哈工大 计算机仿真技术实验报告 仿真实验四基于Simulink控制系统仿真与综合设计
计算机仿真实验-基于Simulink的伺服系统
![计算机仿真实验-基于Simulink的伺服系统](https://img.taocdn.com/s3/m/830f5c1dcc7931b765ce1587.png)
实验八 基于Simulink 的伺服系统仿真一. 实验目的1) 熟悉Simulink 的工作环境及其SimPowerSystems 功能模块库;2) 掌握Simulink 的电力电子电路系统建模和仿真方法;3) 掌握Simulink 下数学模型的仿真方法;4)掌握PID 控制对系统输出特性的影响。
二.实验内容直流电机单闭环调速系统组成如图8.1所示。
图8.1中,r 为给定输入量,y 为系统速度输出量,e 为系统偏差控制量。
控制器选用PI 调节控制方式,功率放大器选用PWM 功率放大器,电机选用他励直流电机。
系统参数见表8-1。
给定速度100 /r rad s =,负载由空载到1s 时跳变到20N 。
调节不同的PI 控制器参数,观测电机速度波形、转矩波形的变化规律。
PI 控制器参数取值为a) Ki=100, Kp=5; b) Ki=2, Kp=1。
控制器功率放大器伺服电机r ye +-图8.1 直流电机单闭环调速系统组成三.实验步骤1. 建立电路仿真系统在Simulink仿真环境中打开Simulink库,找出相应的单元部件模型,构造图所示的仿真模型。
其中用到了直流电机模块。
直流电机模块有1个输入端子、1个输出端子和4个电气连接端子。
电气连接端子与直流电机励磁绕组相连。
A+和A-与电机电枢绕组相连。
输入端子是电机负载转矩的输入端。
输入端子(m)输出一系列的电机内部信号,由4路信号组成。
通过“信号数据流模块库”中的“信号分离”模块,即Demux模块可以将输出端子m 中的各路信号分离出来。
经过整流桥变换向电机提供直流电压。
经励磁回路,输出PWM波形。
同时,电机的转速作为反馈信号反馈到输入端。
对于三相电压源,选择频率为50Hz,幅值为2203。
按图连接好线路,设置参数,建立其仿真模型,并对各个单元部件模型的参数进行修改,如图所示。
2.进行仿真波形输出示波器的输出波形如下,依次为电机转速,电枢电流,场电流,电磁转矩(1)Ki=100, Kp=5(2)Ki=2, Kp=1四、实验结论由上图可见,此系统为脉冲比较系统,仿真模型中利用负反馈,经PI 控制输出误差给脉波发生端。
计算机仿真实验-基于Simulink的简单电力系统仿真
![计算机仿真实验-基于Simulink的简单电力系统仿真](https://img.taocdn.com/s3/m/3e7b017f02768e9951e73887.png)
实验七 基于Simulink 的简单电力系统仿真实验一. 实验目的1) 熟悉Simulink 的工作环境及SimPowerSystems 功能模块库; 2) 掌握Simulink 的的powergui 模块的应用;3) 掌握发电机的工作原理及稳态电力系统的计算方法; 4)掌握开关电源的工作原理及其工作特点; 5)掌握PID 控制对系统输出特性的影响。
二.实验内容与要求单机无穷大电力系统如图7-1所示。
平衡节点电压044030 V V =∠︒ 。
负荷功率10L P kW =。
线路参数:电阻1l R =Ω;电感0.01l L H =。
发电机额定参数:额定功率100n P kW =;额定电压440 3 n V V =;额定励磁电流70 fn i A =;额定频率50n f Hz =。
发电机定子侧参数:0.26s R =Ω,1 1.14 L mH =,13.7 md L mH =,11 mq L mH =。
发电机转子侧参数:0.13f R =Ω,1 2.1 fd L mH =。
发电机阻尼绕组参数:0.0224kd R =Ω,1 1.4 kd L mH =,10.02kq R =Ω,11 1 kq L mH =。
发电机转动惯量和极对数分别为224.9 J kgm =和2p =。
发电机输出功率050 e P kW =时,系统运行达到稳态状态。
在发电机输出电磁功率分别为170 e P kW =和2100 e P kW =时,分析发电机、平衡节点电源和负载的电流、电磁功率变化曲线,以及发电机转速和功率角的变化曲线。
G 发电机节点V负荷lR l LLP图 7.1 单机无穷大系统结构图输电线路三.实验步骤1. 建立系统仿真模型同步电机模块有2个输入端子、1个输出端子和3个电气连接端子。
模块的第1个输入端子(Pm)为电机的机械功率。
当机械功率为正时,表示同步电机运行方式为发电机模式;当机械功率为负时,表示同步电机运行方式为电动机模式。
自控仿真实验报告
![自控仿真实验报告](https://img.taocdn.com/s3/m/c99df737a88271fe910ef12d2af90242a895aba6.png)
一、实验目的1. 熟悉MATLAB/Simulink仿真软件的基本操作。
2. 学习控制系统模型的建立与仿真方法。
3. 通过仿真分析,验证理论知识,加深对自动控制原理的理解。
4. 掌握控制系统性能指标的计算方法。
二、实验内容本次实验主要分为两个部分:线性连续控制系统仿真和非线性环节控制系统仿真。
1. 线性连续控制系统仿真(1)系统模型建立根据题目要求,我们建立了两个线性连续控制系统的模型。
第一个系统为典型的二阶系统,其开环传递函数为:\[ G(s) = \frac{1}{(s+1)(s+2)} \]第二个系统为具有迟滞环节的系统,其开环传递函数为:\[ G(s) = \frac{1}{(s+1)(s+2)(s+3)} \](2)仿真与分析(a)阶跃响应仿真我们对两个系统分别进行了阶跃响应仿真,并记录了仿真结果。
(b)频率响应仿真我们对两个系统分别进行了频率响应仿真,并记录了仿真结果。
(3)性能指标计算根据仿真结果,我们计算了两个系统的性能指标,包括上升时间、超调量、调节时间等。
2. 非线性环节控制系统仿真(1)系统模型建立根据题目要求,我们建立了一个具有饱和死区特性的非线性环节控制系统模型。
