高考一轮复习专题5-3:三角恒等变换
2024届新高考一轮复习人教B版 主题二 第四章 第3节 三角恒等变换 课件(38张)
又因为 < <π,所以原式=-cos .
答案:-cos
3.化简:
- +
=
( -) ( +)
( - +)
( -)
·
· ( -)
( -)
解析:原式=
=
=
(3)tan 2α=
.
-
1.常用拆角、拼角技巧:例如,2α=(α+β)+(α-β);α=(α+β)-β=(α-β)+β;
β=
+ -
-
=(α+2β)-(α+β);α-β=(α-γ)+(γ-β);15°=45°-30°; +α=
-( -α)等.
2.辅助角公式
=
- °
×°
- °
= ×tan 30°= × = .
3.
°- °
等于(
°
A.-
C.
B.-1
解析:原式=2×
=2×
D
)
D.1
°-°°
°
(°+°)-°°
三角函数式的求值
给角求值
[例 1] (1)
° °
解析:(1)原式=
=
=
=
-
( °-
=
.
°- °
简单的三角恒等变换-2025年高考数学大一轮复习核心题型讲与练(新高考版)
15
sin
15
,tan α=
= 15
.故选A
4
cos
,
(2)[2021新高考卷Ⅰ]若tan θ=-2,则
A.
6
-
5
B.
[解析] 解法一
2-5来自sin(1+sin2)
sin+cos
C.
因为tan θ=-2,所以
2
5
C
=(
D.
sin(1+sin2)
sin+cos
)
6
5
=
sin(sin+cos )2
因为tan 2α=
π
2
5
5
sin2
cos2
C.
=
2sincos
1−2sin2
cos
2α=
,则tan
2−sin
5
3
,且tan 2α=
1
4
由α∈(0, )得 cos α≠0,解得 sin α= , cos α=
D.
α=( A
)
15
3
cos
2sincos
cos
,所以
=
2−sin
1−2sin2
三角化简的标准:
三角函数名称尽量少,次数尽量低,最好不含分母,能求值的尽量求值.
化简、求值的主要技巧:
(1)寻求角与角之间的关系,化非特殊角为特殊角;
(2)正确灵活地运用公式,通过三角变换消去或约去一些非特殊角的三角
函数值.
三角函数给角求值问题的解题策略
一般所给出的角都是非特殊角,要观察所给角与特殊角间的关系,利用三角变
,选正弦较好.
解题心得三角恒等变换综合应用的解题思路
2025届高三数学一轮复习课件-+简单的三角恒等变换
)
A.π 3
B.5π 12
C.π6
D.π4
解析 ∵0<α<π2,0<β<π2,∴0<α+β<π,由 cosα=17,sin(α+β)=5143,得 sinα=473,
cos(α+β)=±1114.若 cos(α+β)=1114,则 sinβ=sin[(α+β)-α]=sin(α+β)cosα-cos(α+
解析
sinα -
3
cosα
=
2
12sinα-
3
2
cosα
=
2sin
α-π3
=
m
-
1
,
因
为
-
1≤sinα-π3≤1,所以-2≤2sinα-π3≤2,所以-2≤m-1≤2,解得-1≤m≤3,
则 m 的取值范围是[-1,3].
课堂小结(1分钟)
【通性通法】 三角恒等变换的综合应用主要是将三角变换与三角函数的性质相结合,通常是 把复杂的三角函数通过恰当的三角变换,转化为一种简单的三角函数,再研究转化 后函数的性质.在这个过程中通常利用辅助角公式,将 y=asinx+bcosx 转化为 y= Asin(x+φ)或 y=Acos(x+φ)的形式,以便研究函数的性质,解题时注意观察角、函 数名、结构等特征,注意利用整体思想解决相关问题.
因为 x∈π4,32π,所以 x-71π2∈-π3,1112π,
所以 sinx-71π2∈- 23,1,
所以- 22sinx-71π2∈- 22, 46,
即函数
f(x)在区间π4,32π上的最大值为
46,最小值为-
2 2.
(2)因为 cosθ=45,θ∈32π,2π, 所以 sinθ=-35,所以 sin2θ=2sinθcosθ=-2245, cos2θ=cos2θ-sin2θ=1265-295=275, 所以 f2θ+π3=- 22sin2θ+π3-71π2 =- 22sin2θ-π4=-12(sin2θ-cos2θ) =12(cos2θ-sin2θ)=12×275+2245=3510.
2025年高考数学一轮复习-5.3.2-简单的三角恒等变换【课件】
因为由二倍角公式可知:cos
因为tan
1+cos
2
2
θ=2cos -1,所以cos =
,因此(3)错误;
2
2
2
sin 2 2sin 2 cos 2
sin
sin 2 2sin 2 cos 2 1−cos
= =
,tan = =
,所以(4)正确.
=
=
2
2
2 cos
π
提醒:以上变换,结合二倍角公式可将2x的三角函数与 ±x的三角函数联系在一起.
4
角度3
给值求角
[例4](1)已知α为锐角,且sin α·( 3-tan 10°)=1,则α= 40°
【解析】由已知得sin α=
=
cos10°
=
sin80°
2sin50° 2sin50°
1
3−tan10°
2sin40°cos40°
考向
高考命题常以角为载体,考查二倍角公式、升幂降幂公式、半角公
考法
式;三角函数求值是高考热点,常以选择题或填空题的形式出现.
预测
高考可能单独考查,也可能与三角函数的图象与性质、向量等知识
综合考查,选择题、填空题、解答题中均有可能出现.
必备知识·逐点夯实
知识梳理·归纳
1.二倍角的正弦、余弦、正切公式
−
(2cos2 −1)2
cos2 2
=
=
π
π
π
4sin( 4 −)cos( 4 −) 2sin( 2 −2)
cos2 2 1
=
= cos
2cos2 2
高考数学一轮复习第三章第四讲简单的三角恒等变换课件
又 α∈(0,π),所以-π4<α-π4<34π.
所以 α-π4=π2.故 α=34π.
因此,tan
α+π3=tan
34π+π3=1t-anta3n4π+34πttaann
π 3π=-11++
3
3= 3
2- 3.
【反思感悟】三角恒等变换综合应用的解题思路
(1)将 f(x)化为 a sin x+b cos x 的形式.
(2)构造 f(x)=
a2+b2
a a2+b2·sin
x+
b a2+b2·cos
x.
(3)和角公式逆用,得 f(x)= a2+b2sin (x+φ)(其中 φ 为辅助
角).
(4)利用 f(x)= a2+b2sin (x+φ)研究三角函数的性质.
(5)反思回顾,查看关键点、易错点和答题规范.
【高分训练】
(2)用辅助角公式变形三角函数式时: ①遇两角和或差的三角函数,要先展开再重组; ②遇高次时,要先降幂; ③熟记以下常用结论:
sin α±cos α= 2sin α±π4; 3sin α±cos α=2sin α±π6; sin α± 3cos α=2sin α±π3.
2.半角公式
(1)sin α2=±
【题后反思】(1)解决三角函数的求值问题的关键是把“所求 角”用“已知角”表示.①当“已知角”有两个时,“所求角”一 般表示为两个“已知角”的和或差的形式;②当“已知角”有一 个时,此时应着眼于“所求角”与“已知角”的和或差的关系.
(2)常见的配角技巧:2α=(α+β)+(α-β),α=(α+β)-β, β=α+2 β-α-2 β,α=α+2 β+α-2 β,α-2 β=α+β2-α2+β等.
答案:B
高考数学一轮总复习课件:三角恒等变换
5.(2021·衡水中学调研卷)已知sin(θ+20°)=
2+ 4
6,
cos105°=
2- 4
6 ,tan105°=-2-
3 .(也可由105°=60°+45
°求得)
(2)求值: ①sin2π12-sin251π2 ;
②1-tatna2n222°2°303′0′;
③sin105°·sin15°; ④sin110°-cos130°.
π 【思路】 通过适当变形,创造适合公式的条件.①由sin2 12
π ∴cos(α+ 4 )=-
1-sin2(α+π4 )=-35.
ππ ∴cosα=cos[(α+ 4 )- 4 ]
ππ
ππ
=cos(α+ 4 )cos 4 +sin(α+ 4 )sin 4
=-35× 22+45× 22=102.
(6)∵cos(75°-α)=sin(15°+α)=13, ∴cos(30°+2α)=1-2sin2(15°+α)=1-2×19=79.
【答案】
①
3 3
②4
③2- 3
④14
(4)①(2016·课标全国Ⅱ)若cos(π4 -α)=35,则sin2α=( D )
7 A.25
1 B.5
C.-15
D.-275
②设α为锐角,若cos(α+ 17 2
π 6
)=
4 5
,则sin(2α+
高考数学一轮复习三角恒等变换
1
A.
2
C.
2
2
B.
3
3
D.
3
2
12
解析:D 法一(通解):因为cos
π
π
2
2
=cos -sin =cos
12
12
2×
π
12
5π
=sin
12
)
π 5π
−
2 12
=sin
π
π
5π
,所以cos2 -cos2
12
12
12
π
3
=cos = .故选D.
