稠油热采开发技术政策研究

合集下载

分析热力开采稠油技术及其应用

分析热力开采稠油技术及其应用

分析热力开采稠油技术及其应用热力开采稠油技术是一种通过注入热能来降低稠油粘度和提高流动性的一种先进技术。

稠油是指黏度较高的原油,由于其粘度大,黏度构成了地面运输和注水开采的阻碍,从而限制了稠油的开采和利用。

而热力开采稠油技术能够通过向井底注入热能来降低稠油的粘度,提高其流动性,从而实现稠油的高效开采。

本文将分析热力开采稠油技术的原理、优势和应用,以期全面了解热力开采稠油技术的重要性和价值。

一、热力开采稠油技术的原理热力开采稠油技术的原理主要是通过向稠油层注入高温热能,使稠油层温度升高,从而降低稠油的粘度,提高其流动性,便于开采。

具体来说,热力开采稠油技术主要包括蒸汽吞吐法、电加热法和火热联合法等多种技术手段。

蒸汽吞吐法是指通过向稠油层注入高温高压蒸汽,使稠油层温度升高从而降低粘度,然后再通过压力差将稠油挤出地层。

电加热法是通过在井下采油管内布置电热线圈并通电,使稠油层温度升高从而改善稠油的流动性。

火热联合法则是将火热和蒸汽混合注入稠油层,通过燃烧产生的高温高压气体和蒸汽一起作用,提高地层温度从而改善稠油的流动性。

热力开采稠油技术相较于传统的采油技术具有许多优势。

热力开采稠油技术能够降低稠油的粘度,提高其流动性,从而大大提高了稠油的采收率。

热力开采稠油技术能够减轻井底压力,提高稠油开采的效率。

热力开采稠油技术能够降低能耗,减少环境污染,使稠油开采更加环保。

热力开采稠油技术还能够提高采油速度,加快稠油资源的开采和利用。

热力开采稠油技术在油田开采中具有广泛的应用前景。

在国内外许多重要的稠油资源地区,热力开采稠油技术已经成为一种成熟、稳定的采油技术。

加拿大的阿尔伯塔地区、委内瑞拉的奥里诺科油田等地区,都是热力开采稠油技术的典型应用区域。

热力开采稠油技术还在国内的塔里木盆地、大庆油田等地区得到了广泛应用,有望成为国内外稠油资源开发的主要技术手段。

当前稠油开采技术的研究与展望

当前稠油开采技术的研究与展望

当前稠油开采技术的研究与展望稠油是指粘度较大的原油,在地下常温常压下呈凝胶状态,难以开采和输送。

而随着全球能源需求的增长和传统油田的逐渐枯竭,对稠油资源的开发利用成为了当今油田勘探开发领域的热门话题。

为了有效开采稠油资源,需要不断研究和改进稠油开采技术,以满足能源需求并保护环境。

本文将从目前稠油开采技术的研究现状出发,展望未来的稠油开采技术发展趋势。

目前,稠油开采技术主要包括热采和常温采。

热采技术是利用热能降低稠油的粘度,使其能够流动起来进行开采。

而常温采则是通过化学方法或机械方法降低稠油的粘度,使其可以流动并被开采。

两种技术各有优缺点,随着技术的不断进步和完善,未来稠油开采技术将会更加高效、环保和经济。

热采技术中的蒸汽吞吐采油是目前应用最为广泛的一种热采方法。

该方法利用注入的高温高压蒸汽使稠油变稀,从而通过管道输送到地面。

虽然蒸汽吞吐采油技术已经相对成熟,但仍然有一些问题亟待解决,比如蒸汽的产生消耗大量能源、温度分布不均匀导致地层温差较大等。

未来,可以通过提高蒸汽的压力和温度、改进储油层结构等途径来改善蒸汽吞吐采油技术的效率和成本。

另一种常见的热采技术是加热采油,它是通过直接加热地下油层来使稠油变稀,再进行开采。

加热采油技术相比蒸汽吞吐采油技术能够更好地控制地下温度分布,提高采收率,但是需要耗费大量的能源来进行加热,同时加热地下油层也会带来环境污染的问题。

未来,可以通过开发更加高效的加热设备、利用可再生能源来替代传统能源等途径来改进加热采油技术。

除了热采技术,常温采油技术也在稠油开采中发挥着重要作用。

目前,化学驱油技术在常温采油中应用较为广泛。

聚合物驱油技术通过注入一定浓度的聚合物溶液来降低稠油的粘度,从而提高采收率。

有机溶剂驱油、表面活性剂驱油等方法也逐渐被应用于稠油开采中。

未来,可以通过研发更加环保的驱油剂、改进注入技术、提高驱油效率等途径来完善常温采油技术。

未来,稠油开采技术的发展将主要集中在以下几个方面。

胜利油田稠油热采开发技术研究进展

胜利油田稠油热采开发技术研究进展
春 晖 油 田 ,探 明 地质储 量 8 2 0 9 万 吨 ,动用 1 8 l 7 万
纯 总 比小 于0 . 5 的 热采 边 际稠 油油 藏 ,如 乐安 油 田草 1 2 8 块 、陈 家 庄 油 田陈 3 7 1 块 、陈3 1 1 块 等。
薄层稠油储量 1 . 6 9 亿 吨,占胜利油区稠油储量 的 2 1 . 7 %。常规 直 井蒸 汽吞 吐无 法 满足 高效 开发 薄层
南 “ 十五 ”末 的8 . 3 %提 高 ̄ r J 7 8 . 6 % ,平均 单井 1 3 产
胜利油 田稠油热采开发技术研究进展
吴光焕刘祖 鹏
( 中国石 化 胜利 油 田分公 司地 质科 学研 究 院 ,山东东 营2 5 7 0 1 5)

要 :针对胜利油 田稠油油藏地质特点及开发难点 ,重点介绍 了中深层特超稠油油藏 、浅薄层 超稠油油藏 、敏感性稠油油藏和低渗透稠 油油藏等复杂稠油油藏的开发技 术 ,并对其提
产 连续 1 2 年 增产 ,年 产 量 由 1 4 3 万 吨增 加 至 5 3 0 万 吨 ,成 为 胜 利 油 田原 油 产 量 的重 要 组 成 部分 。本 文 主要 阐述 “ 十五 ” 以来 胜 利 油 田在 稠 油热 采 中 的新 技 术 和新 理 论 ,重 点 介 绍 驱 油 机 理 、技 术 关
块 推 广应 用 ,郑4 l 1 区块 为 中深 薄层 超稠 油油 藏 ,
5 0 时地 面 脱 气 原油 黏 度 2 2 万 ~3 8 万毫 帕 ・ 秒,
发技术 ” 0 可实 现薄层稠 油储 量 的有效 动用 。
该 技 术 先 后 动 用 了 孤 岛 Ng 6、陈 3 7 3 块 、草
针 对 上 述 问 题 ,通 过 采 用地 震 属 性 分 析 ,分

