⎪⎨⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎩⎩求完全解(齐次解+特解)(含待定系数)经典法由状态(此时状态为0)和激励求状态(冲激函数匹配法)由状态定待定系数求齐次解(含待定系数)零状态响应由状态和激励(此时为)求状态(冲激函数匹配法)冲激响应卷积法由状态定待定系数根据和的关系加上及其各阶导数零状态响应=激励*冲激响应完全响应⎧⎪⎪⎪⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩⎩⎩=零输入响应+零状态响应()()()()()()00,'t u t t t t u t t δδδ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎧⎧⎧⎪⎪⎪⎪⎨⎪⎨⎪⎪⎩⎨⎨⎪⎪⎩⎪⎩⎧⎪⎪⎧⎪⎪⎨⎪⎪⎪⎩⎪⎪⎨⎪⎧⎪⎪⎪−⎪⎪⎨⎪⎪⎪⎪⎪⎩⎩定义两个因果信号的卷积仍为因果信号,卷积积分限为利用利用定义卷积结果时宽等于两个函数各自时宽之和卷积计算图解法利用性质交换律代数性质分配律(系统并联)结合律(系统级联)性质微积分性质(微分冲激法):不变:平移与特殊信号卷积:积分:微分⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩⎧⎧⎧⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎪⎪⎪⎪⎨⎪⎧⎪⎪⎨⎪⎪⎩⎩⎪⎪⎧⎪⎪⎨⎪⎪⎪⎩⎩一般形式三角函数形式余弦形式正弦形式定义指数函数形式(傅氏系数为复数)两种形式系数之间的关系傅氏级数幅度谱频谱(离散性、谐波性、收敛性)相位谱偶函数:只含余弦项性质(奇偶对称性)奇函数:只含正弦项奇谐函数:只含奇次谐波⎧⎪⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎨⎪⎪⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩⎩⎪⎪⎩定义(频谱密度函数)利用定义傅氏变换计算利用性质矩形脉冲单边指数信号虚指数信号余弦信号直流信号典型信号的傅氏变换冲激信号冲激串冲激偶阶跃信号符号函数性质⎧⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩⎪⎨⎪⎪⎪⎪⎪⎪⎩⎧⎧⎪⎪⎨⎪⎪⎪⎩⎧⎨⎨⎩对偶性线性幅度为偶函数相位为奇函数实函数:频谱共轭对称实部为偶函数虚部为奇函数奇偶对称性实偶函数:频谱为实偶函数实奇函数:频谱为虚奇函数时域压缩,频域扩展尺度变换时域扩展,频域压缩时域反褶,频域反褶时移特性:时域平移,频域乘虚指数函数(相移)性质自变量变换平移频移特性:频域平移,时域乘虚指数函数(调制)一般情况(尺度变换+时移)⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩⎧⎧⎪⎨⎩⎪⎪⎨⎪⎪⎪⎩⎧⎨⎩⎧⎪⎨⎪⎩时域微分微分特性频域微分微积分积分特性(时域)微分冲激法时域卷积定理:时域卷积,频域相乘卷积特性频域卷积定理:频域卷积,时域相乘(调制)时域抽样:时域离散化(与时域冲激串相乘),频域周期化(与频域冲激串卷积)抽样特性频域抽样:频域离散化(与频域冲激串相乘),时域周期化(与时域冲激串卷积)能量守恒(Parseval定理)⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩⎧⎨⎩⎧⎪⎨⎪⎩物理意义:时域周期化,频域离散化(频域抽样)关系1:周期信号的傅氏级数与傅氏变换的关系两个关系关