6
2
π
6+ 2
5π
6− 2
π
5π
2
2
法二(优解):因为cos =
1
1
2.(2023·烟台一模)已知tan(α+β)= ,tan(α-β)= ,则tan(π-2α)
2
3
=
.
解析:因为tan(π-2α)=-tan 2α,由结论2可知tan 2α=
tan(+)+tan(−)
=
1−tan(+)tan(−)
1 1
+
2 3
1 1
1 2×3
−
=1,所以tan(π-2α)=-1.
第三节
三角恒等变换
1.经历推导两角差余弦公式的过程,了解两角差余弦公式的意义.
2.能从两角差的余弦公式推导出两角和与差的正弦、余弦、正切公式,二倍角
的正弦、余弦、正切公式,了解它们的内在联系.
3.能运用上述公式进行简单的恒等变换(包括推导出积化和差、和差化积、半
角公式,但对这三组公式不要求记忆).
三角恒等变换高三数学一轮复习考点突破课件
题目:已知a=cosθ,b=sinθ,求a^2-b^2的值 答案:-1 答案:-1
06 总结与建议
总结三角恒等变换的重要知识点和考点
三角恒等变换的应用实例和 解题技巧
三角恒等变换在高考中的常 见题型和考点分析Biblioteka 三角恒等变换的公式和推导 过程
三角恒等变换高三数 学一轮复习考点突破
,a click to unlimited possibilities
汇报人:
目录 /目录
01
点击此处添加 目录标题
04
三角恒等变换 的考点解析
02
三角恒等变换 的基本概念
05
三角恒等变换 的实战演练
03
三角恒等变换 的解题方法
06
总结与建议
01 添加章节标题
三角恒等变换的公式
正弦定理:sin(A+B) = sinAcosB + cosAsinB
余弦定理:cos(A+B) = cosAcosB - sinAsinB
正切定理:tan(A+B) = (tanA+tanB)/(1-tanAtanB)
正弦、余弦、正切的和差公式:sin(A-B) = sinAcosB - cosAsinB, cos(A-B) = cosAcosB + sinAsinB, tan(A-B) = (tanAtanB)/(1+tanAtanB)
02
三角恒等变换的基本概 念
三角恒等变换的定义
基本概念:三角恒等变换是指在三角函数中,通过恒等变换将一种三角函数转化为另 一种三角函数的过程。
主要类型:包括正弦、余弦、正切、余切等基本三角函数的恒等变换。
高考数学一轮总复习第四章三角函数与解三角形 3三角恒等变换第1课时简单的三角恒等变换课件
4
1
4
即cos cos + sin sin = .故cos − = .
故选C.
D.−
)
7
8
【点拨】和、差、倍角公式的综合应用,关键在于把握式子的结构特点,灵活应用
整体思想求解,尤其是对于含两个不相关联角的问题.
变式3(1) (2023年新课标Ⅰ卷)已知sin − =
5
π
(0, ),tan
2
2 =
C.
5
3
cos
,则tan
2−sin
=(
D.
)
15
3
cos
sin 2
2sin cos
cos
π
解:因为tan 2 =
,所以tan 2 =
=
=
.因为 ∈ (0, ),
2−sin
cos 2
1−2sin2
2−sin
2
2sin
1
cos 45∘ =
2
,D不符合.故选AC.
2
【点拨】和、差、倍角公式对使公式有意义的任意角都成立,使用中要注意观察角之
间的和、差、倍、互补、互余等关系.
变式1 【多选题】下列化简正确的是(
√
tan 48 +tan 72
C.
√1−tan 48 tan 72
A.cos 82∘ sin 52∘ − sin 82∘ cos 52∘ = −
tan 48∘ +tan 72∘
对于C,
1−tan 48∘ tan 72∘
1
sin
2
∘
15 cos 15 =
1
sin
4
2024年高考数学一轮复习第四章三角函数与解三角形第三节三角恒等变换课件
2. cos2-cos2=A. B. C. D.
教材素材变式
归纳总结
本题的出题意图是让同学们灵活运用三角恒等变换知识进行求值,考查同学们的运算求解能力. 一般地,应熟记以下次特殊角的三角函数值:sin 15°=cos 75°=,sin 75°=cos 15°=,tan 15°=2-,tan 75°=2+.
教材素材变式
方法技巧应用和、差、倍角公式化简求值的策略
(1)首先要记住公式的结构特征和符号变化规律,例如两角差的余弦公式可简记为:“同名相乘,符号反”;
(2)注意与同角三角函数基本关系、诱导公式的综合应用;
(3)注意配方法、因式分解和整体代换思想的应用.
教材素材变式
6. 已知对任意的角α,β,满足(sin α+sin β)=sin·cos,(cos α+cos β)=cos·cos.则当sin α+sin β=,cos α+cos β=时,tan= ;若tan=1,则sin α+sin β cos α+cos β(填“>”“<”或“=”).
知识点39:两角和与差的正弦、余弦、正切公式
规律总结1.两角和与差的正切公式的变形 <m></m> ; <m></m> .2.降幂公式: <m></m> ; <m></m> ; <m></m> 3.升幂公式: <m></m> ; <m></m> ; <m></m> .4.其他常用变式 <m></m> ; <m></m> ; <m></m> .
新教材老高考适用2023高考数学一轮总复习第五章三角函数第四节三角恒等变换pptx课件北师大版
+ -
α= 2 + 2 ,β= 2 − 2 等.
(2)两角互余与互补关系
π
π
π π
3π
例如:(3+α)+(6-α)=2,(4+α)+( 4 -α)=π 等.
(3)非特殊角转化为特殊角
30°
例如:15°=60°-45°=45°-30°=
,
2
150°
70°=45°+30°=
,105°=60°+45°等.
即从复杂的一端证到简单的一端,另外还要注意强化“目标意识”和“化异为
同”的意识.“目标意识”就是在证明过程中,时刻紧盯目标,逐步向目标靠
拢;“化异为同”意识,就是指化异角为同角、化异名为同名、化异次为同次.
3π)cos(+π)-1
2sin(sin+cos
2
2 .
对点训练 2(2021 山西太原高三月考)求证:
− 1 sin
π
+6
+ 2 =0.
π
+6
A.
∵sin
π
+6
∴cos
π
−
3
∈[-1,1],∴sin
=cos
π
+
6
π
+6
π
−
2
1
=4,
=sin
π
+
6
1
= .故选
4
B.
考向3.给值求角问题
典例突破
1
3 3
π
π
例 5.(1)(2021 湖南岳阳高三期中)若 sin α=-7,cos β= 14 ,且 α∈(-2,0),β∈(0,2),
高考一轮复习 三角恒等变换复习 知识点+例题+练习
1.两角和与差的三角函数βαβαβαsin cos cos sin )sin(±=±;βαβαβαsin sin cos cos )cos( =±; tan tan tan()1tan tan αβαβαβ±±=。
2.二倍角公式αααcos sin 22sin =;ααααα2222sin 211cos 2sin cos 2cos -=-=-=;22tan tan 21tan ααα=-。
3.三角函数式的化简常用方法:①直接应用公式进行降次、消项;②切割化弦,异名化同名,异角化同角;③ 三角公式的逆用等。
(2)化简要求:①能求出值的应求出值;②使三角函数种数尽量少;③使项数尽量少;④尽量使分母不含三角函数;⑤尽量使被开方数不含三角函数。
(1)降幂公式ααα2sin 21cos sin =;22cos 1sin 2αα-=;22cos 1cos2αα+=。
(2)辅助角公式()sin cos sin a x bx x ϕ+=+,sin cos ϕϕ==其中4.三角函数的求值类型有三类(1)给角求值:一般所给出的角都是非特殊角,要观察所给角与特殊角间的关系,利用三角变换消去非特殊角,转化为求特殊角的三角函数值问题;(2)给值求值:给出某些角的三角函数式的值,求另外一些角的三角函数值,解题的关键在于“变角”,如2(),()()ααββααβαβ=+-=++-等,把所求角用含已知角的式子表示,求解时要注意角的范围的讨论;(3)给值求角:实质上转化为“给值求值”问题,由所得的所求角的函数值结合所求角的范围及函数的单调性求得角。
5.三角等式的证明(1)三角恒等式的证题思路是根据等式两端的特征,通过三角恒等变换,应用化繁为简、左右同一等方法,使等式两端化“异”为“同”;(2)三角条件等式的证题思路是通过观察,发现已知条件和待证等式间的关系,采用代入法、消参法或分析法进行证明。
第5章+第3讲+第2课时+简单的三角恒等变换2024高考数学一轮复习+PPT(新教材)
解析 答案
6.(2021·辽宁省本溪满族自治县高级中学模拟)数学家华罗庚倡导的
5-1 “0.618 优选法”在各领域都应用广泛,0.618 就是黄金分割比 m= 2 的
m 4-m2 近似值,黄金分割比还可以表示成 2sin18°,则2cos227°-1等于( )
A.4
B. 5+1
C.2
D. 5-1
解析 答案
2.化简:22tcaonsπ44x--x2scions22π4x++12x=________.
