2017年高考真题理科数学全国II卷

合集下载

2017年高考真题——理科课标II数学(全国卷) Word版含解析

2017年高考真题——理科课标II数学(全国卷) Word版含解析

绝密★启用前2017年普通高等学校招生全国统一考试课标II 理科数学注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在条形码区域内。

2.选择题必须使用2B 铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整,笔迹清楚3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。

5.保持卡面清洁,不要折叠、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.31ii+=+( ) A .12i + B .12i - C .2i + D .2i - 【答案】D2.设集合{}1,2,4A =,{}240x x x m B =-+=.若{}1A B =I ,则B =( )A .{}1,3-B .{}1,0C .{}1,3D .{}1,5 【答案】C【解析】由{}1A B =I 得1B ∈,所以3m =,{}1,3B =,故选C 。

3.我国古代数学名著《算法统宗》中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”意思是:一座7层塔共挂了381盏灯,且相邻两层中的下一层灯数是上一层灯数的2倍,则塔的顶层共有灯( )A .1盏B .3盏C .5盏D .9盏 【答案】B【解析】塔的顶层共有灯x 盏,则各层的灯数构成一个公比为2的等比数列,由()71238112x -=-可得3x =,故选B 。

4.如图,网格纸上小正方形的边长为1,学 科粗实线画出的是某几何体的三视图,该几何体由一平面将一圆柱截去一部分所得,则该几何体的体积为( )A . 90πB .63πC .42πD .36π4.【答案】B【解析】由题意,该几何体是由高为6的圆柱截取一半后的图形加上高为4的圆柱,故其体积为2213634632V πππ=⋅⋅⋅+⋅⋅=,故选B. 5.设,y 满足约束条件2330233030x y x y y +-≤⎧⎪-+≥⎨⎪+≥⎩,则2z x y =+的最小值是( )A .15-B .9-C .D . 【答案】A6.安排3名志愿者完成4项工作,每人至少完成1项,每项工作由1人完成,则不同的安排方式共有( )A .12种B .18种C .24种D .36种【答案】D【解析】22234236C C A = ,故选D 。

(word完整版)2017年高考理科数学全国2卷(附答案)

(word完整版)2017年高考理科数学全国2卷(附答案)

学校:____________________ _______年_______班 姓名:____________________ 学号:________- - - - - - - - - 密封线 - - - - - - - - - 密封线 - - - - - - - - -绝密★启用前2017年普通高等学校招生全国统一考试理科数学 全国II 卷(全卷共10页)(适用地区:甘肃、青海、内蒙古、黑龙江、吉林、辽宁、宁夏、新疆、陕西、重庆、西藏) 注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其它答案标号,回答非选择题时,将答案写在答题卡上,写在本试卷上无效。

3.考试结束后,将本试卷和答案卡一并交回。

一、 选择题:本题共12小题,每小题5分,共60分。

在每个小题给出的四个选项中, 只有一项是符合题目要求的。

1. 3+i 1+i= A .1+2i B .1–2i C .2+i D .2–i2. 设集合A={1,2,4},B={x 2–4x +m=0},若A∩B={1},则B = A .{1,–3} B .{1,0} C .{1,3} D .{1,5} 3. 我国古代数学名著《算法统宗》中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”意思是:一座7层塔共挂了381盏灯,且相邻两层中的下一层灯数是上一层灯数的2倍,则塔的顶层共有灯 A .1盏 B .3盏 C .5盏 D .9盏4. 如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,该几何体由一平面将一圆柱截去一部分后所得,则该几何体的体积为 A .90π B .63π C .42π D .36π5. 设x 、y 满足约束条件⎩⎨⎧2x+3y–3≤02x–3y+3≥0y+3≥0,则z=2x+y 的最小值是A .–15B .–9C .1D .96. 安排3名志愿者完成4项工作,每人至少完成1项,每项工作由1人完成,则不同的安排方式共有A .12种B .18种C . 24种D .36种 7. 甲、乙、丙、丁四位同学一起去向老师询问成语竞猜的成绩。