其传递函数为:\[ W_k(s) = \begin{cases}1 & |s| < 1 \\0 & |s| \geq 1\end{cases} \](2)仿真与分析(a)阶跃响应仿真我们对非线性环节控制系统进行了阶跃响应仿真,并记录了仿真结果。
(b)相轨迹曲线绘制根据仿真结果,我们绘制了四条相轨迹曲线,以分析非线性环节对系统性能的影响。
三、实验结果与分析1. 线性连续控制系统仿真(a)阶跃响应仿真结果表明,两个系统的性能指标均满足设计要求。
(b)频率响应仿真结果表明,两个系统的幅频特性和相频特性均符合预期。
2. 非线性环节控制系统仿真(a)阶跃响应仿真结果表明,非线性环节对系统的性能产生了一定的影响,导致系统响应时间延长。
哈工大仿真技术及应用实验指导书
![哈工大仿真技术及应用实验指导书](https://img.taocdn.com/s3/m/3cb07f11c5da50e2524d7ff0.png)
仿真技术及应用实验指导书哈尔滨工业大学工学硕士学位论文目录前言 ................................................................................... 错误!未定义书签。
目录 (I)实验项目 (1)实验1 利用替换法构建系统仿真模型实验 (1)1.1 实验目的 (1)1.2 实验内容与要求 (1)1.5 实验报告要求 (2)实验2 利用根匹配法构建系统仿真模型实验 (3)2.1 实验目的 (3)2.2实验内容与要求 (3)2.5实验报告要求 (4)实验3 利用数值积分算法的仿真实验 (5)3.1 实验目的 (5)3.2 实验内容与要求 (5)3.5实验报告要求 (6)实验四基于Simulink控制系统仿真与综合设计 (7)4.1实验目的 (7)哈尔滨工业大学工学硕士学位论文4.2实验内容与要求 (7)4.5 实验报告要求 (8)实验五基于Simulink三相电路仿真 (9)5.1实验目的 (9)5.2实验内容与要求 (9)5.5 实验报告要求 (11)实验六基于Simulink的直流斩波电路仿真实验 (11)6.1实验目的 (11)6.2实验内容与要求 (11)6.5 实验报告要求 (12)实验七基于Simulink的简单电力系统仿真实验 (13)7.1实验目的 (13)7.2实验内容与要求 (13)7.5 实验报告要求 (14)实验8 基于Simulink的伺服系统仿真 (14)8.1实验目的 (14)8.2实验内容与要求 (15)仿真技术及应用实验指导书实验项目实验1 利用替换法构建系统仿真模型实验1.1 实验目的1) 熟悉MATLAB 的工作环境;2) 掌握MATLAB 的 .M 文件编写规则,并在命令窗口调试和运行程序;3) 掌握利用替换法构造系统离散模型的方法,并对仿真结果进行分析。
1.2 实验内容与要求1.2.1 实验内容系统电路如图 1.1所示。
基于Simulink的QPSK系统仿真实验报告
![基于Simulink的QPSK系统仿真实验报告](https://img.taocdn.com/s3/m/3f5626d528ea81c758f578d6.png)
QPSK 的系统仿真一、实验目的:1.了解QPSK 工作原理。
2.了解不同信道条件下对QPSK 信号带来的影响3.通过仿真实现QPSK ,并能通过数据及图形来分析不同信道条件下的系统性能。
4.学会使用matlab 仿真软件。
二、实验设计要求及内容:(一)基本原理及系统结构QPSK 与二进制PSK 一样,传输信号包含的信息都存在于相位中。
的别的载波相位取四个等间隔值之一,如л/4, 3л/4,5л/4,和7л/4。
相应的,可将发射信号定义为(21)/4]ft i ππ+- 0≤t ≤T Si (t ) =0。
, 其他其中,i =1,2,2,4;E 为发射信号的每个符号的能量,T 为符号持续时间,载波频率f 等于nc/T ,nc 为固定整数。
每一个可能的相位值对应于一个特定的二位组。
例如,可用前述的一组相位值来表示格雷码的一组二位组:10,00,01,11。
下面介绍QPSK 信号的产生和检测。
如果a 为典型的QPSK 发射机框图。
输入的二进制数据序列首先被不归零(NRZ )电平编码转换器转换为极性形式,即负号1和0接着,该二进制波形被分接器分成两个分别由输入序列的奇数位偶数位组成的彼此独立的二进制波形,这两个二进制波形分别用a1(t ),和a2(t )表示。
容易注意到,在任何一信号时间间隔内a1(t ),和a2(t )的幅度恰好分别等于Si1和 Si2,即由发送的二位组决定。
这两个二进制波形a1(t ),和a2(t )被用来调制一对正交载波或者说正交基本函数:φ1(t )o s (2)c f t π,φ2(t )=i n (2)c f t π。
这样就得到一对二进制PSK 信号。
φ1(t )和φ2(t )的正交性使这两个信号可以被独立地检测。
最后,将这两个二进制PSK 信号相加,从而得期望的QPSK 。
φ1(t )c f t πφ2(t )c f t π 图a如图b 所示,QPSK 接收机由一对共输入地相关器组成。
《MATLAB与控制系统仿真》实验报告
![《MATLAB与控制系统仿真》实验报告](https://img.taocdn.com/s3/m/5667aa153d1ec5da50e2524de518964bcf84d2e0.png)
《MATLAB与控制系统仿真》实验报告一、实验目的本实验旨在通过MATLAB软件进行控制系统的仿真,并通过仿真结果分析控制系统的性能。
二、实验器材1.计算机2.MATLAB软件三、实验内容1.搭建控制系统模型在MATLAB软件中,通过使用控制系统工具箱,我们可以搭建不同类型的控制系统模型。
本实验中我们选择了一个简单的比例控制系统模型。
2.设定输入信号我们需要为控制系统提供输入信号进行仿真。
在MATLAB中,我们可以使用信号工具箱来产生不同类型的信号。
本实验中,我们选择了一个阶跃信号作为输入信号。
3.运行仿真通过设置模型参数、输入信号以及仿真时间等相关参数后,我们可以运行仿真。
MATLAB会根据系统模型和输入信号产生输出信号,并显示在仿真界面上。
4.分析控制系统性能根据仿真结果,我们可以对控制系统的性能进行分析。
常见的性能指标包括系统的稳态误差、超调量、响应时间等。
