机电一体化技术
机电一体化概述
机电一体化概述机电一体化就是机械技术与电子技术的有机结合,它涵盖了机械、电子、计算机、控制等多个领域的知识,通过综合运用这些领域的技术来实现机械系统的智能化、自动化和高效化。
机电一体化技术的核心在于信息的传递与处理,机电一体化系统通过传感器、执行器等电子元件能够实时获取机械系统的运行状态,并根据预设的控制策略进行相应的调整。
这种信息的传递与处理使得机械系统具备了更高的灵活性和适应性,能够应对各种复杂的工作环境和任务需求。
此外机电一体化还强调系统的整体优化,它不仅仅关注单个元件或部件的性能提升,更注重整个系统的协同工作和整体性能。
通过合理的结构设计、参数配置和算法优化,机电一体化系统能够实现更高的效率、更低的能耗和更好的稳定性。
机电一体化涉及的关键技术众多,其中最为核心的是传感技术、控制技术和驱动技术。
传感技术是机电一体化系统获取信息的重要手段,系统通过各类传感器能够实时感知外部环境的变化和机械系统的运行状态从而为控制决策提供依据。
随着传感技术的不断发展、新型的传感器不断涌现,使得系统的感知能力不断增强。
控制技术是机电一体化系统的核心,它根据传感器提供的信息,通过预设的控制算法和策略对执行器进行精确的控制,以实现机械系统的自动化和智能化。
现代控制技术的发展为机电一体化系统提供了更为先进和高效的控制手段,驱动技术则是机电一体化系统执行动作的关键,它通过各种电机、液压、气压等驱动元件将控制信号转化为机械动作实现系统的运动控制。
随着科技的进步和产业的发展,机电一体化技术得到了广泛的应用和深入的研究。
它不仅提高了生产效率,降低了生产成本,还使得产品的质量和性能得到了显著提升,对于推动工业现代化、提升国家竞争力具有重要意义。
机电一体化技术被广泛应用于自动化生产线、机器人、数控机床等设备中,通过引入传感器、控制器和执行器等元件,这些设备能够实现自动化生产、精确加工和高效运行从而提高生产效率和产品质量。
机电一体化技术被应用于汽车、火车、飞机等交通工具中,通过引入智能驾驶、自动导航等系统,这些交通工具能够实现更加安全、高效和舒适的行驶体验。
机电一体化概述
单元一机电一体化概述1. 1. 1机电一体化的定义“机电一体化是在机械主功能、动力功能、信息功能和控制功能上引进微电子技术,并将机械装置与电子装置用相关软件有机结合而构成系统的总称。
”“机电一体化”是将机械技术、微电子技术、信息技术等多门技术学科在系统工程的基础上相互渗透、有机结合而形成和发展起来的一门新的边缘技术学科。
1. 1. 3机电一体化的内容机电一体化包含了技术和产品两方面的内容,首先是指机电一体化技术,其次是指机电一体化产品。
1. 1. 4机电一体化的特点机电一体化产品的显著特点是多功能、高效率、高智能、高可靠性,同时又具有轻、薄、细、小、巧的优点,其目的是不断满足人们生产生活的多样性和省时、省力、方便的需求。
1. 2机电一体化系统的基本组成1. 2. 1机电一体化系统的功能组成传统的机械产品主要是解决物质流和能量流的问题,而机电一体化产品除了解决物质流和能量流以外,还要解决信息流的问题。
机电一体化系统的主要功能就是对输入的物质、能量与信息(即所谓工业三大要素)按照要求进行处理,输出具有所需特性的物质、能量与信息。
机电一体化系统的主功能包括变换(加工、处理)、传递(移动、输送)、储存(保持、积蓄、记录)三个目的功能。
主功能也称为执行功能,是系统的主要特征部分,完成对物质、能量、信息的交换、传递和储存。
机电一体化系统还应具备动力功能、检测功能、控制功能、构造功能等其他功能。
加工机是以物料搬运、加工为主,输入物质(原料、毛坯等)、能量(电能、液能、气能等)和信息(操作及控制指令等),经过加工处理,主要输出改变了位置和形态的物质的系统(或产品)。
动力机,其中输出机械能的为原动机,是以能量转换为主,输入能量(或物质)和信息,输出不同能量(或物质)的系统(或产品)。
信息机是以信息处理为主,输入信息和能量,主要输出某种信息(如数据、图像、文字、声音等)的系统(或产品)。
1. 2. 2机电一体化系统的构成要素机电一体化系统一般由机械本体、传感检测、执行机构、控制及信息处理、动力系统等五部分组成,各部分之间通过接口相联系。
机电一体化技术知识点总结