当前稠油开采技术的研究与展望

当前稠油开采技术的研究与展望

当前稠油开采技术的研究与展望当前稠油是重要的能源资源之一,在世界范围内都受到了广泛的关注和重视。

稠油资源具有丰富的储量和广泛的分布区域,对于能源安全具有重要的作用。

由于其高粘度、高密度、高含硫量等特点,稠油开采过程中存在技术难题和环境影响等问题,制约了其发展和利用。

为了克服这些难题,各国的科研机构和企业都在加大稠油开采技术的研究与开发力度,通过引入先进的技术手段和创新的方法,促进稠油资源的高效利用和减少环境影响。

本文将从当前稠油开采技术的研究现状和存在的问题入手,探讨未来的展望和发展趋势。

一、当前稠油开采技术的研究现状1. 稠油地质勘探技术稠油资源地质特点复杂,油藏构造较为复杂,勘探难度大。

稠油地质勘探技术一直是研究的热点之一。

目前,地震勘探、电磁法勘探、测井技术等被广泛应用于稠油资源勘探中,提高了勘探的精准度和效率。

2. 稠油采收技术稠油采收技术是稠油开采的核心环节,也是研究的重点之一。

传统的稠油采收技术主要依赖于蒸汽驱等方法,但存在能耗大、技术难度高等问题。

近年来,随着水平井、多级压裂、CO2驱等技术的不断推广和应用,稠油采收技术取得了一定的进展。

3. 稠油表面处理技术稠油开采后,需要进行表面处理,使之符合市场需求。

目前,物理化学处理技术、特殊添加剂等被广泛应用于稠油表面处理中,提高了稠油的质量和附加值。

1. 资源开发成本高由于稠油的高粘度和高密度,传统的采收技术成本高,影响了稠油资源的利用和开发。

2. 环境问题稠油开采过程中产生的大量废水、废气以及地表破坏等环境问题日益凸显,严重影响了周边生态环境。

3. 技术难度大由于稠油资源地质构造复杂,传统的勘探和开采技术难以适应,需要引入更先进的技术手段和方法。

三、未来稠油开采技术的展望与发展趋势1. 引入先进的采收技术未来,稠油开采将更多地依赖于水平井、多级压裂、CO2驱等技术手段,降低成本,提高效率,减少对环境的影响。