四、实验步骤1. 打开MATLAB软件,并在命令窗口中输入“controlSystemDesigner”命令,打开控制系统工具箱。
2.在控制系统工具箱中选择比例控制器模型,并设置相应的增益参数。
3.在信号工具箱中选择阶跃信号,并设置相应的幅值和起始时间。
4.在仿真界面中设置仿真时间,并点击运行按钮,开始仿真。
5.根据仿真结果,分析控制系统的性能指标,并记录下相应的数值,并根据数值进行分析和讨论。
五、实验结果与分析根据运行仿真获得的结果,我们可以得到控制系统的输出信号曲线。
通过观察输出信号的稳态值、超调量、响应时间等性能指标,我们可以对控制系统的性能进行分析和评价。
六、实验总结通过本次实验,我们学习了如何使用MATLAB软件进行控制系统仿真,并提取控制系统的性能指标。
通过实验,我们可以更加直观地理解控制系统的工作原理,为控制系统设计和分析提供了重要的工具和思路。
七、实验心得通过本次实验,我深刻理解了控制系统仿真的重要性和必要性。
MATLAB软件提供了强大的仿真工具和功能,能够帮助我们更好地理解和分析控制系统的性能。
MATLAB实验SIMULINK仿真
![MATLAB实验SIMULINK仿真](https://img.taocdn.com/s3/m/d5abb3e3856a561252d36f93.png)
实验九SIMULINK仿真一、实验目的SIMULINK是一个对动态系统(包括连续系统、离散系统和混合系统)进行建模、仿真和综合分析的集成软件包,是MA TLAB的一个附加组件,其特点是模块化操作、易学易用,而且能够使用MATLAB提供的丰富的仿真资源。
在SIMULINK环境中,用户不仅可以观察现实世界中非线性因素和各种随机因素对系统行为的影响,而且也可以在仿真进程中改变感兴趣的参数,实时地观察系统行为的变化。
因此SIMULINK已然成为目前控制工程界的通用软件,而且在许多其他的领域,如通信、信号处理、DSP、电力、金融、生物系统等,也获得重要应用。
对于信息类专业的学生来说,无论是学习专业课程或者相关课程设计还是在今后的工作中,掌握SIMULINK,就等于是有了一把利器。
本次实验的目的就是通过上机训练,掌握利用SIMULINK对一些工程技术问题(例如数字电路)进行建模、仿真和分析的基本方法。
二、实验预备知识1. SIMULINK快速入门在工程实际中,控制系统的结构往往很复杂,如果不借助专用的系统建模软件,则很难准确地把一个控制系统的复杂模型输入计算机,对其进行进一步的分析与仿真。
1990年,Math Works软件公司为MATLAB提供了新的控制系统模型图输入与仿真工具,并命名为SIMULAB,该工具很快就在控制工程界获得了广泛的认可,使得仿真软件进入了模型化图形组态阶段。
但因其名字与当时比较著名的软件SIMULA类似,所以1992年正式将该软件更名为SIMULINK。
SIMULINK的出现,给控制系统分析与设计带来了福音。
顾名思义,该软件的名称表明了该系统的两个主要功能:Simu(仿真)和Link(连接),即该软件可以利用系统提供的各种功能模块并通过信号线连接各个模块从而创建出所需要的控制系统模型,然后利用SIMULINK提供的功能来对系统进行仿真和分析。
⏹SIMULINK的启动首先启动MATLAB,然后在MA TLAB主界面中单击上面的Simulink按钮或在命令窗口中输入simulink命令。
哈工大自控实验—基于MATLABSimulink的控制系统分析
![哈工大自控实验—基于MATLABSimulink的控制系统分析](https://img.taocdn.com/s3/m/a331f238a45177232f60a269.png)
Harbin Institute of Technologyb/;;/自动控制理论实验报告院系:电气工程及自动化学院班级:姓名:学号:实验名称:基于MATLAB/Simulink的控制系统分析同组人:实验时间:2015年11月11日哈尔滨工业大学实验五 线性系统的时域分析一、实验目的1、学会使用MATLAB 绘制控制系统的单位阶跃响应曲线;2、研究二阶控制系统中 、 对系统阶跃响应的影响3、掌握系统动态性能指标的获得方法及参数对系统动态性能的影响。
二、 实验设备Pc 机一台,MATLAB 软件。
三、实验内容1、已知二阶单位反馈闭环传递函数系统:求:(1)当 及 时系统单位阶跃响应的曲线。
① 时系统单位阶跃响应的曲线。
Time (seconds)A m p l i t u d e② 时系统单位阶跃响应的曲线。
Time (sec)A m p l i t u d eTime (sec)01020304050607080(2)从图中求出系统的动态指标: 超调量M p、上升时间t p及过渡过程调节时间t s。
,超调量=30.9%,上升时间=3,48s,=27.5s;,超调量=16.3%,=4.1s,=20.2s。
,=30.9%,=6.95s,=54.9s;,=30.9%,=2.33s,=18.3s。
(3)分析二阶系统中、的值变化对系统阶跃响应曲线的影响。
当不变,变大,系统的上升时间减小,最大超调量变小,调整时间减小。
当,变大,系统的上升时间减小,最大超调量不变,调整时间减小。
2、已知三阶系统单位反馈闭环传递函数为(1)求取系统闭环极点及其单位阶跃响应,读取动态性能指标。
(2)将原极点 S=-4 改成 S=-0.5,使闭环极点靠近虚轴,观察单位阶跃响应和动态性能指标的变化。
Time (sec)=7.26%,=1.03s,=3.64s;将原极点 S=-4 改成 S=-0.5(绿线)后, ,=4.12s,过渡过程调节时间=7.84s(3)改变系统闭环零点的位置将原零点 S=-2 改成 S=-1, 观察单位阶跃响应和动态性能指标的变化。
哈工大 计算机仿真技术实验报告 仿真实验四基于Simulink控制系统仿真与综合设计
![哈工大 计算机仿真技术实验报告 仿真实验四基于Simulink控制系统仿真与综合设计](https://img.taocdn.com/s3/m/2278adfa7c1cfad6195fa799.png)