机电一体化技术知识点总结机电一体化技术是将机械技术、电子技术、信息技术、传感器技术和控制技术等多种技术有机结合,并综合应用于实际产品和系统中的一门交叉学科。
它旨在实现机械系统与电子系统的协同工作,提高产品的性能、质量和可靠性。
以下是对机电一体化技术相关知识点的总结。
一、机械技术机械技术是机电一体化的基础,包括机械设计、机械制造、机械传动等方面。
在机电一体化系统中,机械结构需要满足高精度、高刚性、轻量化等要求。
例如,采用新型材料和先进的制造工艺来减轻机械部件的重量,提高其强度和精度;优化机械传动系统,减少传动误差和能量损耗。
二、电子技术电子技术包括电子电路、数字电路、模拟电路、集成电路等。
在机电一体化系统中,电子技术用于实现信号的采集、处理、传输和控制。
例如,传感器将物理量转换为电信号,经过放大、滤波等处理后,由微控制器进行分析和决策,然后通过驱动电路控制执行机构的动作。
三、信息技术信息技术在机电一体化中起着至关重要的作用,主要包括计算机技术、通信技术和网络技术。
计算机技术用于系统的建模、仿真、优化和控制;通信技术实现系统内部各部分之间以及系统与外部环境之间的信息交换;网络技术则使多个机电一体化系统能够实现互联和协同工作。
四、传感器技术传感器是机电一体化系统获取外界信息的关键部件,能够将物理量、化学量等非电量转换为电量。
常见的传感器有位移传感器、速度传感器、压力传感器、温度传感器等。
传感器的精度、灵敏度、稳定性和可靠性直接影响到系统的性能。
五、控制技术控制技术是机电一体化系统的核心,包括经典控制理论和现代控制理论。
经典控制理论主要用于单输入单输出线性定常系统的分析和设计;现代控制理论则适用于多输入多输出、非线性、时变等复杂系统。
控制算法如 PID 控制、模糊控制、神经网络控制等在机电一体化系统中得到广泛应用。
六、执行机构执行机构是将控制信号转换为机械动作的部件,如电机、气缸、液压马达等。
电机是最常见的执行机构,包括直流电机、交流电机和步进电机等。
机电一体化技术毕业设计完整版
调试和测试
硬件调试:检查硬件连接 是否正确,设备是否正常 工作
软件调试:检查软件运行 是否正常,是否有错误或 异常
功能测试:测试系统功能 是否满足设计要求,是否 稳定可靠
性能测试:测试系统性能 是否满足设计要求,如响 应时间、处理速度等
安全性测试:测试系统安 全性是否满足设计要求, 如数据加密、用户权限等
THANK YOU
汇报人:
绿色化:绿色化技术 在机电一体化中的应 用越来越广泛,如节 能、环保、可再生能 源等。
微型化:微型化技术 在机电一体化中的应 用越来越广泛,如微 型传感器、微型执行 器、微型控制器等。
机电一体化技术毕业设计的目 的和意义
毕业设计的目的
提高学生的实践能 力
培养学生的创新思 维和解决问题的能 力
提高学生的团队合 作和沟通能力
稳定性测试:测试系统在 长时间运行中是否稳定, 是否会出现异常或故障
撰写毕业论文
确定选题:选 择与机电一体 化技术相关的
课题
收集资料:查 阅相关文献、 书籍、网络资
源等
撰写提纲:明 确论文结构, 包括引言、正 文、结论等部
分
撰写正文:详 细阐述研究方 法、实验结果、
数据分析等
撰写结论:总 结研究成果, 提出建议和展
帮助学生了解机电 一体化技术的发展 趋势和应用前景
毕业设计的意义
提高实践能力:通过毕业设计,提高学生的实践操作能力和解决问题的能 力。 培养创新思维:通过毕业设计,培养学生的创新思维和创新能力。
提升专业素养:通过毕业设计,提升学生的专业素养和综合素质。
为就业做准备:通过毕业设计,为学生的就业提供实践经验和能力证明。
机电一体化技术毕业设计的任 务和要求
机电一体化技术知识点总结
机电一体化技术知识点总结机电一体化技术是将机械技术、电子技术、信息技术、自动控制技术等多种技术有机结合的一门综合性技术。
它在现代工业生产中发挥着至关重要的作用,极大地提高了生产效率和产品质量,推动了制造业的智能化和自动化发展。
一、机械技术机械技术是机电一体化的基础。
在机电一体化系统中,机械部件需要具备高精度、高刚性、轻量化等特点。
例如,滚珠丝杠、直线导轨等精密传动部件能够实现精确的直线运动;而高强度铝合金、钛合金等新型材料的应用,则有效减轻了机械结构的重量,提高了系统的响应速度。
