初中数学竞赛 几何专题:点共线问题(含答案)
数学奥赛平面几何
《竞赛数学解题研究》之平面几何专题一、平面几何中的一些重要定理:1、梅涅劳斯定理:设D 、E 、F 分别是ABC ∆三边(或其延长线)上的三点,则D 、E 、F 三点共线的充要条件是1=⋅⋅EACEFC BF DB AD 。
2、塞瓦定理:设D 、E 、F 分别是ABC ∆三边(或其延长线)上的三点,则AF 、BE 、CD 三点共线的充要条件是1=⋅⋅EACEFC BF DB AD 。
3、托勒密定理:四边形ABCD 内接于圆的充要条件是CD BC CD AB BD AC ⋅+⋅=⋅4、西摩松定理:设P 是ABC ∆外接圆上任一点,过P 向ABC ∆的三边分别作垂线,设垂足为D 、E 、F ,则D 、E 、F 三点共线。
5、斯德瓦特定理:设P 是ABC ∆的边BC 边上的任一点,则BC PC BP AP BC AB PC AC BP ⋅⋅+⋅=⋅+⋅2226、共角定理:设ABC ∆和C B A '''∆中有一个角相等或互补(不妨设A=A ')则 C A B A ACAB S S C B A ABC ''⋅''⋅='''∆∆7、共边定理:设ABC ∆和C B A '''∆中有一个边相等,则CA B A ACAB S S C B A ABC ''⋅''⋅='''∆∆举例说明:1、设M 、N 分别是正六边形ABCDEF 的对角线AC 、CE 上的点,且AM:AC=CN:CE=k,如果BMN 三点共线,试求k 。
(IMO23,1982)2、在四边形ABCD 中,ABD ∆、BCD ∆、ABC ∆的面积之比为3:4:1,点M 、N 分别 是AC 、CD 上的点,且AM:AC=CN:CD, 并且BMN 三点共线,求证:M 、N 分别是AC 、 CD 的中点。
第7讲 共线问题(解析版)
第7讲 共线问题1.已知椭圆C 的中心为坐标原点O ,焦点在y 轴上,离心率22e =,椭圆上的点到焦点的最短距离为212-, 直线l 与y 轴交于点P (0,m ),与椭圆C 交于相异两点A 、B ,且. (1)求椭圆方程;(2)求m 的取值范围.【答案】(1)y 2212x +=1.(2)(﹣1,12-)∪(12,1).【详解】 (1)由条件知a ﹣c =1,c a =, ∴a =1,b =c 2=,故C 的方程为:y 2212x +=1. (2)设l :y =kx +m 与椭圆C 交点为A (x 1,y 1),B (x 2,y 2)联立得(k 2+2)x 2+2kmx +(m 2﹣1)=0△=(2km )2﹣4(k 2+2)(m 2﹣1)=4(k 2﹣2m 2+2)>0 (*)x 1+x 2222km k =-+,x 1x 22212m k -=+ ∵AP =3PB , ∴﹣x 1=3x 2∴x 1+x 2=﹣2x 2,x 1x 2=﹣3x 22,消去x 2,得3(x 1+x 2)2+4x 1x 2=0,∴3(222km k -+)2+42212m k -⨯=+0整理得4k 2m 2+2m 2﹣k 2﹣2=0 m 214=时,上式不成立; m 214≠时,k 2222241m m -=-, 因λ=3,∴k ≠0,∴k 2222241m m -=->0, ∴﹣1<m 12-<或12<m <1 容易验证k 2>2m 2﹣2成立,所以(*)成立即所求m 的取值范围为(﹣1,12-)∪(12,1).2.已知椭圆2222:1(0)x y C a b a b +=>>的左顶点为A ,右焦点为F ,过点A C 相交于A ,B ,且AB OB ⊥,O 坐标原点.(1)求椭圆的离心率e ;(2)若1b =,过点F 作与直线AB 平行的直线l ,l 与椭圆C 相交于P ,Q 两点.(ⅰ)求OP OQ k k ⋅的值;(ⅰ)点M 满足2OM OP =,直线MQ 与椭圆的另一个交点为N ,求NM NQ 的值.【答案】(1;(2)(ⅰ)15-;(ⅰ)38. 【分析】(1)由几何关系可得B 点坐标,代入椭圆方程即得a =,又222,c a b c e a=+=即得; (2)(ⅰ)将直线PQ 与椭圆联立即得1212OP OQ y y k k x x ⋅=结果; (ⅰ),(01)NM NM NQ NQλλλ==<<将其坐标化,利用P ,Q ,N 在椭圆上求得结果即可. 【详解】(1)已知||,||,26a OA a OB BAF π==∠=,则4a B ⎛- ⎝⎭,代入椭圆C 的方程:2222311616a a a b +=,∴225,a a b==,∴2c b ==,∴c e a ==.(2)(ⅰ)由(1)可得1,b a ==22:15x C y +=设直线l :()()()1122332,,,,,,x P x y Q x y N x y =+∵2OM OP =,∴11,22x y M ⎛⎫ ⎪⎝⎭联立直线l 与椭圆C的方程:22255x x y ⎧=+⎪⎨+=⎪⎩2810,0y +-=∆>恒成立121218y y y y +==-∴))12121212522348x x y y y y =++=+++= ∴121215OP OQ y y k k x x ⋅==-. (ⅰ)设,(01)NM NM NQ NQλλλ==<< ()11332323,,,22x y NM x y NQ x x y y ⎛⎫=--=-- ⎪⎝⎭()()1323132322x x x x y y y y λλ⎧-=-⎪⎪⎨⎪-=-⎪⎩ ∴12312322(1)22(1)x x x y y y λλλλ-=-⎧⎨-=-⎩()()312312122(1)122(1)x x x y y y λλλλ⎧=-⎪-⎪⎨⎪=-⎪-⎩∵P ,Q ,N 在椭圆上,∴22222211223355,55,55x y x y x y +=+=+=()()2212122222554(1)4(1)x x y y λλλλ--+=-- ∴()()222222112212125454520(1)x y x y x x y y λλλ+++-+=-由(ⅰ)可知121250x x y y +=,∴22144(1)λλ+=-, ∴38λ=∴38NM NQ =.3.已知曲线()()()22:528C m x m y m R -+-=∈.(1)若曲线C 表示双曲线,求m 的范围;(2)若曲线C 是焦点在x 轴上的椭圆,求m 的范围;(3)设4m =,曲线C 与y 轴交点为A ,B (A 在B 上方),4y kx =+与曲线C 交于不同两点M ,N ,1y =与BM 交于G ,求证:A ,G ,N 三点共线.【答案】(1)()(),25,-∞+∞;(2)()3.5,5;(3)见解析 【分析】(1)若曲线C 表示双曲线,则:()()520m m --<,解得m 的范围;(2)若曲线C 是焦点在x 轴上的椭圆,则250m m ->->,解得m 的取值范围;(3)联立直线与椭圆方程结合()23223k =-,解得k ,设(),4N N N x kx +,(),4M M M x kx +,()1G G x ,,求出MB 的方程,可得316M M x G kx ⎛⎫ ⎪+⎝⎭,,从而可得3 16M M x AG kx ⎛⎫=- ⎪+⎝⎭,,() ,2N N AN x kx =+,欲证A ,G ,N 三点共线,只需证 AG ,AN 共线,利用韦达定理,可以证明.【详解】(1)若曲线C 表示双曲线,则:()()520m m --<,解得:()()25m ∈-∞⋃+∞,,. (2)若曲线C 是焦点在x 轴上的椭圆,则:250m m ->->, 解得:7,52m ⎛⎫∈ ⎪⎝⎭(3)当4m =,曲线C 可化为:2228x y +=,当0x =时,2y =±,故A 点坐标为:()02,,()02B -,, 将直线4y kx =+代入椭圆方程2228x y +=得:()222116240k x kx +++=, 若4y kx =+与曲线C 交于不同两点M ,N ,则()232230k =->,解得232k >,由韦达定理得:21621m n k x x k +=-+ ①, 22421m n x x k ⋅=+ ② 设(),4N N N x kx +,(),4M M M x kx +,()1G G x ,, MB 方程为:62M M kx y x x +=-,则316M M x G kx ⎛⎫ ⎪+⎝⎭,, ∴3 16M M x AG kx ⎛⎫=- ⎪+⎝⎭,,() ,2N N AN x kx =+, 欲证A ,G ,N 三点共线,只需证 AG ,AN 共线, 即()326M N N M x kx x kx +=-+, 将①②代入可得等式成立,则A ,G ,N 三点共线得证.【点睛】本题考查椭圆和双曲线的标准方程,考查直线与椭圆的位置关系,考查三点共线,解题的关键是直线与椭圆方程联立,利用韦达定理进行求解,属于中档题.4.已知圆O 的方程为224x y +=,圆O 与y 轴的交点为A ,B (点A 在点B 的上方),直线:1l y kx =+与圆O 相交于M ,N 两点(1)当k =1时,求弦长MN ;(2)若直线y =4与直线BM 交于点D ,求证:D 、A 、N 三点共线.【答案】(1(2)证明见解析;【分析】(1)先求出圆心到直线的距离d,再由MN =代入计算即可;(2)联立2241x y y kx ⎧+=⎨=+⎩,借用韦达定理表示出,DA AN →→,证明//DA AN →→,即可证明D 、A 、N 三点共线.【详解】(1)∵1k =,∴直线l 的方程为10x y -+=.圆心到直线的距离2d ==,∴MN === (2)由题可得()0,2A ,()0,2B -,设()11,M x y ,()22,N x y ,联立2241x y y kx ⎧+=⎨=+⎩ 得:()221230k x kx ++-=,12221k x x k +=-+,12231x x k-=+, 112:2BM y l y x x ++=,令4y =, 得1162x x y =+,∴116,42x D y ⎛⎫ ⎪+⎝⎭, 116,22x DA y →⎛⎫-=- ⎪+⎝⎭,()22,2AN x y →=-,∵()12121212211162612242222x y x y x x y x x y y y ---+++=++++ 1221121621242x y x y x x y -+++=+ ()()122112*********x kx x kx x x y -+++++=+ 12112212166221242kx x x kx x x x x y --++++=+ ()221212113246461122k k kx x x x k k y y --⎛⎫⎛⎫-+ ⎪ ⎪-++++⎝⎭⎝⎭==++ 22112121102k k k k y -++==+,//DA AN →→∴,∴D 、A 、N 三点共线.【点睛】本题主要考查了直线与圆的位置关系,圆的弦长的求解,韦达定理的应用,考查了学生的运算求解能力.5.已知椭圆C : 2212x y +=的左顶点为A ,右焦点为F , O 为原点, M , N 是y 轴上的两个动点,且MF NF ⊥,直线AM 和AN 分别与椭圆C 交于E , D 两点.(ⅰ)求MFN ∆的面积的最小值;(ⅰ)证明: E , O , D 三点共线.【答案】(1)1;(2)详见解析。
数学初中竞赛大题训练:几何专题(包含答案)
数学初中竞赛大题训练:几何专题1.阅读理解:如果同一平面内的四个点在同一个圆上,则称这四个点共圆,一般简称为“四点共圆”.证明“四点共圆”判定定理有:1、若线段同侧两点到线段两端点连线夹角相等,那么这两点和线段两端点四点共圆;2、若平面上四点连成的四边形对角互补,那么这四点共圆.例:如图1,若∠ADB=∠ACB,则A,B,C,D四点共圆;或若∠ADC+∠ABC=180°,则A,B,C,D四点共圆.(1)如图1,已知∠ADB=∠ACB=60°,∠BAD=65°,则∠ACD=55°;(2)如图2,若D为等腰Rt△ABC的边BC上一点,且DE⊥AD,BE⊥AB,AD=2,求AE 的长;(3)如图3,正方形ABCD的边长为4,等边△EFG内接于此正方形,且E,F,G分别在边AB,AD,BC上,若AE=3,求EF的长.解:(1)∵∠ADB=∠ACB=60°,∴A,B,C,D四点共圆,∴∠ACD=∠ABD=180°﹣∠ADB﹣∠BAD=180°﹣60°﹣65°=55°,故答案为:55°;(2)在线段CA取一点F,使得CF=CD,如图2所示:∵∠C=90°,CF=CD,AC=CB,∴AF=DB,∠CFD=∠CDF=45°,∴∠AFD=135°,∵BE⊥AB,∠ABC=45°,∴∠ABE=90°,∠DBE=135°,∴∠AFD=∠DBE,∵AD⊥DE,∴∠ADE=90°,∵∠FAD+∠ADC=90°,∠ADC+∠BDE=90°,∴∠FAD=∠BDE,在△ADF和△DEB中,,∴△ADF≌△DEB(ASA),∴AD=DE,∵∠ADE=90°,∴△ADE是等腰直角三角形,∴AE=AD=2;(3)作EK⊥FG于K,则K是FG的中点,连接AK,BK,如图3所示:∴∠EKG=∠EBG=∠EKF=∠EAF=90°,∴E、K、G、B和E、K、F、A分别四点共圆,∴∠KBE=∠EGK=60°,∠EAK=∠EFK=60°,∴△ABK是等边三角形,∴AB=AK=KB=4,作KM⊥AB,则M为AB的中点,∴KM=AK•sin60°=2,∵AE=3,AM=AB=2,∴ME=3﹣2=1,∴EK===,∴EF===.2.问题再现:如图1:△ABC 中,AF 为BC 边上的中线,则S △ABF =S △ACP =S △ABC由这个结论解答下列问题:问题解决:问题1:如图2,△ABC 中,CD 为AB 边上的中线,BE 为AC 边上的中线,则S △BOC =S 四边形ADOE .分析:△ABC 中,CD 为AB 边上的中线,则S △BCD =S △ABC ,BE 为AC 边上的中线,则S △ABE =S △ABC∴S △BCD =S △ABE∴S △BCD ﹣S △BOD =S △ABE ﹣S △BOD又∵S △BOC =S △BCD ﹣S △BOD ,S 四边形ADOE =S △ABE ﹣S △BOD即S △BOC =S 四边形ADOE问题2:如图3,△ABC 中,CD 为AB 边上的中线,BE 为AC 边上的中线,AF 为BC 边上的中线.(1)S △BOD =S △COE 吗?请说明理由.(2)请直接写出△BOD 的面积与△ABC 的面积之间的数量关系:S △BOD =S △ABC .问题拓广:(1)如图4,E 、F 分别为四边形ABCD 的边AD 、BC 的中点,请直接写出阴影部分的面积与四边形ABCD 的面积之间的数量关系:S 阴= S 四边形ABCD . (2)如图5,E 、F 、G 、H 分别为四边形ABCD 的边AD 、BC 、AB 、CD 的中点,请直接写出阴影部分的面积与四边形ABCD 的面积之间的数量关系:S 阴= S 四边形ABCD .(3)如图6,E 、F 、G 、H 分别为四边形ABCD 的边AD 、BC 、AB 、CD 的中点,若S △AME =1、S △BNG =1.5、S △CQF =2、S △DPH =2.5,则S 阴= 7 .解:问题2:S △BOD =S △COE 成立,理由:∵△ABC 中,CD 为AB 边上的中线,∴S △BCD =S △ABC ,∵BE 为AC 边上的中线,∴S △CBE =S △ABC∴S △BCD =S △CBE∵S △BCD =S △BOD +S △BOC ,S △CBE =S △COE +S △BOC∴S △BOD =S △COE(2)由(1)有S △BOD =S △COE ,同(1)方法得,S △BOD =S △AOD ,S △COE =S △AOE ,S △BOF =S △COF ,∴S △BOD =S △COE =S △AOE =S △AOD ,∵点O 是三角形三条中线的交点,∴OA =2OF ,∴S △AOC =2S △COF =S △AOE +S △COE =2S △COE ,∴S △COF =S △COE ,∴S △BOD =S △COE =S △AOE =S △AOD =S △BOF =S △COF ,∴S △BOD =S △ABC ,故答案为问题拓广:(1)如图4:连接BD,由问题再现:S△BDE =S△ABD,S△BDF =S△BCD,∴S阴影=S四边形ABCD,故答案为,(2)如图5:连接BD,由问题解决:S△BMD =S△ABD,S△BDN=S△BCD,∴S阴影=S四边形ABCD,故答案为;(3)如图6,设四边形的空白区域分别为a,b,c,d,∵S△AME =1、S△BNG=1.5、S△CQF=2、S△DPH=2.5,由(1)得出:a+1+2.5=a+3.5=S△ACD①,c+1.5+2=c+3.5=S△ACB②,b +1+1.5=b +2.5=S △ABD ③,d +2+2.5=d +4.5=S △BCD ④,①+②+③+④得,a +3.5+c +3.5+b +2.5+d +4.5=a +b +c +d +14=S 四边形ABCD ⑤而S 四边形ABCD =a +b +c +d +7+S 阴影⑥∴S 阴影=7,故答案为7.3.如图,在△ABC 中,AB >AC ,内切圆⊙I 与边BC 切于点D ,AD 与⊙I 的另一个交点为E ,⊙I 的切线EP 与BC 的延长线交于点P ,CF ∥PE 且与AD 交于点F ,直线BF 与⊙I 交于点M 、N ,M 在线段BF 上,线段PM 与⊙I 交于另一点Q .