基于Simulink 控制系统仿真与综合设计一、实验目的(1) 熟悉Simulink 的工作环境及其功能模块库; (2) 掌握Simulink 的系统建模和仿真方法;(3) 掌握Simulink 仿真数据的输出方法与数据处理;(4) 掌握利用Simulink 进行控制系统的时域仿真分析与综合设计方法; (5) 掌握利用 Simulink 对控制系统的时域与频域性能指标分析方法。
二、实验内容图2.1为单位负反馈系统。
分别求出当输入信号为阶跃函数信号)(1)(t t r =、斜坡函数信号t t r =)(和抛物线函数信号2/)(2t t r =时,系统输出响应)(t y 及误差信号)(t e 曲线。
若要求系统动态性能指标满足如下条件:a) 动态过程响应时间s t s 5.2≤;b) 动态过程响应上升时间s t p 1≤;c) 系统最大超调量%10≤p σ。
按图1.2所示系统设计PID 调节器参数。
图2.1 单位反馈控制系统框图图2.2 综合设计控制系统框图三、实验要求(1) 采用Simulink系统建模与系统仿真方法,完成仿真实验;(2) 利用Simulink中的Scope模块观察仿真结果,并从中分析系统时域性能指标(系统阶跃响应过渡过程时间,系统响应上升时间,系统响应振荡次数,系统最大超调量和系统稳态误差);(3) 利用Simulink中Signal Constraint模块对图2.2系统的PID参数进行综合设计,以确定其参数;(4) 对系统综合设计前后的主要性能指标进行对比分析,并给出PID参数的改变对闭环系统性能指标的影响。
四、实验步骤与方法4.1时域仿真分析实验步骤与方法在Simulink仿真环境中,打开simulink库,找出相应的单元部件模型,并拖至打开的模型窗口中,构造自己需要的仿真模型。
根据图2.1 所示的单位反馈控制系统框图建立其仿真模型,并对各个单元部件模型的参数进行设定。
所做出的仿真电路图如图4.1.1所示。
《计算机仿真技术》报告
![《计算机仿真技术》报告](https://img.taocdn.com/s3/m/6733ffd6c1c708a1284a4452.png)
《计算机仿真技术》实验报告实验一 数字仿真方法验证一、实验目的1.掌握基于数值积分法的系统仿真、了解各仿真参数的影响; 2.掌握基于离散相似法的系统仿真、了解各仿真参数的影响; 3.掌握SIMULINK 动态仿真;4.熟悉MATLAB 语言及应用环境。
二、实验环境网络计算机系统,MATLAB 语言环境三、实验内容、要求(一)试将示例1的问题改为调用ode45函数求解,并比较结果。
示例1:设方程如下,取步长 h =0.1。
上机用如下程序可求出数值解。
调用ode45函数求解: 1)建立一阶微分方程组 du=u-2*t/u2)建立描述微分方程组的函数m 文件 function du=sy11vdp(t,u) du=u-2*t/u3)调用解题器指令ode45求解y[t,u]=ode45('sy11vdp',[0 1],1) plot(t,u,'r-'); xlabel('t'); ylabel('u'); 结果对比:euler 法:t=1,u=1.7848; RK 法:t=1,u=1.7321; ode45求解:t=1,u=1.7321;[]1,01)0(2∈⎪⎩⎪⎨⎧=-=t u u t u dt duode45求解t-u 图:00.10.20.30.40.50.60.70.80.9111.11.21.31.41.51.61.71.8tu(二)试用四阶RK 法编程求解下列微分方程初值问题。
仿真时间2s ,取步长h=0.1。
⎪⎩⎪⎨⎧=-=1)0(2y t y dt dy 四阶RK 法程序:clear t=2; h=0.1; n=t/h; t0=0; y0=1;y(1)=y0; t(1)=t0;for i=0:n-1 k1=y0-t0^2;k2=(y0+h*k1/2)-(t0+h/2)^2; k3=(y0+h*k2/2)-(t0+h/2)^2 k4=(y0+h*k3)-(t0+h)^2;y1=y0+h*(k1+2*k2+2*k3+k4)/6; t1=t0+h; y0=y1; t0=t1;y(i+2)=y1; t(i+2)=t1;end y tplot(t,y,'r'); 结果:t=2,y=2.61090.511.522.511.21.41.61.822.22.42.62.83:(三)试求示例3分别在周期为5s 的方波信号和脉冲信号下的响应,仿真时间20s ,采样周期Ts=0.1。
MATLABSimulink和控制系统仿真实验报告
![MATLABSimulink和控制系统仿真实验报告](https://img.taocdn.com/s3/m/f30cd029a8114431b90dd831.png)
MATLAB/Simulink与控制系统仿真实验报告姓名:喻彬彬学号:K031541725实验1、MATLAB/Simulink 仿真基础及控制系统模型的建立一、实验目的1、掌握MATLAB/Simulink 仿真的基本知识;2、熟练应用MATLAB 软件建立控制系统模型。
二、实验设备电脑一台;MATLAB 仿真软件一个三、实验内容1、熟悉MATLAB/Smulink 仿真软件。
2、一个单位负反馈二阶系统,其开环传递函数为210()3G s s s =+。
用Simulink 建立该控制系统模型,用示波器观察模型的阶跃响应曲线,并将阶跃响应曲线导入到MATLAB 的工作空间中,在命令窗口绘制该模型的阶跃响应曲线。
3、某控制系统的传递函数为()()()1()Y s G s X s G s =+,其中250()23s G s s s+=+。
用Simulink 建立该控制系统模型,用示波器观察模型的阶跃响应曲线,并将阶跃响应曲线导入到MATLAB 的工作空间中,在命令窗口绘制该模型的阶跃响应曲线。
4、一闭环系统结构如图所示,其中系统前向通道的传递函数为320.520()0.11220s G s s s s s+=+++,而且前向通道有一个[-0.2,0.5]的限幅环节,图中用N 表示,反馈通道的增益为1.5,系统为负反馈,阶跃输入经1.5倍的增益作用到系统。
用Simulink 建立该控制系统模型,用示波器观察模型的阶跃响应曲线,并将阶跃响应曲线导入到MATLAB 的工作空间中,在命令窗口绘制该模型的阶跃响应曲线。
四、实验报告要求实验报告撰写应包括实验名称、实验内容、实验要求、实验步骤、实验结果及分析和实验体会。