在设计机械结构时,需要充分考虑力学性能、热学性能以及动态特性等因素。
通过有限元分析等手段,可以对机械部件进行强度、刚度和模态分析,优化结构设计,避免共振等问题的发生。
二、电子技术电子技术包括电力电子技术和微电子技术。
电力电子技术主要用于电机驱动、电源变换等方面。
例如,变频器可以实现电机的调速控制,提高电机的运行效率和节能效果;而开关电源则能够提供稳定、高效的直流电源。
微电子技术则是指集成电路、微处理器等微型电子器件的应用。
在机电一体化系统中,微处理器作为控制核心,负责采集传感器信号、进行数据处理和运算,并输出控制指令。
同时,各种传感器(如压力传感器、温度传感器、位移传感器等)将物理量转换为电信号,为系统提供实时的监测和反馈信息。
三、信息技术信息技术在机电一体化中起着至关重要的作用。
数据采集、信号处理、通信技术等都是信息技术的重要组成部分。
通过数据采集系统,可以实时获取生产过程中的各种参数,如温度、压力、速度等。
对这些数据进行分析和处理,能够帮助我们了解系统的运行状态,及时发现潜在的问题。
信号处理技术包括滤波、放大、调制解调等,用于对传感器采集到的信号进行优化和转换,以便微处理器能够准确识别和处理。
通信技术实现了机电一体化系统中各个部件之间的信息交互。
常见的通信方式有串行通信(如 RS232、RS485)、现场总线(如 CAN 总线、Profibus 总线)以及工业以太网等。
机电一体化考试知识点总结
机电一体化考试知识点总结一、机电一体化基础知识1. 机电一体化的概念和发展历程机电一体化是指在产品或系统的设计、制造、使用和维护过程中,完全将机械、电子、传感器、控制技术和信息技术无缝集成为一个整体。
机电一体化技术是近年来在制造业中迅速发展起来的一种先进生产技术,它结合了机械、电子、信息技术等多种技术,以实现生产过程的全面自动化和智能化。
机电一体化的发展历程可以追溯到20世纪60年代,在那个时候,自动化生产线一度兴起,为生产过程带来了很大的改善。
随着信息技术和电子技术的不断发展,机电一体化技术逐渐成为制造业的主流技术,被广泛应用于汽车制造、电子设备制造、航空航天等领域。
2. 机电一体化的特点机电一体化技术的特点主要包括:集成性、智能化、基于网络、高精度、高速度、高可靠性等。
机电一体化技术通过将机械、电子、信息技术有机结合,实现了产品生产的智能化、自动化和网络化,能够大大提高生产效率和产品质量。
3. 机电一体化的应用领域机电一体化技术被广泛应用于工业机械、汽车制造、工程机械、电子设备制造、医疗器械、航空航天、高速铁路等领域。
在这些领域,机电一体化技术可以实现设备的智能化控制、自动化生产、信息化管理等,为企业提供了更高效的生产方式。
4. 机电一体化技术的发展趋势随着信息技术和电子技术的快速发展,机电一体化技术也在不断地向智能化、网络化、高可靠性、低能耗等方向发展。
未来,机电一体化技术将更加普及,带来更多的应用和创新。
二、传感器技术1. 传感器的基本概念和分类传感器是一种可以感知和采集物理量或化学量的变化并将其转换为可用电信号的设备。
按照测量物理量分类,传感器可分为:力传感器、位移传感器、速度传感器、加速度传感器、压力传感器、温度传感器、湿度传感器、光电传感器等。
2. 传感器的工作原理传感器的工作原理主要取决于其测量物理量的不同。
常见的传感器工作原理有:电压、电流、电阻、电容、电磁感应等。
3. 传感器的特性和性能指标传感器的特性和性能指标包括:静态特性(灵敏度、线性度、分辨率、稳定性)、动态特性(响应时间、过载能力、动态误差)以及环境适应能力(温度、湿度、抗干扰能力)等。
机电一体化的技术及其前景趋势
机电一体化的技术及其前景趋势1. 引言1.1 机电一体化的技术及其前景趋势机电一体化技术是指在机械设计、控制与信息处理等领域,将电子技术、计算机技术、自动化技术和机械技术有机结合,形成一种新的综合技术。
随着科技的不断进步和工业的不断发展,机电一体化技术在各个领域都得到了广泛的应用。
从工厂生产到医疗设备,从智能家居到交通运输,机电一体化技术的影响无处不在。
机电一体化技术的发展历程可以追溯到上世纪70年代,当时的机械制造业开始引入计算机控制系统,实现了机械设备的自动化生产。