证明:∠ENP =∠ENQ .证明:如图,设⊙I 与AC 、AB 分别切于点S 、T ,连接ST 、AI 、IT ,设ST 与AI 交于点G .则IE ⊥PE ,ID ⊥PD ,故I 、E 、P 、D 四点共圆,∵AS 2=AE •AD =AG •AI ,∵∠EAG =∠DAI ,∴△AEG ∽△AID ,∴∠AGE=∠AID,∴E,G,D,I四点共圆,∴I、G、E、P、D五点共圆,∴∠IGP=∠IEP=90°,即IG⊥PG,∴P、S、T三点共线,对直线PST截△ABC,由梅涅劳斯定理知,∵AS=AT,CS=CD,BT=BD,∴,设BN的延长线与PE交于点H,对直线BFH截△PDE,由梅涅劳斯定理知,∵CF∥BE,∴,∴,∴PH=HE,∴PH2=HE2=HM•HN,∴,∴△PHN∽△MHP,∴∠HPN=∠HMP=∠NEQ,∵∠PEN=∠EQN,∴∠ENP=∠ENQ.4.如图,△ABC的垂心为H,AD⊥BC于D,点E在△ABC的外接圆上,且满足,直线ED交外接圆于点M.求证:∠AMH=90°.证明:作高BP,CQ.连结MB、MC、MP、MQ、PQ.===•①=•=•②由①②得:=,又∵∠MBA=∠MCA,∴△MBQ∽△MCP,∴点M、A、P、Q四点共圆,即点M、A、P、Q、H五点共圆,又AH为直径,∴∠AMH=90°.5.如图,△ABC中,O为外心,三条高AD、BE、CF交于点H,直线ED和AB交于点M,FD 和AC交于点N.求证:OH⊥MN.证明:∵A 、C 、D 、F 四点共圆,∴∠BDF =∠BAC又∵∠OBC =(180°﹣∠BOC )=90°﹣∠BAC ,∴OB ⊥DF .∵CF ⊥MA ,∴MC 2﹣MH 2=AC 2﹣AH 2(①)∵BE ⊥NA ,∴NB 2﹣NH 2=AB 2﹣AH 2 (②)∵DA ⊥BC ,∴BD 2﹣CD 2=BA 2﹣AC 2 (③)∵OB ⊥DF ,∴BN 2﹣BD 2=ON 2﹣OD 2 (④)∵OC ⊥DE ,∴CM 2﹣CD 2=OM 2﹣OD 2,①﹣②+③+④﹣⑤,得NH 2﹣MH 2=ON 2﹣OM 2 MO 2﹣MH 2=NO 2﹣NH 2∴OH ⊥MN .6.在图1到图4中,已知△ABC 的面积为m .(1)如图1,延长△ABC 的边BC 到点D 使CD =BC ,连接DA ,若△ACD 的面积为S 1,则S 1= m .(用含m 的式子表示)(2)如图2,延长△ABC 的边BC 到点D ,延长边CA 到点E ,使CD =BC ,AE =CA ,连接DE .若△DEC 的面积为S 2,则S 2= 2m .(用含a 的代数式表示)(3)如图3,在图2的基础上延长AB 到点F ,使BF =AB ,连接FD 于E ,得到△DEF ,若阴影部分的面积为S 3,则S 3= 6m .(用含a 的代数式表示)(4)可以发现将△ABC 各边均顺次延长一倍,连接所得端点,得到△DEF ,如图3,此时,我们称△ABC 向外扩展了一次.可以发现扩展一次后得到的△DEF 的面积是原来△ABC 面积的 7 倍.(5)应用上面的结论解答下面问题:去年在面积为15平方面的△ABC 空地上栽种了各种花卉,今年准备扩大种植规模,把△ABC 内外进行两次扩展,第一次由△ABC 扩展成△DEF ,第二次由△DEF 扩展成△MGH ,如图4,求这两次扩展的区域(即阴影部分)面积共为多少平方米?解:(1)∵CD =BC ,∴△ABC 和△ACD 的面积相等(等底同高),故得出结论S 1=m .(2)连接AD ,,∵AE =CA ,∴△DEC 的面积S 2为△ACD 的面积S 1的2倍,故得出结论S 2=2m .(3)结合(1)(2)得出阴影部分的面积为△DEC 面积的3倍, 故得出结论则S 3=6m .(4)S △DEF =S 阴影+S △ABC=S 3+S △ABC=6m +m=7m=7S △ABC故得出结论扩展一次后得到的△DEF 的面积是原来△ABC 面积的7倍.(5)根据(4)结论可得两次扩展的区域(即阴影部分)面积共为(7×7﹣1)×15=720(平方米),答:求这两次扩展的区域(即阴影部分)面积共为720平方米. 7.(1)如图①,AD 是△ABC 的中线,△ABD 与△ACD 的面积有怎样的数量关系?为什么?(2)若三角形的面积记为S ,例如:△ABC 的面积记为S △ABC ,如图②,已知S △ABC =1,△ABC 的中线AD 、CE 相交于点O ,求四边形BDOE 的面积.小华利用(1)的结论,解决了上述问题,解法如下:连接BO ,设S △BEO =x ,S △BDO =y ,由(1)结论可得:S,S △BCO =2S △BDO =2y ,S △BAO =2S △BEO =2x . 则有,即.所以.请仿照上面的方法,解决下列问题: ①如图③,已知S △ABC =1,D 、E 是BC 边上的三等分点,F 、G 是AB 边上的三等分点,AD 、CF 交于点O ,求四边形BDOF 的面积.②如图④,已知S △ABC =1,D 、E 、F 是BC 边上的四等分点,G 、H 、I 是AB 边上的四等分点,AD 、CG 交于点O ,则四边形BDOG 的面积为 .解:(1)S △ABD =S △ACD .∵AD 是△ABC 的中线,∴BD =CD ,又∵△ABD 与△ACD 高相等,∴S △ABD =S △ACD .(2)①如图3,连接BO ,设S △BFO =x ,S △BDO =y ,S △BCF =S △ABD =S △ABC =S △BCO =3S △BDO =3y ,S △BAO =3S △BFO =3x .则有,即,所以x +y =,即四边形BDOF 的面积为;②如图,连接BO ,设S △BDO =x ,S △BGO =y ,S△BCG =S△ABD=S△ABC=,S△BCO =4S△BDO=4x,S△BAO =4S△BGO=4y.则有,即,所以x+y=,即四边形BDOG的面积为,故答案为:.8.我们初中数学里的一些代数公式,很多都可以通过表示几何图形面积的方法进行直观推导和解释.例如:平方差公式、完全平方公式.【提出问题】如何用表示几何图形面积的方法推证:13+23=32?【解决问题】A表示1个1×1的正方形,即:1×1×1=13B表示1个2×2的正方形,C与D恰好可以拼成1个2×2的正方形,因此:B、C、D就可以表示2个2×2的正方形,即:2×2×2=23而A、B、C、D恰好可以拼成一个(1+2)×(1+2)的大正方形.由此可得:13+23=32【递进探究】请仿用上面的表示几何图形面积的方法探究:13+23+33=62.要求:自己构造图形并写出详细的解题过程.【推广探究】请用上面的表示几何图形面积的方法探究:13+23+33+…+n3=.(参考公式:)注意:只需填空并画出图形即可,不必写出解题过程.【提炼运用】如图,下列几何体是由棱长为1的小立方体按一定规律在地面上摆成的,如图(1)中,共有1个小立方体,其中1个看的见,0个看不见;如图(2)中,共有8个小立方体,其中7个看的见,1个看不见;如图(3)中,共有27个小立方体,其中19个看的见,8个看不见;求:从第(1)个图到第(101)个图中,一切看不见的棱长为1的小立方体的总个数.解:【递进探究】如图,A表示一个1×1的正方形,即:1×1×1=13,B、C、D表示2个2×2的正方形,即:2×2×2=23,E、F、G表示3个3×3的正方形,即:3×3×3=33,而A、B、C、D、E、F、G恰好可以拼成一个大正方形,边长为:1+2+3=6,,∵S A+S B+S C+S D+S E+S F+S G=S大正方形∴13+23+33=62;【推广探究】由上面表示几何图形的面积探究知,13+23+33+…+n3=(1+2+3+…+n)2,又∵1+2+3+…+n=,∴13+23+33+…+n3=()2=.【提炼运用】图(1)中,共有1个小立方体,其中1个看的见,0=(1﹣1)3个看不见;如图(2)中,共有8个小立方体,其中7个看的见,1=(2﹣1)3个看不见;如图(3)中,共有27个小立方体,其中19个看的见,8=(3﹣1)3个看不见;…,从第(1)个图到第(101)个图中,一切看不见的棱长为1的小立方体的总个数为:(1﹣1)3+(2﹣1)3+(3﹣1)3+…+(101﹣1)3=03+13+23+…+1003=50502=25502500.故一切看不见的棱长为1的小立方体的总个数为25502500.故答案为:62;.9.问题引入:如图,在△ABC中,D是BC上一点,AE=AD,求:尝试探究:过点A作BC的垂线,垂足为F,过点E作BC的垂线,垂足为G,如图所示,有=,=,.类比延伸:若E为AD上的任一点,如图所示,试猜S四边形ABEC 与S△ABC的比是图中哪条线段的比,并加以证明.拓展应用:如图,E为△ABC内一点,射线AE于BC于点D,射线BE交AC于点F,射线CE交AB于点G,求的值.解:问题引入:∵在△ABC中,D是BC上一点,AE=AD,∴,,∴==;尝试探究:∵AE=AD,∴=,∵AF⊥BC,EG⊥BC,∴AF∥EG,∴△EDG∽△ADB,∴=;∵===,∴=1﹣=;故答案为:,,;类比延伸:=,∵E为AD上的一点,∴=,=,∴==;拓展应用:∵==,同理:=,=,∴==2.10.如图,在凸四边形ABCD中,M为边AB的中点,且MC=MD,分别过点C、D作边BC、AD 的垂线,设两条垂线的交点为P,过点P作PQ⊥AB于Q,求证:∠PQC=∠PQD.证明:连接AP、BP,取AP的中点E,取BP的中点F,连接DE、ME、QE、CF、QF、MF,如图.∵E为AP的中点,F为BP的中点,M为AB的中点,∴EM∥BP,EM=BP,MF∥AP,MF=AP.∵E为AP的中点,F为BP的中点,∠ADP=∠BCP=90°,∴DE=AE=EP=AP,FC=PF=BF=BP,∴DE=MF,EM=FC.在△DEM和△MFC中,,∴△DEM≌△MFC(SSS),∴∠DEM=∠MFC.∵EM∥BP,MF∥AP,∴四边形PEMF是平行四边形,∴∠PEM=∠PFM.又∵∠DEM=∠MFC,∴∠DEP=∠CFP.∵DE=AE,FC=BF,∴∠DAE=∠ADE=∠DEP,∠FBC=∠FCB=∠CFP,∴∠DAE=∠FBC,即∠DAP=∠PBC.∵∠ADP=∠AQP=90°,E为AP中点,∴ED=EA=EQ=EP=AP,∴D、A、Q、P四点共圆,∴∠PQD=∠DAP.同理可得:∠PQC=∠PBC,∴∠PQD=∠PQC.11.如图:D是以AB为直径的圆O上任意一点,且不与点A、B重合,点C是弧BD的中点,作CE∥AB,交AD或其延长线于E,连接BE交AC与G,AE=CE,过C作CM⊥AD交AD延长线于点M,MC与⊙O相切,CE=7,CD=6,求EG的长.解:连接OC,如图.∵MC与⊙O相切,∴OC⊥MC.∵CM⊥AD,∴OC∥AM.∵CE∥AB,∴四边形AOCE是平行四边形,∴OA=CE=7,∴AB=14.∵点C是弧BD的中点,∴BC=CD=6.∵AB是⊙O的直径,∴∠ACB=90°,∴AC===4.∵CE∥AB,∴△CGE∽△AGB,∴===,∴AG=AC=.在Rt△ACB中,cos∠BAC===.∵点C是弧BD的中点,∴∠BAC=∠CAD,即∠BAC=∠EAG,∴cos∠EAG=.在△EAG中,cos∠EAG=.∴=.∵AG=,AE=CE=7,∴=.整理得:GE2=.∵GE>0,∴GE=.∴EG的长为.12.如图,圆内接四边形ABCD的边AB、DC的延长线交于E,AD、BC延长线交于F,EF中点为G,AG与圆交于K.求证:C、E、F、K四点共圆.证明:延长AG到H,使得GH=AG,连接EH、FH、CK,如图所示.∵GH=AG,EG=FG,∴四边形AEHF是平行四边形,∴∠EAG=∠GHF,∠GAF=∠GHE.∵A、B、C、K四点共圆,∴∠KCF=∠EAG,∴∠KCF=∠GHF,∴K、C、H、F四点共圆.∵K、C、A、D四点共圆,∴∠KCD=∠KAF,∴∠KCD=∠GHE,∴K、C、E、H四点共圆,∴K、C、E、H、F五点共圆,∴C、E、F、K四点共圆.13.在半圆O中,AB为直径,一直线交半圆周于C、D,交AB延长线于M(MB<MA,AC<MD),设K是△AOC与△DOB的外接圆除点O外的另一个交点,求证:∠MKO=90°.证明:连接CK,BK,BC,如图所示.∵AB是⊙O直径,∴∠ACB=90°,∴∠OAC+∠ABC=90°.∵A、B、C、D四点共圆,∴∠BDC=∠BAC.∵A、O、C、K四点共圆,∴∠CKO=∠OAC.∵D、O、B、K四点共圆,∴∠BKO=∠BDO.∴∠BKC=∠BKO﹣∠CKO=∠BDO﹣∠OAC.∵OB=OD,∴∠ABD=∠BDO.∴∠BMC=∠ABD﹣∠BDC=∠BDO﹣∠BAC=∠BKC.∴B、C、K、M四点共圆.∴∠ABC=∠MKC.∴∠MKO=∠MKC+∠CKO=∠ABC+∠OAC=90°.14.已知,在△ABC中,AC>AB,BC边的垂直平分线与∠BAC的外角∠PAC的平分线相交于E,与BC相交点D,DE与AC相交于点F.(1)如图1,当∠ABC=3∠ACB时,求证:AB=AE;(2)如图2,当∠BAC=90°,∠ABC=2∠ACB,过点D作AC的垂线,垂足为点H,并延是点D关于直线AC的对长DH交射线AE于点M,过点E作BP的垂线,垂足为点G,点D1称点,试探究AG和MD之间的数量关系,并证明你的结论.1解:(1)证明:连接BF,如图1.设∠A CB=x,则∠ABC=3x,∵FD垂直平分BC,∴FB=FC,∴∠FBC=∠FCB=x,∴∠ABF=∠AFB=2x,∴AB=AF,∠PAC=4x.∵AE平分∠PAC,∴∠EAC=2x.∵∠AFE=∠DFC=90°﹣x,∴∠AEF=180°﹣∠EAF﹣∠AFE=180°﹣2x﹣(90°﹣x)=90°﹣x,∴∠AEF=∠AFE,∴AE=AF,∴AB=AE..(2)AG=MD1证明:作EN⊥AC于N,取EC中点O,、NM、MC、MO、NO、EB、EC,如图2.连接AD1∵AE平分∠PAC,EN⊥AC,EG⊥AP,∴EG=EN,∠EGA=∠ENA=90°.∵∠BAC=90°,∴∠EGA=∠ENA=∠BAC=90°,∴四边形EGAN是矩形.∵EG=EN,∴矩形EGAN是正方形,∴AG=AN,∠EAN=45°,∠GEN=90°.∵ED垂直平分BC,∴EB=EC.在Rt△BEG和Rt△CEN中,,∴Rt△BEG≌Rt△CEN(HL),∴∠GBE=∠NCE,∠GEB=∠NEC,∴∠GEN=∠BEC=90°∵EB=EC,∴∠ECB=∠EBC=45°.∵∠BAC=90°,∠ABC=2∠ACB,∴∠ABC=60°,∠ACB=30°,∴∠ABE=∠ACE=15°.∵∠BAC=90°,点D为BC中点,∴AD=CD,∴∠DAC=∠DCA=30°.∵点D与点D关于AC对称,1AC=∠DAC=30°,∴∠D1=45°﹣30°=15°.∴∠MAD1∵DA=DC,DM⊥AC,∴DM垂直平分AC,∴MA=MC,∴∠CMH=∠AMH=90°﹣45°=45°,∴∠AMC=90°,∴∠ENC=∠AMC=90°.∵点O为EC中点,∴ON=OM=OE=OC=EC,∴E、N、C、M四点共圆,∴∠EMN=∠ECN=15°,∴∠MAD=∠EMN=15°,1中,在△AMN和△MAD1,,∴△AMN≌△MAD1,∴AN=MD1.∴AG=MD115.在平面直角坐标系中,已知A(2,2),AB⊥y轴于B,AC⊥x轴于C.(1)如图1,E为线段OB上一点,连接AE,过A作AF⊥AE交x轴于F,连EF,ED平分∠OEF交OA于D,过D作DG⊥EF于G,求DG+EF的值;(2)如图2,D为x轴上一点,AC=CD,E为线段OB上一动点,连接DA、CE、F是线段CE的中点,若BF⊥FK交AD于K,请问∠KBF的大小是否变化?若不变,求其值;若改变,求其变化范围.解:(1)∵AB⊥y轴于B,AC⊥x轴于C,∴∠ABO=∠ACO=90°.∵∠BOC=90°,∴四边形ABOC是正方形,∴AB=AC=BO=CO=2,OA平分∠BOC,∠BAC=90°.∵AF⊥AE,∴∠EAF=90°,∴∠BAC=∠EAF,∴∠BAC﹣∠EAC=∠EAF﹣∠EAC,即∠BAE=∠CAF.在△ABE和△ACF中,,∴△ABE≌△ACF(ASA),∴AE=AF,BE=CF.设BE=CF=t,OE=2﹣t,OF=2+t.∵ED平分∠OEF,∴点D是△OEF的内心.如图1,作DM⊥OB于M,作DH⊥OF于H,且DG⊥EF于G,∴DG=DM=DH,∴四边形MOHD是正方形,∴MO=HO=DM=DG.设DG=MO=x,∴x=,∴x=,∴EF=4﹣2x,∴WF=2﹣x.∴DG+EF=x+2﹣x=2.即DG+EF的值为2;(2)∠KBF的大小不变,∠KBF=45°如图2,延长BF交AC于G,连接KG,作KM⊥AB于M,KN⊥AC于N,∵四边形ABOC是正方形,∴O B∥AC.∴∠EBF=∠CGF,∠BEF=∠GCF.∵F是CE的中点,∴EF=CF.在△BEF和△GCF中,,∴△BEF≌△GCF(AAS),∴BF=GF.∵BF⊥FK,∴∠BFK=∠GFK=90°.在△BFK和△GFK中,,∴△BFK≌△GFK(SAS)∴BK=GK.∵AC=CD,∠ACD=90°,∴△ACD是等腰直角三角形,∴∠CAD=45°.∵KN⊥AC,∴∠ANK=90°,∴∠AKN=45°,∴AN=KN.∵KM⊥AB,∴四边形AMKN是正方形,∴KM=KN.∠M=∠GNK=90°AM∥KN.在Rt△BKM和Rt△GKN中,,∴Rt△BKM≌Rt△GKN(HL),∴∠MBK=∠NGK.∠GKN=∠BKM.∵AM∥KN,∴∠BKN=∠MBK.∵∠BKM+∠BKN=90°,∴∠GKN+∠BKN=90°,即∠BKG=90°.∵BK=GK,∴△BKG是等腰直角三角形.∴∠KBF=45°,∴∠KBF的大小不变,∠KBF=45°.16.如图,已知⊙O1与⊙O2相交于A,B两点,直线MN⊥AB于A,且分别与⊙O1,⊙O2交于M、N,P为线段MN的中点,又∠AO1Q1=∠AO2Q2,求证:PQ1=PQ2.解:连接MQ1、BQ1、BQ2、NQ2,过点P作PH⊥Q1B于H,如图所示.则由圆内接四边形的性质可得:∠Q1MA+∠ABQ1=180°,∠ABQ2+∠ANQ2=180°,∠MAB=∠BQ2N.由圆周角定理可得:∠ABQ 1=∠AO 1Q 1,∠ANQ 2=∠AO 2Q 2. ∵∠AO 1Q 1=∠AO 2Q 2,∴∠ABQ 1=∠ANQ 2,∴∠ABQ 2+∠ABQ 1=∠ABQ 2+∠ANQ 2=180°, ∴Q 1、B 、Q 2三点共线.由圆内接四边形的性质可得:∠ABQ 1=∠ANQ 2, ∴∠Q 1MA +∠ANQ 2=∠Q 1MA +∠ABQ 1=180°, ∴MQ 1∥NQ 2.∵AB ⊥MN ,∴∠MAB =90°,∴∠Q 1Q 2N =∠MAB =90°.∵PH ⊥Q 1B ,即∠Q 1HP =90°,∴∠Q 1HP =∠Q 1Q 2N ,∴PH ∥NQ 2,∴MQ 1∥PH ∥NQ 2.∵P 为线段MN 的中点,∴H 为线段Q 1Q 2的中点,∴PH 垂直平分Q 1Q 2,∴PQ 1=PQ 2.。