五、实验思考题总结仿真模型构建及调试过程中的心得体会。
题1、(1)利用Simulink的Library窗口中的【File】→【New】,打开一个新的模型窗口。
(2)分别从信号源库(Sourse)、输出方式库(Sink)、数学运算库(Math)、连续系统库(Continuous)中,用鼠标把阶跃信号发生器(Step)、示波器(Scope)、传递函数(Transfern Fcn)和相加器(Sum)4个标准功能模块选中,并将其拖至模型窗口。
实验报告5Simulink仿真[推荐五篇]
![实验报告5Simulink仿真[推荐五篇]](https://img.taocdn.com/s3/m/938234db5ff7ba0d4a7302768e9951e79b896917.png)
实验报告5Simulink仿真[推荐五篇]第一篇:实验报告 5 Simulink仿真实验五 Simulink仿真(一)一、实验目的1、熟悉Simulink仿真环境2、了解Simulink基本操作3、了解Simulink系统建模基本方法3、熟悉Simulink仿真系统参数设置和子系统封装的基本方法二、实验内容1、在matlab命令窗口中输入simulink,观察其模块库的构成;2、了解模块库中常用模块的使用方法;3、已知单位负反馈系统的开环传递函数为G=100s+2s(s+1)(s+20)建立系统的模型,输入信号为单位阶跃信号,用示波器观察输出。
4、建立一个包含Gain、Transfer Fcn、Sum、Step、Sine Wave、Zero-Pole、Integrator、Derivative等模块构成的自定义模块库Library1;5、建立如图7-12所示的双闭环调速系统的Simulink的动态结构图,再把电流负反馈内环封装为子系统,建立动态结构图。
三、实验结果及分析:图5-1图5-2图5-3图5-4双闭环调速系统的Simulink的动态结构图图5-5把电流负反馈内环封装为子系统的动态结构图双击Subsystem模块,编辑反馈电流环Subsystem子系统,如图5-6所示:图5-6分析:Simulink是Mathworks开发的MATLAB中的工具之一,主要功能是实现动态系统建模、仿真与分析。
可以在实际系统制作出来之前,预先对系统进行仿真与分析,并可对系统做适当的适时修正或按照仿真的最佳效果来调试及整定控制系统的参数,达到提高系统性能。
减少涉及系统过程中的反复修改的时间、实现高效率地开发系统的目标。
Simulink提供了建模、分析和仿真各种动态系统的交互环境,包括连续系统、离散系统和混杂系统,还提供了采用鼠标拖放的方法建立系统框图模型的图形交互界面。
第二篇:仿真实验报告仿真软件实验实验名称:基于电渗流的微通道门进样的数值模拟实验日期:2013.9.4一、实验目的1、对建模及仿真技术初步了解2、学习并掌握Comsol Multiphysics的使用方法3、了解电渗进样原理并进行数值模拟4、运用Comsol Multiphysics建立多场耦合模型,加深对多耦合场的认识二、实验设备实验室计算机,Comsol Multiphysics 3.5a软件。
simulink仿真实验报告
![simulink仿真实验报告](https://img.taocdn.com/s3/m/e97c4d6c6bd97f192279e9e9.png)
对全部高中资料试卷电气设备,在安装过程中以及安装结束后进行高中资料试卷调整试验;通电检查所有设备高中资料电试力卷保相护互装作置用调与试相技互术关,通系电1,力过根保管据护线生高0不产中仅工资2艺料22高试2可中卷以资配解料置决试技吊卷术顶要是层求指配,机置对组不电在规气进范设行高备继中进电资行保料空护试载高卷与中问带资题负料2荷试2,下卷而高总且中体可资配保料置障试时2卷,32调需3各控要类试在管验最路;大习对限题设度到备内位进来。行确在调保管整机路使组敷其高设在中过正资程常料1工试中况卷,下安要与全加过,强度并看工且25作尽52下可22都能护可地1关以缩于正小管常故路工障高作高中;中资对资料于料试继试卷电卷连保破接护坏管进范口行围处整,理核或高对者中定对资值某料,些试审异卷核常弯与高扁校中度对资固图料定纸试盒,卷位编工置写况.复进保杂行护设自层备动防与处腐装理跨置,接高尤地中其线资要弯料避曲试免半卷错径调误标试高方中等案资,,料要编试求5写、卷技重电保术要气护交设设装底备备置。4高调、动管中试电作线资高气,敷料中课并设3试资件且、技卷料中拒管术试试调绝路中验卷试动敷包方技作设含案术,技线以来术槽及避、系免管统不架启必等动要多方高项案中方;资式对料,整试为套卷解启突决动然高过停中程机语中。文高因电中此气资,课料电件试力中卷高管电中壁气资薄设料、备试接进卷口行保不调护严试装等工置问作调题并试,且技合进术理行,利过要用关求管运电线行力敷高保设中护技资装术料置。试做线卷到缆技准敷术确设指灵原导活则。。:对对在于于分调差线试动盒过保处程护,中装当高置不中高同资中电料资压试料回卷试路技卷交术调叉问试时题技,,术应作是采为指用调发金试电属人机隔员一板,变进需压行要器隔在组开事在处前发理掌生;握内同图部一纸故线资障槽料时内、,设需强备要电制进回造行路厂外须家部同出电时具源切高高断中中习资资题料料电试试源卷卷,试切线验除缆报从敷告而设与采完相用毕关高,技中要术资进资料行料试检,卷查并主和且要检了保测解护处现装理场置。设。备高中资料试卷布置情况与有关高中资料试卷电气系统接线等情况,然后根据规范与规程规定,制定设备调试高中资料试卷方案。
控制系统仿真实验报告
![控制系统仿真实验报告](https://img.taocdn.com/s3/m/e023ac1ef121dd36a32d82ad.png)
哈尔滨理工大学实验报告控制系统仿真专业:自动化12—1学号:1230130101姓名:一。
分析系统性能一.实验目得及内容:1、熟悉MATLAB软件得操作过程;2、熟悉闭环系统稳定性得判断方法;3、熟悉闭环系统阶跃响应性能指标得求取.二.实验用设备仪器及材料:PC,Matlab 软件平台三、实验步骤1、编写MATLAB程序代码;2、在MATLAT中输入程序代码,运行程序;3、分析结果.四.实验结果分析:1、程序截图得到阶跃响应曲线得到响应指标截图如下2、求取零极点程序截图得到零极点分布图3、分析系统稳定性根据稳定得充分必要条件判别线性系统得稳定性最简单得方法就是求出系统所有极点,并观察就是否含有实部大于0得极点,如果有系统不稳定。