系2:单个脉冲信号的傅氏变换与周期脉冲信号的傅氏级数的关系求单个脉冲信号的傅氏变换三个步骤求周期脉冲信号的傅氏级数系数(利用关系2)周期信号的傅氏变换求周期脉冲信号的傅氏变换(利用关系1)虚指数信号:单个冲激(位于指数信号频率处)正弦:两个冲激(奇对称)典型周期信号的傅氏变换余弦:两个冲⎧⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎧⎨⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩⎩⎪⎧⎪⎪⎪⎧⎨⎪⎨⎪⎪⎩⎩⎩激(偶对称)周期冲激序列(冲激串):时域与频域均为冲激串物理意义:时域离散化(时域抽样),频域周期化抽样信号(时域)的傅氏变换信号重建条件:抽样频率不小于两倍带宽(奈奎斯特频率)抽样定理信号重建方法:低通滤波器()00--,st st e e σ⎧⎪⎨∞⎪⎩⎧⎪⎪⎪⎪⎪⎧⎪⎪⎪⎨⎪⎪⎪⎩⎪⎧⎨⎨⎩⎧⎧⎪⎪⎨⎪⎪⎪⎩⎪⎨⎧⎪⎪⎪⎨⎪⎪⎪⎩⎩-0单边(0系统)定义收敛域:冲激信号典型信号的拉氏变换阶跃信号指数信号利用定义拉氏变换计算正变换利用性质分母因式分解(求极点)步骤部分分式展开查表求原函数逆变换(部分分式分解法)非真分式:化为真分式+多项式(长除法)特殊情况有理分式与相乘:项不参与部分分式分解,求解时利用时移性质()()()u t f t F s ⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩⎧⎧⎪⎨⎩⎪⎪⎧⎪⎨⎨⎩⎪⎪⎪⎪⎩⎧⎧⎪⎨⎨⎩⎪⎩线性时域压缩,s域扩展尺度变换(不能反褶)时域扩展,s域压缩时移(只能右移):时域平移,s域乘复指数函数自变量变换平移s域平移:s域平移,时域乘复指数函数一般情况(尺度变换+时移):与的自变量作相同变换性质时域微分(应用:s域元件模型)微分微积分s域微分时域积分初值(若不是真分式,应化为真分式)终值(应用条件:()sF s ⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎧⎪⎪⎨⎪⎩⎪⎩⎩在右半平面和虚轴(原点除外)上无极点)时域卷积(因果信号卷积):时域卷积,s域相乘卷积s域卷积:s域卷积,时域相乘()()()()H s L h t H s H s ⎧⎧⎪⎨⎩⎪⎪⎨⎪⎪⎪⎩⎧=⎡⎤⎣⎦⎪⎪⎨⎪⎪⎩方法一:列时域微分方程,两边取拉氏变换列s域方程(代入初始状态)方法二:直接由电路的s域模型建立代数方程拉氏变换法分析电路求解s域方程得到s域响应由拉氏逆变换得到时域响应(全响应)定义(零状态)方法一:计算方法二:微分方程两端取拉氏变换(零状态下),解出方法三:利用s域模型直接列s域方程(零状态下),解出s域分析系统函数应用:求系统()()()()()()()()()()()1BIBO s j R s E s H s r t L R s H s H s h t H j H s H s ωω−=⎪⎪⎪⎪⎪⎪⎪⎪⎪⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎧=⎪⎪⎪⎨⎨⎨=⎡⎤⎪⎪⎪⎣⎦⎩⎪⎪⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎩⎪⎪⎧⎪⎧⎪⎪⎪⎪⎧=⎪⎨⎪⎪⎨⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩⎪⎩⎩⎩零状态响应并联复合系统的级联反馈的零极点(图)定义()时域:绝对可积稳定系统()系统稳定性判断s域(因果系统):的极点位置不稳定系统临界稳定系统⎪⎪⎪⎪⎪⎪⎪⎪。