(完整版)2017年高考真题——理科数学(全国II卷)+Word版含解析【KS5U+高考】

(完整版)2017年高考真题——理科数学(全国II卷)+Word版含解析【KS5U+高考】

2017 年一般高等学校招生全国一致考试课标 II 理科数学【试卷评论】【命题特色】2017 年高考全国新课标II 数学卷,试卷构造在保持稳固的前提下,进行了微调,一是撤消试卷中的第Ⅰ卷与第 II 卷,把解答题分为必考题与选考题两部分,二是依据中学教课实质把选考题中的三选一调整为二选一.试卷坚持对基础知识、基本方法与基本技术的观察,着重数学在生活中的应用.同时在保持稳固的基础上,进行适量的改革和创新,与 2016 年对比难度稳中有降.详细来说还有以下几个特色:1.知识点散布保持稳固小知识点会合、复数、程序框图、线性规划、向量问题、三视图保持一道小题的占比,大知识点三角数列三小一大、概率统计一大一小、立体几何两小一大、圆锥曲线两小一大、函数导数三小一大 (或两小一大 ).2.着重对数学文化与数学应用的观察教育部2017 年新订正的《考试纲领(数学)》中增添了数学文化的观察要求.2017 高考数学全国卷II 理科第 3 题以《算法统宗》中的数学识题为背景进行观察,理科19 题、文科 18题以养殖水产为题材,切近生活.3.着重基础,表现核心修养2017 年高考数学试卷整体上保持必定比率的基础题,试卷着重通性通法在解题中的运用,此外抽象、推理和建模是数学的基本思想,也是数学研究的重要方法,试卷对此都有波及.【命题趋向】1.函数知识:函数性质的综合应用、以导数知识为背景的函数问题是高考命题热门,函数性质要点是奇偶性、单一性及图象的应用,导数要点观察其在研究函数中的应用,着重分类议论及化归思想的应用.2.立体几何知识:立体几何一般有两道小题一道大题,小题中三视图是必考问题,常与几何体的表面积与体积联合在一同观察,解答题一般分 2 步进行观察.3.分析几何知识:分析几何试题一般有 3 道,圆、椭圆、双曲线、抛物线一般都会波及,双曲线一般作为客观题进行观察,多为简单题,解答题一般以椭圆与抛物线为载体进行观察,运算量较大,可是近几年高考适合控制了运算量,难度有所降低.4.三角函数与数列:三角函数与数列解答题一般轮番出现,若解答题为数列题,一般比较简单,要点观察基本量求通项及几种乞降方法,若解答题为三角函数,一般是解三角形问题,此时客观题中一般会有一道与三角函数性质有关的题目,同时客观题中会有两道数列题,一易一难,数列客观题一般拥有小巧活的特色.【试卷分析】一、选择题:此题共12 小题,每题 5 分,共 60 分.在每题给出的四个选项中,只有一项是切合题目要求的.3 i1.1 iA.12i B.12i C.2i D.2i 【答案】 D2.设会合A1,2,4, B x x24x m 0 .若A I B 1,则BA.1,3B.1,0C.1,3D.1,5【答案】 C【分析】试题剖析:由 AI B1得 1 B ,即x 1 是方程x24x m0 的根,所以1 4m0, m3 , B1,3,应选 C.【考点】交集运算、元素与会合的关系【名师点睛】会合中元素的三个特征中的互异性对解题影响较大,特别是含有字母的会合,在求出字母的值后,要注意查验会合中的元素能否知足互异性.两个防备:①不要忽略元素的互异性;②保证运算的正确性.3.我国古代数学名著《算法统宗》中有以下问题:“眺望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”意思是:一座7 层塔共挂了381 盏灯,且相邻两层中的下一层灯数是上一层灯数的 2 倍,则塔的顶层共有灯A.1 盏B.3 盏C.5 盏D.9盏【答案】 B4.如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,该几何体由一平面将一圆柱截去一部分后所得,则该几何体的体积为A.90B.63C.42D.36【答案】 B【分析】试题剖析:由题意,该几何体是一个组合体,下半部分是一个底面半径为3,高为 4 的圆柱,其体积 V132 4 36,上半部分是一个底面半径为3,高为 6 的圆柱的一半,其体积V21(326) 27,故该组合体的体积V V1V2362763.应选B.2【考点】三视图、组合体的体积【名师点睛】在由三视图复原为空间几何体的实质形状时,要从三个视图综合考虑,依据三视图的规则,空间几何体的可见轮廓线在三视图中为实线,不行见轮廓线在三视图中为虚线.在复原空间几何体实质形状时,一般是以正视图和俯视图为主,联合侧视图进行综合考虑.求解以三视图为载体的空间几何体的体积的要点是由三视图确立直观图的形状以及直观图中线面的地点关系和数目关系,利用相应体积公式求解.2x3y305.