有零极点分布图可知系统稳定。
二.单容过程得阶跃响应一、实验目得1、熟悉MATLAB软件得操作过程2、了解自衡单容过程得阶跃响应过程3、得出自衡单容过程得单位阶跃响应曲线二、实验内容已知两个单容过程得模型分别为与,试在Simulink中建立模型,并求单位阶跃响应曲线。
三、实验步骤1、在Simulink中建立模型,得出实验原理图。
2、运行模型后,双击Scope,得到得单位阶跃响应曲线。
四、实验结果1.建立系统Simulink仿真模型图,其仿真模型为2.过程阶跃响应曲线为三.单容过程得阶跃响应一、实验目得1、了解比例积分调节得作用;2、了解积分调节强弱对系统性能得影响。
二、实验内容已知控制系统如下图所示,其中,H(s)为单位反馈,且在第二个与第三个环节(即与)之间有累加得扰动输入(在5秒时幅值为0、2得阶跃扰动).对系统采用比例积分控制,比例系数为,积分时间常数分别取,试利用Simulink求各参数下系统得单位阶跃响应曲线与扰动响应曲线。
三、实验步骤1、在Simulink中建立仿真模型,其模型为2、运行模型后,双击Scope,得到得单位阶跃响应曲线为3、置阶跃输入为0,在5秒时,加入幅值为0、2得阶跃扰动,得到扰动响应曲线为四。
计算机仿真技术实验报告 自动化
![计算机仿真技术实验报告 自动化](https://img.taocdn.com/s3/m/c6d19f3d26284b73f242336c1eb91a37f0113268.png)
计算机仿真技术综合实验实验目的:熟悉使用动态系统仿真工具SimuLink的方法实验要求:1.练习启动SimuLink2.熟悉SimuLink模型窗口3. 练习使用鼠标和键盘操作1)对模块操作2)对直线操作3)对信号标签操作4) 对模型注释操作4. 练习使用以下模块库中的模块用SimuLink建立仿真模型的过程,可以理解为将模块库中的模块搭在一起。
模块库中的模块可以用SimuLink库浏览器得到。
●Source 系统输入模块●Sinks 系统输出模块●Discrete 离散时间系统模块库●Continuous 连续时间系统模块库●Discontinuities 不连续系统模块库●Math Operations 数学运算库●Signal Attributes 信号特性模块库●Signal Routing 信号路由模块●Look-Up Tables 表函数模块库5.用SimuLink建立一个仿真模型,要求仿真模型应该有模型本身、输入和输出部分。
并运行仿真模型得到仿真结果。
实验原理:用SimuLink对通信中2ASK信号进行解调的仿真解调:指从携带消息的已调信号中恢复消息的过程。
在各种信息传输或处理系统中,发送端用所欲传送的消息对载波进行调制,产生携带这一消息的信号。
接收端必须恢复所传送的消息才能加以利用。
2ASK(二进制振幅键控):振幅键控是正弦载波的幅度随数字基带信号而变化的数字调制.当数字基带信号为二进制时,则为二进制振幅键控。
幅度键控可以通过乘法器和开关电路来实现。
载波在数字信号1或0的控制下通或断,在信号为1的状态载波接通,此时传输信道上有载波出现;在信号为0的状态下,载波被关断,此时传输信道上无载波传送。
那么在接收端我们就可以根据载波的有无还原出数字信号的1和0。
对于二进制幅度键控信号的频带宽度为二进制基带信号宽度的两倍。
二进制振幅键控信号解调器原理框图实验内容:对2ASK信号进行解调(1) 建立simulink模型方框图相干解调也叫同步解调,就是用已调信号恢复出载波——既同步载波。
实验报告五SIMULINK仿真实验
![实验报告五SIMULINK仿真实验](https://img.taocdn.com/s3/m/2adf70ee551810a6f52486d0.png)
实验五SIMULINK仿真实验一、实验目的考察连续时间系统的采样控制中,零阶保持器的作用与采样时间间隔对Ts 对系统稳定性的影响二、实验步骤开机执行程序,用鼠标双击图标,进入MA TLAB命令窗口:Command Windows在Command Windows窗口中输入:simulink,进入仿真界面,并新建Model文件在Model界面中构造连续时间系统的结构图。
作时域仿真并确定系统时域性能指标。
图(6-1)带零阶保持器的采样控制系统如下图所示。
作时域仿真,调整采样间隔时间Ts,观察对系统稳定性的影响。
图(6-2)参考输入量(给定值)作用时,系统连接如图(6-1)所示:图(6-3)三、实验要求(1)按照结构图程序设计好模型图,完成时域仿真的结构图(2)认真做好时域仿真记录(3)参考实验图,建立所示如图(6-1)、图(6-2)、图(6-3)的实验原理图;(4)将鼠标移到原理图中的PID模块进行双击,出现参数设定对话框,将PID 控制器的积分增益和微分增益改为0,使其具有比例调节功能,对系统进行纯比例控制。
1. 单击工具栏中的图标,开始仿真,观测系统的响应曲线,分析系统性能;调整比例增益,观察响应曲线的变化,分析系统性能的变化。
2. 重复步骤2-3,将控制器的功能改为比例微分控制,观测系统的响应曲线,分析比例微分控制的作用。
3. 重复步骤2-3,将控制器的功能改为比例积分控制,观测系统的响应曲线,分析比例积分控制的作用。
4. 重复步骤2-3,将控制器的功能改为比例积分微分控制,观测系统的响应曲线,分析比例积分微分控制的作用。
5. 参照实验一的步骤,绘出如图(6-2)所示的方块图;6. 将PID控制器的积分增益和微分增益改为0,对系统进行纯比例控制。
不断修改比例增益,使系统输出的过渡过程曲线的衰减比n=4,记下此时的比例增益值。
7. 修改比例增益,使系统输出的过渡过程曲线的衰减比n=2,记下此时的比例增益值。
控制系统仿真实验报告
![控制系统仿真实验报告](https://img.taocdn.com/s3/m/99167ea45fbfc77da369b159.png)