随着电子技术和信息技术的不断进步,机电一体化技术也不断演化,越来越多的智能设备和系统涌现出来。
机电一体化技术的特点是将机械结构、传感器、执行器、控制系统等有机整合在一起,实现了设备自动化、智能化的功能。
优势在于可以提高生产效率、降低成本、提升产品质量、节约能源等方面。
机电一体化技术将在未来实现更广泛的应用,成为工业生产的重要发展方向。
它将为产业升级和转型提供重要支持,推动经济发展和社会进步。
在这个数字化、智能化的时代,机电一体化技术必将迎来更加辉煌的前景。
2. 正文2.1 机电一体化技术的发展历程机电一体化技术的发展历程可以追溯到20世纪70年代。
当时,随着计算机技术的迅速发展,传统的机械和电气技术已经无法满足复杂工程系统的需求。
因此,人们开始探索将机械、电气和计算机技术相结合的机电一体化技术。
在80年代初期,随着数字控制技术的逐渐普及,机电一体化技术开始进入实际应用阶段。
工业机器人、自动化生产线等设备开始采用机电一体化技术,提高了生产效率和产品质量。
到了90年代,随着信息技术的快速发展和网络技术的应用,机电一体化技术迎来了新的发展机遇。
传感器技术、自动化控制系统和远程监控技术的不断完善,进一步推动了机电一体化技术的发展。
21世纪初,随着物联网、云计算、大数据等新兴技术的兴起,机电一体化技术进入了全面智能化的阶段。
智能制造、智能交通、智能家居等领域都开始广泛应用机电一体化技术,为各行业带来了全新的发展机遇。
机电一体化技术
机电一体化技术机电一体化技术是近年来在制造业领域快速发展的一种技术,它将机械工程、电气工程和自动化技术有机地结合起来,实现了工作过程的全面自动化。
本文将从机电一体化技术的定义、应用领域、优势和发展趋势等方面进行详细阐述,以期对读者了解这一重要技术有所帮助。
机电一体化技术在简单的理解上指的是机械和电气技术的融合。
它将机械工程和电气工程两个独立的领域相结合,通过自动化控制实现工业生产过程的高效率、高质量和高精度化。
在机电一体化技术中,机械部件通过电气控制实现全自动化操作,从而减少了人工干预,提高了制造效率和产品质量。
机电一体化技术广泛应用于制造业领域。
例如,汽车制造业中的机器人生产线就是典型的机电一体化应用。
该生产线利用机器人进行化工焊接、质检、组装等工艺过程,通过自动化控制实现了高效、精确的生产。
此外,在航空和航天领域,机电一体化技术也被广泛应用于飞行器的设计、制造和测试中,可以提高飞行器的飞行性能和安全性。
机电一体化技术相较于传统的机械工程和电气工程具有显著的优势。
首先,机电一体化技术能够实现生产过程的全自动化,减少了人工干预,提高了生产效率和产品质量。
其次,机电一体化技术具有高度的灵活性,可以根据不同生产需求进行快速调整和优化,满足不同产品的生产要求。
此外,机电一体化技术还能够减少人工劳动,提高生产环境的安全性和舒适性,从而降低了劳动成本和风险。
机电一体化技术的发展仍面临着一些挑战。
首先,由于机电一体化技术需要涉及多个学科领域的知识,因此需要专业人才的培养和跨学科合作。
其次,机电一体化技术的投资成本较高,需要企业具备一定的财力和技术实力。
此外,机电一体化技术在应用过程中还需要考虑数据安全和隐私保护等问题,以保证生产过程的安全性和可靠性。
未来,随着科技的不断进步和创新,机电一体化技术有望迎来新的发展机遇。
一方面,随着人工智能和大数据技术的发展,机电一体化技术可以更好地融合智能化和自动化,进一步提高生产效率和产品质量。
简要叙述机电一体化技术的定义和内涵
简要叙述机电一体化技术的定义和内涵
机电一体化技术是一种跨学科的技术,它将机械技术、微电子技术、自动控制技术、计算机技术、信息技术、传感测控技术、电子电力技术、接口-技术、信息变换技术等多种技术进行有机融合,旨在提高机械设备的精度、效率、性能和可靠性。
机电一体化技术的定义可以概括为:在机构的主功能、动力功能、信息处理功能和控制功能上引进电子技术,将机械装置与电子化设计及软件结合起来所构成的系统的总和。
机电一体化技术的内涵包括两个方面:
1.技术层面:机电一体化技术是基于机械技术、微电子技术、自动控制技术、计算机技术、信息技术等多种技术的有机融合,它不是简单地将这些技术叠加在一起,而是通过有机的整合,使各种技术在系统中发挥最大的作用。