初中数学竞赛 几何专题:点共线问题(含答案)
初中数学竞赛 几何专题:点共线问题(含答案)1. 锐角三角形ABC 中,45BAC ∠=︒,BE 、CF 是两条高,H 为ABC △的垂心,M 、K 分别是BC 、AH 的中点.证明:MK 、EF 和OH 共点,这里O 为ABC △的外心.解析 如图,由条件45BAE ∠=︒,可知AEB △和AFC △都是等腰直角三角形,而O 为AB 、BC 的中垂线上的点,故EO AB ⊥,FO AC ⊥,于是EO CF ∥,FO BE ∥,从而四边形EOFH 为平行四边形.故EF 与OH 的交点为EF 的中点.另一方面,M 、K 为BC 、AH 的中点,结合直角三角形斜边上的中线等于斜边的一半,可知12EM MF BC ==,12EK KF AH ==.即四边形EKFM 为菱形,所以EF 与KM 的交点亦是EF 的中点.从而命题获证.2. 四边形SPNM 与PFET 都是正方形,且点S 、P 、T 共线,点N 、P 、F 共线,连结MT 、SE ,点S 在MT 上的射影是点A ,点T 在SE 上的射影是点B ,求证:点A 、P 、B 共线.解析 设AB 与ST 交于点P ',又设ATS α∠=,TSE β∠=.于是由180ASB ATB ∠+∠=︒,有 tan cot ASB ATB S SP AS BSP T S AT BTαβ'⋅===⋅'⋅△△ MS ST MS SPST TE TE PT =⋅==, 即点P 与点P '重合.3. 在矩形ABCD 的边AB 、BC 、CD 、DA 上分别取异于顶点的K 、L 、M 、N ,已知KL MN ∥.证明KM 与LN 的交点O 在矩形的对角线BD 上.解析 连结OB 、OD .BMNAS P TFED M C NOLA K B因为KL MN ∥,KM 与LN 相交于O ,所以KLO △∽MNO △,可得KL LOMN NO=,KLO MNO ∠=∠. 又因BC AD ∥,所以BLO DNO ∠=∠,则BLK DNM ∠=∠;因此Rt BLK △∽Rt DNM △. 综上,BL LK LODN NM NO ==,BLO DNO ∠=∠,所以BLO △∽DNO △,可得BOL DON ∠=∠,即B 、O 、D 共线.4. 证明:如果一个梯形内的n (2>)个点到梯形四边距离之和相等,那么这n 个点共线.解析 如图,延长梯形ABCD 的腰BA 、CD 交于点E .设P 为这n 个点中的一个点,过P 作一直线,交EB 、EC 于点G 、H ,使得EGH △为等腰三角形(EG EH =).设Q 是这n 个点中的另一个点,我们证明Q 在直线GH 上.由条件Q 到EG 、EH 的距离和等于P 到EG 、EH 的距离和.若Q 在四边形AGHD 内,则EQG S +△ EQH EGH S S <△△,从而(,)(,)(,)(,)EG d Q EG EH d Q EH EG d P EG EH P EH ⨯+⨯<⨯+⨯,这里(,)d X YZ 表示点X 到直线YZ 的距离.结合EG EH =,可得()(,)(,)d Q EG d Q EH d P EG +<∥ (,)d P EH +,矛盾.类似地,若Q 在四边形BGHC 内,则(,)(,)(,)(,d Q EG d Q EH d P EG d P +>+ )EH ,亦矛盾.故Q 在线段GH 上.5. 设四边形仅有一个内角是直角,且两对角线相等,则对边中垂线交点与直角顶点共线.解析 如图,设四边形ABCD 中,90B ∠=︒,作矩形ABCE ,则BE AC BD ==,又设BC 的中垂线GP 与AD 之中垂线FP 交于P ,则易知PE PA PD ==,于是B 、P 均在DE 中垂线上.同理AB 、CD 中垂线之交点也在DE 中垂线上,故而结论成立.6. 等腰梯形ABCD 中AB CD =.将ABC △绕点C 旋转一个角度,得一个新的A B C ''△.证明:线段A D '、BC 和B C '的中点共线. 解析 如图,设A D '、BC 、B C '的中点分别为X 、Y 、Z ,W 为CA '的中点.并设ACA α'∠=,ABC β∠=, 则ZW A B ''∥,WX CD ∥,且111222ZW A B AB CD WX ''====,即XWZ △为等腰三角形,并且XWZ ∠等于180︒减去A B ''与CD 所成的角γ.AFDEPB G C注意到,(180)2180γβαββα=-︒--=-︒+,所以,3602XWZ αβ∠=︒--,从而1(180)9022XZW XWZ αβ∠=︒-∠=+-︒.于是902CZX XZW αβ∠=-∠=︒-.另一方面,YZ BB '∥,而1(180)9022CB B αα'∠=︒-=︒-,故902CZY α∠=︒-.综上,CZX CZY ∠=∠.故X 、Y 、Z 共线.7. 直角三角形ABC 中,AB 是斜边,CH 为斜边上的高,以A 为圆心、AC 为半径作A ⊙.过B 作A⊙的割线,交A ⊙于点D 和E ,交CH 于点F (D 在B 与F 之间).在A ⊙上取一点G ,使得ABG ABD ∠=∠,且G 与D 不在AB 的同一侧.证明:E 、H 、G 三点共线.解析 延长EH 交A ⊙于点G ',我们证明G 与G '重合,即证G BA DBA '∠=∠.由90ACB ∠=︒知BC 为A ⊙的切线,故2BC BD BE =⋅.再在Rt ABC △中,CH 为高,从而由身影定理可知2BC BH BA =⋅,所以BD BE BH BA ⋅=⋅,故E 、D 、H 、A 共圆,因此EDA EHA BHG '∠=∠=∠. 注意到EA DA =,故EDA DEA DHB ∠=∠=∠(这里再次用到E 、D 、H 、A 共圆),结合前面的结果,可知BHD BHG '∠=∠.由圆的对称性,即得HBG HBD '∠=∠. 8. 设锐角三角形ABC ,AD 、BE 、CF 为高,H 是垂心,M 、N 分别在BF 、AE 上,且MHF NHE ∠=∠,求证:BM 、CN 的中垂线之交点在BC 上.解析 如图,若设BM 、CN 中垂线分别交BC 于K 、K '(K 、K '在图中未画出),只要证明BK CK BC '+=,即知结论成立.由于2cos BM BK B =,2cos CN CK C '=,而2cos 2cos 22BF CE BC BC BC B C +=+=,故只需证明2cos 2cos BM CNB C+=CZ B'YB W A'DXAG 'AHBDF C EAF M BDCE N H2cos 2cos BF CE B C +或cos cos NE MFC B=即可. 由条件知MFH △∽NEH △,故sin cos sin cos MF FH AH BAD BNE HE AH CAD C∠===∠.结论证毕. 9.ABC △的内切圆切边AC 、BC 于点M 、N ,直线l 与该内切圆切于劣弧¼MN内一点,l 分别交NC 、MC 于点P 、Q .T 为AP 与BQ 的交点.证明:T 在线段MN 上.解析 设AP 交MN 于点1T ,ABC △的内切圆切l 与AB 于点X 、Y .AP 交XY 于点2T ,先证:1T 与2T 重合.由正弦定理,可知11sin sin PT PNCNM PT N =∠∠, 11sin sin AT AMAMN AT M=∠∠, 结合11PT N AT M ∠=∠,180180AMN CMN CNM ∠=-∠=-∠,可知11PT PN AT AM =.同理可证:22PT PXAT AY=.所以,由PX PN =及AM AY =,可知1212PT PT AT AT =,即1T 与2T 重合.这表明AP 过MN 与XY 的交点. 类似可知,BQ 与MN 与XY 的交点.所以,AP 与BQ 的交点在线段MN 上.10. 在ABC △中,90A ∠=︒,AB AC <.D 、E 、F 分别为边BC 、CA 、AB 上的点,使得四边形AFDE为正方形.设A l 为过A 所作ABC △的外接圆的切线.证明:BC 、EF 和A l 三线共点.解析 设A l 交直线BC 于点G ,连GF 延长交AC 于点E '.只需证明E 与E '重合. 记ABC △的三边长分别为a 、b 、c ,而正方形AFDE 的边长为x .则由DF FB AC AB =,可知x c xb c-=,故C Q XP lMN TAYBCE AD FB Gbcx b c=+. 由AG 为ABC △外接圆的切线,得BAG C ∠=∠,而AGC ∠为公共角,故ABG △∽CAG △,从而AB BG AG CA AG GC==,于是222GB BG AG AG c GC AG GC CA b ⎛⎫=⋅== ⎪⎝⎭,即22GB c a GB b =+,从而222ac GB b c =-,结合BD DF x BC CA b ==,可知ac BD b c =+,故22222ac ac abc GD b c b c b c =+=-+-,22222b ab GC GB c b c =⋅=-.所以DF CE ='GD c GC b=,即2b CE bc '=+. 而2bc b CE b x b b c b c=-=-=++.所以CE CE '=,故E 与E '重合,命题获证. 11. AC 、BD 均为圆的切线,AB 是该圆的一条能弦,CD 与圆交于点Q 、P ,已知AP BP =,点M为AB 中点,求证:点M 、R 、Q 共线,这里R 为AD 与BC 的交点.解析 连结MC 、MR 、MD ,易知题目无非是要证明 CMR DMR S CQS DQ =△△. 易知12CMRACR S S =△△,12DMR BDR S S =△△,2AC CQ CP =,2BD DQ DP =,于是问题转变为求证 22ACR BDR S AC BDS BD CP⋅=⋅△△. 由切线性质知CAB DBA ∠=∠,于是根据三角形面积公式,有 ACR ABC ACD ACDBDR DBC ABD CBD S S S S AR CR AC S DR BR S S BD S ⋅==⋅=⋅⋅△△△△△△△△, 于是待证式又变为求证 ACD CBD S AC DPS BD CP ⋅=⋅△△. 事实上, ACPACD ACP CBDPBD PBD CDS S S DP DP AC CP CD S CP S CP BD S DP⋅==⋅=⋅⋅△△△△△△, 这是由于AP BP =,且CAP DBP ∠=∠.A MBC QPDR。
三点共线经典题型
三点共线经典题型例1如图△ABC,D是△ABC内的一点,延长BA至点E,延长DC至点F,使得AE=CF,G,H,M分别为BD,AC,EF的中点,如果G,H,M三点共线,求证:AB=CD.分析由三角形的中位线得,MS∥AE,MS=0.5AE,HS∥CF,HS=0.5CF由已知得HS=SM,从而得出∠SHM=∠SMH,则得出∠TGH=∠THG,GT=TH,最后不难看出AB=CD.解答:证明:取BC中点T,AF的中点S,连接GT,HT,HS,SM,∵GHM分别为BD,AC,EF的中点,∴MS∥AE,MS=0.5AE,HS∥CF,HS=0.5CF∵GT∥CD,HT∥AB,GT=0.5CD,HT=0.5AB,∴GT∥HS,HT∥SM∴∠SHM=∠TGH,∠SMH=∠THG,∴∠TGH=∠THG,∴GT=TH,∴AB=CD.例2如图,已知菱形ABCD,∠B=60°,△ADC内一点M满足∠AMC=120°,若直线BA与CM交于点P,直线BC与AM交于点Q,求证:P,D,Q三点共线.分析求证:P,D,Q三点共线就是证明平角的问题,可以求证∠PDA+∠ADC+∠CDQ=180°,根据△PAC∽△AMC,△AMC∽△ACQ,可以得出∠PAD=∠DCQ=60°;进而证明△PAD∽△DCQ,得出∠APD=∠CDQ,则结论可证解答连接PD,DQ,由已知∠PAC=120°,∠QCA=120°,∴△PAC∽△AMC,△AMC∽△ACQ.∴PA/AM=AC/MC,AC/AM=QC/MC∴AC2=PA•QC,又AC=AD=DC.∴PA/DC=AD/QC,又∠PAD=∠DCQ=60°,∴△PAD∽△DCQ,∴∠APD=∠CDQ.∴∠PDA+∠ADC+∠CDQ=180°,∴P,D,Q三点共线.本题是证明三点共线的问题,这类题目可以转化为求证平角的问题.并且本题利用相似三角形的性质,对应角相等.例3如图,△ABC内接于圆⊙,点D是圆⊙上异于A、B、C三点的任意一点,过D点作DP⊥AB,DQ⊥BC,DR⊥AC,交AB、BC、AC分别为P,Q,R.(1)求证:∠BDP=∠CDR;(2)求证:P,Q,R三点共线.分析由已知中四边形ABDC为圆内接四边形,根据圆内接四边形性质,我们易得∠DBP=∠DCP,结合已知中DP⊥AB,DR⊥AC,根据等角的余角相等,即可得到答案.(2)由已知中DP⊥AB,DQ⊥BC,可判断出P、D、Q、B四点共圆,进而根据圆周角定理得到∠PQD=∠PBD,同理可得∠RQC=∠RDC,结合(1)中结论,我们易证明∠PQD+∠RQD=180°,进而得到P、Q、R三点共线.证明:(1)由已知可得四边形ABDC为圆内接四边形则∠DBP=∠DCP又∵DP⊥AB,DR⊥AC,∴∠BDP=90°-∠DBP,∠CDR=90°-∠DCP;∴∠BDP=∠CDR;∵DP⊥AB,DQ⊥BC,∴P、D、Q、B四点共圆∴∠PQD=∠PBD同理可得∠RQC=∠RDC∵∠PBD+∠RDC=90°∴∠PQD+∠RQD=90°+∠CQD=180°故P、Q、R三点共线本题考查的知识点是圆内接四边形的判定与性质,其中根据已知条件判断出P、D、Q、B四点共圆,进而根据圆周角定理得到∠PQD=∠PBD,并同理得到∠RQC=∠RDC,是证明三点共线的关键.例4已知四边形ABCD是矩形,M、N分别是AD、BC的中点,P是CD上一点,Q是AB上一点,CP=BQ,PM与QN的交点为R.求证:R,A,C三点共线.分析延长RN交DC于T,连接RC交MN于O,易证PN=NT,PC=CT,进而根据O是MN 的中点所以R,C,O三点共线、A,O,C三点共线,可以证明R,A,C三点共线.证明:延长RN交DC于T,连接RC交MN于O,∵∠BNQ=∠CNT,BN=CN,∠NBQ=∠NCT,∴△BNQ≌△CNT(ASA),∴CT=BQ=CP,∴PN=NT,PC=CT,∵MN∥CD,∴MO=ON∴O是MN的中点所以R,C,O三点共线,又A,O,C三点共线,所以R,A,C三点共线本题考查了全等三角形的证明和全等三角形对应边相等的性质,矩形各内角为直角的性质,本题中求证R,C,O三点共线是解题的关键.例4如图,O,H分别是锐角△ABC的外心和垂心,D是BC边上的中点.由H向∠A及其外角平分线作垂线,垂足分别是E,F.求证:D,E,F三点共线.分析根据AE平分∠BAC,M为弦BC的中点,可证A、E、M三点共线,根据已知证明EG∥OA,DG∥OA,可证D、E、G三点共线,而F在EG上,故可证D、E、F三点共线.证明:如图,连接OA、OD,并延长OD交⊙O于M,则OD⊥BC,弦BC=弦CM∴A、E、M三点共线,又AE、AF是∠A及其外角平分线,∴AE⊥AF,∵HE⊥AE,HF⊥AF,∴四边形AEHF为平行四边形,∴AH与EF互相平分,设其交点为G,于是,AG=0.5AH=0.5EF=EG∵OA=OM,OD∥AH,∴∠OAM=∠OMA=∠MAG=∠GAE,∴EG∥OA ①又O、H分别是△ABC的外心和垂心,且OD⊥BC,∴OD=0.5AH=AG,∴四边形AODG为平行四边形,∴DG∥OA,②由①②可知,D、E、G三点共线,而F在EG上,∴D、E、F三点共线.本题考查了三角形外接圆的性质在证明三点共线问题中的运用.关键是利用平行线,圆周角定理,垂径定理证明三点共线.。