2. 推动研发环境友好型技术未来,稠油开采将更多地关注环境问题,推动研发环境友好型技术和方法,减少对环境的破坏,提高资源的可持续利用。

当前稠油开采技术的研究与展望

当前稠油开采技术的研究与展望

当前稠油开采技术的研究与展望稠油开采是指采用特殊的开采技术,开发出那些黏度较高的油藏的方法。

近年来,随着技术的不断发展和创新,稠油开采技术也得到了极大的进步。

本文就当前稠油开采技术的研究和展望进行一番探讨。

篇章分为三个部分,分别为稠油开采技术的现状、稠油开采技术的研究存在的问题,以及稠油开采技术的展望。

1. 稠油开采技术的现状目前,稠油开采技术主要分为四类,分别为热采、化学采、物理采和协同采。

其中,热采是稠油开采中应用广泛的一种技术,它主要采用向油层注入高温水蒸气或热质体,使稠油黏性降低,提高的能够顺畅地流过储层孔隙,从而实现高效的采油作用。

化学采是通过向油层注入适度浓度的化学药剂,改善油藏渗透性质,促进原油黏度降低以达到增产的目的。

物理采是通过改变油藏渗透性和孔隙度的方式进行,常见的方法是水力破裂和水平井。

最后,协同采是将热采、化学采和物理采整合起来,形成了一套比较完善的稠油开采技术体系。

尽管现在稠油开采技术已经得到了广泛应用,但是在实际使用过程中还存在一些问题:(1)效率问题。

当前热采技术虽然大大提高了稠油开采效率,但是对能源的消耗比较大,成本相对较高。

此外,现在的稠油采油效率仍然存在极大的提升空间。

(2)环境问题。

很多稠油采油技术使用的药剂对环境有一定的影响,其中物理采中的水力破裂对环境污染的风险比较大。

(3)技术改进问题。

稠油采油过程中仍然存在的一些问题,例如,储层特性常会发生改变导致采油效率下降。

因此,需要开展更多的研究和实践。

(1)开发低成本、高效率的热采技术,例如低渗透油藏热采技术和基于稀释效应的热采方法。

(2)开发更加环保、无公害的化学采油技术,例如选择性聚合剂的使用和光催化氧化技术的开发。

(3)积极寻找和开发新型稠油采油技术,例如用于黏度调控的纳米技术和电磁泵抽油技术等。

(4)增强油藏开发者之间的交流,促进技术创新和共同进步。

综上所述,当前稠油开采技术在实践中取得了较好的效果,但是仍然存在一些问题和不足之处,需要在未来的研究中不断探索和改进。

分析热力开采稠油技术及其应用

分析热力开采稠油技术及其应用

分析热力开采稠油技术及其应用热力开采稠油技术是一种针对稠油资源的开采方法,其主要原理是通过热能将粘稠的稠油变得更加流动,从而方便提取。

随着全球对于能源资源的需求不断增加,稠油资源的开采技术也在不断提升。

本文将就热力开采稠油技术及其应用进行分析。

一、热力开采稠油技术原理热力开采稠油技术主要包括蒸汽吞吐法、蒸汽驱替法、地热法、电阻加热法等几种方法。

1. 蒸汽吞吐法蒸汽吞吐法是通过将高温的蒸汽注入稠油层,使稠油受热膨胀并形成气相驱动油的运移。

该方法的优点是操作简便,成本低廉,能够更有效地提高稠油产量。

蒸汽驱替法是将蒸汽注入稠油层,通过高温高压破坏稠油的粘度结构,从而使得稠油与油藏底部的水形成乳状液,提高了油品的可采性。

3. 地热法地热法是利用地下热能来提高稠油层的温度,使稠油在地热的作用下变得更加流动,并且可以减少热能的消耗。

4. 电阻加热法电阻加热法则是通过在井筒中加入电阻加热器,通过电流产生的热能来加热稠油,降低其粘度,从而方便提取。

热力开采稠油技术主要应用于稠油资源丰富的地区,如加拿大、委内瑞拉、俄罗斯等国家和地区。

在这些地区,使用传统采油技术提取稠油的效果并不理想,而热力开采稠油技术可以更好地发挥作用。

1. 加拿大加拿大是世界上最大的稠油生产国之一,其阿尔伯塔地区的稠油储量巨大,但由于粘度高,采油困难。

加拿大在热力开采稠油技术上进行了大量的探索和应用,取得了一定的成果。

2. 委内瑞拉委内瑞拉的奥里诺科地区拥有丰富的稠油资源,但大部分是非常高粘度的稠油,传统采油技术效果不佳。

委内瑞拉政府和石油公司在热力开采稠油技术的研发和应用上投入了大量资金和人力,取得了显著成效。

3. 俄罗斯俄罗斯是全球最大的石油生产国之一,在西伯利亚地区也有大量的稠油资源。

俄罗斯的石油公司在热力开采稠油技术方面经验丰富,在稠油资源的开采和利用上有着丰富的实践经验。

热力开采稠油技术相较于传统的采油方法有着明显的优势,包括以下几点:1. 提高采收率热力开采稠油技术可以有效地提高稠油资源的采收率,从而增加了石油产量,提高了资源利用效率。

乌石1-4稠油油田开发技术政策研究

乌石1-4稠油油田开发技术政策研究

田的 合理 开 发 方 式 。利 用 产 能测 试 资 料 , 析 油 田热 采 采 收率 的主 要 影 响 因 素 , 测蒸 汽 驱 采 收 率 , 提 出 油 田合 理 分 预 并
开 发 技 术政 策 。 关 键 词 : 油 ; 发 技 术 ; 汽 驱 ; 收 率 稠 开 蒸 采 中图 分 类 号 : E 23 T 3+ 文 献标 识码 : A 文 章 编 号 :6 3 1 8 ( 0 1 0 — 0 2 0 17 — 9 0 2 1 ) 6 0 7 — 3
比较 6个 国外 类 似 海 上 稠 油 油 田 的 开 发 方
收 稿 日期 :0 1 0 — 3 2 1 - 6 1
作 者 简 介 : 弘 毅 (9 3 ) 男 , 南 郸 城 人 , 高 17 一 , 河 工程 师 , 究方 向为 油 气 田开 发技 术 应 用 。 研

7 ・ 2
高弘毅 : 乌石 1 4稠 油 油 田开发技 术政 策研 究 -
式 l , 5个 油 田热 采 效 果 较 好 , 收 率 可 达 到 1 有 ] 采 3 %以 上 .仅 有 的 一 个 油 田水 驱 采 收 率 只 能 达 到 O 1. 52 %。该油 田是加 拿大 的里诺 克带 油藏 , 层性 质 储 与乌石 l4油 田非 常相 似 . 一 采用水平 井 开发 。
5 62 4 3.
期 蒸 汽 吞 吐 ,后 期 转 为 蒸 汽 驱 ,预测 采 收率 可 达
2%。 9
[】B md L oh rt E hn igSemf o f cv ns b 5 e en ad. n a c t l d Ef t ees y n a o ei
Ho znaPo ues G .P 9 0 . i r otl rd cr [ I E6 7 7 S [] it AC C T i ae L Ma sJ . f oe ev l 6 Pno , r d d , t Of hr a Oi n W o S s H y : A e C al g r e o r [ .IEE ipVe cu , N w h ln ef t ba G]I —xt , r rz e o P r s I e a