信号与系统知识点整理

信号与系统知识点整理

信号与系统知识点整理第⼀章1.什么是信号?是信息的载体,即信息的表现形式。

通过信号传递和处理信息,传达某种物理现象(事件)特性的⼀个函数。

2.什么是系统?系统是由若⼲相互作⽤和相互依赖的事物组合⽽成的具有特定功能的整体。

3.信号作⽤于系统产⽣什么反应?系统依赖于信号来表现,⽽系统对信号有选择做出的反应。

4.通常把信号分为五种:连续信号与离散信号偶信号和奇信号周期信号与⾮周期信号确定信号与随机信号能量信号与功率信号5.连续信号:在所有的时刻或位置都有定义的信号。

6.离散信号:只在某些离散的时刻或位置才有定义的信号。

通常考虑⾃变量取等间隔的离散值的情况。

7.确定信号:任何时候都有确定值的信号。

8.随机信号:出现之前具有不确定性的信号。

可以看作若⼲信号的集合,信号集中每⼀个信号出现的可能性(概率)是相对确定的,但何时出现及出现的状态是不确定的。

9.能量信号的平均功率为零,功率信号的能量为⽆穷⼤。

因此信号只能在能量信号与功率信号间取其⼀。

10.⾃变量线性变换的顺序:先时间平移,后时间变换做缩放.注意:对离散信号做⾃变量线性变换会产⽣信息的丢失!11.系统对阶跃输⼊信号的响应反映了系统对突然变化的输⼊信号的快速响应能⼒。

(开关效应)12.单位冲激信号的物理图景:持续时间极短、幅度极⼤的实际信号的数学近似。

对于储能状态为零的系统,系统在单位冲激信号作⽤下产⽣的零状态响应,可揭⽰系统的有关特性。

例:测试电路的瞬态响应。

13.冲激偶:即单位冲激信号的⼀阶导数,包含⼀对冲激信号,⼀个位于t=0-处,强度正⽆穷⼤;另⼀个位于t=0+处,强度负⽆穷⼤。

要求:冲激偶作为对时间积分的被积函数中⼀个因⼦,其他因⼦在冲激偶出现处存在时间的连续导数.14.斜升信号:单位阶跃信号对时间的积分即为单位斜率的斜升信号。

15.系统具有六个⽅⾯的特性:1、稳定性2、记忆性3、因果性4、可逆性5、时变性与⾮时变性6、线性性16.对于任意有界的输⼊都只产⽣有界的输出的系统,称为有界输⼊有界输出(BIBO )意义下的稳定系统。

郑君里《信号与系统》(第3版)笔记和课后习题(含考研真题)详解-第5章 傅里叶变换应用于通信系统——

郑君里《信号与系统》(第3版)笔记和课后习题(含考研真题)详解-第5章 傅里叶变换应用于通信系统——
解:激励信号 e(t)=e-3tu(t),则 E(jω)=F[e(t)]=F[e-3tu(t)]=1/(jω+3)
故响应为:
R( j) = E( j)×H ( j) = 1 ×1 = 1 - 1 j + 3 j + 2 j + 2 j + 3
反变换可得: r(t)=F-1[R(jω)]=(e-2t-e-3t)u(t)
1 / 50
圣才电子书

十万种考研考证电子书、题库视频学习平 台
图 5-1-1 线性网络的无失真传输 2.引起信号失真的原因 ①系统对信号中各频率分量幅度产生不同程度的衰减,使响应的各频率分量的相对幅 度发生变化,引起幅度失真; ②系统对各频率分量产生的相移与频率不成正比,使响应的各频率分量在时间轴上的 相对位置产生变化,引起相位失真。 三、滤波 1.理想低通滤波器(见表 5-1-1)
= jπ [e jtan- 11 ( + 1) - e- jtan- 11 ( - 1)] + jπ ×[e jtan- 13 ( + 3) - e- jtan- 13 ( - 3)]
2
10
反变换,可得:
r(t) = F - 1[R( j)]
= 1 sin(t - tan- 11) + 1 sin(3t - tan- 1 3)
5-2 若系统函数H(jω)=1/(jω+1),激励为周期信号e(t)=sin(t) +sin(3t),试求响应r(t),画出e(t),r(t)波形,讨论经传输是否引起失真。
解:激励信号 e(t)=sin(t)+sin(3t),则 E(jω)=F[e(t)]=jπ[δ(ω+1)-δ(ω-1)]+jπ[δ(ω+3)-δ(ω-3)]
6 / 50
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