七年级数学尖子生培优竞赛专题辅导第二十讲 点共线与线共点(含答案)
第二十讲 点共线与线共点趣题引路】例1 证明梅涅劳斯定理:如图20-1,在△ABC 中,一直线截△ABC 的三边AB 、AC 及BC 的延长线于D 、E 、F 三点。
求证:1=⋅⋅DBADEA CE FC BF 解析:左边是比值的积,而右边是1,转化比值使其能约简,想到平行线分线段成比例作平行线即可. 证明过点C 作CG /∥EF 交AB 于G . ,,BF BD EC DGCF DG AE AD∴== ∴1=⋅⋅=⋅⋅BDADAD DG DG BD BD AD EA CE FC BF例2 证明塞瓦定理:如图20-2,在△ABC 内任取一点P ,直线AP 、BP 、CP 分别与BC 、CA 、AB 相交于D 、E 、F ,求证:1=⋅⋅FBAF EA CE DC BD 证明,,.BCP ACPABP ACP BAP BCPS S S BD CE AF DC S EA S FB S ∆∆∆∆∆∆===∴1=⋅⋅=⋅⋅∆∆∆∆∆∆BCPACPABP BCP ACP ABP S S S S S S FB AF EA CE DC BD知识拓展】1.证明三点共线和三线共点的问题,是几何中常遇到的困难而有趣的问题,解这类问题一定要掌握好证三点共线和三线共点的基本方法。
2.证明三点共线的方法是:(1)利用平角的概念,证明相邻两角互补、 (2)当AB ±BC =AC 时,A 、B 、C 三点共线。
(3)用同一方法证明A 、B 、C 中一点必在另两点的连线上。
(4)当AB 、BC 平行于同一直线时,A 、B 、C 三点共线。
(5)若B 在PQ 上,A 、C 在P 、Q 两侧,∠ABP =∠CBQ 时,A 、B 、C 三点共线. (6)利用梅涅劳斯定理的逆定理. 3.证明三线共点的基本方法是:(1)证明其中两条直线的交点在第三条直线上 (2)证明三条直线都经过某一个特定的点.(3)利用已知定理,例如任意三角形三边的中垂线交于一点,三条内角平分线交于一点,三条中线交于一点以及三条高所在直线交于一点等。
全国各地初中(九年级)数学竞赛《几何》真题大全 (附答案)
全国各地初中(九年级)数学竞赛专题大全竞赛专题7 几何一、单选题 1.(2021·全国·九年级竞赛)某种产品由甲、乙、丙三种元件构成,如图为生产效率最高,在表示工人分配的扇形图中,生产甲、乙、丙元件的工人数量所对应的扇形圆心角的大小依次是( ).A .120,180,60︒︒︒B .108,144,108︒︒︒C .90,180,90︒︒︒D .72,216,720︒︒︒2.(2021·全国·九年级竞赛)如图所示,一次函数y kx b =+的图象过点(1,4)P 且与x 轴和y 轴的正半轴交于AB 、两点,点O 为坐标原点,当AOB 的面积最小时,k ,b 的值为( )A .4k =-,8b =B .4k =-,4b =C .2k =-,4b =D .2k =-,2b =3.(2021·全国·九年级竞赛)如图,已知DEF 的边长分别为3,2,正六边形网格由24个边长为2的正三角形组成,以这些正三角形的顶点画ABC ,使得ABC DEF ∽△△,相似比为ABk DE=,那么k 的不同值共有( )个.A .1B .2C .3D .4二、填空题4.(2021·全国·九年级竞赛)如图所示,正方形ABCD 的边长为10cm ,点E 在边CB 的延长线上且10cm EB =,点P 在边CD 上运动,EP 与AB 的交点为F .设cm DP x =,EFB △与四边形AFPD 的面积和为2cm y ,那么y 与x 之间的函数关系式是________.5.(2021·全国·九年级竞赛)把两个半径为5及一个半径为8的圆形纸片放在桌面上,使它们两两外切.若要用一个大圆形纸片把这三个圆形纸片完全盖住,则这个大圆形纸片的最小半径等于________. 6.(2021·全国·九年级竞赛)由一次函数2,2y x y x =+=-+和x 轴围成的三角形与圆心在(1,1)、半径为1的圆构成的图形覆盖的面积等于______.7.(2021·全国·九年级竞赛)某广场地面铺满了边长为36cm 的正六边形地砖,现向上抛掷半径为3cm 的圆碟,圆碟落地后与地面不相交的概率大约是_________. 三、解答题8.(2021·全国·九年级竞赛)平面上7个点,它们之间可以连一些线段,使7个点中任意三点必存在两点有线段相连.问最少要连几条线段?证明你的结论.9.(2021·全国·九年级竞赛)在直径为5的圆内放入10个点,证明其中必有两点的距离小于2.10.(2021·全国·九年级竞赛)设1M 是凸五边形12345A A A A A ,将1M 沿1i A A 方向平移,使1A 移到i A 得到凸五边形(2,3,4,5)i M i =.证明:12345,,,,M M M M M 中至少有两个图形,它们有公共内点.11.(2021·全国·九年级竞赛)在圆周上任取21个点,证明:以这些点为端点的弧中至少存在100条不超过120︒的弧.12.(2021·全国·九年级竞赛)两人A 和B 相约在12点与下午1点之间在某地会面,先到的人要等候另一人20分钟,过时就可以离开.如果每人可在指定的一小时内任何时刻到达,并且两人到达的时刻是彼此独立的(即一人到达的时刻与另一人到达的时刻没有影响),试计算两人能会面的概率.13.(2021·全国·九年级竞赛)平面上给出n个不全共线的点,求证:存在一条直线l,它恰通过其中两个点.14.(2021·全国·九年级竞赛)已知A,B,C,D为平面上两两距离不超过1的任意4点,今欲作一圆覆盖这4点(即A,B,C,D在圆内或圆周上)问圆的半径最小该是多少?试证明之.15.(2021·全国·九年级竞赛)任意凸四边形ABCD中总存在一条对角线和一条边,以它们为直径的两个圆可以覆盖这个四边形.16.(2021·全国·九年级竞赛)设甲是边长为1的正三角形纸片,乙是边长为1的正方形纸片,丙是边长为1的正五边形纸片,丁是边长为1的正六边形纸片.证明:(1)不能用甲、乙、丙合起来盖住一个半径为1的圆;(2)能用甲、乙、丙、丁合起来盖住一个半径为1的圆.17.(2021·全国·九年级竞赛)在一个半径等于6的圆内任意放入六个半径等于1的小圆.证明:其中总还有一块空位置,可以完整地放入一个半径为1的小圆.18.(2021·全国·九年级竞赛)将4张圆形纸片放在桌面上,使得其题中任何3张圆形纸片都有公共点,那么这4张圆形纸片是否一定有公共点?证明你的结论.19.(2021·全国·九年级竞赛)平面上给定了若干个圆,它们覆盖的面积为1.证明:从中可选出若干个两两不重叠的圆,使它们覆盖的面积不小于19.20.(2021·全国·九年级竞赛)证明:一个边长为5的正方形可以被3个边长为4的正方形所覆盖.21.(2021·全国·九年级竞赛)如图①,有一个长方体形状的敞口玻璃容器,底面是边长为20cm的正方形,高为30cm,内有20cm深的溶液,现将此容器倾斜一定角度α(图②),且倾斜时底面的一条棱始终在桌面上(图①,②均为容器的纵截面).(1)当30α=︒时,通过计算说明此溶液是否会溢出;(2)现需要倒出不少于33000cm的溶液,当α等于60︒时,能实现要求吗?通过计算说明理由.22.(2021·全国·九年级竞赛)甲、乙两艘轮船驶向一个不能同时停泊两艘轮船的码头停泊,它们在一昼夜内到达的时间是等可能的,如果甲的停泊时间是1小时,乙的停泊时间是2小时,求它们中任何一艘都不需要等候码头空出的概率(精确到0.001).23.(2021·全国·九年级竞赛)把长为a 的线段任意分成3条线段,求这3条线段能够构成一个三角形的3条边的概率.24.(2022·福建·九年级竞赛)如图,四边形ABCD 是平行四边形,∠DAC =45°,以线段AC 为直径的圆与AB 和AD 的延长线分别交于点E 和F ,过点B 作AC 的垂线,垂足为H .求证:E ,H ,F 三点共线.竞赛专题7 几何答案解析一、单选题 1.(2021·全国·九年级竞赛)某种产品由甲、乙、丙三种元件构成,如图为生产效率最高,在表示工人分配的扇形图中,生产甲、乙、丙元件的工人数量所对应的扇形圆心角的大小依次是( ).A .120,180,60︒︒︒B .108,144,108︒︒︒C .90,180,90︒︒︒D .72,216,720︒︒︒【答案】B 【详解】解 设分配生产甲、乙、丙3种元件的人数分别为x 人,y 人,z 人,于是每小时生产甲、乙、丙三种元件的个数分别为50,30,20x y z .为了提高效率应使生产出来的元件全部组成成品而没有剩余.设共可组成k 件成品,则503020504020x y z k ===,即4,,3x k y k z k ===,从而4::1::13:4:33x y z ==.设在扇形图中生产甲、乙、丙三种元件的圆心角分别为,,αβγ,则3336036036010834310x x y z α=⨯︒=⨯︒=⨯︒=︒++++,4436036036014434310y x y z β=⨯︒=⨯︒=⨯︒=︒++++,3336036036010834310z x y z γ=⨯︒=⨯︒=⨯︒=︒++++.故应选B .2.(2021·全国·九年级竞赛)如图所示,一次函数y kx b =+的图象过点(1,4)P 且与x 轴和y 轴的正半轴交于A B 、两点,点O 为坐标原点,当AOB 的面积最小时,k ,b 的值为( )A .4k =-,8b =B .4k =-,4b =C .2k =-,4b =D .2k =-,2b =【答案】A 【详解】解 因函数y kx b =+的图象过点(1,4)P ,所以4,4k b b k =+=-,于是(4)y kx k =+-. 令0y =得4,0k A k -⎛⎫⎪⎝⎭. 令0x =得(0,4)B k -.连OP ,得 114122OABOAP OPBSSSOA OB =+=⨯⨯+⨯⨯ 14141(4)22k k k -=⨯⨯+⨯⨯- 11642k k ⎛⎫=-+ ⎪⎝⎭.显然0k <.令k u =-,则0u >,于是116116442822OABSu u u u⎛⎫=++≥+⨯⨯= ⎪⎝⎭.等号成立当且仅当16(0)u u u=>,即4u =,这时4,48k b k =-=-=. 故选A .注:OAB 的面积也可用114(4)22OABk SOA OB k k-=⨯⨯=⨯⨯-算出. 3.(2021·全国·九年级竞赛)如图,已知DEF 的边长分别为3,2,正六边形网格由24个边长为2的正三角形组成,以这些正三角形的顶点画ABC ,使得ABC DEF ∽△△,相似比为ABk DE=,那么k 的不同值共有( )个.A .1B .2C .3D .4【答案】C 【详解】作图知与DEF 相似的三角形,而相似比不同的三角形只有如图所示的三种,故选C .二、填空题4.(2021·全国·九年级竞赛)如图所示,正方形ABCD 的边长为10cm ,点E 在边CB 的延长线上且10cm EB =,点P 在边CD 上运动,EP 与AB 的交点为F .设cm DP x =,EFB △与四边形AFPD 的面积和为2cm y ,那么y 与x 之间的函数关系式是________.【答案】550(010)y x x =+<< 【详解】解 由DP x =得10PC x =-. 又12BF BE PC EC ==,即11(10),10(10)22BF x AF BF x =-=-=+, 所以EFBAFPD y SS =+四边形11()22BE BF AF DP AD =⨯⨯++⨯ 111110(10)(10)102222x x x ⎡⎤=⨯⨯-+++⨯⎢⎥⎣⎦550(010)x x =+<<. 故应填550(010)y x x =+<<.5.(2021·全国·九年级竞赛)把两个半径为5及一个半径为8的圆形纸片放在桌面上,使它们两两外切.若要用一个大圆形纸片把这三个圆形纸片完全盖住,则这个大圆形纸片的最小半径等于________. 【答案】1133.【详解】如图,设1O 的半径为8,2O ,3O 的半径为5,切点为A .由对称性,能盖住这3个圆的最小圆形纸片的中心O 在对称轴1O A 上,且与已知三个圆内切.若设这个圆形纸片的半径为r ,则在12Rt O O A 中22221122(85)512O A OO O A =-=+-=,在2Rt OO A 中,25OO r =-,1112(8)OA O A OO r =-=--,25O A =,于是,由22222OO O A OA =+得222(5)5(128)r r -=+-+,由此解出4011333r ==,即所求圆形纸片的最小半径等于1133.6.(2021·全国·九年级竞赛)由一次函数2,2y x y x =+=-+和x 轴围成的三角形与圆心在(1,1)、半径为1的圆构成的图形覆盖的面积等于______. 【答案】42π+【详解】如图,所覆盖面积2 114214222ABCS S S ππ=+=⨯⨯+⋅=+半圆.故答案为:42π+.7.(2021·全国·九年级竞赛)某广场地面铺满了边长为36cm 的正六边形地砖,现向上抛掷半径为3cm 的圆碟,圆碟落地后与地面不相交的概率大约是_________. 【答案】49【详解】解 要使圆碟与地砖的边缘不相交的条件是落地后圆碟的中心到正六边形地砖ABCDEF 的任何一边的距离不小于圆的半径63cm ,也就是圆碟的中心必落在与地砖ABCDEF 同中心且边与地砖边彼此平行、距离为63111111A B C D E F 内(图6-1).作OG AB ⊥于G ,交11A B 于1G 且163cm GG =,所以33336183OG AB ====1118363123OG OG GG =-==而113OG =,所以1132433OA ===,故11124A B OA ==. 设正六边形ABCDEF 和111111A B C D E F 的面积分别为S 和1S ,则所求概率为22211122224243639S A B p S AB =====.故应填49. 三、解答题8.(2021·全国·九年级竞赛)平面上7个点,它们之间可以连一些线段,使7个点中任意三点必存在两点有线段相连.问最少要连几条线段?证明你的结论.【答案】9条,见解析 【详解】解法一:设最少要连n 条线段,如图4-3中7个点之间共连有9条线段,其中任意三点间必有两点连有线段,故9n ≤.另一方面,我们证明9n ≥,下面分4种情形讨论: (1)若7点中存在一点1A 不与其他6点237,,,A A A 连线,则依题意1A ,i A ,j A (27)i j ≤<≤中必有2点连线,于是只可能i A 与j A 连有线,即237,,,A A A 这6点中任意两点连有线,图中一共连了65152⨯=条线. (2)若7点中存在一点1A 只连出一条线段,设1A 仅与2A 连有线而与其余5点3A ,4A ,5A ,6A ,7A ,没有连线,则同(1)可知3A ,4A ,5A ,6A ,7A 这5点中任意两点连有线,至少连有54102⨯=条线.(3)若每点出发至少连出2条线,且有一点恰连出2条线.设该点为1A ,它连出的两条线为12A A ,13A A ,则不与1A 相连的4个点每两点连有线,要连4362⨯=条线,而2A 连出的线段至少2条,除21A A 外,至少还有一条,所以此时至少要连6219++=条线. (4)若每点至少连出3条线,则至少要连73102⨯>条线. 综上所述,最少要连9条线段.解法二:设7点中从1A 出发所连的线段最少,只有k 条,设它们是121311,,,k A A A A A A +,其余6k -个点126,,,k B B B -都与1A 没有连线,于是对任意2点i B ,j B (16)i j k ≤<≤-,由已知条件知1A ,i B ,j B 中必有2点连有线,而1A 与i B ,1A 与j B 没有连线,故只可能i B 与j B 连有线,即16,,k B B -中每点与其余5k -点连有线,于是从各点连出的线段数的总和不少于(1)(6)(5)k k k k ++--221030k k =-+.但上述计数中每条线段计算了2次,故图中所连线段至少为()21210302k k -+=22551522k ⎛⎫⎛⎫-+- ⎪ ⎪⎝⎭⎝⎭22151522⎛⎫⎛⎫≥+- ⎪ ⎪⎝⎭⎝⎭1569=-=,即至少要连9条线段. 另一方面,如图4-3中,7点中连有9条线段时满足题设条件. 综上所述,最少要连9条线段.9.(2021·全国·九年级竞赛)在直径为5的圆内放入10个点,证明其中必有两点的距离小于2. 【答案】见解析 【详解】分析 把圆等分为9个扇形显然不行(虽然必有一扇形内至少有2点,但不保证它们的距离小于2),因此,我们先作一个与已知圆同心的小圆(其直径必须小于2,但不能太小),然后将余下的圆环部分8等分. 证明 设O 是已知圆心,如图,以O 为圆心作半径为0.9的圆,再将余下的圆环8等分,于是将已知圆面分成了9个部分,由抽屉原理知其中必有一部分内至少有已知10点中的101129-⎡⎤+=⎢⎥⎣⎦点,M N ,若,M N 在小圆内,则220.9 1.82MN OC ≤=⨯=<. 