稠油热采技术现状及发展趋势

稠油热采技术现状及发展趋势

稠油热采技术现状及发展趋势稠油是一种质地黏稠的石油,是一种具有高含硫量和高粘度的重质原油。

由于其黏稠度高,稠油的开采和提炼相对要困难和昂贵。

稠油在全球范围内占据着相当大的比例,其资源储量丰富,因此对于石油行业来说,稠油的开采和利用具有重要的意义。

为了更有效地开采稠油资源,研发了许多热采技术。

本文将对稠油热采技术的现状及发展趋势进行探讨。

一、稠油热采技术现状1. 蒸汽吞吐法:蒸汽吞吐法是一种将高温高压蒸汽注入稠油藏层,使稠油产生稠油-水混合物,降低了稠油的黏度,从而促进油藏产液。

这种方法具有对水源要求低、操作灵活等优点,被广泛应用于加拿大、委内瑞拉等稠油资源丰富的地区。

2. 蒸汽辅助重力排放法:蒸汽辅助重力排放法是将高温高压蒸汽注入稠油层,通过蒸汽的热能作用使稠油产生流动,从而提高了油藏产液速率。

这种方法适用于深层、高黏稠度稠油层,可以挖掘更多的稠油资源。

3. 燃烧加热法:燃烧加热法利用地下燃烧或地面燃烧的方式,通过高温热能将稠油层加热,降低了稠油的粘度,从而促进了油藏的排放。

这种方法具有热效率高、可控性强等优点,是一种较为成熟的稠油热采技术。

1. 技术创新:随着石油工业的发展,热采技术也在不断创新。

未来,稠油热采技术将更加注重提高采收率、降低成本、减少环境影响等方面的技术创新,以提高稠油资源的开采效率和利用价值。

2. 能源替代:在稠油热采过程中,通常需要大量的燃料来产生热能,这不仅增加了生产成本,还会对环境产生负面影响。

未来稠油热采技术可能会向更加环保、节能的能源替代方向发展,例如采用太阳能、地热能等清洁能源进行热采。

3. 智能化应用:随着智能技术的不断发展,稠油热采技术也将向智能化方向发展。

未来,稠油热采可能会利用物联网、大数据、人工智能等技术,实现对油藏的实时监测、智能调控,从而提高生产效率和资源利用效率。

4. 油田整体化管理:随着油田规模的不断扩大,油田整体化管理成为未来热采技术发展的重要方向。

海上油田稠油热采技术探索及应用

海上油田稠油热采技术探索及应用

海上油田稠油热采技术探索及应用随着当今社会的能源需求不断增长,石油资源的开发利用一直备受关注。

而在海上油田中,稠油热采技术一直是石油开采领域关注的热点之一。

稠油热采技术以其高效、环保等特点,为海上油田的开采提供了新的技术支持。

本文将探讨海上油田稠油热采技术的发展现状,并对其未来的应用进行展望。

一、海上油田稠油热采技术的发展现状1. 稠油特性和存在问题海上油田中的稠油通常指的是储层中粘度较高的油,其粘度通常在1000mPa·s以上。

稠油由于粘度高、流动性差等特性,给油田的开采带来了很大的困难。

传统的采油方式对于稠油的开采效果不佳,而且会造成严重的环境污染问题。

稠油的开采技术一直是石油行业的一个难题。

2. 热采技术的应用热采技术是一种通过加热方式改善原油流动性的方法,常见的热采方法包括蒸汽吞吐法、蒸汽驱替法、火烧法等。

这些热采技术可以有效降低原油的粘度,提高原油的流动性,从而提高采收率。

在海上油田中,热采技术已经得到了广泛的应用,并取得了一定的成效。

3. 技术挑战和突破海上油田稠油热采技术面临的最大挑战是在海上环境中实施热采技术。

海上风大浪急、水温低等环境条件对于热采设备和操作技术提出了更高的要求。

在此背景下,石油行业不断进行技术创新,研发出了一系列适应海上环境的稠油热采技术,例如采用具有良好保温性能的管道、采用高效节能的加热设备等。

1. 技术推广和成本控制目前,海上油田稠油热采技术的应用范围还比较有限,主要集中在一些大型、重要油田。

未来,随着相关技术的不断完善和成本的进一步降低,稠油热采技术将有望在更多的海上油田中得到推广应用。

技术成本一直是稠油热采技术应用的制约因素之一,在未来,通过技术创新和成本控制,将有助于降低稠油热采的成本,进一步推动其应用。

2. 环保和安全意识的提升海上油田稠油热采技术的应用还面临着环保和安全方面的挑战。

海上油田的开采对海洋生态环境有一定的影响,因此技术应用中需要更加注重环保问题。

稠油热采技术现状及发展趋势

稠油热采技术现状及发展趋势

稠油热采技术现状及发展趋势稠油是指粘度较大的原油,通常属于非常具有挑战性的开采对象。

稠油热采技术是指利用热能降低稠油粘度,从而提高原油产量的一种开采技术。

随着对非常规油气资源的需求日益增长,稠油热采技术在石油工业领域也受到了越来越多的关注。

本文旨在对稠油热采技术的现状与发展趋势做一番探讨。

一、稠油热采技术现状1. 热采原理热采技术主要是通过注入热能使稠油渗流性增加,粘度减小,从而提高原油产量的一种开采方式。

目前广泛应用的热采方法包括蒸汽吞吐法、燃烧热采法和电加热法等。

蒸汽吞吐法是应用最为广泛的一种热采方法,其原理是通过注入高温高压蒸汽使稠油产生热胀冷缩的效应,降低原油的黏度,从而提高原油产量。

2. 技术难点稠油热采技术面临着一些技术难点,主要包括热能传输效率低、地层温度降低、碳排放增加等问题。

由于原油储层深埋地下,热能在传输过程中会受到很大的损失,导致热能利用率低,影响了热采效果。

随着油田开采时间的延长,地层温度也会逐渐降低,导致原油黏度增加,热采效果减弱。

燃烧热采法会导致大量的二氧化碳排放,对环境造成不良影响。

3. 应用现状目前,稠油热采技术已经在北美、俄罗斯、委内瑞拉等国家和地区得到了广泛应用,取得了一些成功的经验。

加拿大的阿尔伯塔地区是世界著名的稠油开采区域,该地区的稠油资源丰富,以蒸汽吞吐法为主要开采方法,取得了较好的开采效果。

俄罗斯的西伯利亚地区和委内瑞拉的奥里诺科地区等地也应用了稠油热采技术,取得了一定的成果。

1. 技术创新随着石油工业的发展,稠油热采技术也在不断地进行技术创新。

为了提高热能利用率,目前正在研究开发新型的热传导介质和热能传输技术,提高热采效果。

一些新型的热采方法也在不断涌现,如微波加热法、化学热采法等,这些新技术有望在未来得到更广泛的应用。

2. 环境友好随着环境保护意识的提高,稠油热采技术也在朝着更环保的方向发展。

目前,一些国家已经开始研究开发低碳排放的热采方法,以减少对环境的不良影响。

分析热力开采稠油技术及其应用

分析热力开采稠油技术及其应用