答案
1 2cos2x
解析
原式=212·cs4oicnsoπ4sπ44--x-xx4·ccooss22xπ4+-1x=4sin2π4c-osx2xc-os1π42-x=2sicnoπ2s2-2x2x
∴-π<2α-β<0,∴2α-β=-34π. 解析
通过求角的某种三角函数值来求角,在选取函数时应遵循 的原则
(1)已知正切函数值,则选正切函数. (2)已知正、余弦函数值,则选正弦或余弦函数.若角的范围是0,π2, 则选正、余弦函数皆可;若角的范围是(0,π),则选余弦函数较好;若角的 范围为-π2,π2,则选正弦函数较好.
A.π6
B.π6或76π
C.π3
D.π3或43π
答案
解析 f(x)= 2sinωx+51π2-π4= 2sinωx+π6.因为 f(x)的图象关于直线 x=1 对称,所以 ω+π6=kπ+π2,k∈Z,解得 ω=kπ+π3,k∈Z,因为 0<ω<6, 所以 ω=π3或 ω=43π,故选 D.
解析
(2)(2021·海口调研)如图,已知 OPQ 是半径为 1,圆心角为π3的扇形, 点 A 在弧 PQ 上(异于点 P,Q),过点 A 作 AB⊥OP,AC⊥OQ,垂足分别为 B,C,记∠AOB=θ,四边形 ACOB 的周长为 l.
2024年高考数学专项三角恒等变换4种常见考法归类(解析版)
三角恒等变换4种常见考法归类高频考点考点一两角和与差的正弦、余弦和正切公式(一)给角求值(二)给值(式)求值(三)给值求角(四)三角函数式的化简(五)两角和与差的正弦、余弦、正切公式的综合应用考点二二倍角公式(一)给角求值(二)给值(式)求值(三)给值求角(四)与同角三角函数的基本关系综合(五)与诱导公式的综合(六)利用二倍角公式化简求值考点三辅助角公式的应用考点四简单的三角恒等变换(一)半角公式的应用(二)三角恒等式的证明(三) 三角恒等变换的综合问题解题策略1.两角和与差的正弦、余弦和正切公式(1)两角和与差的正弦、余弦和正切公式(和角、差角公式)C(α-β)cos(α-β)=cosαcosβ+sinαsinβC(α+β)cos(α+β)=cos_αcos_β-sin_αsin_β记忆口诀:1、余余正正符号反2、同名相乘、加减相反3、谐音:“吃吃睡睡,颠倒黑白”S(α-β)sin(α-β)=sin_αcos_β-cos_αsin_β(异名相乘、加减一致)S(α+β)sin(α+β)=sin_αcos_β+cos_αsin_β(异名相乘、加减一致)记忆口诀:1、正余余正符号同2、异名相乘、加减一致3、谐音:“上错厕所,一一对应”T (α-β)tan(α-β)=tanα-tanβ1+tanαtanβ;(两式相除、上同下异).变形:①tanα-tanβ=tan(α-β)(1+tanαtanβ)②tanα·tanβ=tanα-tanβtan(α-β)-1 2024年高考数学专项三角恒等变换4种常见考法归类(解析版)T (α+β)tan (α+β)=tan α+tan β1-tan αtan β;(两式相除、上同下异).变形:①tan α+tan β=tan (α+β)(1-tan αtan β)②tan α·tan β=1-tan α+tan βtan (α+β)(2)二倍角的正弦、余弦、正切公式(倍角公式)二倍角是相对的,如:α2是α4的2倍,3α是3α2的2倍.S 2αsin 2α=2sin _αcos _α;变形:sin αcos α=12sin2α,cos α=sin2α2sin α,⇒1±sin2α=sin 2α+cos 2α±2sin αcos α=(sin α±cos α)2C 2αcos 2α=cos 2α-sin 2α=2cos 2α-1=1-2sin 2α;变形:cos 2α=1+cos2α2,sin 2α=1-cos2α2T 2αtan 2α=2tan α1-tan 2α(α≠k π+π2且α≠k π2+π4,k ∈Z )2.简单的三角恒等变换(1)降幂公式sin 2α=1-cos2α2.cos 2α=1+cos2α2.sin αcos α=12sin2α.(2)升幂公式1+cos α=2cos 2α2. 1-cos α=2sin 2α2. 1+sin α=sin α2+cos α2 2. 1-sin α=sin α2-cos α22.注:1+cos2α=2cos 2α;1−cos2α=2sin 2α;1+sin2α=(sin α+cos α)2;1−sin2α=(sin α−cos α)2(3)万能公式sin α=2tan α21+tan 2α2,cos α=1-tan 2α21+tan 2α2,tan α=2tan α21-tan 2α2(4)其他常用变式sin2α=2sin αcos αsin 2α+cos 2α=2tan α1+tan 2α;cos2α=cos 2α−sin 2αsin 2α+cos 2α=1−tan 2α1+tan 2α;cos 4x -sin 4x =(cos 2x +sin 2x )(cos 2x -sin 2x )=cos2x 3.辅助角公式(同角异名1次)a sin α+b cos α=a 2+b 2sin (α+φ),其中cos φ=a a 2+b 2,sin φ=b a 2+b 2,或tan φ=ba . 其中φ称为辅助角,它的终边所在象限由点(a ,b )决定.4.半角的正弦、余弦、正切公式(1)sin α2=±1-cos α2.(2)cosα2=±1+cosα2.(3)tanα2=±1-cosα1+cosα=sinα1+cosα=1-cosαsinα.5.常用的拆角、拼角技巧(1)15°=45°-30°=60°-45°=30°2.(2)β=α-a-β,α=(α+β)-β=β-(β-α),2α=(α+β)+(α-β),α=12[(α+β)+(α-β)]β=α+β2-α-β2=(α+2β)-(α+β). α-β=(α-γ)+(γ-β)(3)π3-α=π2-π6+α,π6-α=π2-π3+α,π3+α=π-2π3-α,π4+α=π-3π4-α. π4+α=π2-π4-α6. 应用和、差、倍角公式化简求值的策略(1)首先要记住公式的结构特征和符号变化规律.例如两角差的余弦公式可简记为:“同名相乘,符号反”;(2)注意与同角三角函数基本关系、诱导公式的综合应用;(3)注意配方法、因式分解和整体代换思想的应用. 7. 和、差、倍角公式的逆用和变形用的应用技巧(1)逆用公式应准确找出所给式子与公式的异同,创造条件逆用公式;(2)和差角公式变形:sinαsinβ+cos(α+β)=cosαcosβ;cosαsinβ+sin(α-β)=sinαcosβ;tanα±tanβ=tan(α±β)·(1∓tanα·tanβ);(3)倍角公式变形:降幂公式.(4)tanαtanβ,tanα+tanβ(或tanα-tanβ),tan(α+β)(或tan(α-β))三者中可以知二求一,且常与一元二次方程根与系数的关系结合命题. 8. 解决非特殊角求值问题的基本思路有:①化非特殊角为特殊角;②化为正负相消的项,消去后求值;③化分子、分母使之出现公约数,进行约分求值;④当有α,2α,3α,4α同时出现在一个式子中时,一般将α向2α,3α(或4α)向2α转化,再求关于2α式子的值.9.三角函数式的化简要遵循“三看”原则注:三角函数式化简、求值的一般思路:异名三角函数化为同名三角函数,异角化为同角,异次化为同次,切化弦,特殊值与特殊角的三角函数互化等. 10. 给值(式)求值的解题策略(1)已知某些角的三角函数值,求另外一些角的三角函数值,要注意观察已知角与所求表达式中角的关系,即拆角与凑角.(2)由于和、差角与单角是相对的,因此解题过程中根据需要灵活地进行拆角或凑角的变换.常见角的变换有:①α=(α-β)+β;②α=α+β2+α-β2;③2α=(α+β)+(α-β);④2β=(α+β)-(α-β).(3)当“已知角”有两个时,“所求角”一般表示为两个“已知角”的和或差的形式.(4)当“已知角”有一个时,此时应着眼于“所求角”与“已知角”的和或差的关系,然后应用诱导公式把“所求角”变成“已知角”.(5)给值求值型恒等变换问题,重在对所给条件进行挖掘,如由某角正弦值可得其余弦、正切值,由所给值的符号判断角所在的象限等. 必要时还要进行估算,如锐角α的余弦值为35,由12<35<22,及余弦函数在0,π2上单调递减可知45°<α<60°,从而2α∈(90°,120°),或3α∈(135°,180°)等. 另外,注意三种主要变换:①变角,通常是“配凑”,常用的角的拆拼有2α=(α+β)+(α-β),α=(α+β)-β=(α-β)+β等;②变名,通过变换函数名称达到减少函数种类的目的,其手段通常有“切化弦”“升幂与降幂”等;③变式,根据式子的结构特征进行变形,使其更贴近某个公式或某个期待的目标,其手段通常有:“常值代换”如1=tan π4,1=sin 2α+cos 2α“逆用变换公式”“通分约分”“分解与组合”“配方与平方”等. 其中角的变换居核心地位.11. 已知三角函数值求角的解题步骤(1)界定角的范围,根据条件确定所求角的范围.(在给值求角时,一般地选择一个适当的三角函数,根据题设确定所求角的范围,利用三角函数的单调性求出角. 确定角的范围是关键,一定要使所选的函数在此范围内是单调的,必要时,还需根据已知三角函数值缩小角的范围.)(2)求所求角的某种三角函数值.为防止增解最好选取在范围内单调的三角函数(已知三角函数值求角,选三角函数时可按下列规则:(i )已知正切值,常选正切函数;(ii )已知正、余弦值,常选正弦或余弦函数;(iii )若角的范围是0,π2 ,π,3π2 ,常选正、余弦函数;(iv )若角的范围是π2,3π2 或-π2,π2 ,常选正弦函数;(v )若角的范围是(0,π)或(π,2π),常选余弦函数. )(3)结合三角函数值及角的范围求角.12. 利用半角公式求值的思路(1)看角:若已知三角函数式中的角是待求三角函数式中角的两倍,则求解时常常借助半角公式求解.