若,M N 同在一个扇面形内,则由余弦定理,有222cos45MN AC OC OA OC OA ≤+-⋅︒0.81 6.2520.9 2.50.7 3.912+-⨯⨯⨯<.从例2可以看出,分割图形制造“抽屉”时,可能不是将图形等分为几部分,而是要求分割的每一部分图形都具有所需要的性质(例2中每一部分图形内任意两点的距离都小于2),读者应用这种方法解题时,应该注意到这一点.10.(2021·全国·九年级竞赛)设1M 是凸五边形12345A A A A A ,将1M 沿1i A A 方向平移,使1A 移到i A 得到凸五边形(2,3,4,5)i M i =.证明:12345,,,,M M M M M 中至少有两个图形,它们有公共内点.【答案】见解析 【详解】证明 如图,以1A 为位似中心,以2:1为相似比作1M 的位似图形M ,则M 仍为凸五边形且1M 在M 内.下面我们证明2345,,,M M M M 都在M 内,例如先证4M 在M 内.设P 是4M 内任意一点,它是1M 内的点Q 经过平移得到的,于是14QP A A ∥,故14A A PQ 为平行四边形,又R 是14A A PQ 的两条对角线的交点,因Q 和4A 属于1M ,且1M 是凸五边形,故R 属于M ,而111,:2:1A R RP A P A R ==,故P 属于M .又P 是M ,内任意一点,所以4M 包含在M 之内,同理235,,M M M 都包含在M 内,设12345,,,,M M M M M 及M 的面积分别为12345,,,,S S S S S 及S ,则2123451152S S S S S S S S ++++=>⋅=.于是,由图形重叠原理知,12345,,,,M M M M M 中至少有两个图形,它们有公共内点.11.(2021·全国·九年级竞赛)在圆周上任取21个点,证明:以这些点为端点的弧中至少存在100条不超过120︒的弧.【答案】见解析 【详解】证明:我们称不超过120︒的弧为好弧.不妨设以1A 为端点的好弧最少,并且设它只有1n -条,它们是12131,,,n A A A A A A ,从而以231,,,n A A A -为端点的好弧都至少有1n -条,故以这n 个点为端点的好弧至少有1(1)2n n ⋅-条,除这n 个点外,其余21n -个点记为1221,,,n n A A A ++,从中任取两点,(121)i j A A n i j +≤<≤.因1i j A A A ,至少有一个内角不超过60︒,故11,,i j i j A A A A A A 中至少有一条弧不超过260120⨯︒=︒,根据1A 的取法,这条弧不能是1i A A 和1j A A ,而只能是j i A A ,即j i A A 是好弧.可见以1221,,,n n A A A ++中任意两点,(121)i j A A n i j +≤<≤为端点的弧都为好弧.这样的好弧有1(21)(20)2n n ⋅--条.综上所述知好弧至少有2211213991399(1)(21)(20)100222424y n n n n n ⎛⎫⎛⎫=⋅-+⋅--=-+≥+= ⎪ ⎪⎝⎭⎝⎭条.当10n =或11时,y 取到最小值100,于是结论成立.12.(2021·全国·九年级竞赛)两人A 和B 相约在12点与下午1点之间在某地会面,先到的人要等候另一人20分钟,过时就可以离开.如果每人可在指定的一小时内任何时刻到达,并且两人到达的时刻是彼此独立的(即一人到达的时刻与另一人到达的时刻没有影响),试计算两人能会面的概率. 【答案】59 【详解】解 我们用,x y 分别表示,A B 到达的时刻,而两人能会面的充分必要条件为20x y -≤,其中060,060x y ≤≤≤≤.我们用平面直角坐标系中的点(),x y 表示,A B 到达的时刻(从中午12点以后算起,以分为单位),于是所有可能结果是一个边长为60的正方形OABC .代表能够会面的点都落在图中画有阴影线的区域H 内(图6-2),于是21260240402H ADE OABC S S S =-⨯=-⨯⨯⨯正方形 226040=-,故两人能会面的概率为22226040251()6039HOABC S p S -===-=正方形. 答:两人能会面的概率等于59. 13.(2021·全国·九年级竞赛)平面上给出n 个不全共线的点,求证:存在一条直线l ,它恰通过其中两个点.【答案】见解析【详解】证明:平面上只有有限点,过每两点作一直线只有有限点直线,每条直线与不在这条直线上的点(由已知条件知这样的点必存在)配成对,则这样的点只有有限个,每个点线对中都有该点到直线的距离,记这些距离最小的点对为(,)P l ,则l 为所求.实际上,设l 上有不少于3个给定的已知点,则过P 作PA l ⊥于A (如图),则在l 上A 的某一侧(包括A )必有2个已知点,设为,M N (M 可能与A 重合,连PN ,并M 作MQ PN ⊥于Q ,过A 作AR PN ⊥于R ,则MQ AR AP d ≤<=,这与AP d =最小矛盾,于是结论得证.注 本题是英国著名数学家希尔维斯特(J.J. Sylvester)在其逝世前不久提出的一个有趣的问题.这个貌似简单的问题,当时困扰过不少的数学家,并且这状况持续350年之久,直到1933年,伽莱(T. Callai)给出了一个非常复杂的证明.不久以后,凯里(L. M. Kelly) 才给出上述很简单的证明,其证法的关键就是利用极端原理.14.(2021·全国·九年级竞赛)已知A ,B ,C ,D 为平面上两两距离不超过1的任意4点,今欲作一圆覆盖这4点(即A ,B ,C ,D 在圆内或圆周上)问圆的半径最小该是多少?试证明之. 3 【详解】注意最不利的情形点A 、B 、C 、D 中有3点构成边长等于1的正三角形,覆盖此三角形的圆的半径不小33 (1)A 、B 、C 、D 共线,这时4点在一条长度不超过1的线段内,结论显然成立;(2)A 、B 、C 、D 中有3点(例如A 、B 、C )构成一个三角形,第4点D 在此三角形内,不妨设60C ∠≥︒,以AB 为弦作圆O ,使AB 所对的弓形弧(含C 的一侧)为60︒,则此圆O 覆盖A 、B 、C 、D 4点.作此圆直径2AE R =,则22222(2)1R R AE BE AB -=-=≤,即3R ≤,故A 、B 、C 、D 4点被一个半径不大3 (3)A 、B 、C 、D 是一个凸四边形的4个顶点,则A C ∠+∠,B D ∠+∠中必有一个不小于180︒,不妨设180B D ∠+∠≥︒,同(2)可证ABC 的外接圆半径3≤180B D ∠+∠≥︒知D 点也在这个圆内或圆周上,故A 、B 、C 、D 3 315.(2021·全国·九年级竞赛)任意凸四边形ABCD 中总存在一条对角线和一条边,以它们为直径的两个圆可以覆盖这个四边形.【答案】见解析【详解】四边形的4个内角中至少有一个90≥︒,不妨设90A ∠≥︒,以对角BD 为直径的圆O 必覆盖ABD △.若90C ∠≥︒,圆O 覆盖四边形ABCD 结论成立,若90C ∠>︒,则C 在圆外,圆O 与CD 、CB 中至少一条线段相交,不妨设圆O 与CD 交于E ,于点分别以BD 、BC 为直径的两个圆覆盖四边形ABCD .16.(2021·全国·九年级竞赛)设甲是边长为1的正三角形纸片,乙是边长为1的正方形纸片,丙是边长为1的正五边形纸片,丁是边长为1的正六边形纸片.证明:(1)不能用甲、乙、丙合起来盖住一个半径为1的圆;(2)能用甲、乙、丙、丁合起来盖住一个半径为1的圆.【答案】(1)见解析;(2)见解析【详解】(1)因为对于半径为1的圆,边长为1的正三角形至多盖住60︒的弧,边长为1的正方形至多盖住90︒的弧,边长为1的正五边形至多盖住120︒的弧(因边长为1的正五边形对角线的长<边长为1的正六边形对角线的长3=,而6090120360︒+︒+︒<︒,所以甲、乙、丙合起来不得盖住半径为1的圆.(2)如图所示,用甲、乙、丙、丁合起来可盖住半径为1的圆.17.(2021·全国·九年级竞赛)在一个半径等于6的圆内任意放入六个半径等于1的小圆.证明:其中总还有一块空位置,可以完整地放入一个半径为1的小圆.【答案】见解析【详解】分析 与证明设半径为6的大圆O 内任意放入6个半径为1的小圆,则小圆圆心都在以O 为中心,615-=为半径的圆内.如果大圆内无论怎样再放入一个半径为1的小圆7O ,都要与6个小圆中某个(16)i O i ≤≤重叠,那么7112i O O ≤+≤,即半径为5的圆将被6个半径为2的圆所覆盖.由图形重叠原理知6个小圆的总面积将不小于半径为5的圆的面积.但实际上226224255ππππ⋅=<=⋅,得到矛盾,于是命题得证.注:本例的证题关键是将外圆缩小,而将里圆扩大,这是解决嵌入问题的一种技巧,即收缩与膨胀技巧或裁边与镶边技巧.18.(2021·全国·九年级竞赛)将4张圆形纸片放在桌面上,使得其题中任何3张圆形纸片都有公共点,那么这4张圆形纸片是否一定有公共点?证明你的结论.【答案】见解析.【解析】【分析】【详解】设4张圆形纸片是(1,2,3,4)k O k ,其中1O ,2O ,3O 有公共点1A ,1O ,2O ,4O 有公共点2A ,1O ,3O ,4O 有公共点3A ,2O ,3O ,4O 公共点4A .(1)若1A ,2A ,3A ,4A 共线(如图顺序),因为1A ,3A 都是圆形纸片1O 与3O 的公共点,故线段13A A 在圆形纸片1O 与2O 的公共部分内,又24A A 都是圆形纸片2O 与4O 的公共点,故线段24A A 在圆形纸片2O 与4O 的公共部分内,所以线段23A A 上任意一点都是这4张圆形纸片的公共点.(2)若1A ,2A ,3A ,4A 中有一点在以其余3点为顶点的三角形的边界上或内部(如图).因为1A ,2A ,3A 都在1O 内,故123A A A △被圆形纸片1O 所覆盖,从而4A 在圆形纸片1O 内,而4A 是圆形纸片2O ,3O ,4O 的公共点,所以4A 是这张圆形纸片的公共点.(3)若1A ,2A ,3A ,4A 是一个凸四边形的4个顶点(如图),同上可知线段13A A 在圆形纸片1O 与3O 的公共部分内,线段24A A 在圆形纸片2O 与4O 的公共部分内,所以13A A 与24A A 的交点是这4张圆形纸片的公共点.总之,这4张圆形纸片一定有公共点.19.(2021·全国·九年级竞赛)平面上给定了若干个圆,它们覆盖的面积为1.证明:从中可选出若干个两两不重叠的圆,使它们覆盖的面积不小于19. 【答案】见解析.【解析】【分析】【详解】从给定圆中选出半径最大的圆1O ,其半径为1r ,面积为1S ,则与圆1O 有重叠的圆连同圆1O 一起覆盖的面积()211139M r S π≤=,即1119S M ≥.然后去掉与圆1O 重叠的圆,再从剩下的圆(圆1O 除外)选出半径最大的圆2O ,其半径为2r ,并将与圆2O 有重叠的圆去掉.这样经过有限步可得有限个两两不重叠的圆1O ,2O ,…k O ,它们覆盖的面积为()12121199k k S S S M M M ++⋅⋅⋅+≥++⋅⋅⋅+=. 20.(2021·全国·九年级竞赛)证明:一个边长为5的正方形可以被3个边长为4的正方形所覆盖.【答案】见解析.【解析】【分析】【详解】设正方形ABCD 的边长为5,先放置一个边长为4的正方形CEFG ,其中C 为原正方形ABCD 的一个顶点,E 在边CD 上,F 在正方形ABCD 内,G 在边CB 上.连AF ,再放置第二个边长为4的正方形111AB C D ,其中A 是原正方形的一个顶点,且使D 在射线11D C 上(如图),由勾股定理有:2211D D AD AD =-2211543D C =-=<.故D 在线段11D C 内,且1111431C D D C D D =-=-=.设11B C 与CD 交于H ,则1541DE CD CE DC DH =-=-==<,故E 在线段DH 内,从而E 被正方形111AB C D 覆盖.又11145B AD B AC FAD ∠>∠=︒=∠,即AF 在1B AD 内,且1224AF DE AB ==,故F 也被正方形111AB C D 覆盖,这就证明了梯形AFED 可以被一个边长为4的正方形111AB C D 所覆盖.同理,梯形AFGB 也可以被一个边长为4的正方形222AB C D 所覆盖,于是正方形ABCD 可被3个边长为4的正方形所覆盖. 21.(2021·全国·九年级竞赛)如图①,有一个长方体形状的敞口玻璃容器,底面是边长为20cm 的正方形,高为30cm ,内有20cm 深的溶液,现将此容器倾斜一定角度α(图②),且倾斜时底面的一条棱始终在桌面上(图①,②均为容器的纵截面).(1)当30α=︒时,通过计算说明此溶液是否会溢出;(2)现需要倒出不少于33000cm 的溶液,当α等于60︒时,能实现要求吗?通过计算说明理由.【答案】(1)不会溢出,理由见解析;(2)不能实现要求,见解析.【解析】【分析】【详解】(1)当30α=︒时,如图a ,过C 作//CF BP 交AD 所在直线于F .在Rt CDF △中,20330,20cm,30cm FCD CD DF ∠=︒==<,所以点F 在线段AD 上,20330AF =此时容器内能容纳的溶液量为()3 ()203320203030201040003cm 2ABCF AF BC AB S ⎛⎫⎛+⋅=⋅=⋅⋅= ⎪ ⎪ ⎝⎭⎝⎭梯形.而容器中原有溶液量为()32020208000cm ⨯⨯=.因为3400038000⎛> ⎝⎭,所以当30α=︒时溶液不会溢出. (2)如图b ,当60α=︒时,过C 作//CF BP 交AB 所在直线于F .在Rt CBF △中,30cm 30BC BCF =∠=︒,,10320cm BF =<,所以点F 在线段AB 上,故溶液纵截面为Rt BFC △.因211503cm 2BFC S BC BF =⨯⨯=,容器内溶液量为315032030003cm =,倒出的溶液量为3(80003)3000cm -<,所以不能实现要求. 22.(2021·全国·九年级竞赛)甲、乙两艘轮船驶向一个不能同时停泊两艘轮船的码头停泊,它们在一昼夜内到达的时间是等可能的,如果甲的停泊时间是1小时,乙的停泊时间是2小时,求它们中任何一艘都不需要等候码头空出的概率(精确到0.001).【答案】0.879.【解析】【分析】【详解】设自当天零时算起,甲、乙两船到达码头的时刻分别是x 和y ,则必须024,024x y ≤≤≤≤.我们视(),x y 为平面直角坐标系内的点,于是点(),x y 落在一个面积为224S =的正方形OABC 的内部或边界上(如下图).如果轮船不需要等候码头空出,那么当船甲先到时,船乙应迟来1个小时以上,即1y x -≥,即1y x ≥+;当船乙先到时,船甲应迟来2个小时以上,即2x y -≥,即2y x ≤-,即点(),x y 应在直线1y x =+的上方且在直线2y x =-的下方,也就是点(),x y 应在如图所示的两个三角形ADE 和CFG △中某一个的内部或边界上,故所求概率ADE CFGABCD S S p S +=四边形.而24123,24222CG CF AD AE ==-===-=,所以211222223231103220.879241152p ⨯⨯+⨯⨯===. 答:两船中任何一艘都不需要等候码头空出的概率为0.879.23.(2021·全国·九年级竞赛)把长为a 的线段任意分成3条线段,求这3条线段能够构成一个三角形的3条边的概率.【答案】14【解析】【分析】【详解】解 设其中两条线段的长为,x y ,则第3条线段的长为()a x y -+,于是,x y 的取值范围是0,0,0,0,0()0.x a x a y a y a a x y a x y a ⎧<<<<⎧⎪⎪<<⇔<<⎨⎨⎪⎪<-+<<+<⎩⎩ ① 要使3条线段构成一个三角形的3条边,其充要条件是其中任意一条线段的长度小于其余两条线段的长度之和.这等价于每条线段的长度都小于2a ,即 0,0,220,0,220().22a a x x a a y y a a a x y x y a ⎧⎧<<<<⎪⎪⎪⎪⎪⎪<<⇔<<⎨⎨⎪⎪⎪⎪<-+<<+<⎪⎪⎩⎩ ②将(),x y 视为平面直角坐标系的坐标,则满足条件①的点(),x y 在以()()()0,0,,0,0,O A a B a 为顶点的OAB 内.而满足条件②的点(),x y 在以(,),(0,),,0()2222a a a a C D E 为顶点的CDE △内,故所求概率为11222142CDE OAB a a CD DE Sp S a a OA OB ⨯⨯⨯====⨯⨯⨯.答:3条线段能构成一个三角形的三边的概率为14. 24.(2022·福建·九年级竞赛)如图,四边形ABCD 是平行四边形,∠DAC =45°,以线段AC 为直径的圆与AB 和AD 的延长线分别交于点E 和F ,过点B 作AC 的垂线,垂足为H .求证:E ,H ,F 三点共线.【答案】见解析【解析】【分析】如图:证明P ,A ,B ,C 四点共圆.可得CBE APC ∠=∠.①,证明C ,E ,B ,H 四点共圆,可得CHE CBE ∠=∠.②,证明C ,H ,F ,P 四点共圆,可得180APC CHF ∠=︒-∠.③,由①②③代换可得180CHE CHF ∠+∠=︒.可得结论;【详解】如图,延长BH 与直线AD 相交于点P ,连接CP .因为45DAC ∠=︒,BP AC ⊥,所以45BPA ∠=︒.又45BCADAC∠=∠=︒,所以BPA BCA ∠=∠,于是P ,A ,B ,C 四点共圆.所以CBE APC ∠=∠.①连接CE ,由AC 为圆直径,得90CEA CHB ∠=︒=∠,所以C ,E ,B ,H 四点共圆,于是CHE CBE ∠=∠.②连接CF ,由AC 为圆直径,得90CFP CHP ∠=︒=∠,所以C ,H ,F ,P 四点共圆,于是180APC CHF ∠=︒-∠.③由②,①,③,得180CHE CBE APC CHF ∠=∠=∠=︒-∠,所以180CHE CHF ∠+∠=︒.所以E ,H ,F 三点共线.【点睛】本题考查了圆内接罩边形的判断及性质,难度较大,解题的关键是构造圆内接四边形.。