分析热力开采稠油技术及其应用热力开采稠油技术是指利用热能将稠油地层中的原油转化为可流动状态的一种采油方法。

由于稠油的黏度大、流动性差,传统的采油方法难以有效开采,因此热力开采稠油技术成为了解决稠油开采难题的重要手段。

本文将从热力开采稠油技术的原理、方法、优势和应用等方面进行分析。

一、热力开采稠油技术的原理热力开采稠油技术是通过向稠油地层注入高温热媒质,使原油温度升高,黏度降低,从而提高原油的流动性,使原油能够更容易地流入井筒进行采集。

热力开采稠油技术的原理主要包括两种方式:一是通过地热或地热水进行加热;二是通过外部热源进行加热。

通过这两种方式使得地层中的稠油升温,从而实现采集的目的。

二、热力开采稠油技术的方法热力开采稠油技术的方法主要有蒸汽吞吐、蒸汽驱、电加热、微波加热等。

蒸汽吞吐是指向地层注入高温蒸汽,使稠油地层中的原油受热膨胀,增加流动性,然后通过泵抽吸原油。

蒸汽驱则是通过高温蒸汽的推动作用,将原油推向生产井。

电加热则是通过在井筒中安装加热电缆,利用电能直接对地层进行加热。

微波加热则是通过在井眼中发射微波,使稠油地层中的水分子振动而产生热量,从而提高地层温度。

三、热力开采稠油技术的优势1. 有效提高采收率:热力开采稠油技术能够降低原油的粘度,使得原油能够更容易地流动,从而提高采收率。

2. 节约能源:热力开采稠油技术能够提高原油的开采效率,减少能源的浪费。

3. 减少环境污染:热力开采稠油技术可以减少地面沉脂、废水、废气等环境污染,对环境的影响更小。

四、热力开采稠油技术的应用热力开采稠油技术已经在石油勘探和开采中得到了广泛的应用。

目前,我国在全国范围内推广热力开采稠油技术,特别是在华北地区、西南地区和东北地区的稠油开采中,热力开采技术已经成为了稠油开采的主要方法之一。

在国外,加拿大、委内瑞拉等国家也在稠油资源开采中广泛应用热力开采技术。

热力开采稠油技术已经成为了解决稠油地质勘探和生产难题的核心技术之一。

当前稠油开采技术的研究与展望

当前稠油开采技术的研究与展望

当前稠油开采技术的研究与展望当前,随着全球对能源资源的需求不断增长,石油等化石能源仍然是世界主要能源之一。

传统的轻质原油资源日益枯竭,而稠油等非常规油气资源具有储量丰富、分布广泛的特点,逐渐受到人们的重视。

稠油是指黏度较高、密度较大的原油,由于其黏度大、流动性差,开采难度大,成本高,环境风险大等特点,长期以来一直受到油田工作者的困扰。

稠油开采技术的研究和发展至关重要,这不仅能够有效开发和利用稠油资源,还能够提高能源资源的利用效率,保障国家能源安全。

本文将从稠油开采技术的现状、存在的问题以及展望未来进行探讨。

一、稠油开采技术的现状1. 传统热采技术传统的稠油开采主要采用的是热采技术,即通过注汽、蒸汽驱等方式提高油藏温度,降低原油粘度,从而改善流动性,便于开采。

热采技术具有操作简单、效果明显等优点,但是存在能源消耗大、环境影响大等问题。

2. 化学驱技术化学驱技术是指通过在稠油中添加化学剂,改变原油的性质,从而提高原油的流动性,便于开采。

常用的化学驱剂有碱性剂、表面活性剂等。

化学驱技术对环境的影响较小,但是成本较高,且对注入水质量要求较高。

3. 物理采技术物理采技术是指通过物理手段对稠油进行开采,如高压气体驱、超声波驱动等。

物理采技术操作简单,对环境影响小,但是需要设备投资大。

以上就是目前稠油开采技术的主要方法,这些方法各有优缺点,没有一种方法能够完全解决稠油开采中的问题,需要进一步研究和改进。

1. 能源消耗大传统的热采技术需要大量的燃料,对能源资源的消耗较大,严重影响了环境可持续发展。

2. 成本高目前稠油开采技术成本较高,导致稠油开采的经济效益不尽如人意。

3. 环境影响目前的稠油开采技术对环境的影响较大,如地表水污染、土壤污染等,给环境带来了较大的压力。

4. 技术不成熟虽然目前已经有了多种稠油开采技术,但是这些技术仍然存在许多不成熟的地方,如可靠性、安全性等问题亟待解决。

稠油开采技术存在上述问题的原因在于不同的稠油开采技术各自的局限性,传统技术在应对新的稠油开采难题时显得有些力不从心。

稠油开采技术的研究现状和发展趋势

稠油开采技术的研究现状和发展趋势

稠油开采技术的研究现状和发展趋势稠油是一种重质油,由于其粘度较大,开采难度较大,同时也会对环境产生一定的影响。

因此,针对稠油开采技术的研究一直是工程技术领域中的一个重要研究方向。

本文将从稠油开采技术的现状、问题和存在的挑战、研究的发展趋势三个方面进行探讨。

一、稠油开采技术的现状稠油开采技术的发展与应用,是在原油资源逐渐减少,新的技术和新的市场需求不断出现的背景下,从20世纪80年代开始逐步得到合理利用。

传统的开采技术主要包括蒸汽吞噬法、碱汽吞噬法、热水吞噬法等方法。

蒸汽吞噬法是指通过向油藏注入稀释的蒸汽,同时吞噬油藏中的稠油,从而使其流动性增强,方便开采。

该方法在加拿大、委内瑞拉等油田得到广泛应用,在开采效率上取得了显著的效果,但高能耗、高成本、污染环境的问题也时常受到关注。

碱汽吞噬法是将碱性物质注入原油中,在高温高压作用下产生化学反应,使原油的粘度降低,提高采集率。

该方法的优点在于不需要显著的设备和能量支持,同时可以将采油普及到一些小型油藏,但缺点是针对不同油性的技术适应性有限,且操作难度较大。

热水吞噬法是针对低粘度的稠油特别有效,主要方法是在地下用热水或蒸汽加压,使得油藏中的轻质组分被蒸发,高粘度物质则变软润,便于采集。

该方法的优点在于能够减轻山地和森林地区的管道建设负担,同时对环境影响相对较小。

但该方法也有用水量大、高能耗等问题。

二、稠油开采技术存在的问题和挑战针对上述传统稠油开采技术,也存在一些共性问题和挑战。

首先,这些技术虽然在一定程度上可以降低稠油的粘度,但相应地也会导致化学剂或蒸汽等的排放,给环境造成一定的影响,不符合人们对生态环境保护的要求。

其次,这些技术主要适用于稠油含量高的油藏,但是对于稠油含量较低的勘探地区,落后的采油技术将会拖累油田的生产效益。

另外,这些传统技术对人力物力等方面的要求也较高,不仅需要大量的能源设备和资金投入,还需要具备较高技术水平的专业人才来保障稠油开采的顺畅进行,而这对于一些缺乏人才储备和设备配备的勘探地区来说,是一个难以跨越的门槛。