2.产品层面:机电一体化技术通过将机械装置与电子化设计及软件结合起来,形成了一系列先进的机电一体化产品,如数控机床、智能机器人、自动化生产线等,这些产品在各行各业中得到了广泛应用,极大地提高了生产效率和产品质量。
总的来说,机电一体化技术是一种以微电子技术为核心,将多种技术有机融合,实现机械设备的高效、高精度、高可靠性的一种综合性技术。
什么是机电一体化技术
机电一体化技术是什么机电一体化又称机械电子学机电一体化是由计算机技术、信息技术、机械技术、电子技术、控制技术、光学技术等相融合构成的一门独立的交叉学科。
机电一体化主要发展方向为智能化,模块化,网络化,微型化,系统化等。
主干课程:机械制图、机械设计与加工、气动与液压技术、电工与电子、电气控制与PLC、自动生产线、工业机器人技术、机电设备维护维修与管理等。
培养目标:本专业培养德、智、体、美全面发展,具有良好职业道德和人文素养,掌握机械加工技术、电工电子技术、检测技术、液压与气动、电气控制技术、自动生产线技术及机电设备维修等基本知识,具备机电一体化设备操作、安装、调试、维护和维修能力,从事自动生产线等机电一体化设备的安装调试、维护维修、生产技术管理、服务与营销以及机电产品辅助设计与技术改造等工作的高素质技术技能人才。
培养要求:机电一体化技术专业培养德、智、体、美全面发展,具有创业、创新精神和良好职业道德的高等专门人才,掌握机械技术和电气技术的基础理论和专业知识;具备相应实践技能以及较强的实际工作能力,熟练进行机电一体化产品和设备的应用、维护、安装、调试、销售及管理的第一线高等技术应用型人才。
发展现状包括以下几种①.智能化智能化是21世纪机电一体化技术发展的一个重要发展方向。
人工智能在机电一体化建设者的研究日益得到重视,机器人与数控机床的智能化就是重要应用。
这里所说的“智能化”是对机器行为的描述,是在控制理论的基础上,吸收人工智能、运筹学、计算机科学、模糊数学、心理学、生理学和混沌动力学等新思想、新方法,模拟人类智能,使它具有判断推理、逻辑思维、自主决策等能力,以求得到更高的控制目标。
诚然,使机电一体化产品具有与人完全相同的智能,是不可能的,也是不必要的。
但是,高性能、高速的微处理器使机电一体化产品赋有低级智能或人的部分智能,则是完全可能而又必要的。
②.模块化模块化是一项重要而艰巨的工程。
由于机电一体化产品种类和生产厂家繁多,研制和开发具有标准机械接口、电气接口、动力接口、环境接口的机电一体化产品单元是一项十分复杂但又是非常重要的事。
机电一体化的技术及其前景趋势
机电一体化的技术及其前景趋势机电一体化技术是指机械和电气控制技术的有机融合,通过集成化的方式实现机械设备和电气控制的一体化设计和制造。
随着科技的不断发展,机电一体化技术在工业自动化领域得到了广泛的应用,成为了推动工业智能化发展的重要技术手段。
本文将探讨机电一体化技术的发展现状及其前景趋势。
一、机电一体化技术的发展现状1.技术发展阶段机电一体化技术的发展经历了多个阶段。
最初,机械和电气控制是两个独立的领域,彼此之间的联系很少。
随着电子技术的发展,电气控制技术开始与机械设备进行了结合,出现了最早的机电一体化设备。
随后,随着计算机技术的飞速发展,机电一体化技术迎来了飞速的发展阶段,数字化、智能化的机电一体化设备不断涌现,极大地提高了生产效率和产品质量。
目前,机电一体化已经成为了现代工业生产中不可或缺的重要技术。
2.应用领域机电一体化技术已经广泛应用于工业生产的各个领域,包括制造业、汽车工业、航空航天、电力能源、石油化工等各个行业。
在制造业中,机电一体化技术被广泛应用于自动化生产线,大大提高了生产效率和产品质量。
在汽车工业中,机电一体化技术被应用于汽车生产线和智能化车辆控制系统,实现了汽车生产的自动化和智能化。
在航空航天领域,机电一体化技术被应用于飞机的控制系统、导航系统等领域,提高了飞行安全性和航空器的性能。
1.智能化发展随着人工智能技术的飞速发展,智能化已经成为了机电一体化技术的重要趋势。
未来,智能化的机电一体化设备将会成为工业生产的主流,实现了设备的自动化控制、自适应性操作和自我诊断功能。
这将大大提高了生产效率和生产安全,极大地减少了人为误操作的风险。