(2)明范围:由于半角公式求值常涉及符号问题,因此求解时务必依据角的范围,求出相应半角的范围.(3)选公式:涉及半角公式的正切值时,常用tan α2=sinα1+cosα=1-cosαsinα,其优点是计算时可避免因开方带来的求角的范围问题;涉及半角公式的正、余弦值时,常先利用sin2α2=1-cosα2,cos2α2=1+cosα2计算.13. 三角恒等式证明的常用方法(1)执因索果法:证明的形式一般是化繁为简.(2)左右归一法:证明左右两边都等于同一个式子.(3)拼凑法:针对题设和结论之间的差异,有针对性地变形,以消除它们之间的差异,简言之,即化异求同.(4)比较法:设法证明“左边-右边=0”或“左边/右边=1”.(5)分析法:从被证明的等式出发,逐步地探求使等式成立的条件,直到已知条件或明显的事实为止,就可以断定原等式成立.考点精析考点一两角和与差的正弦、余弦和正切公式(一)给角求值14(2023·全国·高三专题练习)cos-75°的值是A.6-22B.6+22C.6-24D.6+2415(2023·全国·模拟预测)sin20°cos40°+sin70°sin40°=()A.32B.12C.22D.116(2023·广东湛江·统考一模)cos70°-cos20°cos65°=.17(2023·全国·高三专题练习)sin220°-cos220°sin45°cos155°1-sin40°=.(二)给值(式)求值18(2023·江西九江·统考三模)已知0<α<π2<β<π,且sinα=23,cosβ=-75,则cos(α-β)=()A.-115B.-1315C.-41415D.2141519(江西省九江市2023届高三三模数学(理)试题)已知0<α<β<π,且cosα=13,cosα-β=223,则cosβ=()A.89B.79C.429D.020(2023·陕西榆林·统考模拟预测)若tanα+π4=15,则tanα=()A.-23B.23C.-13D.1321(山西省晋中市2023届高三三模数学试题(A卷))已知α,β为锐角,且tanα=2,sinα+β= 22,则cosβ=()A.-31010B.31010C.-1010D.101022(河南省名校青桐鸣2023届高三下学期4月联考文科数学试题)已知tanαtanβ=2,cosα+β=-15,则cosα-β=()A.35B.-35C.115D.-11523(2023·全国·高三专题练习)若α∈π2,3π4,cosα-π4=210,则sinα+π3=24【多选】(河北省承德市2023届高三下学期4月高考模拟数学试题)已知0<α<π2<β<π,sinα=13,cos(α+β)=-223,下列选项正确的有()A.sin(α+β)=±13B.cosβ=-79C.cos2β=-1781D.sin(α-β)=-232725(2023·陕西商洛·统考三模)已知tan(α+β)=3,tanα+π4=-3,则tanβ=()A.-15B.15C.-17D.1726(2023·江西上饶·校联考模拟预测)已知α、β均为锐角,且sinα=2sinβ,2cosα=cosβ,则sinα-β=.(三)给值求角27(2023·全国·高三专题练习)已知α,β都是锐角,cosα=17,cos(α+β)=-1114,则β=.28(2023·全国·高三专题练习)已知cosα=17,cos(α-β)=1314,若0<β<α<π2,则β=.29(2023·河南·校联考模拟预测)设tanα,tanβ是方程x2+33x+4=0的两根,且α,β∈-π2 ,π2,则α+β=( ).A.π3B.-2π3C.π3或-2π3D.2π330(2023·全国·高三专题练习)已知cosα=255,sinβ=1010,且α∈0,π2,β∈0,π2,则α+β的值是()A.3π4B.π4C.7π4D.5π431【多选】(2023·全国·高三专题练习)若tan α+tan β=3-3tan αtan β,则α+β的值可能为()A.π3 B.π6C.-2π3D.-5π632(2023·全国·高三专题练习)已知0<α<π2,cos α+π4 =13.(1)求sin α的值;(2)若-π2<β<0,cos β2-π4=33,求α-β的值.33(2023·全国·高三专题练习)已知角α为锐角,π2<β-α<π,且满足tan α2=13,sin β-α =7210(1)证明:0<α<π4;(2)求β.34(2023·全国·高三专题练习)已知sin π4-α=-55,sin 3π4+β =1010,且α∈π4,3π4,β∈0,π4,求α-β的值为.(四)三角函数式的化简35(2023·福建厦门·统考模拟预测)已知sin α+sin α+2π3=sin π3-α ,则sin α=()A.0B.±217C.±22D.±3236(2023春·山西·高三校联考阶段练习)已知2sin θ+π4 =3cos θ,则sin θsin θ-cos θ=.37(2023·湖北·校联考模拟预测)已知sin x +π4 =-35,3π4<x <5π4,则sin x 1-tan x =()A.21100B.-21100C.7280D.-728038(2023·全国·高三专题练习)已知θ≠k π+π4k ∈Z ,且cos2θcos 3π2-θ=cos θ-sin θ,则tan θ-π4-tan2π2-θ =()A.83B.53C.-13D.-13339(2023·湖南长沙·长郡中学校考一模)已知α,β∈0,π2,sin (2α+β)=2sin β ,则tan β的最大值为()A.12B.33C.22D.3240(河南省部分学校2023届高三高考仿真适应性测试理科数学试题)已知向量a=2cos75°,2sin75°,b =cos15°,-sin15° ,且(2a +b )⊥(a -λb ),则实数λ的值为()A.8B.-8C.4D.-441(2023·陕西·统考一模)在△ABC 中,点D 是边BC 上一点,且AB =4,BD =2.cos B =1116,cos C =64,则DC =.42【多选】(2023·江苏南通·模拟预测)重庆荣昌折扇是中国四大名扇之一,其精雅宜士人,其华灿宜艳女,深受各阶层人民喜爱.古人曾有诗赞曰:“开合清风纸半张,随机舒卷岂寻常;金环并束龙腰细,玉栅齐编凤翅长”.荣昌折扇平面图为下图的扇形COD ,其中∠COD =2π3,OC =3OA =3,动点P 在CD 上(含端点),连结OP 交扇形OAB 的弧AB 于点Q ,且OQ =xOC +yOD,则下列说法正确的是()A.若y =x ,则x +y =23B.若y =2x ,则OA ⋅OP=0C.AB ⋅PQ≥-2D.PA ⋅PB ≥11243(广东省潮州市2023届高三二模数学试题)在锐角△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,已知3tan A tan C =tan A +tan C +3.(1)求角B 的大小;(2)求cos A +cos C 的取值范围.考点二二倍角公式(一)给角求值44【多选】(2023·全国·高三专题练习)下列等式成立的是()A.sin275°-cos275°=32B.12sin15°+32cos15°=22C.sin75°cos75°=14D.1-tan15°1+tan15°=3345(2023·河南开封·开封高中校考模拟预测)4sin40°-tan40°sin75°-cos75°sin75°+cos75°的值为()A.66B.12C.63D.146(2023·重庆·统考模拟预测)式子2sin18°3cos29°-sin29°-1cos6°+3sin6°化简的结果为()A.12B.1C.2sin9°D.247(2023·全国·高三专题练习)公元前6世纪,古希腊的毕达哥拉斯学派通过研究正五边形和正十边形的作图,发现了黄金分割值约为0.618,这一数值也可以表示为m=2sin18°,若m2+n=4,m n2cos227°-1 =.48(2023·全国·高三专题练习)若λsin160°+tan20°=3,则实数λ的值为()A.4B.43C.23D.433(二)给值(式)求值49【多选】(2023·山西·校联考模拟预测)已知sin x=35,其中x∈π2,π,则()A.tan x=-43B.cos x2=1010C.sin2x=-2425D.cos x-π4=-21050(2023·福建泉州·校考模拟预测)已知cosα=-35,π2≤α≤π,则cos2α+π4=.51(2023秋·湖南衡阳·高三衡阳市一中校考期中)已知sinα-cosα=-23,则sin2α=.52【多选】(2023·全国·高三专题练习)已知cosα+β=-55,cos2α=-45,其中α,β为锐角,则以下命题正确的是()A.sin2α=35B.cosα-β=-2255C.cosαcosβ=510D.tanαtanβ=1353(2023春·山西太原·高三山西大附中校考阶段练习)已知α∈0,π,cosα=-35,则cos2α2+π4=.54(2023秋·辽宁葫芦岛·高三统考期末)已知α∈0,π2,sin2α=cosπ4-α,则cos2α的值为()A.0B.12C.32D.-3255(2023·全国·高三专题练习)已知sinαsinπ3-α=3cosαsinα+π6,则cos2α+π3=()A.-32B.-1 C.12D.3256(2023·全国·高三专题练习)已知cos2π4+α=45,则sin2α=()A.35B.-35C.15D.-15(三)给值求角57(2023·全国·高三专题练习)已知tan α=13,tan β=-17,且α,β∈(0,π),则2α-β=()A.π4B.-π4C.-3π4D.-3π4或π458(2023·全国·高三专题练习)若α∈0,π ,cos2α=sin 2α2-cos 2α2,则α=.