分析热力开采稠油技术及其应用

分析热力开采稠油技术及其应用

分析热力开采稠油技术及其应用热力开采稠油技术是一种针对稠油资源的开采方法,通过加热稠油地层,降低其粘度,从而提高原油产量。

随着全球原油资源的逐渐枯竭,稠油资源成为石油行业的重要开采对象之一。

本文将对热力开采稠油技术及其应用进行分析。

一、热力开采稠油技术原理热力开采稠油技术主要包括蒸汽吞吐、燃烧和电加热等方法。

在蒸汽吞吐过程中,通过在井口注入高温高压蒸汽,使得稠油地层内部温度升高,从而降低稠油的粘度,提高原油产量。

在燃烧过程中,通过在井口或井下注入燃料,点燃地层燃烧,产生高温高压热气体,同样可以降低稠油的粘度。

电加热则是通过在井下使用电加热装置,直接加热稠油地层,提高原油产量。

这三种方法各有优劣,可以根据具体情况选择合适的技术。

相对于传统的采油方法,热力开采稠油技术具有一些明显的优势。

热力开采稠油技术可以有效提高稠油的采收率,降低原油采收成本。

热力开采稠油技术可以降低原油粘度,提高原油的流动性,有利于原油的运输和加工。

热力开采稠油技术对环境的影响相对较小,不会产生大量的废水和废料,对周边环境的影响较小。

热力开采稠油技术在石油开采领域具有广阔的应用前景。

加拿大阿尔伯塔地区是全球著名的稠油资源聚集地,该地区采用热力开采稠油技术已经取得了显著的成效。

以SAGD(蒸汽吞吐重力排水法)为代表的热力开采技术已经在该地区广泛应用。

SAGD工艺是指在两条平行的钻井井筒中,一条注入高温高压蒸汽,另一条采出原油和水,通过高温高压蒸汽使稠油地层温度升高,降低原油的粘度,从而提高原油产量。

该方法在加拿大阿尔伯塔地区已经被广泛应用,取得了良好的经济效益和社会效益。

四、热力开采稠油技术存在的问题及对策尽管热力开采稠油技术具有众多优势,但是也存在一些问题需要解决。

热力开采稠油技术需要大量的能源支持,蒸汽或是电力的供应需要成本较高。

热力开采稠油技术对环境的影响需要引起重视,需要采取一系列措施减少环境影响。

针对这些问题,可以通过技术创新和政策支持来解决。

稠油开发的技术措施研究

稠油开发的技术措施研究

3 热采工艺技术措施3.1 蒸汽吞吐蒸汽吞吐是我国应用比较广泛的采油方式,通过往油井注入适量热蒸汽,进行一段时间的焖井,待蒸汽的热量作用到油层,油层中的油流温度增高,从而使得黏度降低,提高开采效率。

在此过程中,涉及物理,化学作用以及热能传递等,蒸汽自然传热,改变黏度,为稠油科学开采提供了有利条件。

对高压力储层,利用蒸汽吞吐,增强油层的弹性效力,提高了油层当中原油的驱替能量,为油田产量提升打下基础。

蒸汽除作用于油层以外,还会作用于岩石层,起到一定的解除堵塞作用,热能可改变岩层的润湿性能,提高油与水的渗透率,增加井底油流总量,实现增产。

同时,蒸汽携带的热能可以降低表面张力和油流的流动阻力,并产生热胀力,带出油滴颗粒,提高了稠油开采产量,使油藏开采总量达到需求目标。

对地层,稠油在蒸汽热能作用下,发生高温裂解作用,使得稠油中重烃的含量降低,产出油的质量提高。

对厚油层,开采时油流的重力被蒸汽热能影响,保证油流顺利入井,其相关生产可保持高效水平。

蒸汽吞吐技术采油速度较快,但要注意,受到不同因素影响,蒸汽吞吐的周期也不同,稠油开采对应的提升效果也不同。

充分利用蒸汽热能的热胀效果,是发挥蒸汽吞吐技术优势的关键。

不断研究蒸汽吞吐技术涉及的原理,及时更新工艺技术。

改进蒸汽吞吐的不足,可以在注入油井的蒸汽中加入适量的天然气,有效增加蒸汽热气体积,扩大蒸汽增热面积,更大程度地降低稠油黏度,加快油层岩石流体流动,实现蒸汽吞吐技术气驱助采的目的。

除天然气,还可以在注入蒸汽时投放溶剂来提高稠油产出量,扩大蒸汽中的油气比例。

例如注入蒸汽时投放高温泡沫剂,改变吸汽的剖面面积,改善蒸汽吞吐的效果。

或者在注入蒸汽前先投放聚合物,借助聚合物的驱替效用,驱出石层孔隙中的油流,再利用蒸汽热能加温,降低稠油黏度,提高稠油产量。

3.2 蒸汽驱针对黏度高,孔隙度高的油藏,蒸汽驱是常用的技术。

蒸汽驱是用热蒸汽作载热流体和驱动介质,对注气井持续进行注气,在邻近的生产井进行采油,通过注入的热量和质量,提高采油效率。

稠油热采开发技术政策研究

稠油热采开发技术政策研究

稠油热采开发技术政策研究一、摘要二、引言三、研究方法四、研究结果及其分析五、讨论六、结论七、参考文献八、附录摘要稠油注蒸汽热力采油具有投资高、技术难度大和经济风险大的特点。

为此,对稠油油藏进行是否适合注蒸汽热采的评价筛选工作就显得十分重要。

本文通过对影响热采效果的主要油藏地质参数进行热采适应性评价,并进行蒸汽参数优化且作出合理的预测从而确定注蒸汽热采工艺技术方案。

注蒸汽热采主要有两种开采方式:一是蒸汽吞吐方式(或称循环注蒸汽,二是蒸汽驱方式。

稠油热采技术是油田开发中多专业配套技术,它包括:油藏精细描述技术、油藏热采筛选和热采可行性评价技术、利用油藏物理模拟和数值模拟进行热采机理研究和油藏工程优化设计研究技术、热采井钻井完井技术、热采井防砂技术、稠油测井系列和解释技术、井筒注汽隔热技术、高温测试技术、热力开采条件下采油工艺和油层改造技术、高温条件下地面注、采、输技术,利用水平井热力开采稠油技术和稠油热采经济评价技术等。

一、研究内容及思路稠油油藏注蒸汽开发的复杂性主要体现在如何充分利用热能。

这就涉及到需要考虑影响热采效果的各种因素,针对稠油特殊性油藏如何能达到理想的开发效果,选择并设计与该地质条件相匹配的开发方案是至关重要的一方面,另一方面再通过数值模拟对具体的开发方案作出合理的生产动态预测。

稠油热采的主要方法有蒸汽吞吐、蒸汽驱、火烧油层、热水驱等。

其中蒸汽吞吐作为一种相对简单和成熟的热采技术已广泛应用于稠油开采中,成为稠油开采的主要方法。

目前我国稠油开发方式所占比重为蒸汽吞吐(约占78%),蒸汽驱(约占10%)和常规水驱(12%)等。

所以本文就蒸汽吞吐和蒸汽驱的可行性进行系统的研究。

1.影响热采效果的地质因素1.1原油粘度和密度原油粘度是最能反映稠油油藏特征的参数,对渗流状态的影响也很重要。

由达西定律可知,流体通过多孔介质的流量大小与流体粘度成反比。

根据稠油分类标准,稠油粘度是常规稀油粘度的几百倍到上千倍。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

稠油热采开发技术政策研究一、摘要二、引言三、研究方法四、研究结果及其分析五、讨论六、结论七、参考文献八、附录摘要稠油注蒸汽热力采油具有投资高、技术难度大和经济风险大的特点。