2.集成化设计未来的机电一体化设备将会更加注重集成化设计,将机械结构、电气控制线路、传感器、执行器等各个部件进行全面的集成化设计,实现了设备的紧凑结构和高效运行。
集成化设计还可以极大地提高设备的可维护性和可靠性,减少了故障率和维修成本。
3.网络化互联未来的机电一体化设备将会更加注重网络化互联,实现了设备之间的远程监控和协同操作。
机电一体化技术概念
机电一体化技术概念
机电一体化技术是指在机械系统中集成电子控制技术,实现机械和电子的融合。
它主要包括电气控制技术、传感器技术、计算机技术和通信技术等多种技术的综合应用,以提高机械系统的性能、智能化和自动化水平。
机电一体化技术的核心思想是将机械系统中的传统机械部件和电子控制部件进行融合,从而使机械系统具备智能化和自动化的能力。
通过传感器技术实时监测机械系统的工作状态,通过计算机技术进行数据处理和控制指令的生成,通过通信技术实现不同部件之间的信息交互和协同工作。
这样可以大大提高机械系统的性能和效率,实现人机交互、设备自适应和远程监控等功能。
机电一体化技术的应用范围非常广泛,涵盖了工业生产、交通运输、农业、医疗卫生、家庭生活等多个领域。
例如,在工业生产中,机电一体化技术可以应用于机械加工、自动化装配、智能仓储等环节,提高生产效率和质量;在交通运输领域,机电一体化技术可以应用于轨道交通、智能车辆等领域,提高交通系统的安全性和智能化水平。
总之,机电一体化技术是将机械系统和电子控制技术相结合的一种综合技术,可以提高机械系统的性能和智能化水平,广泛应用于各个领域。
《机电一体化技术专业介绍》
《机电一体化技术专业介绍》
机电一体化技术专业是一个以电气工程、机械工程和计算机科学为技术基础的综合性技术学科,专业课程主要包括模拟电子技术,数字电子技术,电力电子技术,智能控制,机械控制,机械制造,运动控制,机器视觉,以及计算机软件技术等。
机电一体化技术专业的主要研究内容是建立机电一体化系统的理论体系,并研究它的理论特性,以便综合利用电气技术、机械技术、计算机技术和控制技术,实现系统机电一体化,使之成为一个中心的控制和管理机制,提供良好的机电一体化技术应用。
机电一体化技术专业的研究主要是针对实际生产应用,探索和实现系统从计划到实现,从设计到实施的过程,以及优化、分析和控制这些系统的方法。
机电一体化技术专业也注重培养学生的正确思维,思考能力和实践能力,以提高学生未来的综合能力,实现系统的最佳绩效。
机电一体化技术专业通过教授机电一体化设计理论、机电一体化系统结构、机电一体化系统控制结构、机电一体化系统建模、仪器仪表技术等课程,结合实践实验,培养学生掌握机电一体化最新技术,并能够掌握其中复杂现实问题的解决方法。
机电一体化技术与其他技术的区别
机电一体化技术与其他技术的区别
1.机电一体化技术与传统机电技术的区分传统机电技术的操作掌握主要通过具有电磁特性的各种电器来实现,如继电器、接触器等,在设计中不考虑或很少考虑彼此间的内在联系;机械本体和电气驱动界限分明,整个装置是刚性的,不涉及软件和计算机掌握。
机电一体化技术以计算机为掌握中心,在设计过程中强调机械部件和电器部件间的相互作用和影响,整个装置在计算机掌握下具有肯定的智能性。
2.机电一体化技术与并行工程的区分机电一体化技术将机械技术、微电子技术、计算机技术、掌握技术和检测技术在设计和制造阶段就有机地结合在一起,非常留意机械和其他部件之间的相互作用。
而并行工程将上述各种技术尽量在各自范围内齐头并进,只在不同技术内部进行设计制造,最终通过简洁叠加完成整体装置。
3.机电一体化技术与自动掌握技术的区分自动掌握技术的侧重点是争论掌握原理、掌握规律、分析方法和自动系统的构造等。
机电一体化技术将自动掌握原理及方法作为重要支撑技术,将自控部件作为重要掌握部件应用自控原理和方法,对机电一体扮装置进行系统分析和性能测算
4.机电一体化技术与计算机应用技术的区分机电一体化技术只是将计算机作为核心部件应用,目的是提高和改善系统性能。
计算机在机电一体化系统中的应用仅仅是计算机应用技术中的一部分,它还可以在办公、管理及图像处理等方面得到广泛应用。
机电一体化技术讨论的是机电一体化系统,而不是计算机应用本身。
机电一体化
机电一体化一、机电一体化概念机电一体化技术又称机械电子技术,是机械技术、电子技术和信息技术有机结合的产物。