哈尔滨理工大学实验报告控制系统仿真专业: 自动化12-1 学号: 1230130101 姓名:一.分析系统性能课程名称控制系统仿真实验名称分析系统性能时间8.29地点3#姓名蔡庆刚学号1230130101班级自动化12-1一.实验目的及内容:1.熟悉MATLAB软件的操作过程;2.熟悉闭环系统稳定性的判断方法;3. 熟悉闭环系统阶跃响应性能指标的求取。
二.实验用设备仪器及材料:PC, Matlab软件平台三、实验步骤1. 编写MATLAB程序代码;2.在MATLAT中输入程序代码,运行程序;3.分析结果。
四.实验结果分析:1.程序截图得到阶跃响应曲线得到响应指标截图如下2.求取零极点程序截图得到零极点分布图3.分析系统稳定性根据稳定的充分必要条件判别线性系统的稳定性最简单的方法是求出系统所有极点,并观察是否含有实部大于0的极点,如果有系统不稳定。
有零极点分布图可知系统稳定。
二.单容过程的阶跃响应一、实验目的1. 熟悉MATLAB软件的操作过程2. 了解自衡单容过程的阶跃响应过程3. 得出自衡单容过程的单位阶跃响应曲线二、实验内容已知两个单容过程的模型分别为1()0.5G ss=和51()51sG s es-=+,试在Simulink中建立模型,并求单位阶跃响应曲线。
三、实验步骤1. 在Simulink中建立模型,得出实验原理图。
2. 运行模型后,双击Scope,得到的单位阶跃响应曲线。
四、实验结果1.建立系统Simulink仿真模型图,其仿真模型为2.过程阶跃响应曲线为三.单容过程的阶跃响应一、实验目的1. 了解比例积分调节的作用;2. 了解积分调节强弱对系统性能的影响。
二、实验内容已知控制系统如下图所示,其中01()(1)(21)(51)G s s s s =+++,H (s )为单位反馈,且在第二个和第三个环节(即1(21)s +和1(51)s +)之间有累加的扰动输入(在5秒时幅值为0.2的阶跃扰动)。
MATLAB Simulink系统建模与仿真 实验报告
![MATLAB Simulink系统建模与仿真 实验报告](https://img.taocdn.com/s3/m/613e06a065ce05087632135b.png)
MATLAB/Simulink 电力系统建模与仿真实验报告姓名:******专业:电气工程及其自动化班级:*******************学号:*******************实验一无穷大功率电源供电系统三相短路仿真1.1 无穷大功率电源供电系统仿真模型构建运行MATLAB软件,点击Simulink模型构建,根据电路原理图,添加下列模块:(1)无穷大功率电源模块(Three-phase source)(2)三相并联RLC负荷模块(Three-Phase Parallel RLC Load)(3)三相串联RLC支路模块(Three-Phase Series RLC Branch)(4)三相双绕组变压器模块(Three-Phase Transformer (Two Windings))(5)三相电压电流测量模块(Three-Phase V-I Measurement)(6)三相故障设置模块(Three-Phase Fault)(7)示波器模块(Scope)(8)电力系统图形用户界面(Powergui)按电路原理图连接线路得到仿真图如下:1.2 无穷大功率电源供电系统仿真参数设置1.2.1 电源模块设置三相电压110kV,相角0°,频率50Hz,接线方式为中性点接地的Y形接法,电源电阻0.00529Ω,电源电感0.000140H,参数设置如下图:1.2.2 变压器模块变压器模块参数采用标幺值设置,功率20MVA,频率50Hz,一次测采用Y型连接,一次测电压110kV,二次侧采用Y型连接,二次侧电压11kV,经过标幺值折算后的绕组电阻为0.0033,绕组漏感为0.052,励磁电阻为909.09,励磁电感为106.3,参数设置如下图:1.2.3 输电线路模块根据给定参数计算输电线路参数为:电阻8.5Ω,电感0.064L,参数设置如下图:1.2.4 三相电压电流测量模块此模块将在变压器低压侧测量得到的电压、电流信号转变成Simulink信号,相当于电压、电流互感器的作用,勾选“使用标签(Use a label)”以便于示波器观察波形,设置电压标签“Vabc”,电流标签“Iabc”,参数设置如下图:1.2.5 故障设置模块勾选故障相A、B、C,设置短路电阻0.00001Ω,设置0.02s—0.2s发生短路故障,参数设置如下图:1.2.6 示波器模块为了得到仿真结果准确数值,可将示波器模块的“Data History”栏设置为下图所示:1.3 无穷大功率电源供电系统仿真结果及分析得到以上的电力系统参数后,可以首先计算出在变压器低压母线发生三相短路故障时短路电流周期分量幅值和冲击电流的大小,短路电流周期分量的幅值为Im=10.63kA,时间常数Ta=0.0211s,则短路冲击电流为Iim=17.3kA。
控制系统计算机仿真(matlab)实验四实验报告
![控制系统计算机仿真(matlab)实验四实验报告](https://img.taocdn.com/s3/m/c18d5db8f7ec4afe05a1df3b.png)
实验四控制系统计算机辅助分析一、实验目的1、掌握如何使用Matlab进行系统的时域分析2、掌握如何使用Matlab进行系统的频域分析3、掌握如何使用Matlab进行系统的根轨迹分析二、实验学时:2学时三、试验原理:1、稳定性的基本概念与必要条件根据李雅普诺夫稳定性理论,线性控制系统的稳定性可定义如下:如果线性控制系统在初始扰动的影响下,其动态过程随时间的推移逐渐衰减并趋于零(原平衡工作点),则称系统渐近稳定,简称稳定。
否则,若在初始扰动影响下,系统的动态过程随时间的推移而发散,则称系统不稳定。
线性系统稳定的充分必要条件是:闭环系统特征方程的所有根均具有负实部;或者说,闭环传递函数的极点均严格位于左半s平面。
由上述线性系统稳定性概念与系统稳定的充分必要条件可知,判定线性系统稳定性的最直接方法就是求出闭环系统特征方程的所有根或者全部闭环极点,根据特征方程所有根是否具有负实部或闭环极点是否全部位于左半s平面来判定系统的稳定性。
四、实验内容:(三题选做两题)1、时域分析(1)根据下面传递函数模型:绘制其单位阶跃响应曲线并从图上读取最大超调量,并求出单位脉冲响应曲线。