为此,对稠油油藏进行是否适合注蒸汽热采的评价筛选工作就显得十分重要。

本文通过对影响热采效果的主要油藏地质参数进行热采适应性评价,并进行蒸汽参数优化且作出合理的预测从而确定注蒸汽热采工艺技术方案。

注蒸汽热采主要有两种开采方式:一是蒸汽吞吐方式(或称循环注蒸汽,二是蒸汽驱方式。

稠油热采技术是油田开发中多专业配套技术,它包括:油藏精细描述技术、油藏热采筛选和热采可行性评价技术、利用油藏物理模拟和数值模拟进行热采机理研究和油藏工程优化设计研究技术、热采井钻井完井技术、热采井防砂技术、稠油测井系列和解释技术、井筒注汽隔热技术、高温测试技术、热力开采条件下采油工艺和油层改造技术、高温条件下地面注、采、输技术,利用水平井热力开采稠油技术和稠油热采经济评价技术等。

一、研究内容及思路稠油油藏注蒸汽开发的复杂性主要体现在如何充分利用热能。

这就涉及到需要考虑影响热采效果的各种因素,针对稠油特殊性油藏如何能达到理想的开发效果,选择并设计与该地质条件相匹配的开发方案是至关重要的一方面,另一方面再通过数值模拟对具体的开发方案作出合理的生产动态预测。

稠油热采的主要方法有蒸汽吞吐、蒸汽驱、火烧油层、热水驱等。

其中蒸汽吞吐作为一种相对简单和成熟的热采技术已广泛应用于稠油开采中,成为稠油开采的主要方法。

目前我国稠油开发方式所占比重为蒸汽吞吐(约占78%),蒸汽驱(约占10%)和常规水驱(12%)等。

所以本文就蒸汽吞吐和蒸汽驱的可行性进行系统的研究。

1.影响热采效果的地质因素1.1原油粘度和密度原油粘度是最能反映稠油油藏特征的参数,对渗流状态的影响也很重要。

由达西定律可知,流体通过多孔介质的流量大小与流体粘度成反比。

根据稠油分类标准,稠油粘度是常规稀油粘度的几百倍到上千倍。

一些超稠油(天然沥青)粘度粘温曲线p138)可以看出,原油粘度越高,加热使粘度降到同一可正常流动的粘度所需要的温度也越高。

所以不论蒸汽吞吐还是蒸汽驱,原油粘度越高注蒸汽热采效果越差。

研究原油粘度对热采效果的影响时,还应对原油的流变特性进行分析。

牛顿流体的粘度与剪切速率无关,而非牛顿塑性流体的粘度则随着剪切速率的变小而增大,且非牛顿流体在渗流过程中的粘度会大大高于地面测定条件下的粘度。

当温度降到一定值后,原油可从牛顿流体变成非牛顿流体,这个流变特性转变对应的温度称“拐点温度”。

“拐点温度”越低,反映出原油在较低温度下保持牛顿流体流动特征的性能越好,在蒸汽吞吐过程中,随着油层能量的消耗,日产能力逐步下降,油流在井筒内流速下降、井筒热损失率增加、井筒温度下降,“拐点温度”低的原油避免了比“拐点温度”高的原油更早的结束吞吐周期,使得吞吐效果更好。

因此,在热采筛选过程中,除对原油粘度进行分类评价外,了解原油流变特征也是十分必要的。

1.2油层深度油层深度增加对蒸汽热采不利。

这是因为:一方面,油层越深,在注汽过程和采油过程中井筒热损失增加,热利用率减低、注入油层蒸汽干度降低乃至变成热水:另一方面,油层越深,对井下管具的质量和数量及井筒隔热技术的要求越高,这会大大增加生产费用而降低经济效益。

一般原则是粘度越低、厚度越大的油藏,允许的油藏深度可大些,反之,油层埋深则浅些。

1.3油层厚度油层厚度的概念可扩展为“单层有效厚度”“总有效厚度”和“油层的净总比”三个概念。

净总比是指在油层井段内,净油层厚度与油层井段总厚度之比。

在多油层注蒸汽热采过程中,由于热传导作用散失到隔、夹层的热量是白白的浪费掉了,所以,净总比越大的油藏,注入热量利用率越高热采效果越好。

强调单层有效厚度的意义是热量要向上下围岩传导,而这部分热量也是无效的。

这种热损失率与油层厚度成反比,因此存在一个最小油层厚度,当油层厚度小于这个值后,热损失将大到不能再有效地开采原油。

这一最小油层厚度国内外目前取5~7m。

油层有效厚度大、净总比大的油藏,注蒸汽热采效率高,开采动态上表现出周期油气比高、周期产油量高(不同厚度油层蒸汽吞吐效果对比表)。

但数模和油田实际统计资料也表明,油层厚度与热采效果的敏感关系在厚度小于20m时较明显,当油层厚度大于20m以后,继续增加油层厚度,油汽比和产油能力增加的幅度变小,而每米采油量则下降。

这表明,油层厚度太大时,油层纵向动用程度不均匀,部分厚度动用较差。

因此,在蒸汽吞吐开采方式下,油层厚度在20m 左右最佳。

在蒸汽驱方式下,由于横向驱动作用的加强,油层厚度在10m左右最佳。

对于巨厚的油层,若一次射开厚度太大难以提高采收率,可在适当时机实施分层或分段热采工艺(油层厚度对原油蒸汽比的影响p141)。

1.4油层渗透率,横向渗透率与垂向渗透率之比Kh/Kv热采稠油油藏的渗透率不能太低,这由热采需要注汽速度较高和稠油渗流阻力大所决定。

为了减少地面和井筒热损失,要求注汽速度不能太低。

热采过程中,稠油的粘度很高,为了保持足够的渗流阻力,也必须有足够的渗透率。

厚油层蒸汽吞吐过程中,重力泄油作用较强,特别是利用水平井蒸汽吞吐和蒸汽辅助重力泄油工艺,重力泄油起主要作用,对垂向渗透率要求较高。

因此,引入横向渗透率(Kh)和垂向渗透率(Kv)的比值Kh/Kv指标。

根据数模和物模研究结果,水平井蒸汽吞吐方式,Kh/Kv应小于100。

蒸汽驱方式由于横向驱动作用加强,对垂向渗透率要求不高,Kh/Kv小于1000。

实际上,稠油油藏油层一般胶结疏松,垂向渗透率较高,Kh/Kv值能满足要求,只要在厚层水平井蒸汽吞吐或蒸汽辅助重力泄油开采方式下,才把Kh/Kv的比值作为较重要的参数进行筛选。