初中数学竞赛 几何专题:点共线问题(含答案)
初中数学竞赛 几何专题:点共线问题(含答案)1. 锐角三角形ABC 中,45BAC ∠=︒,BE 、CF 是两条高,H 为ABC △的垂心,M 、K 分别是BC 、AH 的中点.证明:MK 、EF 和OH 共点,这里O 为ABC △的外心.解析 如图,由条件45BAE ∠=︒,可知AEB △和AFC △都是等腰直角三角形,而O 为AB 、BC 的中垂线上的点,故EO AB ⊥,FO AC ⊥,于是EO CF ∥,FO BE ∥,从而四边形EOFH 为平行四边形.故EF 与OH 的交点为EF 的中点.另一方面,M 、K 为BC 、AH 的中点,结合直角三角形斜边上的中线等于斜边的一半,可知12EM MF BC ==,12EK KF AH ==.即四边形EKFM 为菱形,所以EF 与KM 的交点亦是EF 的中点.从而命题获证.2. 四边形SPNM 与PFET 都是正方形,且点S 、P 、T 共线,点N 、P 、F 共线,连结MT 、SE ,点S 在MT 上的射影是点A ,点T 在SE 上的射影是点B ,求证:点A 、P 、B 共线.解析 设AB 与ST 交于点P ',又设ATS α∠=,TSE β∠=.于是由180ASB ATB ∠+∠=︒,有 tan cot ASB ATB S SP AS BSP T S AT BTαβ'⋅===⋅'⋅△△ MS ST MS SPST TE TE PT =⋅==, 即点P 与点P '重合.3. 在矩形ABCD 的边AB 、BC 、CD 、DA 上分别取异于顶点的K 、L 、M 、N ,已知KL MN ∥.证明KM 与LN 的交点O 在矩形的对角线BD 上.解析 连结OB 、OD .因为KL MN ∥,KM 与LN 相交于O ,所以KLO △∽MNO △,可得KL LOMN NO=,KLO MNO ∠=∠.BMNAS P TFED M C NOLA K B又因BC AD ∥,所以BLO DNO ∠=∠,则BLK DNM ∠=∠;因此Rt BLK △∽Rt DNM △.综上,BL LK LODN NM NO ==,BLO DNO ∠=∠,所以BLO △∽DNO △,可得BOL DON ∠=∠,即B 、O 、D 共线.4. 证明:如果一个梯形内的n (2>)个点到梯形四边距离之和相等,那么这n 个点共线.解析 如图,延长梯形ABCD 的腰BA 、CD 交于点E .设P 为这n 个点中的一个点,过P 作一直线,交EB 、EC 于点G 、H ,使得EGH △为等腰三角形(EG EH =).设Q 是这n 个点中的另一个点,我们证明Q 在直线GH 上.由条件Q 到EG 、EH 的距离和等于P 到EG 、EH 的距离和.若Q 在四边形AGHD 内,则EQG S +△ EQH EGH S S <△△,从而(,)(,)(,)(,)EG d Q EG EH d Q EH EG d P EG EH P EH ⨯+⨯<⨯+⨯,这里(,)d X YZ 表示点X 到直线YZ 的距离.结合EG EH =,可得()(,)(,)d Q EG d Q EH d P EG +<∥ (,)d P EH +,矛盾.类似地,若Q 在四边形BGHC 内,则(,)(,)(,)(,d Q EG d Q EH d P EG d P +>+ )EH ,亦矛盾.故Q 在线段GH 上.5. 设四边形仅有一个内角是直角,且两对角线相等,则对边中垂线交点与直角顶点共线.解析 如图,设四边形ABCD 中,90B ∠=︒,作矩形ABCE ,则BE AC BD ==,又设BC 的中垂线GP 与AD 之中垂线FP 交于P ,则易知PE PA PD ==,于是B 、P 均在DE 中垂线上.同理AB 、CD 中垂线之交点也在DE 中垂线上,故而结论成立.6. 等腰梯形ABCD 中AB CD =.将ABC △绕点C 旋转一个角度,得一个新的A B C ''△.证明:线段A D '、BC 和B C '的中点共线. 解析 如图,设A D '、BC 、B C '的中点分别为X 、Y 、Z ,W 为CA '的中点.并设ACA α'∠=,ABC β∠=, 则ZW A B ''∥,WX CD ∥,且111222ZW A B AB CD WX ''====,即XWZ △为等腰三角形,并且XWZ ∠等于180︒减去A B ''与CD 所成的角γ.AFDEPB G C注意到,(180)2180γβαββα=-︒--=-︒+,所以,3602XWZ αβ∠=︒--,从而1(180)9022XZW XWZ αβ∠=︒-∠=+-︒.于是902CZX XZW αβ∠=-∠=︒-.另一方面,YZ BB '∥,而1(180)9022CB B αα'∠=︒-=︒-,故902CZY α∠=︒-.综上,CZX CZY ∠=∠.故X 、Y 、Z 共线.7. 直角三角形ABC 中,AB 是斜边,CH 为斜边上的高,以A 为圆心、AC 为半径作A ⊙.过B 作A⊙的割线,交A ⊙于点D 和E ,交CH 于点F (D 在B 与F 之间).在A ⊙上取一点G ,使得ABG ABD ∠=∠,且G 与D 不在AB 的同一侧.证明:E 、H 、G 三点共线.解析 延长EH 交A ⊙于点G ',我们证明G 与G '重合,即证G BA DBA '∠=∠.由90ACB ∠=︒知BC 为A ⊙的切线,故2BC BD BE =⋅.再在Rt ABC △中,CH 为高,从而由身影定理可知2BC BH BA =⋅,所以BD BE BH BA ⋅=⋅,故E 、D 、H 、A 共圆,因此EDA EHA BHG '∠=∠=∠. 注意到EA DA =,故EDA DEA DHB ∠=∠=∠(这里再次用到E 、D 、H 、A 共圆),结合前面的结果,可知BHD BHG '∠=∠.由圆的对称性,即得HBG HBD '∠=∠. 8. 设锐角三角形ABC ,AD 、BE 、CF 为高,H 是垂心,M 、N 分别在BF 、AE 上,且MHF NHE ∠=∠,求证:BM 、CN 的中垂线之交点在BC 上.解析 如图,若设BM 、CN 中垂线分别交BC 于K 、K '(K 、K '在图中未画出),只要证明BK CK BC '+=,即知结论成立.由于2cos BM BK B =,2cos CN CK C '=,而2cos 2cos 22BF CE BC BC BC B C +=+=,故只需证明2cos 2cos BM CNB C+=CZ B'YB W A'DXAG 'AHBDF C EAF M BDCE N H2cos 2cos BF CE B C +或cos cos NE MFC B=即可. 由条件知MFH △∽NEH △,故sin cos sin cos MF FH AH BAD BNE HE AH CAD C∠===∠.结论证毕. 9.ABC △的内切圆切边AC 、BC 于点M 、N ,直线l 与该内切圆切于劣弧MN 内一点,l 分别交NC 、MC 于点P 、Q .T 为AP 与BQ 的交点.证明:T 在线段MN 上.解析 设AP 交MN 于点1T ,ABC △的内切圆切l 与AB 于点X 、Y .AP 交XY 于点2T ,先证:1T 与2T 重合.由正弦定理,可知11sin sin PT PNCNM PT N =∠∠, 11sin sin AT AMAMN AT M=∠∠, 结合11PT N AT M ∠=∠,180180AMN CMN CNM ∠=-∠=-∠,可知11PT PN AT AM =.同理可证:22PT PXAT AY=.所以,由PX PN =及AM AY =,可知1212PT PT AT AT =,即1T 与2T 重合.这表明AP 过MN 与XY 的交点. 类似可知,BQ 与MN 与XY 的交点.所以,AP 与BQ 的交点在线段MN 上.10. 在ABC △中,90A ∠=︒,AB AC <.D 、E 、F 分别为边BC 、CA 、AB 上的点,使得四边形AFDE为正方形.设A l 为过A 所作ABC △的外接圆的切线.证明:BC 、EF 和A l 三线共点.解析 设A l 交直线BC 于点G ,连GF 延长交AC 于点E '.只需证明E 与E '重合. 记ABC △的三边长分别为a 、b 、c ,而正方形AFDE 的边长为x .则由DF FB AC AB =,可知x c xb c-=,故C Q XP lMN TAYBCE AD FB Gbcx b c=+. 由AG 为ABC △外接圆的切线,得BAG C ∠=∠,而AGC ∠为公共角,故ABG △∽CAG △,从而AB BG AG CA AG GC ==,于是222GB BG AG AG c GC AG GC CA b ⎛⎫=⋅== ⎪⎝⎭,即22GB c a GB b =+,从而222ac GB b c =-,结合BD DF x BC CA b ==,可知ac BD b c =+,故22222ac ac abc GD b c b c b c =+=-+-,22222b ab GC GB c b c =⋅=-.所以DF CE ='GD c GC b=,即2b CE bc '=+. 而2bc b CE b x b b c b c=-=-=++.所以CE CE '=,故E 与E '重合,命题获证. 11. AC 、BD 均为圆的切线,AB 是该圆的一条能弦,CD 与圆交于点Q 、P ,已知AP BP =,点M为AB 中点,求证:点M 、R 、Q 共线,这里R 为AD 与BC 的交点.解析 连结MC 、MR 、MD ,易知题目无非是要证明 CMR DMR S CQS DQ =△△. 易知12CMRACR S S =△△,12DMR BDR S S =△△,2AC CQ CP =,2BD DQ DP =,于是问题转变为求证 22ACR BDR S AC BDS BD CP⋅=⋅△△. 由切线性质知CAB DBA ∠=∠,于是根据三角形面积公式,有 ACR ABC ACD ACDBDR DBC ABD CBD S S S S AR CR AC S DR BR S S BD S ⋅==⋅=⋅⋅△△△△△△△△, 于是待证式又变为求证 ACD CBD S AC DPS BD CP ⋅=⋅△△. 事实上, ACPACD ACP CBDPBD PBD CDS S S DP DP AC CP CD S CP S CP BD S DP⋅==⋅=⋅⋅△△△△△△, 这是由于AP BP =,且CAP DBP ∠=∠.A MBC QPDR。
初中数学竞赛第二轮专题复习(2)几何
初中数学竞赛第二轮专题复习(2)几何证明的基本方法(1)一、常用定理梅涅劳斯定理 设',','C B A 分别是ΔABC 的三边BC ,CA ,AB 或其延长线上的点,若',','C B A 三点共线,则.1''''''=⋅⋅BC AC A B CB C A BA 梅涅劳斯定理的逆定理 条件同上,若.1''''''=⋅⋅BC AC A B CB C A BA 则',','C B A 三点共线。
塞瓦定理 设',','C B A 分别是ΔABC 的三边BC ,CA ,AB 或其延长线上的点,若',','CC BB AA 三线平行或共点,则.1''''''=⋅⋅BC AC A B CB C A BA 塞瓦定理的逆定理 设',','C B A 分别是ΔABC 的三边BC ,CA ,AB 或其延长线上的点,若.1''''''=⋅⋅BC AC A B CB C A BA 则',','CC BB AA 三线共点或互相平行。
角元形式的塞瓦定理 ',','C B A 分别是ΔABC 的三边BC ,CA ,AB 所在直线上的点,则',','CC BB AA 平行或共点的充要条件是.1'sin 'sin 'sin 'sin 'sin 'sin =∠∠⋅∠∠⋅∠∠BAB CBB CBC ACC AC A BAA 广义托勒密定理 设ABCD 为任意凸四边形,则AB •CD+BC •AD ≥AC •BD,当且仅当A,B ,C ,D 四点共圆时取等号.斯特瓦特定理 设P 为ΔABC 的边BC 上任意一点,P 不同于B ,C ,则有AP 2=AB 2•BC PC +AC 2•BCBP -BP •PC 。
初中数学竞赛:点共线、线共点
初中数学竞赛 点共线、线共点在本小节中包括点共线、线共点的一般证明方法及梅涅劳斯定理、塞瓦定理的应用。
1. 点共线的证明点共线的通常证明方法是:通过邻补角关系证明三点共线;证明两点的连线必过第三点;证明三点组成的三角形面积为零等。
n (n ≥4)点共线可转化为三点共线。
例1 如图,设线段AB 的中点为C ,以AC 和CB 为对角线作平行四边形AECD ,BFCG 。
又作平行四边形CFHD ,CGKE 。
求证:H ,C ,K 三点共线。
证 连AK ,DG ,HB 。
由题意,AD EC KG ,知四边形AKGD 是平行四边形,于是AK DG 。
同样可证AK HB 。
四边形AHBK 是平行四边形,其对角线AB ,KH 互相平分。
而C 是AB 中点,线段KH 过C 点,故K ,C ,H 三点共线。
例2 如图所示,菱形ABCD 中,∠A =120O 为△ABC 外接圆,M 为其上一点,连接MC 交AB 于E ,AM 交CB 延长线于F 。
求证:D ,E ,F 三点共线。
证 如图,连AC ,DF ,DE 。
因为M在O 上,则∠AMC =60°=∠ABC =∠ACB有△AMC ∽△ACF ,得CDCFCA CF MA MC ==。
又因为∠AMC =BAC ,所以△AMC ∽△EAC ,得AEADAE AC MA MC ==。
所以AEADCD CF =,又∠BAD =∠BCD =120°,知△CFD ∽ △ADE 。
所以∠ADE =∠DFB 。
因为AD ∥BC ,所以∠ADF =∠DFB =∠ADE ,于是F ,E ,D 三点共线。
AB CD E FH K G例3 四边形ABCD 内接于圆,其边AB 与DC 的延长线交于点P ,AD 与BC 的延长线交于点Q 。
由Q 作该圆的两条切线QE 和QF ,切点分别为E ,F 。
求证:P ,E ,F 三点共线。
证 如图。
连接PQ ,并在PQ 上取一点M ,使得B ,C ,M ,P 四点共圆,连CM ,PF 。
江苏省数学竞赛提优教案:第20讲共点共线共圆问题