(四)与同角三角函数的基本关系综合59(2023·全国·高三专题练习)已知α∈π4,π2,且sin2α=45,则3sin α-cos α4sin α+2cos α=60(2023·海南·校联考模拟预测)已知tan α=2,则1-3cos 2αsin2α=.61(2023秋·四川成都·高三四川省成都市玉林中学校考阶段练习)已知tan α=2,则sin2αsin 2α+sin αcos α-cos2α-1的值为()A.12B.1C.2D.-1(五)与诱导公式的综合62(2023春·江西南昌·高三统考开学考试)已知tan (π-α)=22,则sin2α=()A.429B.229C.-229D.-42963(2023·全国·高三专题练习)若cos π3-2x =-78,则sin x +π3的值为( ).A.14B.78C.±14D.±7864(2023·河北·统考模拟预测)已知sinα-π6=-25,则cos2α+5π3=()A.825B.1725C.255D.5565(2023·湖北武汉·统考二模)已知sinα+π3=35,则sin2α+π6=()A.2425B.-2425C.725D.-725(六)利用二倍角公式化简求值66(2023·全国·高三专题练习)已知tanα=3,则sinα-π4cosα+π4sin2α=.67(2023·全国·高三专题练习)若sinθ1-cosθ=2,则1+2sin2θ+3cos2θ1-2sin2θ+3cos2θ=()A.5B.43C.2D.468(2023·全国·高三专题练习)已知函数f x =sin2x+cos2x-2sinπ-xcosπ+xsin9π2-x-cos13π2+x.(1)求fπ12的值;(2)已知fα =23,求sin2α的值.考点三辅助角公式的应用69(2023·全国·高三专题练习)函数y =cos x +cos x -π3x ∈R 的最大值为,最小值为.70(2023·陕西铜川·统考二模)已知函数f x =cos x +π2 cos x +π4,若x ∈-π4,π4,则函数f x 的值域为.71(2023·山东泰安·统考二模)已知sin α+3cos α=233,则sin 5π6-2α =.72(2023·湖北荆门·荆门市龙泉中学校联考模拟预测)若sin 2α+π6+cos2α=-3,则tan α=.73(2023·辽宁丹东·统考二模)若cos α≠0,2(sin2α+5cos α)=1+cos2α,则tan2α=()A.-43B.-34C.34D.4374(2023秋·福建莆田·高三校考期中)已知函数f (x )=23sin x cos x -2cos 2x +1.(1)求函数f (x )的最小正周期及单调递增区间;(2)求函数f (x )在区间-5π12,π6的值域;考点四简单的三角恒等变换(一)半角公式的应用75(2023秋·河北石家庄·高三统考期末)已知1+cos θsin θ=33,则tan θ2=.76(2023·全国·高三专题练习)若α∈0,π2 ,sin α2-cos α=tan α2,则tan α=( ).A.33B.3C.34D.6277(2023·全国·高三专题练习)若cos α=-45,α是第三象限的角,则1-tan α21+tan α2=()A.2B.12C.-2D.-1278(2023·浙江·校联考二模)数学里有一种证明方法叫做Pr oofwithoutwords ,也被称为无字证明,是指仅用图象而无需文字解释就能不证自明的数学命题,由于这种证明方法的特殊性,无字证时被认为比严格的数学证明更为优雅与有条理.如下图,点C 为半圆O 上一点,CH ⊥AB ,垂足为H ,记∠COB =θ,则由tan ∠BCH =BHCH可以直接证明的三角函数公式是()A.tanθ2=sin θ1-cos θB.tanθ2=sin θ1+cos θC.tanθ2=1-cos θsin θD.tanθ2=1+cos θsin θ(二)三角恒等式的证明79(2023·全国·高三专题练习)已知α,β∈0,π2 ,且满足sin βsin α=cos α+β .(1)证明:tan β=sin αcos α1+sin 2α;(2)求tan β的最大值.80(2023·高三课时练习)小明在一次研究性学习中发现,以下五个式子的值都等于同一个常数.①sin213°+cos217°-sin13°cos17°;②sin215°+cos215°-sin15°cos15°;③sin218°+cos212°-sin18°cos12°;④sin2-18°cos48°;+cos248°-sin-18°⑤sin2-25°+cos255°-sin-25°cos55°.(1)请依据②式求出这个常数;(2)相据(1)的计算结果,将小明的发现推广为三角恒等式,并证明你的结论.81(2023春·江苏宿迁·高三校考阶段练习)已知△ABC为斜三角形.(1)证明:tan A+tan B+tan C=tan A tan B tan C;(2)若△ABC为锐角三角形,sin C=2sin A sin B,求tan A+tan B+tan C的最小值.(三)三角恒等变换的综合问题82(2023春·北京·高三清华附中校考期中)已知函数f x =sin x +cos x 2-2sin 2x .(1)求函数f x 的最小正周期和单调递增区间;(2)求函数f x 在区间0,π2上的最大值和最小值,并求相应的x 的值.83(2023·上海浦东新·统考三模)已知向量a =3sin x ,cos x ,b =sin x +π2,cos x .设f x =a ⋅b .(1)求函数y =f x 的最小正周期;(2)在△ABC 中,角A 、B 、C 所对的边分别为a 、b 、c .若f A =1,b =4,三角形ABC 的面积为23,求边a 的长.84(2023·浙江绍兴·统考模拟预测)在△ABC 中,a ,b ,c 分别是角A ,B ,C 的对边,且满足a +b +c a +b -c =3ab .(1)求角C 的大小;(2)若△ABC 是锐角三角形,求a +2bc的取值范围.85(2023春·四川成都·高三成都外国语学校校考期中)已知向量a =sin x +π6,cos 2x ,b =cos x ,-1 .设函数f x =2a ⋅b +12,x ∈R .(1)求函数f x 的解析式及其单调减区间;(2)若将y =f x 的图像上的所有点向左平移π4个单位,再把所得图像上所有点的横坐标伸长为原来的2倍(纵坐标不变),得到函数h x 的图像.当x ∈m ,m +π2(其中m ∈0,π2 )时,记函数h x 的最大值与最小值分别为h x max 与h x min ,设φm =h x max -h x min ,且使对∀m ∈0,π2都有k ≥φm 成立,求实数k 的最小值.86(2023春·四川成都·高三成都市锦江区嘉祥外国语高级中学校联考期中)嘉祥教育秉承“为生活美好、社会吉祥而努力”的企业理念及“坚韧不拔、创造第一”的企业精神,经过30年的发展和积累,目前已建设成为具有高度文明素质和良好社会信誉的综合性教育集团.某市有一块三角形地块,因发展所需,当地政府现划拨该地块为教育用地,希望嘉祥集团能帮助打造一所新的教育品牌学校.为更好地利用好这块土地,集团公司决定在高三年级学生中征集解决方案.如图所示,AB=BC=AC=2km,D是BC中点,E、F分别在AB、AC上,△CDF拟建成办公区,四边形AEDF拟建成教学区,△BDE拟建成生活区,DE和DF拟建成专用通道,∠EDF=90°,记∠CDF=θ.(1)若θ=30°,求教学区所在四边形AEDF的面积;(2)当θ取何值时,可使快速通道E-D-F的路程最短?最短路程是多少?三角恒等变换4种常见考法归类高频考点考点一两角和与差的正弦、余弦和正切公式(一)给角求值(二)给值(式)求值(三)给值求角(四)三角函数式的化简(五)两角和与差的正弦、余弦、正切公式的综合应用考点二二倍角公式(一)给角求值(二)给值(式)求值(三)给值求角(四)与同角三角函数的基本关系综合(五)与诱导公式的综合(六)利用二倍角公式化简求值考点三辅助角公式的应用考点四简单的三角恒等变换(一)半角公式的应用(二)三角恒等式的证明(三) 三角恒等变换的综合问题解题策略1.两角和与差的正弦、余弦和正切公式(1)两角和与差的正弦、余弦和正切公式(和角、差角公式)C(α-β)cos(α-β)=cosαcosβ+sinαsinβC(α+β)cos(α+β)=cos_αcos_β-sin_αsin_β记忆口诀:1、余余正正符号反2、同名相乘、加减相反3、谐音:“吃吃睡睡,颠倒黑白”S(α-β)sin(α-β)=sin_αcos_β-cos_αsin_β(异名相乘、加减一致)S(α+β)sin(α+β)=sin_αcos_β+cos_αsin_β(异名相乘、加减一致)记忆口诀:1、正余余正符号同2、异名相乘、加减一致3、谐音:“上错厕所,一一对应”T (α-β)tan(α-β)=tanα-tanβ1+tanαtanβ;(两式相除、上同下异).变形:①tanα-tanβ=tan(α-β)(1+tanαtanβ)②tanα·tanβ=tanα-tanβtan(α-β)-1T (α+β)tan (α+β)=tan α+tan β1-tan αtan β;(两式相除、上同下异).变形:①tan α+tan β=tan (α+β)(1-tan αtan β)②tan α·tan β=1-tan α+tan βtan (α+β)(2)二倍角的正弦、余弦、正切公式(倍角公式)二倍角是相对的,如:α2是α4的2倍,3α是3α2的2倍.S 2αsin 2α=2sin _αcos _α;变形:sin αcos α=12sin2α,cos α=sin2α2sin α,⇒1±sin2α=sin 2α+cos 2α±2sin αcos α=(sin α±cos α)2C 2αcos 2α=cos 2α-sin 2α=2cos 2α-1=1-2sin 2α;变形:cos 2α=1+cos2α2,sin 2α=1-cos2α2T 2αtan 2α=2tan α1-tan 2α(α≠k π+π2且α≠k π2+π4,k ∈Z )2.