程序:s=tf('s');G=5*(s^2+5*s+6)/(s^3+6*s^2+10*s+8);step(G);grid;hold on;impulse(G);结果:超调量=(|3.75-4|)/4x100%=6.25%0123456-112345Step ResponseTime (sec)A m p l i t u d e(2)典型二阶系统传递函数为:当ζ=0.7,ωn 取2、4、6、8、10、12的单位阶跃响应。
程序: kesi=0.7for wn=2:2:12 num=wn^2;den=[1 2*kesi*wn wn^2]; G=tf(num,den); t=0:0.01:10; step(G); hold on; endtitle('wn 不同值下的单位阶跃响应'); xlabel('t');ylabel('阶跃响应'); grid; 结果:00.51 1.52 2.53 3.540.20.40.60.811.21.4w n 不同值下的单位阶跃响应t (sec)阶跃响应(3)典型二阶系统传递函数为:当ωn =6,ζ取0.2、0.4、0.6、0.8、1.0、1.5、2.0的单位阶跃响应。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
基于Simulink 控制系统仿真与综合设计
一、实验目的
(1) 熟悉Simulink 的工作环境及其功能模块库; (2) 掌握Simulink 的系统建模和仿真方法;
(3) 掌握Simulink 仿真数据的输出方法与数据处理;
(4) 掌握利用Simulink 进行控制系统的时域仿真分析与综合设计方法; (5) 掌握利用 Simulink 对控制系统的时域与频域性能指标分析方法。
二、实验内容
图2.1为单位负反馈系统。
分别求出当输入信号为阶跃函数信号)(1)(t t r =、斜坡函数信号t t r =)(和抛物线函数信号2/)(2t t r =时,系统输出响应)(t y 及误差信号)(t e 曲线。
若要求系统动态性能指标满足如下条件:a) 动态过程响应时间s t s 5.2≤;b) 动态过程响应上升时间s t p 1≤;c) 系统最大超调量%10≤p σ。
按图1.2所示系统设计PID 调节器参数。
图2.1 单位反馈控制系统框图
图2.2 综合设计控制系统框图
三、实验要求
(1) 采用Simulink系统建模与系统仿真方法,完成仿真实验;
(2) 利用Simulink中的Scope模块观察仿真结果,并从中分析系统时域性能指标(系统阶跃响应过渡过程时间,系统响应上升时间,系统响应振荡次数,系统最大超调量和系统稳态误差);
(3) 利用Simulink中Signal Constraint模块对图2.2系统的PID参数进行综合设计,以确定其参数;
(4) 对系统综合设计前后的主要性能指标进行对比分析,并给出PID参数的改变对闭环系统性能指标的影响。
四、实验步骤与方法
4.1时域仿真分析实验步骤与方法
在Simulink仿真环境中,打开simulink库,找出相应的单元部件模型,并拖至打开的模型窗口中,构造自己需要的仿真模型。
根据图2.1 所示的单位反馈控制系统框图建立其仿真模型,并对各个单元部件模型的参数进行设定。
所做出的仿真电路图如图4.1.1所示。
图4.1.1
当仿真系统较大而复杂时,可以创建子系统,以增加仿真模型的可读性。
将图4.1.1控制系统仿真模型进行子系统封装,在单位阶跃函数控制信号的作用下,图2.1所示的控制系统仿真模型如图4.1.2所示。
在simulink中,选择仿真方法,并设置仿真参数(积分步长,仿真误差及仿真时间等)。
根据仿真输出曲线,得出系统的主要性能指标参数。
将图4.1.2中的单位阶跃函数控制信号分别用斜坡函数信号t和抛物线函数信号t2/2替换,并完成系统仿真实验。
图4.1.2 子系统仿真图
4.2 控制系统PID校正器设计实验步骤与方法
构造的PID控制器仿真模型如图4.2.1 所示。
图中,Kp为PID控制器的比例系数,Ki为PID控制器的积分系数,Kd为PID控制器的微分系数。
图4.2.1 PID 控制器仿真模型
将图4.1.2所示的PID 控制器仿真模型进行子系统封装,而后按图2.2建立其仿真模型,如图4.2.2所示。
按Signal Constraint 使用规则,完成对PID 控制系统参数的整定与系统仿真分析。
在单位阶跃函数控制信号、斜坡函数控制信号t
和抛物线函数控制信号2/2
t 作用下,对系统进行仿真试验。
根据仿真输出曲线,
得出系统的主要性能指标参数。
在此实验中,设置的初始Kp=1, Kd=2, Ki=2。
图4.2.2 PID 控制系统子系统封装仿真模型
五、实验结果
5.1未用PID 整定时的实验结果
未用PID 整定时,当输入分别为阶跃信号、斜坡信号、以及2
/)(2t t r 实验中示波器显示结果分别如下图5.1.1、5.1.2、5.1.3所示,从图中可知震荡幅度均较大:
图5.1.1 输入为阶跃信号
图5.1.2 输入为斜坡信号
t r 信号
)
(2t
主要性能指标参数如表5-1:
5.2 使用PID整定之后的实验结果
加入PID整定模块之后,当输入分别为阶跃信号、斜坡信号、以及t
r=实验中示波器显示结果分别如下图5.2.1、5.2.2、5.2.3、5.2.4所示,)(2t
2/
从中可以看出几乎无震荡。
其中PID整定参数为:
Kp =2.2523;
Kd =0.8935;
Ki =2.1117
图5.2.1
图5.2.2输入为阶跃信号
图5.2.3输入为斜坡信号
t r
)
(2t
主要性能指标参数如表5-2:
六、实验结论与问题分析
6.1 实验结果分析
通过将图5.1.1与5.2.2、图5.1.2与5.2.3、图5.1.3与5.2.4相互比较,可以清晰地看出加入PID之前的仿真结果振荡幅度较大,误差较大;但是加入PID 之后图像几乎无振荡,PID起到了很好的整定效果。
6.2 实验中遇到的问题
1)实验中元器件的位置在simulink中难以找到,可以利用查找功能,直接输入模块的名称从而找到相应模块。
2)实验中对应输入输出名称要一致,否则不能运行出正确结果。
3)实验中要给Kp、Ki、Kd在matlab程序框中赋初值,否则无法进行仿真。
4)实验中应合理设置仿真参数,以保证输出图形的美观,可读性要强。