第三代半导体氮化镓材料在5G终端设备核心能源管理技术
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第三代半导体氮化镓材料在5G终端设备核心能源管理技术
一:第三代半导体:
第三代半导体材料具有宽的禁带宽度,高的击穿电场、高的热导率、高的电子饱和速率及更高的抗辐射能力,因而更适合于制作高温、高频、抗辐射及大功率器件,通常又被称为宽禁带半导体材料(禁带宽度大于2.2ev),也称为高温半导体材料
从目前第三代半导体材料和器件的研究来看,较为成熟、且最具有发展前景的主要是氮化镓(GaN)和碳化硅(SiC)半导体材料这两种材料。
随着技术的发展,终端设备对于半导体器件性能、效率、小型化要求的越来越高。特别是随着5G的即将到来,也进一步推动了以氮化镓( GaN)第三代半导体材料的快速发展。
一、什么是GaN?
GaN是极稳定的化合物,又是坚硬的高熔点材料,熔点约为1700℃,GaN具有高的电离度,在Ⅲ—Ⅴ族化合物中是最高的(0.5或0.43)。在大气压力下,GaN晶体一般是六方纤锌矿结构。
2、GaN 器件逐步步入成熟阶段
氮化镓技术可以追溯到 1970 年代,美国无线电公司(RCA)开发了一种氮化镓工艺来制造LED。自上世纪90年代开始,基于GaN的LED大放异彩,目前已是LED的主流。现在市场上销售的很多 LED 就是使用蓝宝石衬底的氮化镓技术。
除了 LED,氮化镓也被使用到了功率半导体与射频器件上。基于氮化镓的功率芯片正在市场站稳脚跟。2010年,第一个GaN功率器件由IR投入市场,2014年以后,600V GaN HEMT已经成为GaN器件主流。2014年,行业首次在8英寸SiC(碳化硅)上生长GaN器件。
3、GaN 在电力电子领域与微波射频领域均有优势
①、GaN 在电力电子领域:高效率、低损耗与高频率
高转换效率:GaN的禁带宽度是Si的3倍,击穿电场是Si的10倍。因此,同样额定电压的GaN开关功率器件的导通电阻比Si器件低3个数量级,大大降低了开关的导通损耗。
低导通损耗:GaN的禁带宽度是Si的3倍,击穿电场是Si的10倍。因此,同样额定电压的GaN开关功率器件的导通电阻比Si器件低3个数量级,大大降低了开关的导通损耗。
▲Si 功率器件开关速度慢,能量损耗大(来源:太平洋证券)
▲GaN 开关速度快,可大幅度提升效率(来源:太平洋证券整理)
高工作频率:GaN开关器件寄生电容小,工作效率可以比Si器件提升至少20倍,大大减小了电路中储能原件如电容、电感的体积,从而成倍地减少设备体积,减少铜等贵重原材料的消耗。
②、GaN 在微波射频领域:高效率、大带宽与高功率
更高功率:GaN 上的电子具有高饱和速度(在非常高的电场下的电子速度)。结合大电荷能力,这意味着 GaN 器件可以提供更高的电流密度。RF 功率输出是电压和电流摆动的乘积,因此更高的电压和电流密度可以在实际尺寸的晶体管中产生更高的 RF 功率。在4GHz以上频段,可以输出比GaAs高得多的频率,特别适合雷达、卫星通信、中继通信等领域。
更高效率:降低功耗,节省电能,降低散热成本,降低总运行成本。
更大的带宽:提高信息携带量,用更少的器件实现多频率覆盖,降低客户产品成本。也适用于扩频通信、电子对抗等领域。
另外值得一提的是,GaN-on-SiC 器件具有出色的热性能,这主要归功于 SiC 的高导热性。实际上,这意味着 GaN-on-SiC 器件在耗散相同功率时不会像 GaAs 或 Si 器件那样热。“较冷”设备意味着更可靠的设备。
4、与第二代半导体材料GaAs相比优势明显
GaN 器件的功率密度是砷化镓(GaAs)器件的十倍。GaN 器件的更高功率密度使其能够提供更宽的带宽,更高的放大器增益和更高的效率,这是由于器件外围更小。
GaN 场效应晶体管(FET)器件的工作电压可以比同类 GaAs 器件高五倍。由于 GaN FET 器件可以在更高的电压下工作,因此设计人员可以更轻松地在窄带放大器设计上实现阻抗匹配。阻抗匹配是以这样的方式设计电负载的输入阻抗的实践,其最大化从设备到负载的功率传输。
GaN FET 器件的电流是 GaAs FET 器件的两倍。由于 GaN FET 器件可提供的电流是 GaAs FET 器件的两倍,因此 GaN FET 器件具有更高的带宽能力。大部分的半导体器件对于温度的变化都是非常敏感的,为了保证可靠性,半导体的温度变化必须被控制在一定范围内。热管理对于 RF 系统来说尤其重要,因为它们本身能量损耗就比较高,会带来比较严重的散热问题。GaN 在保持低温方面有其独特优势,另外即使在温度较高的情况下,相比于硅其性能影响较小。例如 100 万小时失效时间中位数 MTTF 显示,GaN 比 GaAs 的工作温度可以高 50 摄氏度。
▲GaAs 与 GaN 的可靠性比较(资料来源:Qorvo, 中银国际证券)
与其他半导体(如 Si 和 GaAs)相比,GaN 是一种相对较新的技术,但它已成为高射频,高耗电应用的首选技术,如长距离或高端功率传输信号所需的应用(如雷达,基站收发信台[BTS],卫星通信,电子战[EW]等)。
5、随着成本降低,GaN 市场空间巨大
随着成本降低,GaN市场空间巨大。GaN与SiC、Si材料各有其优势领域,但是也有重叠的地方。GaN材料电子饱和漂移速率最高,适合高频率应用场景,但是在高压高功率场景不如SiC;随着成本的下降,GaN有望在中低功率领域替代二极管、IGBT、MOSFET等硅基功率器件。以电压来分,0~300V是Si材料占据优势,600V以上是SiC占据优势,300V~600V之间则是GaN材料的优势领域。
根据Yole估计,在0~900V的低压市场,GaN都有较大的应用潜力,这一块占据整个功率市场约68%的比重,按照整体市场154亿美元来看,GaN潜在市场超过100亿美元。
GaN RF 市场即将大放异彩。根于 Yole 的预测,在通信和国防应用的推动下 RF GaN 产业在 2017 年至 2023 年期间的复合年增长率将会达到的 23%。截至 2017 年底 RF GaN 市场总量接近 3.8 亿美元,2023 年将达到13 亿美元以上。基于 RF 的 GaN 技术也在不断创新以满足工业界需求。国防应用是 RF GaN 的主要市场领域,这是因为 GaN 产品具有专业的高性能要求和低价格优势。2017-2018 年间,国防应用占 GaN射频市场总量的 35%以上,目前全球国防市场在 GaN 领域没有放缓迹象。
二、GaN 市场:射频是主战场,5G 是重要机遇
1、GaN 是射频器件的合适材料
目前射频市场主要有三种工艺:GaAs 工艺,基于 Si 的 LDMOS(横向扩散金属氧化物半导体)工艺,以及 GaN 工艺。GaAs 器件的缺点是器件功率较低,低于 50W。