简单的三角恒等变换(1)降幂公式sin 2α=1-cos2α2.cos 2α=1+cos2α2.sin αcos α=12sin2α.(2)升幂公式1+cos α=2cos 2α2. 1-cos α=2sin 2α2. 1+sin α=sin α2+cos α2 2. 1-sin α=sin α2-cos α22.注:1+cos2α=2cos 2α;1−cos2α=2sin 2α;1+sin2α=(sin α+cos α)2;1−sin2α=(sin α−cos α)2(3)万能公式sin α=2tan α21+tan 2α2,cos α=1-tan 2α21+tan 2α2,tan α=2tan α21-tan 2α2(4)其他常用变式sin2α=2sin αcos αsin 2α+cos 2α=2tan α1+tan 2α;cos2α=cos 2α−sin 2αsin 2α+cos 2α=1−tan 2α1+tan 2α;cos 4x -sin 4x =(cos 2x +sin 2x )(cos 2x -sin 2x )=cos2x 3.辅助角公式(同角异名1次)a sin α+b cos α=a 2+b 2sin (α+φ),其中cos φ=a a 2+b 2,sin φ=b a 2+b 2,或tan φ=ba . 其中φ称为辅助角,它的终边所在象限由点(a ,b )决定.4.半角的正弦、余弦、正切公式(1)sin α2=±1-cos α2.(2)cosα2=±1+cosα2.(3)tanα2=±1-cosα1+cosα=sinα1+cosα=1-cosαsinα.5.常用的拆角、拼角技巧(1)15°=45°-30°=60°-45°=30°2.(2)β=α-a-β,α=(α+β)-β=β-(β-α),2α=(α+β)+(α-β),α=12[(α+β)+(α-β)]β=α+β2-α-β2=(α+2β)-(α+β). α-β=(α-γ)+(γ-β)(3)π3-α=π2-π6+α,π6-α=π2-π3+α,π3+α=π-2π3-α,π4+α=π-3π4-α. π4+α=π2-π4-α6. 应用和、差、倍角公式化简求值的策略(1)首先要记住公式的结构特征和符号变化规律.例如两角差的余弦公式可简记为:“同名相乘,符号反”;(2)注意与同角三角函数基本关系、诱导公式的综合应用;(3)注意配方法、因式分解和整体代换思想的应用. 7. 和、差、倍角公式的逆用和变形用的应用技巧(1)逆用公式应准确找出所给式子与公式的异同,创造条件逆用公式;(2)和差角公式变形:sinαsinβ+cos(α+β)=cosαcosβ;cosαsinβ+sin(α-β)=sinαcosβ;tanα±tanβ=tan(α±β)·(1∓tanα·tanβ);(3)倍角公式变形:降幂公式.(4)tanαtanβ,tanα+tanβ(或tanα-tanβ),tan(α+β)(或tan(α-β))三者中可以知二求一,且常与一元二次方程根与系数的关系结合命题. 8. 解决非特殊角求值问题的基本思路有:①化非特殊角为特殊角;②化为正负相消的项,消去后求值;③化分子、分母使之出现公约数,进行约分求值;④当有α,2α,3α,4α同时出现在一个式子中时,一般将α向2α,3α(或4α)向2α转化,再求关于2α式子的值.9.三角函数式的化简要遵循“三看”原则注:三角函数式化简、求值的一般思路:异名三角函数化为同名三角函数,异角化为同角,异次化为同次,切化弦,特殊值与特殊角的三角函数互化等. 10. 给值(式)求值的解题策略(1)已知某些角的三角函数值,求另外一些角的三角函数值,要注意观察已知角与所求表达式中角的关系,即拆角与凑角.(2)由于和、差角与单角是相对的,因此解题过程中根据需要灵活地进行拆角或凑角的变换.常见角的变换有:①α=(α-β)+β;②α=α+β2+α-β2;③2α=(α+β)+(α-β);④2β=(α+β)-(α-β).(3)当“已知角”有两个时,“所求角”一般表示为两个“已知角”的和或差的形式.(4)当“已知角”有一个时,此时应着眼于“所求角”与“已知角”的和或差的关系,然后应用诱导公式把“所求角”变成“已知角”.(5)给值求值型恒等变换问题,重在对所给条件进行挖掘,如由某角正弦值可得其余弦、正切值,由所给值的符号判断角所在的象限等. 必要时还要进行估算,如锐角α的余弦值为35,由12<35<22,及余弦函数在0,π2上单调递减可知45°<α<60°,从而2α∈(90°,120°),或3α∈(135°,180°)等. 另外,注意三种主要变换:①变角,通常是“配凑”,常用的角的拆拼有2α=(α+β)+(α-β),α=(α+β)-β=(α-β)+β等;②变名,通过变换函数名称达到减少函数种类的目的,其手段通常有“切化弦”“升幂与降幂”等;③变式,根据式子的结构特征进行变形,使其更贴近某个公式或某个期待的目标,其手段通常有:“常值代换”如1=tan π4,1=sin 2α+cos 2α“逆用变换公式”“通分约分”“分解与组合”“配方与平方”等. 其中角的变换居核心地位.11. 已知三角函数值求角的解题步骤(1)界定角的范围,根据条件确定所求角的范围.(在给值求角时,一般地选择一个适当的三角函数,根据题设确定所求角的范围,利用三角函数的单调性求出角. 确定角的范围是关键,一定要使所选的函数在此范围内是单调的,必要时,还需根据已知三角函数值缩小角的范围.)(2)求所求角的某种三角函数值.为防止增解最好选取在范围内单调的三角函数(已知三角函数值求角,选三角函数时可按下列规则:(i )已知正切值,常选正切函数;(ii )已知正、余弦值,常选正弦或余弦函数;(iii )若角的范围是0,π2 ,π,3π2 ,常选正、余弦函数;(iv )若角的范围是π2,3π2 或-π2,π2 ,常选正弦函数;(v )若角的范围是(0,π)或(π,2π),常选余弦函数. )(3)结合三角函数值及角的范围求角.12. 利用半角公式求值的思路(1)看角:若已知三角函数式中的角是待求三角函数式中角的两倍,则求解时常常借助半角公式求解.(2)明范围:由于半角公式求值常涉及符号问题,因此求解时务必依据角的范围,求出相应半角的范围.(3)选公式:涉及半角公式的正切值时,常用tan α2=sin α1+cos α=1-cos αsin α,其优点是计算时可避免因开方带来的求角的范围问题;涉及半角公式的正、余弦值时,常先利用sin 2α2=1-cos α2,cos 2α2=1+cos α2计算.13. 三角恒等式证明的常用方法(1)执因索果法:证明的形式一般是化繁为简.(2)左右归一法:证明左右两边都等于同一个式子.(3)拼凑法:针对题设和结论之间的差异,有针对性地变形,以消除它们之间的差异,简言之,即化异求同.(4)比较法:设法证明“左边-右边=0”或“左边/右边=1”.(5)分析法:从被证明的等式出发,逐步地探求使等式成立的条件,直到已知条件或明显的事实为止,就可以断定原等式成立.考点精析考点一两角和与差的正弦、余弦和正切公式(一)给角求值14(2023·全国·高三专题练习)cos -75° 的值是A.6-22B.6+22C.6-24D.6+24【答案】C【解析】变形cos -75° =cos 45°-120° 后,根据两角差的余弦公式计算可得答案.【详解】cos -75° =cos 45°-120° =cos45°⋅cos120°+sin45°sin120°=22×-12+22×32=6-24,故选:C .【点睛】本题考查了两角差的余弦公式,属于基础题.15(2023·全国·模拟预测)sin20°cos40°+sin70°sin40°=()A.32B.12C.22D.1【答案】A【分析】根据诱导公式及三角恒等变换化简求值即可.【详解】已知可化为:sin20°cos40°+cos20°sin40°=sin 20°+40° =32.故选:A16(2023·广东湛江·统考一模)cos70°-cos20°cos65°=.【答案】-2【分析】根据三角函数的诱导公式和两角和的余弦公式,准确化简,即可求解.【详解】由三角函数的诱导公式和两角和的余弦公式,可得:cos70°-cos20°cos65°=cos (90°-20°)-cos20°cos65°=sin20°-cos20°cos 45°+20°=sin20°-cos20°cos45°cos20°-sin45°sin20°=- 2.故答案为:- 2.17(2023·全国·高三专题练习)sin 220°-cos 220°sin45°cos155°1-sin40°=.【答案】2【分析】根据三角恒等变换公式化简求值即可.【详解】因为sin 220°-cos 220°=sin20°-cos20° sin20°+cos20° ,cos155°=-cos25°=-cos 45°-20° ,1-sin40°=cos 220°+sin 220°-2sin20°cos20°=cos20°-sin20° =cos20°-sin20°,所以sin 220°-cos 220°sin45°cos155°1-sin40°=cos20°+sin20°22cos 45°-20° =cos20°+sin20°22×cos45°cos20°+sin45°sin20°=cos20°+sin20° 12cos20°+sin20°=2故答案为:2.(二)给值(式)求值18(2023·江西九江·统考三模)已知0<α<π2<β<π,且sin α=23,cos β=-75,则cos (α-β)=()A.-115B.-1315C.-41415D.21415【答案】A【分析】先根据0<α<π2<β<π,sin α=23,cos β=-75求出cos α,sin β,再利用两角差的余弦公式求cos (α-β)【详解】解析:∵0<α<π2<β<π,sin α=23,cos β=-75,∴cos α=1-sin 2α=1-29=73,sin β=1-cos 2β=1-725=325,∴cos (α-β)=cos αcos β+sin αsin β=73×-75 +23×325=-115,故选:A .19(江西省九江市2023届高三三模数学(理)试题)已知0<α<β<π,且cos α=13,cos α-β =223,则cos β=()A.89B.79C.429D.0【答案】D【分析】利用三角恒等变换计算即可,注意整体思想的运用.