学习笔记(信号与系统)第一章信号和系统信号的概念、描述和分类信号的基本运算典型信号系统的概念和分类1、常常把来自外界的各种报道统称为消息;信息是消息中有意义的内容;信号是反映信息的各种物理量,是系统直接进行加工、变换以实现通信的对象。

信号是信息的表现形式,信息是信号的具体内容;信号是信息的载体,通过信号传递信息。

2、系统(system):是指若干相互关联的事物组合而成具有特定功能的整体。

3、信号的描述——数学描述,波形描述。

信号的分类:1)确定信号(规则信号)和随机信号确定信号或规则信号——可以用确定时间函数表示的信号;随机信号——若信号不能用确切的函数描述,它在任意时刻的取值都具有不确定性,只可能知道它的统计特性。

2)连续信号和离散信号连续时间信号——在连续的时间范围内(-∞<t<∞)有定义的信号称为连续时间信号,简称连续信号,实际中也常称为模拟信号;离散时间信号——仅在一些离散的瞬间才有定义的信号称为离散时间信号,简称离散信号,实际中也常称为数字信号。

3)周期信号和非周期信号周期信号——是指一个每隔一定时间T,按相同规律重复变化的信号;非周期信号——不具有周期性的信号称为非周期信号。

4)能量信号与功率信号能量信号——信号总能量为有限值而信号平均功率为零;功率信号——平均功率为有限值而信号总能量为无限大。

5)一维信号与多维信号信号可以表示为一个或多个变量的函数,称为一维或多维函数。

6)因果信号若当t<0时f(t)=0,当t>0时f(t)≠0的信号,称为因果信号;非因果信号指的是在时间零点之前有非零值。

4、信号的基本运算:信号的+、-、×运算:两信号f1(·)和f2(·)的相+、-、×指同一时刻两信号之值对应相加减乘。

平移:将f(t)→f(t + t0)称为对信号f(·)的平移或移位,若t< 0,则将f(·)右移,否则左移。

反转:将f(t)→f(–t)或f(k)→f(–k)称为对信号f(·)的反转或反折,从图形上看是将f (·)以纵坐标为轴反转180°。

尺度变换(横坐标展缩):将f(t)→f(at),称为对信号f(t)的尺度变换。

若a>1,则f(at)将f(t)的波形沿时间轴压缩至原来的1/a;若0<a<1,则f(at)将f(t)的波形沿时间轴扩展为原来的a倍。

微分:信号f(t)的微分运算指f(t)对t取导数,即:信号经过微分运算后突出显示了它的变化部分,起到了锐化的作用。

积分:信号f(t)的积分运算指f(t)在(-∞,t)区间内的定积分,表达式为:信号经过积分运算后,使得信号突出变化部分变得平滑了,起到了模糊的作用,利用积分可以削弱信号中噪声的影响。

5、典型的连续时间信号1)实指数信号:(对时间的微、积分仍是指数。

)a>0时,信号将随时间而增长;a<0时,信号将随时间而衰减;a=0时,信号不随时间而变化,为直流信号。

τ是指数信号的时间常数,τ越大,指数信号增长或衰减的速率越慢。

2)正弦信号:对时间的微、积分仍是同频率正弦。

3)复指数信号:()实际不存在,但可以用于描述各种信号。

σ>0时,增幅振荡正、余弦信号;σ<0时,衰减振荡正、余弦信号;σ=0时等振幅振荡正、余弦信号;ω=0时,实指数信号;σ=0且ω=0时,直流信号。

4)抽样信号:Sa(t)具有以下性质:,;Sa(0)=1,Sa(t)=0(t=±π,±2π,…)。

5)钟形信号:6、单位阶跃函数和单位冲激函数1)单位阶跃函数:可以方便地表示某些信号,用阶跃函数表示信号的作用区间,积分计算;○1单位冲激函数为偶函数:;○2加权特性:○3抽样特性:,;○4尺度变换:,,,;○5导数(冲激偶):,冲激偶的抽样特性:,,冲激偶的加权特性:,。