江苏省数学竞赛提优教案:第20讲共点共线共圆问题第20讲共点、共线与共圆问题本节主要内容有共点、共线与共圆概念及常⽤证明⽅法.所谓共点,指n 条(n ≥3)直线经过同⼀点.或n 个(n ≥3)圆经过同⼀点;共线,指的三个及以上的点在同⼀条直线上; 共圆,指不在⼀条直线上的三点确定⼀个圆,以及有四点或四个以上的点在同⼀个圆上.证明中常⽤到Menelaus 定理、Ceva 定理、Fermat 点、Simson 线、Euler 线、四点共圆等知识.A 类例题例1 设线段AB 的中点为C ,以AC 为对⾓线作平⾏四边形AECD 、BFCG ,⼜作平⾏四边形CFHD 、CGKE ,求证:H 、C 、K 三点共线.分析 C 为AB 中点,若C 为HK 的中点,则AKBH 为平⾏四边形.反之,若平⾏四边形成⽴,则H 、C 、K 共线.证明连AK 、DG 、BH .∵ AD ∥EC ∥KG ,AD =EC =KG ,∴四边形AKGD 是平⾏四边形.∴ AK ∥GD ,AK =GD .同理,BH ∥GD ,BH =GD ,∴ BH ∥AK ,BH =AK ,∴四边形AKBH 是平⾏四边形.故AB 、HK 互相平分,即HK 经过AB 的中点C .∴ H 、C 、K 三点共线.说明证明具有特殊的性质的⼏个点共线.例2 求证:过圆内接四边形各边中点向对边所作的四条垂线,交于⼀点.分析画出图形,是必要的,可以研究⼀下两条垂线的交点的性质,不难发现证明的⽅法.证明若ABCD 是特殊图形(矩形、等腰梯形),易知结论成⽴.如图,设圆内接四边形ABCD 的对边互不平⾏.E 、F 、G 、H 分别为AB 、BC 、CD 、DA 的中点,EE '⊥CD ,FF '⊥DA ,GG '⊥AB ,HH '⊥BC ,垂⾜分别为E ',F ',G ',H '.K HGEFB CDA设EE '与GG '交于点P .∵ E 为AB 中点,∴ OE ⊥AB ,∴OE ∥EE '.同理,OG ∥EE '.∴ OEPG 为平⾏四边形.∴ OP 、EG 互相平分.即OP 经过EG 中点M .同理,设FF '与HH '交于Q ,则OQ 经过FH 中点N .∵ E 、F 、G 、H 分别为AB 、BC 、CD 、DA 的中点,∴ EFGH 是平⾏四边形,∴EG 、FH 互相平分,即EG 的中点就是FH 的中点于是M 与N 重合.∴ OP 、OQ 都经过点M 且OP =OQ =2OM .∴ P 、Q 重合,即四条垂线交于⼀点.说明本题利⽤了两条直线的交点具有某种性质来证明三线共点.例3 ⊙O 1与⊙O 2相交于点A 、B ,P 为BA 延长线上⼀点,割线PCD 交⊙O 1于C 、D ,割线PEF 交⊙O 2于E 、F ,求证:C 、D 、E 、F 四点共圆.分析可以通过C 、D 、E 、F 连成的四边形的对⾓互补或四边形的外⾓等于内对⾓来证明.证明链接CE 、D F ,PC ·PD =PA ·PB =PE ·PF .于是,ΔPCE ∽ΔPFD ,∴∠PEC =∠PDF .∴ C 、D 、E 、F 共圆.情景再现1.⊙I 内切于⊿ABC ,D 为BC 上的切点,M 、N 分别为AD 、BC 的中点,求证:M 、I 、N 三点共线.M Q H'E'F'G'P OHGFED CBA2. 证明三⾓形的三条⾼所在直线交于⼀点;三条中线交于⼀点;三条⾓平分线交于⼀点.3. 设PQ 、QR 是⊙O 的内接正九边形的相邻两边.A 为PQ 中点,B 为垂直于QR 的半径的中点.求∠BAO .B 类例题例4 设等腰三⾓形ABC 的两腰AB 、AC 分别与⊙O 切于点D 、E ,从点B 作此圆的切线,其切点为F ,设BC 中点为M ,求证:E 、F 、M 三点共线.分析显然此圆和三⾓形的位置需要分情况讨论,要证明E 、F 、M 三点共线,可以证明连线成⾓为0?或180?,于是有下⾯的证明.证明∵△ABC 是等腰三⾓形,AB =AC ,∴直线AO 是∠BAC 的平分线.故AO 所在直线通过点M .∴∠OMB =90?,⼜∠ODB =90?,∴D 、O 、M 、B 四点共圆.∴∠DFM =∠DOM .且∠ABM +∠DOM =180?.∵∠DFE =12∠DOE =∠ABM .∴∠DFE +∠DFM =180?.∴ E 、F 、M 共线.如果切点F 在三⾓形外,则由D 、B 、F 、M 、O 共圆,得∠DFM =∠DBM .⽽∠DBM =∠AOD =12∠DOE =∠DFE .∴∠DFM =∠DFE .∴ F 、M 、E 共线.说明证明三点共线常证明连线成⾓为0?或180?.例5 以锐⾓△ABC 的BC 边上的⾼AH 为直径作圆,分别交AB 、AC 于M 、N ,过A 作直线l A ⊥MN ,⽤同样的⽅法作出直线l B ,l C ,求证:l A 、l B 、l C 交于⼀点.分析如果能证明这三条直线都经过三⾓形的外⼼,则此三线共点.OMFE DCBADABCEFMOODNMHCBA证明取△ABC 的外接圆O ,连HN ,DB .则∠CAD 与∠MNH 都是∠ANM 的余⾓,∴∠MNH =∠CAD ,∵∠MNH =∠MAH ,∠CAD =∠CBD ,∴∠CBD =∠MAH ,∵∠BAH +∠ABH =90?,∴∠CBD +∠CBA =90?.∴ l A 是⊙O 的直径.即AB 过⊙O 的圆⼼O .同理l B 、l C 都过点O .即l A 、l B 、l C 交于⼀点.例6 在ΔABC 的边AB 、BC 、CA 上分别取点D 、E 、F ,使DE =BE ,EF =EC .证明:ΔADF 的外接圆圆⼼在∠DEF 的平分线上.分析设O 为ΔADF 的外接圆圆⼼,于是OA =OD =OF .若EO 是∠DEF 的平分线,则出现了等线段对等⾓的情况,这在圆中有此性质.故应证明O 、D 、E 、F 共圆.证明∵ EC =EF ,∴∠2=180?-2∠C ,同理,∠1=180?-2∠B ,∴∠DEF =180?-∠1-∠2=2(∠B +∠C )-180?=2(180?-∠A )-180?=180?-2∠A .但O 为ΔADF 的外接圆圆⼼,∴∠DOF =2∠A ,∴∠DEF +∠DOF =180?,∴ O 、D 、E 、F 四点共圆.但OD =OF ,∴∠DEO =∠OEF ,即O 在∠DEF 的⾓平分线上.情景再现4. 菱形ABCD 中,∠A =120°,○·O 为△ABC 外接圆,M 为其上⼀点,连接MC 交AB 于E ,AM 交CB 延长线于F .求证:D ,E ,F 三点共线.5.设P 、Q 、R 分别为△ABC 的外接圆O 上弧BC 、CA 、AB的中点.PR 、PQ 分别交AB 、AC 于点D 、E ,求证:DE ∥BC .CBA D FEO12OE DR QP CBA6.以△ABC 的两边AB 、AC 为边向外作正⽅形ABDE 、ACFG ,△ABC 的⾼为AH ,求证:AH 、BF 、CD 三线交于⼀点.7.ABCD ,求证:EE 'GG '是平⾏四边形.C 类例题例7 设AD 、BE 、CF 为△ABC 的三条⾼,从点D 引AB 、BE 、CF 、AC 的垂线DP 、DQ 、DR 、DS ,垂⾜分别为P 、Q 、R 、S ,求证:P 、Q 、R 、S 四点共线.分析这⾥有多个四点共圆,⼜有多个垂线.四点共圆,可以看成圆的内接三⾓形与圆上⼀点.故适⽤于Simson 线.证明设H 为垂⼼.由∠HDB =∠HFB =90 ,∴ H 、D 、B 、F 四点共圆.∵ DP ⊥BF ,DQ ⊥BH ,DR ⊥HF ,P 、Q 、R 分别为垂⾜.∴ P 、Q 、R 共线,(△HBF 的Simson 线).同理,Q 、R 、S 共线(△CEH 的Simson 线).∴ P 、Q 、R 、S 共线.说明利⽤⼏何名定理(Simson 线等)证明三点共线是常⽤⽅法.S RQPF E DCBAGE F D A BCE' F'G'MH C B例8 设A 1、B 1、C 1是直线l 1上三点,A 2、B 2、C 2是直线l 2上三点.A 1B 2与A 2B 1交于L ,A 1C 2与A 2C 1交于M ,B 1C 2与B 2C 1交于N ,求证:L 、M 、N 三点共线.分析图中有许多三点共线,可以利⽤这些三点共线来证明L 、M 、N 三点共线.所以可以选定⼀个三⾓形,这个三⾓形的三边上分别有L 、M 、N 三点.设A 1C 2与A 2B 1、B 2C 1交于P 、Q ,A 2B 1与B 2C 1交于R .则只要证明PM MQ ·QN NR ·RLLP=1,则由Menelaues 定理的逆定理可证明L 、M 、N 三点共线.证明 A 2C 1截△PQR 得,PM MQ ·QC 1C 1R ·RA 2A 2P=1,B 1C 2截△PQR 得,QN NR ·RB 1B 1P ·PC 2C 2Q =1,A 1B 2截△PQR 得,RL LP ·PA 1A 1Q ·QB 2B 2R =1,l 1截△PQR 得,PB 1B 1R ·RC 1C 1Q ·QA 1A 1P =1,l 2截△PQR 得,RB 2B 2Q ·QC 2C 2P ·PA 2A 2R=1.五式相乘,即得PM MQ ·QN NR ·RLLP=1,从⽽L 、M 、N 三点共线.说明本题利⽤了Menelaues 定理及其逆定理证明三点共线.例9 四边形内接于⊙O ,对⾓线AC 、BD 交于点P ,设△PAB 、△PBC 、△PCD 、△PDA 的外接圆圆⼼分别为O 1、O 2、O 3、O 4,求证:OP 、O 1O 3、O 2O 4共点.(1990年全国联赛)证明∵O 为⊿ABC 的外⼼,∴ OA=OB .RQP l 2l 1N M LC 2B 2A 2C 1B 1A 1O O ABCDP1O O O 234EF123∵O1为⊿PAB的外⼼,∴O1A=O1B.∴OO1⊥AB.作⊿PCD的外接圆⊙O3,延长PO3与所作圆交于点E,并与AB交于点F,连DE,则∠1=∠2=∠3,∠EPD=∠BPF,∴∠PFB=∠EDP=90?.∴PO3⊥AB,即OO1∥PO3.同理,OO3∥PO1.即OO1PO3是平⾏四边形.∴O1O3与PO互相平分,即O1O3过PO的中点.同理,O2O4过PO中点.∴OP、O1O3、O2O4三直线共点.例10 ΔABC是等腰三⾓形,AB=AC,若M是BC的中点,O是直线AM上的点,使OB⊥AB;Q是BC上不同于B、C的任⼀点;E在直线AB上,F在直线AC上,使E、Q、F不同且共线.求证:OQ⊥EF当且仅当QE=QF.分析证明“当且仅当”时,既要由已知OQ⊥EF证明QE=QF,也要由QE=QF证明OQ⊥EF.证明连OE、OF、OC先证OQ⊥EF?QE=QF.OB⊥AB,OQ⊥QE?O、Q、B、E四点共圆?∠OEQ=∠OBM.由对称性知OC⊥CA,OQ⊥QF?O、Q、F、C四点共圆?∠OFQ=∠OCQ,⼜∠OBC=∠OCB?∠OEF=∠OFE?OE=OF?QE=QF.再证QE=QF?OQ⊥EF.(⽤同⼀法)过Q作E'F'⊥OQ,交AB于E',交AC于F'.由上证,可得QE'=QF'.若E'F'与EF不重合,则EF与E'F'互相平分于Q,则EE'F'F为平⾏四边形,EE'∥FF',这与AB不与AC平⾏⽭盾.从⽽E'F'与EF重合.情景再现8.以△ABC的三边为边向形外作正⽅形ABDE、BCFG、RQPNMLKHG FCEDBAAB CMOQEFACHK ,设L 、M 、N 分别为DE 、FG 、HK 的中点.求证:AM 、BN 、CL 交于⼀点.9.如图,已知两个半径不相等的圆⊙O 1,⊙O 2相交于M 、N 两点,⊙O 1,⊙O 2分别与⊙O 内切于点S 、T ,求证:OM⊥MN 的充要条件是S 、N 、T 三点共线.10.给出锐⾓△ABC ,以AB 为直径的圆与AB 边的⾼CC ′及其延长线交于M ,N.以AC 为直径的圆与AC 边的⾼BB ′及其延长线将于P ,Q.求证:M ,N ,P ,Q 四点共圆. (第19届美国数学奥林匹克)ABCK MNPQB ′C ′习题201.选择题:(1) 如图,在四边形ABCD 的对⾓线的延长线上取⼀点P ,过P 作两条直线分别交AB 、BC 、CD 、DA 于点R 、Q 、N 、M ,记t =AR RB ·BQ QC ·CN ND ·DMMA,则t 的值A .t >1B .t =1C .t <1D .t 的值不定(2)如图,在不等边三⾓形ABC 内取异于内⼼的点P ,连接PA 、PB 、PC ,把⾓A 、B 、C 分成α、α’、β、、γ、γ’,记M =sin αsin βsin γ,N =sin α’sin β’sin γ’.则A .M >NB .M =NC .MD .不能确定2.填空题:(1)如图,若AB BC =DF FB =2,则DEEC= . (2)三⾓形三个旁切圆与三⾓形三边BC 、CA 、AB 切于点D 、E 、F ,则AF FB ·BD DC ·CE EA= .3.(Desargues 定理)已知直线AA 1、BB 1、CC 1相交于点O ,直线AB 与A 1B 1交于点X ,BC 与B 1C 1交于点Y ,CA 与C 1A 1交于点Z ,求证:X 、Y 、Z 共线.FEADαα'ββ'γγ'ABCPγβDI aCBAA BCDPMN RQZYXC 1C B 1 BA 1 A O4.已知△ABC外有三点M、N、R,且∠BAR=∠CAN=α,∠CBM=∠ABR=β,∠ACN=∠BCM=γ,证明:AM、BN、CR三线交于⼀点.5.设P为正⽅形ABCD的边CD上任⼀点,过A、D、P作⼀圆交BD于Q,过C、P、Q作⼀圆交BD于R,求证:A、P、R三点共线.6.如图,两个全等三⾓形ABC与A'B'C',它们的对应边也互相平⾏,因⽽两个三⾓形内部的公共部分构成⼀个六边形,求证:此六边形的三条对⾓线UX、VY、WZ交于⼀点.7.⊙O1,⊙O2外切于点P,QR为两圆的公切线,其中Q、R分别为⊙O1,⊙O2上的切点,过Q且垂直于QO2的直线与过R且垂直于RO1的直线交于点I,IN⊥O1O2,垂⾜为N,IN与QR交于点M,证明:PM、RO1、QO2三条直线交于⼀点.PMNIO2 O1RQA'B。
七年级数学尖子生培优竞赛专题辅导第二十讲点共线与线共点(含答案)
第二十讲点共线与线共点 趣题引路】 例1证明梅涅劳斯定理:如图20-b 在AABC 中,一直线截AABC 的三边AB 、AC 及BC 的延长线于ZX E 、F 三点。
解析:左边是比值的积.而右边是1,转化比值使其能约简.想到平行线分线段成比例作平行线即可.证明过点C 作CG///EF 交AB 于G如图20-2,在厶ABC 内任取一点P,直线BP 、CP 分别与BC 、CA. AB 相交于D 、E 、F,求证:1 •证明三点共线和三线共点的问题,是几何中常遇到的困难而有趣的问题,解这类问题一左要掌握好 证三点共线和三线共点的基本方法。
2 •证明三点共线的方法是:(1) 利用平角的概念,证明相邻两角互补、(2) 当AB±BC=AC 时,A. B 、C 三点共线。
(3) 用同一方法证明A 、B 、C 中一点必在另两点的连线上。
(4) 当AB 、BC 平行于同一直线时,A 、B 、C 三点共线。
(5) 若B 在PQ 上,A. C 在P. 0两侧,ZABP 二ZCBQ 时,A 、B 、C •三点共线.(6) 利用梅涅劳斯定理的逆定理.3.证明三线共点的基本方法是:(1) 证明其中两条直线的交点在第三条直线上(2) 证明三条直线都经过某一个特泄的点.(3) 利用已知泄理,例如任意三角形三边的中垂线交于一点,三条内角平分线交于一点,三条中线 交于一点以及三条高所在直线交于一点等。
(4) 利用塞瓦泄理的逆立理。
在证题过程中要根据题意灵活选用方法。
求证: BF CE AD FC EA DBBF . BD EC DGCF~ ~DG •J -- JAD'• BF CE AD _ BD DG AD> • FC EA BD ' DG AD BD 例2证明塞瓦左理:BD CE AFDC E4 7^证明 BD = S 、\Bp CE _ S*p AF _ DCS“C p弘 S*P FB S 磁p • BD CE AF = S MRH S ^CP DC EA FB Sx'p S WBP S 、\CP_]S 乂 cp知识拓展】 图20-2例1 如图20-3,已知BD二CE,求证:AC • EF二AB • DF.解析 等积转化为等比,由比例式可看岀直线BCF 截AADE 的三边, 即可用梅氏定理加以证明.证明直线BF 交ZMDE 三边所在直线于B 、C 、F. V BD = CE :. AB • DF 二EF • AC . 例2(1995年河北省初中竞赛题)如图20-4,在正△ABC 的边BC 、CA. AB 上分别有内分点D 、E 、 5-2)(其中Q4),线段AD BE, CF 相交所成的△〃/?的面积是8BC 面积的芥 则• c _ "("一2)c _ n(n - 2) 2 c _ 2(/i - 2) c…WP =血一 2)+ 4 — 2)+ 4 7 A4fiC = n(n-2)+4同理 Sg=s“ =』Uswcn(n-2) + 46(/?-2) c 讹-2) + 4 ""由已知_ 6耳)=< ,解得尸6.n(n-2) + 4 7故选B.例3如图20-5, AABC 的乙4的外角平分线与边BC 的延长线交于P, ZB 的平分线交AC 于0 Z Q 的平分线交AB 于乩求证:P 、Q 、R 三点共线.由梅氏定理得: AB DF EC BD ACF,将边分成2: n 的值是( A:5 )B:6 C:7解析 BD CE AF :,由梅氏世理有 n-2门-2 /?(/?-2) DC EA FB DB CE _ AP 2PD BC E4 = PD H.AP (畀一2) . APPD 4• AD "zi(n -2) + 4' AP A W2O-3D:8 C解析:••• AP 为ZB AC的外角平分线,AC PC• BQ为角平分线,二兰=些同理得:竺=竺BC QC AC RA..AR BP CQ AC AB BC・.P、Q、R三点共线.例4求证:三角形的三条角平分线交于一点已知:如图20-6, AD. BE、CF分别为角平分线,求证:AD. BE、CF交于一点解析:••• AD为ZBAC的平分线,・ BD _AB DC"ACCE BC AF _ AC同理得:E4 = AB= BCBD CE AF _ AB BC AC DC E4 FB = AC AB BC=1・••由塞瓦泄理得AD. BE、CF交于一点。
初中数学竞赛专题选讲-三点共线
初中数学竞赛专题选讲三点共线一、内容提要1. 要证明A ,B ,C 三点在同一直线上, A 。
B 。
C 。