【详解】解法一:∵0<α<π,cos α=13,∴sin α=223,又-π<α-β<0,cos α-β =223⇒-π2<α-β<0,∴sin α-β =-13,∴cos β=cos α-α-β =cos αcos α-β +sin a sin α-β=13×223+223×-13 =0,故选:D .解法二:∵0<α<π,cos α=13,∴sin α=223,∴cos α-β =sin α,即cos β-α =cos π2-α ∵0<β-α<π,0<π2-α<π2∴β-α=π2-α⇒β=π2,cos β=0,故选:D .20(2023·陕西榆林·统考模拟预测)若tan α+π4 =15,则tan α=()A.-23B.23C.-13D.13【答案】A【分析】利用正切函数的和差公式即可得解.【详解】因为tan α+π4 =15,所以tan α=tan α+π4 -π4 =15-11+15×1=-23.故选:A .21(山西省晋中市2023届高三三模数学试题(A 卷))已知α,β为锐角,且tan α=2,sin α+β =22,则cos β=()A.-31010B.31010C.-1010D.1010【答案】D【分析】由条件,结合同角关系求sin α,cos α,再由特殊角三角函数值求α+β,再利用两角差的余弦公式求cos β.【详解】因为tan α=2,所以sin α=2cos α,又sin 2α+cos 2α=1,α为锐角,所以sin α=255,cos α=55,且α>π4.因为α,β为锐角,α>π4,所以π4<α+β<π,又sin (α+β)=22,所以α+β=3π4,故cos β=cos 3π4-α =cos 3π4cos α+sin 3π4sin α=1010.故选:D .22(河南省名校青桐鸣2023届高三下学期4月联考文科数学试题)已知tan αtan β=2,cos α+β =-15,则cos α-β =()A.35B.-35C.115D.-115【答案】A【分析】根据切化弦以及两角和差公式解出sin αsin β,cos αcos β,代入两角差的余弦公式即可.【详解】由题意可得tan αtan β=sin αsin βcos αcos β=2cos α+β =cos αcos β-sin αsin β=-15,即sin αsin β=2cos αcos βcos αcos β-sin αsin β=-15 ,sin αsin β=25cos αcos β=15,故cos α-β =cos αcos β+sin αsin β=35.故选:A .23(2023·全国·高三专题练习)若α∈π2,3π4,cos α-π4 =210,则sin α+π3=【答案】4-3310【分析】根据同角三角函数的基本关系求出sin α-π4,由cos α=cos π4+α-π4 求出cos α,从而求出sin α,再利用两角和的正弦公式计算可得.【详解】∵cos α-π4 =210,α∈π2,3π4 ,所以α-π4∈π4,π2,∴sin α-π4 =1-cos 2α-π4 =7210,∴cos α=cos π4+α-π4 =cos π4cos α-π4 -sin π4sin α-π4 =22×210-7210×22=-35,sin α=1-cos 2α=45,所以sin α+π3 =sin αcos π3+cos αsin π3=45×12-35×32=4-3310.故答案为:4-331024【多选】(河北省承德市2023届高三下学期4月高考模拟数学试题)已知0<α<π2<β<π,sin α=13,cos (α+β)=-223,下列选项正确的有()A.sin (α+β)=±13B.cos β=-79C.cos2β=-1781D.sin (α-β)=-2327【答案】BD【分析】根据同角关系以及诱导公式可得可得α+β=π-α,进而可判断A ,根据和差角公司以及二倍角公式即可代入求解BCD .【详解】由于0<α<π2且sin α=13,所以cos α=223,又α+β∈π2,3π2 ,cos (α+β)=-223=-cos α,故α+β=π-α或α+β=π+α,当α+β=π+α时,β=π显然不满足,故α+β=π-α,所以sin (α+β)=13,故A 错误,对于B ,cos β=cos α+β cos α+sin α+β sin α=-223×223+13×13=-79,故B 正确,对于C , cos2β=2cos 2β-1=2×-792-1=1781,故C 错误,对于D ,由B 可知sin β=1-cos 2β=429,所以sin (α-β)=sin αcos β-cos αsin β=13×-79-223×429=-2327,故D 正确,故选:BD25(2023·陕西商洛·统考三模)已知tan (α+β)=3,tan α+π4=-3,则tan β=()A.-15B.15C.-17D.17【答案】D【分析】由tan α+π4 =-3求得tan α,再使用凑配角由tan (α+β)=3求tan β.【详解】tan α+π4 =1+tan α1-tan α=-3,解得tan α=2,则tan β=tan [(α+β)-α]=tan (α+β)-tan α1+tan (α+β)tan β=17.故选:D 26(2023·江西上饶·校联考模拟预测)已知α、β均为锐角,且sin α=2sin β,2cos α=cos β,则sin α-β =.【答案】35/0.6【分析】利用题目信息以及平方关系分别计算得α、β角的正弦、余弦值,再利用两角差的正弦公式即可求得结果.【详解】因为sin α=2sin β,2cos α=cos β,即cos α=12cos β,所以sin 2α+cos 2α=4sin 2β+14cos 2β=1,又4sin 2β+14cos 2β=154sin 2β+14sin 2β+14cos 2β=1,即sin 2β=15,则cos 2β=45,又α、β均为锐角,所以sin β=55,cos β=255,所以sin α=255,cos α=55,所以sin α-β =sin αcos β-cos αsin β=255×255-55×55=35.故答案为:35(三)给值求角27(2023·全国·高三专题练习)已知α,β都是锐角,cos α=17,cos (α+β)=-1114,则β=.【答案】π3/60°【分析】要求β,先求cos β,结合已知可有cos β=cos [(α+β)-α],利用两角差的余弦公式展开可求.【详解】∵α、β为锐角,∴0<α+β<π∵cos α=17,cos (α+β)=-1114∴sin α=1-cos 2α=437,sin (α+β)=1-cos 2α+β =5314∴cos β=cos [(α+β)-α]=cos (α+β)cos α+sin (α+β)sin α=-1114 ×17+5314×437=12由于β为锐角,∴β=π3故答案为:π328(2023·全国·高三专题练习)已知cos α=17,cos (α-β)=1314,若0<β<α<π2,则β=.【答案】π3【详解】因为cos α=17,0<α<π2,所以sin α=437,又因为0<α-β<π2,所以sin (α-β)=3314,所以sin β=sin [α-(α-β)]=sin αcos (α-β)-cos αsin (α-β)=437×1314-17×3314=32,又因为0<β<π2,所以β=π3.29(2023·河南·校联考模拟预测)设tan α,tan β是方程x 2+33x +4=0的两根,且α,β∈-π2,π2,则α+β=( ).A.π3B.-2π3C.π3或-2π3D.2π3【答案】B【分析】利用两角和的正切公式求解即可.【详解】因为tan α,tan β是方程x 2+33x +4=0的两根,所以tan α+tan β=-33,tan αtan β=4,所以tan (α+β)=tan α+tan β1-tan αtan β=3,因为tan α+tan β=-33,tan αtan β=4,所以tan α<0,tan β<0,且α,β∈-π2,π2,所以α,β∈-π2,0 ,所以α+β∈-π,0 ,所以α+β=-2π3,故选:B .30(2023·全国·高三专题练习)已知cos α=255,sin β=1010,且α∈0,π2 ,β∈0,π2,则α+β的值是()A.3π4B.π4C.7π4D.5π4。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第3节 三角恒等变换
题型54:化简求值
知识点摘要:
➢ 两角和与差的正弦、余弦、正切公式
βαβαβαβαsin cos cos sin )(sin ±=±±:)
(S ; βαβαβαβαsin sin cos cos )cos(μ=±±:)
(C ; ⎪⎭
⎫ ⎝⎛∈+≠±±=±±Z k k T ,,,:)
(ππβαβαβαβαβαβα2tan tan 1tan tan )(tan μ。
➢ 二倍角公式(倍角是相对的)
ααααcos sin 22sin 2=:S ;
αααααα22222sin 211cos 2sin cos 2cos -=-=-=:C ;
⎪⎭
⎫ ⎝⎛∈+≠+≠-=Z k k k T ,,:422tan 1tan 22tan 22ππαππααααα
➢ 降幂公式:22cos 1cos 2αα+=;22cos 1sin 2αα-=;ααα2sin 2
1cos sin =
➢ 公式变形:tan α±tan β=tan(α±β)(1∓tan αtan β).