2)单位冲激函数:单位冲激函数是个奇异函数,它是对强度极大,作用时间极短一种物理量的理想化模型。

3)冲激函数与阶跃函数关系:阶跃函数序列与冲激函数序列。

7、信号的分解直流分量fD 与交流分量fA(t):,其中fD为直流分量即信号的平均值。

偶分量与奇分量:,其中fe=为偶分量,fo=为奇分量。

脉冲分量一种分解为矩形窄脉冲分量:,另一分解为阶跃信号分量之叠加。

实部分量与虚部分量:对于瞬时值为复数的信号f(t)可分解为实、虚部两个部分之和。

正交函数分量:,用正交函数集来表示一个信号,组成信号的各分量就是相互正交的。

8、系统:若干相互作用、相互联系的事物按一定规律组成具有特定功能的整体称为系统。

9、系统的分类及性质连续系统与离散系统:输入和输出均为连续时间信号的系统称为连续时间系统;输入和输出均为离散时间信号的系统称为离散时间系统。

连续时间系统的数学模型是用微分方程来描述,而离散时间系统的数学模型是用差分方程来描述。

动态系统与即时系统:若系统在任一时刻的响应不仅与该时刻的激励有关,而且与它过去的历史状况有关,则称为动态系统或记忆系统;含有记忆元件(电容、电感等)的系统是动态系统,否则称即时系统或无记忆系统。

线性系统与非线性系统:能同时满足齐次性与叠加性的系统称为线性系统。

满足叠加性是线性系统的必要条件;不能同时满足齐次性与叠加性的系统称为非线性系统。

时不变系统与时变系统:满足时不变性质的系统称为时不变系统。

时不变性质:若系统满足输入延迟多少时间,其激励引起的响应也延迟多少时间。

因果系统与非因果系统:激励引起的响应不会出现在激励之前的系统,称为因果系统;也就是说,如果响应r(t)并不依赖于将来的激励[如e(t+1)],那么系统就是因果的。

稳定系统与不稳定系统:一个系统,若对有界的激励f(.)所产生的响应y=f(.)也是有界时,则称该系统为有界输入有界输出稳定,简称稳定;即若│f(.)│<∞,其│yf(.)│<∞,则称系统是稳定的。

线性时不变系统:LTI连续系统的微分特性和积分特性线性性质包括两方面:齐次性和可加性,若系统既是齐次的又是可加的,则称该系统是线性的,即T[a f1(·) + bf2(·)] = a T[ f1(·)] + bT[ f2(·)]。

当动态系统满足下列三个条件时该系统为线性系统:可分解性+零状态线性+零输入线性。

10、描述连续动态系统的数学模型是微分方程,描述离散动态系统的数学模型是差分方程。

解析描述-系统模拟框图描述。

11、系统分析研究的主要问题:对给定的具体系统,求出它对给定激励的响应;也可以说,系统分析就是建立表征系统的数学方程并求出解答。

采用的数学工具:卷积积分与卷积和,傅里叶变换,拉普拉斯变换,Z变换。

第二章连续系统的时域分析微分方程的经典解法0+和0-初始值零输入响应与零状态响应冲激响应和阶跃响应卷积积分1、微分方程的一般形式:微分方程的经典解:y(t)(完全解) = yh (t)(齐次解) + yp(t)(特解)齐次解是齐次微分方程的解,yh(t)的函数形式由上述微分方程的特征根确定,而特解的函数形式与激励函数的形式有关。