1.5孔隙度、含油饱和度和储量系数ϕS O这三项指标应综合考虑。

它反映储层的含油丰度和可动油多少。

孔隙度大、含油饱和度高,说明可动油饱和度(ΔS O)高。

ΔS O越高,注蒸汽热采油汽比越高,开采效果越好。

国内外文献报道通过物理模拟研究结果得出孔隙度的下限值不小于0.20,S O不小于0.50,ϕS O值大于0.10。

1.6油藏压力油藏压力过高一是会影响注入能力,二是使蒸汽体积变小,会使热采(特别是蒸汽驱开采)效果变差。

蒸汽吞吐方式,对油藏压力要求较为宽松,油藏压力水平以不影响正常注汽速度即可。

蒸汽驱时要考虑水蒸汽在不同压力状态下的比容、热焓和温度。

据水蒸汽热物性特征,高压状态下温度高但体积小;低压状态下体积大但温度低。

所以压力过高过低各有利弊。

为了满足兼顾高饱和温度和高比容的要求,蒸汽驱时油藏压力在3~6MPa范围内较合适。

1.7油层岩性最适宜于注蒸汽热采的储层是砂岩。

目前国内外注蒸汽热采获得成功的均为砂岩储层。

油层中含有水敏性粘土矿物时,接触水蒸汽或水后会发生膨胀,这会大大降低油层渗透率。

因此,不含这类水敏性粘土矿物的油藏是注蒸汽热采的理想候选油藏。

当水敏性粘土含量大于5%时,在注蒸汽时可注入粘土稳定剂进行防膨处理。

1.8气顶和底水气顶和底水存在的主要威胁是注汽过程中由于蒸汽突进形成气、水通道。

一般来说,当底水厚度很薄时,可利用薄底水来完成初期的热传导和热对流,有效的加热上覆油砂层。

但当底水层很厚时,底水层就如同一个大散热器,蒸汽注入底水层会使热有效利用率大大降低。

对此,应通过油藏注蒸汽热采模拟研究来设计最佳的射孔方案和注采方案。

1.9油层的非均质性油层非均质性严重时对注蒸汽热采不利,它可使注入蒸汽沿高渗透带突进,甚至形成蒸汽突破,降低采收率。

由于高干度蒸汽的密度低,蒸汽易沿油层上部运移,形成“蒸汽超覆”现象。

因此,均质性较好且略带正韵律的油层更适宜于注蒸汽热采。

2.注蒸汽热采油藏筛选标准原中国石油天然气总公司勘探开发科学研究院(RIPED)推荐的蒸汽吞吐油藏筛选标准表2.1我国稠油蒸汽吞吐开采油藏筛选标准①指油层条件下原油粘度,其余为脱气原油粘度表2.2我国蒸汽驱油藏筛选标准及稠油储量分等标准表2.3水平井蒸汽吞吐与蒸汽驱油藏筛选标准3.蒸汽吞吐的原理及其优缺点3.1蒸汽吞吐的原理蒸汽吞吐过程中的传热包含物理的:化学的、热动力学的各种现象,是一个十分复杂的综合作用过程,同时也是一个具有不同流动梯度的非稳定渗流过程。

燕汽吞吐的采油原理可以归纳为:(1)油层中原油加热后粘度大幅度降低,流动阻力大大减小。

(2)对于压力高的油层,油层的弹性能量在加热油层后充分释放出来,成为驱动能量。

(3)解堵作用。

高温燕汽对岩石的冲刷可以解除近井地带的污染,尤其是第1周期,解堵起到了非常重要的作用。

(4)降低界面张力,改善液阻和气阻效应(贾敏效应),降低流动阻力。

(5)流体和岩石的热膨胀作用(例如回采过程中,蒸汽的膨胀,以及部分高压凝结水由于突然降压闪蒸为蒸汽),使得孔隙体积减小,增加产出量。

(6)开井生产后,带走大量热量,但油层、盖顶层及夹层中蓄留一定的余热,对下一周期的吞吐起到预热作用;加热带附迸的冷油缓慢补充进入降压的加热带过程中,余热将降低冷油的粘度,使原油向井底的流动可以延续很长时间。

(7)吞吐降压后,地层的压实作用也是一种不可忽视的驱油能量。

(8)地层中的原油在高温蒸汽下产生某种程度的蒸馏裂解作用,使得原油轻馏分增加,起到一定的溶剂抽提作用。

(9)对于厚油层,热原油流向井底时,除了油层压力驱动外,还受到重力驱动作用。

(10)高温蒸汽改变岩石的润湿性,油水相对渗透率变化,增加了流向井底的可动油。

(11)放大压差开采是蒸汽吞吐发挥效力的必要条件。

3.2蒸汽吞吐的优缺点蒸汽吞吐工艺施工简单,收效快,不需要进行特别的试验研究,可以直接在生产井实施;蒸汽吞吐是单井作业,对各种类型稠油油藏地质条件的适用范围较蒸汽驱广,经济上的风险比蒸汽驱开采小得多;对于井间连通性差、原油粘度过高以及含沥青砂,不适合蒸汽驱的油藏,仍将蒸汽吞吐作为一种独立的开发方式。

因此受到人们的普遍欢迎,但是蒸汽吞吐也存在一定的问题:(1)由于湿饱和蒸汽的特性和油藏非均质性,注入油层的蒸汽向顶部超覆推进及沿高渗透层指进,垂向扫油系数很难超过50。

因而,如何保证井底蒸汽干度高水平,并有效调控吸汽剖面,是蒸汽吞吐开采的核心技术,尤其对于深层、层状多层稠油油藏。

(2)蒸汽吞吐存在重力超覆引起的蒸汽在高渗透层的窜流以及热损失大的问题;另一方面随着蒸气吞吐周期的增加,一般加热半径和加热面积都会逐渐增加,但当吞吐周期增加到一定程度后,向油层中注入新的蒸汽热量仅能弥补向顶、底盖层热损失时,加热半径、加热面积不再扩大,向井底渗流的流体仅仅来源于一有限的加热区,导致单井产量以及油汽比迅速递减,经济效益差。

(3)蒸汽吞吐是单井作业,在蒸汽吞吐中后期,经济效益低,为了提高蒸汽吞吐的经济效益应该进行多并整体蒸汽吞吐,即把射孔层位相互对应、汽窜发生频繁的部分油井作为一个井组,集中注汽,集中生产,以改善油层动用效果的一种方法。

相关文档
最新文档