机电一体化在国外被称为Mechatronics,是日本人在20 世纪70 年代初提出来的,它是用英文Mechanics 的前半部分和Electronics 的后半部分结合在一起构成的一个新词,意思是机械技术和电子技术的有机结合,现已得到包括我国在内的世界各国的承认。
我国的工程技术人员习惯上把它译为机电一体化技术。
机械技术是一门古老的学科,它发展到今天经历了一个漫长的历史时期。
机械是现代工业的物质基础,国民经济的各个部门都离不开机械。
机械种类繁多,功能各异,不论哪一种机械,从诞生以来都经历了使用—改进—再使用—再改进,不断革新和逐步完善的过程。
对于某一种形式的机械,一般来说都有一定的局限性,或者说都有一定的适用范围、存在某些固有的缺点,这就迫使人们寻找新的工作原理,发明新型的机械.从而使得具有同一用途的机械具有不同的种类。
机械本身的发展也是无止境的,但是这种发展却是缓慢的。
各种机械发展到今天.单从机械角度对它们进行改进是越来越不容易了。
随着科学技术的发展,一个比较年轻的学科——电子技术正在蓬勃发展,从分立电子元件到集成电路(IC),从集成电路到大规模集成电路和超大规模集成电路,特别是微型计算机的出现,使电子技术与信息技术相结合并向其他学科渗透,把人类带人了一个神化般的世界。
信息技术(3C 技术)的主体包括计算机技术、控制技术和通信技术。
电子技术与计算机技术同机械技术相互交叉,相互渗透,使古老的机械技术焕发了青春。
在原有机械基础上引入电子计算机高性能的控制机能,并实现整体最优化,就使原来的机械产品产生了质的飞跃,变成功能更强、性能更好的新一代的机械产品或系统,这正是机电一体化的意义所在。
机电一体化技术是现代科学技术发展的必然结果。
由于大规模集成电路和超大规模集成电路的出现,特别是微型电子计算机的空前发展,促进了机械技术和电子技术相互交叉和相互渗透,并使机械技术和电子技术在系统论、信息论和控制论的基础上有机地结合起来.形成今天的机电一体化技术。
机电一体化
机电一体化一、名词解释1、机电一体化:机电一体化技术综合应用了机械技术、微电子技术、信息处理技术、自动控制技术、检测技术、电力电子技术、接口技术及系统总体技术等群体技术,实现多种技术功能复合的最佳功能价值的系统工程技术。
2、柔性制造系统:柔性制造系统(Flexible Manufacturing System)是由两台或两台以上加工中心或数控机床组成,并在加工自动化的基础上实现物料流和信息流的自动化。
3、传感器:传感器是机电一体化系统中不可缺少的组成部分,能把各种不同的非电量转换成电量,对系统运行中所需的自身和外界环境参数及状态进行检测,将其变成系统可识别的电信号,传递给控制单元。
4、伺服电动机:伺服电动机又称控制电机,其起动停止、转速或转角随输入电压信号的大小及相位的改变而改变。
输入的电压信号又称控制信号或控制电压,改变控制信号可以改变电动机的转速及转向,驱动工作机构完成所要求的各种动作。
5、感应同步器: 感应同步器是一种应用电磁感应原理制造的高精度检测元件,有直线和圆盘式两种,分别用作检测直线位移和转角。
6、人机接口:人机接口(HMI)是操作者与机电系统(主要是控制微机)之间进行信息交换的接口,主要完成输入和输出两方面的工作。
7、PLC:可编程控制器(Programmable Logical Controller)简称PLC.是一种在继电器控制和计算机控制的基础上开发出来,并逐渐发展成为以微处理器为核心,把自动化技术、计算机技术、通信技术融为一体的新型工业自动控制装置,广泛应用在各种生产机械和生产过程的自动控制中。
8、变频器:变频器是利用电力半导体器件的通断作用将工频电源变换为另一频率的电能控制装置,能实现对交流异步电机的软起动、变频调速、提高运转精度、改变功率因素以及过流/过压/过载保护等功能。
9、通信协议:通信协议是指通信双方就如何交换信息所建立的一些规定和过程,包括逻辑电平的定义、应用何种物理传输介质、数据帧的格式、通信站地址的确定、数据传输方式等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数控包装机械及系统
数控运输机械及工程机械设备 自动仓库