齐次解的函数形式仅与系统本身的特性有关,而与激励f(t)数形式无关,称为系统的固有响应或自由响应;特解的函数形式由激励确定,称为强迫响应。

2、全响应=齐次解(自由响应)+特解(强迫响应)。

齐次解:写出特征方程,求出特征根(自然频率或固有频率);根据特征根的特点,齐次解有不同的形式;一般形式(无重根):特解:根据输入信号的形式有对应特解的形式,用待定系数法确定;在输入信号为直流和正弦信号时,特解就是稳态解。

用初始值确定积分常数,一般情况下,n阶方程有n个常数,可用n个初始值确定。

3、0-状态称为零输入时的初始状态,即初始值是由系统的储能产生的;0+状态称为加入输入后的初始状态,即初始值不仅有系统的储能,还受激励的影响。

从0-状态到0+状态的跃变:当系统已经用微分方程表示时,系统的初始值从0-状态到0+状态有没有跳变决定于微分方程右端自由项是否包含δ(t)及其各阶导数;如果包含有δ(t)及其各阶导数,说明相应的0-状态到0+状态发生了跳变。

0+状态的确定:已知0-状态求0+状态的值,可用冲激函数匹配法;求0+状态的值还可以用拉普拉斯变换中的初值定理求出。

4、各种响应用初始值确定积分常数:在经典法求全响应的积分常数时,用的是0+状态初始值;在求系统零输入响应时,用的是0-状态初始值;在求系统零状态响应时,用的是0+状态初始值,这时的零状态是指0-状态为零。

5、冲激函数匹配法:目的:用来求解初始值,求(0+)和(0-)时刻值的关系;应用条件:如果微分方程右边包含δ(t)及其各阶导数,那么(0+)时刻的值不一定等于(0-)时刻的值;原理:利用t=0时刻方程两边的δ(t)及各阶导数应该平衡的原理来求解(0+)。

6、零输入响应:没有外加激励信号的作用,只有起始状态所产生的响应;零状态响应:不考虑起始时刻系统储能的作用,由系统外加激励信号所产生的响应;LTI的全响应:y(t) = yx (t) + yf(t)。

1)零输入响应,即求解对应齐次微分方程的解:当特征方程的根(特征根)为n个单根(不论实根、虚根、复数根)λ1,λ2,…,λn 时,则yx(t)的通解表达式为:当特征方程的根(特征根)为n个重根(不论实根、虚根、复数根) λ1=λ2=…=λn 时,yx(t)的通解表达式为:步骤总结:求系统的特征根,写出yx(t)的通解表达式;由于激励为零,所以零输入的初始值:,确定积分常数C 1、C2、…、Cn;将确定出的积分常数C1、C2、…、Cn代入通解表达式,即得yx(t)。

2)零状态响应,即求解对应非齐次微分方程的解:基本步骤:求系统的特征根,写出的通解表达式yfh(t);根据f(t)的形式,确定特解形式,代入方程解得特解yfp(t);求全解,若方程右边有冲激函数(及其各阶导数)时,根据冲激函数匹配法求得,确定积分常数C1、C2、…、Cn;将确定出的积分常数C1、C2、…、Cn代入全解表达式,即得。

几种典型自由项函数相应的特解:7、系统响应划分:自由响应(Natural)+强迫响应(forced);暂态响应(Transient)+稳态响应(Steady-state);零输入响应(Zero-input)+零状态响应(Zero-state)。

零输入响应是自由响应的一部分,零状态响应有自由响应的一部分和强迫响应构成。

8、冲激响应:系统在单位冲激信号δ(t)作用下产生的零状态响应,称为单位冲激响应,简称冲激响应,一般用h(t)表示。

阶跃响应:系统在单位阶跃信号u(t)作用下的零状态响应,称为单位阶跃响应,简称阶跃响应,一般用g(t)表示。

相关文档
最新文档