➢ 辅助角公式:
()ϕ++=+x b a x b x a sin cos sin 22,⎪⎪⎭
⎫ ⎝⎛=+=+=a b b a a b a b ϕϕϕtan cos sin 2222,,
典型例题精讲精练:
54.1.套公式,直接用公式
1. 已知sin α=35,α∈⎪⎭
⎫ ⎝⎛ππ,2,tan β=-12,则tan(α-β)的值为( )【答案:A 】 A .-211 B.211
C.112 D .-112 2. (2019·呼和浩特调研)若()31sin =-απ且π2
≤α≤π,则sin 2α的值为( )【答案:B 】 A .-229 B .-429 C.229
D.429
3. 已知sin α=13+cos α,且α∈⎪⎭
⎫ ⎝⎛20π,,则⎪⎭⎫ ⎝⎛+4sin 2cos παα的值为( )【答案:A 】 A .-
23 B.23 C .-13 D.13 4. 已知sin α=45,且α∈⎪⎭⎫ ⎝⎛2
32ππ,,则⎪⎭⎫ ⎝
⎛+32sin πα的值为________.【答案:-24+7350】 54.2.公式逆用、公式变形 5. (2018·全国卷Ⅱ)已知sin α+cos β=1,cos α+sin β=0,则sin(α+β)=________【答案:-12
】
6. 计算:tan 25°+tan 35°+3tan 25°tan 35°=________.【答案:3】
7. 设a =cos 50°cos 127°+cos 40°cos 37°,b =22(sin 56°-cos 56°),c =1-tan 239°1+tan 239°
,则a ,b ,c 的大小关系是( )【答案:D 】
A .a >b >c
B .b >a >c
C .c >a >b
D .a >c >b 8. 已知534sin 6cos =+⎪⎭⎫ ⎝⎛
-απα,则=⎪⎭⎫ ⎝
⎛+6sin πα________.【答案:45】 9. 化简απαπα222sin 6sin 6sin -⎪⎭⎫ ⎝
⎛++⎪⎭⎫ ⎝⎛-的结果是________.【答案:12】 54.3.角的变换和函数名的变换
三角公式求值中变角的解题思路
(1)当“已知角”有两个时,“所求角”一般表示为两个“已知角”的和或差的形式;
(2)当“已知角”有一个时,此时应着眼于“所求角”与“已知角”的和或差的关系,再应用诱导公式把“所求角”变成“已知角”.
10. (2018·浙江高考改编)已知角α的顶点与原点O 重合,始边与x 轴的非负半轴重合,它的终边过点P ⎪⎭
⎫ ⎝⎛--5453
,,若角β满足sin(α+β)=513,则cos β的值为________.【答案:-5665或1665】 11. (2018·江苏高考)已知α,β为锐角,tan α=43,cos(α+β)=-55
. (1)求cos 2α的值;(2)求tan(α-β)的值.
【答案:-725.-211
.】
12. 已知tan θ+1tan θ=4,则=⎪⎭⎫ ⎝
⎛+4cos 2πθ( )【答案:C 】 A.12 B.13
C.14
D.15 13. (2018·济南一模)若⎪⎭
⎫ ⎝⎛∈=⎪⎭⎫ ⎝⎛
+πππ,,410274sin A A 则sin A 的值为( )【答案:B 】 A.35 B.45
C.35或45
D.34 14. 已知sin α=-45,α∈⎪⎭
⎫ ⎝⎛ππ,23,若sin (α+β)cos β=2,则tan(α+β)=( )【答案:B 】 A.613 B.136
C .-613
D .-136 54.4.三角函数式的化简
15. sin (180°+2α)1+cos 2α·cos 2αcos (90°+α)
等于( )【答案:D 】 A .-sin α B .-cos α C .sin α
D .cos α
16. 化简:sin (2α+β)sin α-2cos(α+β).【答案:sin βsin α
】
17. 化简:⎪⎭⎫ ⎝
⎛--4sin cos 22sin 2πααα=________.【答案:22cos α】
18. 化简:⎪⎭
⎫ ⎝⎛-⎪⎭⎫ ⎝⎛--απαπα4cos 4tan 21cos 222;【答案:1】
54.5.三角函数式求值
19. cos 10°(1+3tan 10°)cos 50°
的值是________.【答案:2】 20. 已知⎪⎭
⎫ ⎝⎛∈=⎪⎭⎫ ⎝⎛
+ππαπα,,21024sin 求:(1)cos α的值; (2)⎪⎭⎫ ⎝⎛-42sin πα的值. 【答案:(1)cos α=-35;(2)-17250
.】
21. 若sin 2α=55,sin(β-α)=1010,且α∈⎥⎦⎤⎢⎣⎡ππ,4,β∈⎥⎦
⎤⎢⎣⎡23ππ,,则α+β的值是( )【答案:A 】 A.7π4 B.9π4
C.5π4或7π4
D.5π4或9π4
22. 求值:cos 20°cos 35°1-sin 20°
=( )【答案:C 】 A .1 B .2 C. 2 D. 3
23. 已知α为第二象限角,sin α+cos α=
33,则cos 2α=( )【答案:A 】 A .-53 B .-59
C.59
D.53 24. 已知锐角α,β满足sin α=55,cos β=31010
,则α+β等于( )【答案:C 】 A.3π4 B.π4或3π4 C.π4 D .2k π+π4(k ∈Z)
54.6.三角恒等变换综合应用
25. (2018·北京高考)已知函数f (x )=sin 2x +3sin x cos x .
(1)求f (x )的最小正周期;(2)若f (x )在区间⎥⎦⎤⎢⎣⎡-
m ,3π上的最大值为32,求m 的最小值. 【答案:π;π3。
】 26. 已知ω>0,函数23cos 3cos sin )(2-
+=x x x x f ωωω的最小正周期为π,则下列结论正确的是( )【答案:D 】
A .函数f (x )的图象关于直线x =π3对称
B .函数f (x )在区间⎥⎦⎤⎢
⎣⎡12712ππ,上单调递增 C .将函数f (x )的图象向右平移π6
个单位长度可得函数g (x )=cos 2x 的图象 D .当x ∈⎥⎦
⎤⎢⎣⎡20π,时,函数f (x )的最大值为1,最小值为-32 27. 已知函数33cos sin 4)(-⎪⎭⎫ ⎝⎛-
=πx x x f ;(1)求函数f (x )的单调区间;(2)求函数f (x )图象的对称轴和对称中心.
【答案】单增区间⎣⎡⎦⎤k π-π12,k π+5π12(k ∈Z);单减区间⎣⎡⎦⎤k π+5π12,k π+11π12(k ∈Z); 函数f (x )的对称轴方程为x =k π2+5π12
(k ∈Z);函数f (x )的对称中心为⎝⎛⎭⎫k π2+π6,0(k ∈Z).。