储存销售用机电一体化产品 自动空调及制冷系统及设备
机 电
自动称量、分选、销售及现金处理系统
一
自动化办公机械
体
化 产
社会服务性机电一体化产品
动力、医疗、环保及公共服务自动化设备
品 与
文教、体育、娱乐用机电一体化产品
系
微机或数控型耐用消费品
统
家庭用机电一体化产品
图6-5 与机电一体化系统有关的技术和学科 (注:O——操作员:M——维修技术员:S——系统工程师:D——开发工程师)
信
微机及微电子
息
元器件技术
电力电子 交换技术
处
理
技
术
机械工程系统设计与制造技术
检 测 、 传 感 技 术
基础元 器件技术
检测、计 技术量
伺服传动及 自控技术
试验模 拟技术
材料技术
图6-6 机电一体化系统各单元技术构成
机电一体化的关键技术
1. 机械设计技术 2. 计算机与信息处理技术 3. 自动控制技术 4. 传感与检测技术 5. 伺服传动技术 6. 系统技术
机电一体化发展趋势
• 智能化 • 模块化 • 网络化 • 微型化 • 绿色化 • 人性化
机电一体化应用案例
• 数控机床 • 工业机器人 • 数码相机 • 全自动洗衣机 • 微机电(MEMS系统)
“智能化阶段” ——20世纪90年代后期开始为第三阶段
机电一体化技术对我国经济发展的影响:
1. 机电一体化技术对传统国民经济的影响 2. 机电一体化技术与产品的应用 3. 机电一体化与企业的技术进步
机电一体化系统构成
干扰
废弃物输出
(原) 输入 物质
能量
信息
构
造
功
能
主功能 (变换、传递、储存)
计测功能
动力功能
控制功能
(新) 输出 物质
能量 信息
动力输入 (能量)
控制输入 控制输出 (信息-人或其他系统)
机电一体化系统的结构要素
• 机械本体
• 动力部分
• 计算机部分 • 传感器部分
传感器 (五官)
• 执行机构部分
动力部分 (内脏)
计算机 (大脑)
机械本体 (身体骨架)
执行机构 (四肢)
机电一体化分类
数码相机原理介绍
图6-7 数码相机结构示意图
图6-8 数码相机的工作原理框图
结束
机电一体化与机械电子工程的关系:
机电一体化是一门技术,机械电子工程是专业名称!
概述
机电一体化技术特点:
1. 体积小、重量轻、性价比高 2. 速度快、精度高 3. 可靠性高 4. 柔性好
概述
机电一体化的发展阶段:
“萌芽阶段” ——20世纪60年代以前为第一阶段
“蓬勃发展阶段” ——20世纪70-80年代为第二阶段
伺服技术(M、S、D)
控制技术
机
其它(顺序控制、计算机控制)(M、S、D)
电 一
共性技术
控制论(O、S、D)
体
接口技术(M、D)
化
技
传感技术(M、D)
术
逻辑代数基础(M、S、D)
电子学概论(M、S、D)
硬件系统(M、D)
电工与电子技术
个人计算机
操作方法(O、M、S、D)
软件(O、M、S、D) 集成电路基础(M、D) 电子线路概要(M、S、D) 电动机及电磁装置技术(M、S、D)
机电一体化技术
内容
• 概述 • 机电一体化系统构成 • 机电一体化分类 • 机电一体化关键技术 • 机电一体化发展趋势 • 机电一体应用实例
概述
机电一体化定义:
“机电一体化是指在机构的主功能、动力功能、信息处理功能和控制 功能上引进电子技术,将机械装置与电子化设计及软件结合起来所构 成的系统的总称”。机电—体化是在机械主功能、动力功能、信息功 能和控制功能,并将机械装置与电子装置用相关软件有机结合而构成 系统的总称。”——是传统机械工业的技术革命!
炊事自动化机械
家庭用信息、服务设备 测试设备
科研及过程控制用机电一体化产品
控制设备
信息处理系统 农、林、牧、渔及其它民用机电一体化产品
航空、航天、国防用武器装备等机电一体化产品
机电一体化的关键技术
机械学(M、D)
机械技术
机械加工(O、S、D) 精密技术(M、D)
液压气动技术(M、D)
系统技术(M、S、D)
按产品的功能划分:
1. 数控机械类 2. 电子设备类 3. 机电结合类 4. 电液伺服类 5. 信息控制类
按应用领域划分:
数控机床、机器人、自动生产设备
生产用机电一体化
柔性生产单元、自动组合生产单元 设备 FMS、无人化工厂、CIMS
微机控制汽车、机车等交通运输机具
运输、包装及工程用机电电一体化产品