常用方法有:①连结AB ,BC 证明∠ABC 是平角②连结AB ,AC 证明AB ,AC 重合③连结AB ,BC ,AC 证明 AB +BC =AC④连结并延长AB 证明延长线经过点C2. 证明三点共线常用的定理有:① 过直线外一点有且只有一条直线和已知直线平行② 经过一点有且只有一条直线和已知直线垂直③ 三角形中位线平行于第三边并且等于第三边的一半④ 梯形中位线平行于两底并且等于两底和的一半⑤ 两圆相切,切点在连心线上⑥ 轴对称图形中,若对应线段(或延长线)相交,则交点在对称轴上二、例题例1.已知:梯形ABCD 中,AB ∥CD ,点P 是形内的任一点,PM ⊥AB ,PN ⊥CD求证:M ,N ,P 三点在同一直线上 证明:过点P 作EF ∥AB , ∵AB ∥CD ,∴EF ∥CD ∠1+∠2=180 ,∠3+∠4=180∵PM ⊥AB ,PN ⊥CD∴∠1=90 ,∠3=90 ∴∠1+∠3=180∴ M ,N ,P 三点在同一直线上例2.求证:平行四边形一组对边的中点和两条对角线的交点,三点在同一直线上已知:平行四边形ABCD 中,M ,N 分别是AD 和BC 的中点,O 是AC 和BD 的交点求证:M ,O ,N 三点在同一直线上证明一:连结MO ,NO ∵MO ,NO 分别是△DAB 和△CAB 的中位线∴MO ∥AB ,NO ∥AB根据过直线外一点有且只有一条直线和已知直线平行∴ M ,O ,N 三点在同一直线上证明二:连结MO 并延长交BC 于N, ∵MO 是△DAB 的中位线 ∴MO ∥AB在△CAB 中∵AO =OC ,ON ,∥AB ∴BN ,=N ,C ,即N ,是BC 的中点 ∵N 也是BC 的中点,∴点N ,和点N 重合∴ M ,O ,N 三点在同一直线上例3.已知:梯形ABCD 中,AB ∥CD ,∠A +∠B =90 ,M ,N 分别是AB和CD 的中点,BC ,AD 的延长线相交于P求证:M ,N ,P 三点在同一直线上 证明:∵∠A +∠B =90 ,∠APB =Rt ∠连结PM ,PN 根据直角三角形斜边中线性质 PM =MA =MB ,PN =DN =DC ∴∠MPB =∠B ,∠NPC =∠B∴PM 和PN 重合 ∴M ,N ,P 三点在同一直线上 例4.在平面直角坐标系中,点A 关于横轴的对称点为B ,关于纵轴的对称点是C ,求证B 和C 是关于原点O 解:连结OA ,OB ,OC ∵A ,B 关于X 轴对称, ∴OA =OB ,∠AOX =∠BOX 同理OC =OA ,∠AOY =∠COY ∴∠COY +∠BOX =90X ∴B ,O ,C 三点在同一直线上 ∵OB =OC∴ B 和C 是关于原点O 的对称点 例5.已知:⊙O 1和⊙O 2相交于A ,B 两点,过点B 的直线EF 分别交⊙O 1和⊙O 2于E ,F 。
初中数学竞赛专题选讲三点共线
初中数学竞赛专题选讲三点共线一、内容提要1. 要证明A ,B ,C 三点在同一直线上, A 。
B 。
C 。
常用方法有:①连结AB ,BC 证明∠ABC 是平角②连结AB ,AC 证明AB ,AC 重合③连结AB ,BC ,AC 证明 AB +BC =AC④连结并延长AB 证明延长线经过点C2. 证明三点共线常用的定理有:① 过直线外一点有且只有一条直线和已知直线平行② 经过一点有且只有一条直线和已知直线垂直③ 三角形中位线平行于第三边并且等于第三边的一半④ 梯形中位线平行于两底并且等于两底和的一半⑤ 两圆相切,切点在连心线上⑥ 轴对称图形中,若对应线段(或延长线)相交,则交点在对称轴上二、例题例1.已知:梯形ABCD 中,AB ∥CD ,点P 是形内的任一点,PM ⊥AB ,PN ⊥CD求证:M ,N ,P 三点在同一直线上 证明:过点P 作EF ∥AB , ∵AB ∥CD ,∴EF ∥CD ∠1+∠2=180 ,∠3+∠4=180∵PM ⊥AB ,PN ⊥CD∴∠1=90 ,∠3=90 ∴∠1+∠3=180∴ M ,N ,P 三点在同一直线上例2.求证:平行四边形一组对边的中点和两条对角线的交点,三点在同一直线上已知:平行四边形ABCD 中,M ,N 分别是AD 和BC 的中点,O 是AC 和BD 的交点求证:M ,O ,N 三点在同一直线上证明一:连结MO ,NO ∵MO ,NO 分别是△DAB 和△CAB 的中位线∴MO ∥AB ,NO ∥AB根据过直线外一点有且只有一条直线和已知直线平行4321A B C D F E N M P O A B C D M N∴ M ,O ,N 三点在同一直线上证明二:连结MO 并延长交BC 于N, ∵MO 是△DAB 的中位线 ∴MO ∥AB 在△CAB 中∵AO =OC ,ON ,∥AB∴BN ,=N ,C ,即N ,是BC 的中点 ∵N 也是BC 的中点,∴点N ,和点N 重合∴ M ,O ,N 三点在同一直线上例3.已知:梯形ABCD 中,AB ∥CD ,∠A +∠B =90 ,M ,N 分别是AB和CD 的中点,BC ,AD 的延长线相交于P求证:M ,N ,P 三点在同一直线上 证明:∵∠A +∠B =90 ,∠APB =Rt ∠连结PM ,PN根据直角三角形斜边中线性质 PM =MA =MB ,PN =DN =DC ∴∠MPB =∠B ,∠NPC =∠B∴PM 和PN 重合 ∴M ,N ,P 三点在同一直线上 例4.在平面直角坐标系中,点A 关于横轴的对称点为B ,关于纵轴的对称点是C ,求证B 和C 是关于原点O 的对称点 Y 解:连结OA ,OB ,OC ∵A ,B 关于X 轴对称, C A ∴OA =OB ,∠AOX =∠BOX 同理OC =OA ,∠AOY =∠COY ∴∠COY +∠BOX =90 O X ∴B ,O ,C 三点在同一直线上 ∵OB =OC∴ B 和C 是关于原点O 的对称点 B 例5.已知:⊙O 1和⊙O 2相交于A ,B 两点,过点B 的直线EF 分别交⊙O 1和⊙O 2于E ,F 。
初中数学竞赛精品标准教程及练习36三点共线
初中数学竞赛精品标准教程及练习36三点共线三点共线是数学中的一个基本概念,在几何学中经常涉及。
它指的是三个点在同一条直线上。
下面,我们将详细讨论三点共线的定义、性质,并提供一些相关的练习题。
一、三点共线的定义在数学中,三点共线是指三个点在同一条直线上。
具体地说,对于平面上的三个点A、B、C,如果它们可以被找到一条直线L,那么这三个点就是共线的。
我们可以写成:三点A、B、C共线,记作A、B、C∈L。
二、三点共线的性质1.任意两点确定一条直线。
如果两点A、B共线,则直线AB唯一地确定。
2.三点共线的条件。
如果三个点A、B、C共线,则任意两点都在同一条直线上。
即对于点A、B、C,如果A、B∈L,B、C∈L,则A、C∈L。
3.共线三点不共线。
如果三个点A、B、C共线,则A、B、C三点不可能在同一直线上形成一个三角形。
三、三点共线的判定方法1.通过计算斜率。
对于提供的三个点A(x1,y1)、B(x2,y2)、C(x3,y3),我们可以计算A到B的斜率k1=(y2-y1)/(x2-x1),B到C的斜率k2=(y3-y2)/(x3-x2)和A到C的斜率k3=(y3-y1)/(x3-x1)。
如果这三个斜率相等,则三点共线。
2.利用面积。
对于提供的三个点A(x1,y1)、B(x2,y2)、C(x3,y3),我们可以计算三角形ABC的面积。
如果面积为0,则三点共线。
3.使用向量。
对于提供的三个点A(x1,y1)、B(x2,y2)、C(x3,y3),我们可以计算向量AB和向量AC的叉积。
如果叉积为0,则三点共线。
四、三点共线的练习题以下是一些关于三点共线的练习题,供你练习。
练习1:给定三个点A(1,2)、B(3,4)、C(5,6),判断它们是否共线。
练习2:给定三个点A(-2,0)、B(2,4)、C(0,1),计算三角形ABC的面积。
练习3:已知点A(1,2)、B(3,5)、C(5,8),求向量AB和向量AC的叉积。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初中数学竞赛 几何专题:点共线问题(含答案)1. 锐角三角形ABC 中,45BAC ∠=︒,BE 、CF 是两条高,H 为ABC △的垂心,M 、K 分别是BC 、AH 的中点.证明:MK 、EF 和OH 共点,这里O 为ABC △的外心.解析 如图,由条件45BAE ∠=︒,可知AEB △和AFC △都是等腰直角三角形,而O 为AB 、BC 的中垂线上的点,故EO AB ⊥,FO AC ⊥,于是EO CF ∥,FO BE ∥,从而四边形EOFH 为平行四边形.故EF 与OH 的交点为EF 的中点.另一方面,M 、K 为BC 、AH 的中点,结合直角三角形斜边上的中线等于斜边的一半,可知12EM MF BC ==,12EK KF AH ==.即四边形EKFM 为菱形,所以EF 与KM 的交点亦是EF 的中点.从而命题获证.2. 四边形SPNM 与PFET 都是正方形,且点S 、P 、T 共线,点N 、P 、F 共线,连结MT 、SE ,点S 在MT 上的射影是点A ,点T 在SE 上的射影是点B ,求证:点A 、P 、B 共线.解析 设AB 与ST 交于点P ',又设ATS α∠=,TSE β∠=.于是由180ASB ATB ∠+∠=︒,有 tan cot ASB ATB S SP AS BSP T S AT BTαβ'⋅===⋅'⋅△△ MS ST MS SPST TE TE PT =⋅==, 即点P 与点P '重合.3. 在矩形ABCD 的边AB 、BC 、CD 、DA 上分别取异于顶点的K 、L 、M 、N ,已知KL MN ∥.证明KM 与LN 的交点O 在矩形的对角线BD 上.解析 连结OB 、OD .因为KL MN ∥,KM 与LN 相交于O ,所以KLO △∽MNO △,可得KL LOMN NO=,KLO MNO ∠=∠.BMNAS P TFED M C NOLA K B又因BC AD ∥,所以BLO DNO ∠=∠,则BLK DNM ∠=∠;因此Rt BLK △∽Rt DNM △.综上,BL LK LODN NM NO ==,BLO DNO ∠=∠,所以BLO △∽DNO △,可得BOL DON ∠=∠,即B 、O 、D 共线.4. 证明:如果一个梯形内的n (2>)个点到梯形四边距离之和相等,那么这n 个点共线.解析 如图,延长梯形ABCD 的腰BA 、CD 交于点E .设P 为这n 个点中的一个点,过P 作一直线,交EB 、EC 于点G 、H ,使得EGH △为等腰三角形(EG EH =).设Q 是这n 个点中的另一个点,我们证明Q 在直线GH 上.由条件Q 到EG 、EH 的距离和等于P 到EG 、EH 的距离和.若Q 在四边形AGHD 内,则EQG S +△ EQH EGH S S <△△,从而(,)(,)(,)(,)EG d Q EG EH d Q EH EG d P EG EH P EH ⨯+⨯<⨯+⨯,这里(,)d X YZ 表示点X 到直线YZ 的距离.结合EG EH =,可得()(,)(,)d Q EG d Q EH d P EG +<∥ (,)d P EH +,矛盾.类似地,若Q 在四边形BGHC 内,则(,)(,)(,)(,d Q EG d Q EH d P EG d P +>+ )EH ,亦矛盾.故Q 在线段GH 上.5. 设四边形仅有一个内角是直角,且两对角线相等,则对边中垂线交点与直角顶点共线.解析 如图,设四边形ABCD 中,90B ∠=︒,作矩形ABCE ,则BE AC BD ==,又设BC 的中垂线GP 与AD 之中垂线FP 交于P ,则易知PE PA PD ==,于是B 、P 均在DE 中垂线上.同理AB 、CD 中垂线之交点也在DE 中垂线上,故而结论成立.6. 等腰梯形ABCD 中AB CD =.将ABC △绕点C 旋转一个角度,得一个新的A B C ''△.证明:线段A D '、BC 和B C '的中点共线. 解析 如图,设A D '、BC 、B C '的中点分别为X 、Y 、Z ,W 为CA '的中点.并设ACA α'∠=,ABC β∠=, 则ZW A B ''∥,WX CD ∥,且111222ZW A B AB CD WX ''====,即XWZ △为等腰三角形,并且XWZ ∠等于180︒减去A B ''与CD 所成的角γ.AFDEPB G C注意到,(180)2180γβαββα=-︒--=-︒+,所以,3602XWZ αβ∠=︒--,从而1(180)9022XZW XWZ αβ∠=︒-∠=+-︒.于是902CZX XZW αβ∠=-∠=︒-.另一方面,YZ BB '∥,而1(180)9022CB B αα'∠=︒-=︒-,故902CZY α∠=︒-.综上,CZX CZY ∠=∠.故X 、Y 、Z 共线.7. 直角三角形ABC 中,AB 是斜边,CH 为斜边上的高,以A 为圆心、AC 为半径作A ⊙.过B 作A⊙的割线,交A ⊙于点D 和E ,交CH 于点F (D 在B 与F 之间).在A ⊙上取一点G ,使得ABG ABD ∠=∠,且G 与D 不在AB 的同一侧.证明:E 、H 、G 三点共线.解析 延长EH 交A ⊙于点G ',我们证明G 与G '重合,即证G BA DBA '∠=∠.由90ACB ∠=︒知BC 为A ⊙的切线,故2BC BD BE =⋅.再在Rt ABC △中,CH 为高,从而由身影定理可知2BC BH BA =⋅,所以BD BE BH BA ⋅=⋅,故E 、D 、H 、A 共圆,因此EDA EHA BHG '∠=∠=∠. 注意到EA DA =,故EDA DEA DHB ∠=∠=∠(这里再次用到E 、D 、H 、A 共圆),结合前面的结果,可知BHD BHG '∠=∠.由圆的对称性,即得HBG HBD '∠=∠. 8. 设锐角三角形ABC ,AD 、BE 、CF 为高,H 是垂心,M 、N 分别在BF 、AE 上,且MHF NHE ∠=∠,求证:BM 、CN 的中垂线之交点在BC 上.解析 如图,若设BM 、CN 中垂线分别交BC 于K 、K '(K 、K '在图中未画出),只要证明BK CK BC '+=,即知结论成立.由于2cos BM BK B =,2cos CN CK C '=,而2cos 2cos 22BF CE BC BC BC B C +=+=,故只需证明2cos 2cos BM CNB C+=CZ B'YB W A'DXAG 'AHBDF C EAF M BDCE N H2cos 2cos BF CE B C +或cos cos NE MFC B=即可. 由条件知MFH △∽NEH △,故sin cos sin cos MF FH AH BAD BNE HE AH CAD C∠===∠.结论证毕. 9.ABC △的内切圆切边AC 、BC 于点M 、N ,直线l 与该内切圆切于劣弧MN 内一点,l 分别交NC 、MC 于点P 、Q .T 为AP 与BQ 的交点.证明:T 在线段MN 上.解析 设AP 交MN 于点1T ,ABC △的内切圆切l 与AB 于点X 、Y .AP 交XY 于点2T ,先证:1T 与2T 重合.由正弦定理,可知11sin sin PT PNCNM PT N =∠∠, 11sin sin AT AMAMN AT M=∠∠, 结合11PT N AT M ∠=∠,180180AMN CMN CNM ∠=-∠=-∠,可知11PT PN AT AM =.同理可证:22PT PXAT AY=.所以,由PX PN =及AM AY =,可知1212PT PT AT AT =,即1T 与2T 重合.这表明AP 过MN 与XY 的交点. 类似可知,BQ 与MN 与XY 的交点.所以,AP 与BQ 的交点在线段MN 上.10. 在ABC △中,90A ∠=︒,AB AC <.D 、E 、F 分别为边BC 、CA 、AB 上的点,使得四边形AFDE为正方形.设A l 为过A 所作ABC △的外接圆的切线.证明:BC 、EF 和A l 三线共点.解析 设A l 交直线BC 于点G ,连GF 延长交AC 于点E '.只需证明E 与E '重合. 记ABC △的三边长分别为a 、b 、c ,而正方形AFDE 的边长为x .则由DF FB AC AB =,可知x c xb c-=,故C Q XP lMN TAYBCE AD FB Gbcx b c=+. 由AG 为ABC △外接圆的切线,得BAG C ∠=∠,而AGC ∠为公共角,故ABG △∽CAG △,从而AB BG AG CA AG GC ==,于是222GB BG AG AG c GC AG GC CA b ⎛⎫=⋅== ⎪⎝⎭,即22GB c a GB b =+,从而222ac GB b c =-,结合BD DF x BC CA b ==,可知ac BD b c =+,故22222ac ac abc GD b c b c b c =+=-+-,22222b ab GC GB c b c =⋅=-.所以DF CE ='GD c GC b=,即2b CE bc '=+. 而2bc b CE b x b b c b c=-=-=++.所以CE CE '=,故E 与E '重合,命题获证. 11. AC 、BD 均为圆的切线,AB 是该圆的一条能弦,CD 与圆交于点Q 、P ,已知AP BP =,点M为AB 中点,求证:点M 、R 、Q 共线,这里R 为AD 与BC 的交点.解析 连结MC 、MR 、MD ,易知题目无非是要证明 CMR DMR S CQS DQ =△△. 易知12CMRACR S S =△△,12DMR BDR S S =△△,2AC CQ CP =,2BD DQ DP =,于是问题转变为求证 22ACR BDR S AC BDS BD CP⋅=⋅△△. 由切线性质知CAB DBA ∠=∠,于是根据三角形面积公式,有 ACR ABC ACD ACDBDR DBC ABD CBD S S S S AR CR AC S DR BR S S BD S ⋅==⋅=⋅⋅△△△△△△△△, 于是待证式又变为求证 ACD CBD S AC DPS BD CP ⋅=⋅△△. 事实上, ACPACD ACP CBDPBD PBD CDS S S DP DP AC CP CD S CP S CP BD S DP⋅==⋅=⋅⋅△△△△△△, 这是由于AP BP =,且CAP DBP ∠=∠.A MBC QPDR。