设x,y知足拘束条件2x3y30 ,则 z2x y 的最小值是y 3 0A.15B.9C.D.【答案】 A6.安排 3 名志愿者达成 4 项工作,每人起码达成 1 项,每项工作由 1 人达成,则不一样的安排方式共有A.12 种B.18 种C.24 种D.36种【答案】D【分析】试题剖析:由题意可得,一人达成两项工作,其余两人每人达成一项工作,据此可得,只需把工作分红三份:有C24种方法,而后进行全摆列,由乘法原理,不一样的安排方式共有C24 A 3336 种.应选D.【考点】摆列与组合、分步乘法计数原理【名师点睛】( 1)解摆列组合问题要按照两个原则:①按元素(或地点 )的性质进行分类;②按事情发生的过程进行分步.详细地说,解摆列组合问题常以元素(或地点 )为主体,即先知足特别元素(或地点 ),再考虑其余元素 (或地点 ).(2)不一样元素的分派问题,常常是先分组再分派.在分组时,往常有三种种类:①不均匀分组;②均匀分组;③部分均匀分组.注意各样分组种类中,不一样分组方法的求解.7.甲、乙、丙、丁四位同学一同去处老师咨询成语比赛的成绩.老师说:你们四人中有 2 位优秀, 2 位优秀,我此刻给甲看乙、丙的成绩,给乙看丙的成绩,给丁看甲的成绩.看后甲对大家说:我仍是不知道我的成绩.依据以上信息,则A.乙能够知道四人的成绩B.丁能够知道四人的成绩C.乙、丁能够知道对方的成绩D.乙、丁能够知道自己的成绩【答案】 D8.履行右边的程序框图,假如输入的a 1 ,则输出的 SA.2B.3C.4D. 5【答案】 B2 22C :a 2b 29.若双曲线 1( a 0 , b 0 )的一条渐近线被圆 x 2y 2 4 所截得的弦x y长为 2,则 C 的离心率为A . 2B . 3C . 22 3D .3【答案】 A【分析】试题剖析: 由几何关系可得, 双曲线x 2y 2 1 a 0, b0 的渐近线方程为bx ay 0 ,a 2b 2圆心 2,0到渐近线距离为d22 123 ,则点 2,0 到直线 bx ay0 的距离为2b a 02b ,db 23a 2 c即 4(c 2 a 2 ) 3 ,整理可得 c 24a 2 ,双曲线的离心率 ec 24 2 .应选 A .c 2a 2【考点】 双曲线的离心率;直线与圆的地点关系,点到直线的距离公式【名师点睛】双曲线的离心率是双曲线最重要的几何性质,求双曲线的离心率 (或离心率的取值范围 ),常有有两种方法:①求出a ,c ,代入公式 ec;②只需要a依据一个条件获得对于 a ,b ,c 的齐次式,联合 b 2=c 2- a 2 转变为 a ,c 的齐次式,而后等式 (不等式 )两边分别除以 a 或 a2转变为对于 e 的方程 (不等式 ),解方程(不等式 )即可得 e(e 的取值范围 ).10.已知直三棱柱ABC A1B1C1中,ABC 120 ,AB 2 ,BC CC1 1,则异面直线AB1与 BC1所成角的余弦值为315103 A.B.C.D.2553【答案】 C11.若x2是函数 f ( x) ( x2ax1)e x 1的极值点,则 f ( x) 的极小值为A.1B.2e3C.5e3D. 1【答案】 A【分析】试题剖析:由题可得 f (x)(2 x a)e x 1(x2ax 1)e x 1[ x2(a2) x a 1]e x 1,由于 f(2) 0,所以 a 1 ,f ( x) ( x2x1)e x 1,故 f ( x)( x2x2)e x 1,令 f ( x) 0 ,解得x 2 或 x 1 ,所以 f ( x)在( , 2),(1,) 上单一递加,在 ( 2,1)上单一递减,所以 f ( x) 的极小值为 f (1) (1 1 1)e1 11,应选A.【考点】函数的极值、函数的单一性【名师点睛】(1)可导函数 y= f(x)在点 x0处获得极值的充要条件是 f ′(x0)= 0,且在 x0左边与右边f ′(的符号不一样学*;()若f(x)在,内有极值,那么f(x) x)2(a b)在(a,b)内绝不是单一函数,即在某区间上单一增或减的函数没有极值.12.已知△ABC是边长为uuur uuur uuur2 的等边三角形,P 为平面 ABC 内一点,则PA ( PB PC )的最小是A.23C.4D.1 B.32【答案】 B解等问题,而后利用函数、不等式、方程的有关知识来解决.二、填空题:此题共 4 小题,每题 5 分,共 20 分.13.一批产品的二等品率为0.02,从这批产品中每次随机取一件,有放回地抽取100 次, X 表示抽到的二等品件数,则DX____________.【答案】 1.96【分析】试题剖析:由题意可得,抽到二等品的件数切合二项散布,即X ~ B 100,0.02 ,由二项散布的希望公式可得DX np 1 p 100 0.02 0.98 1.96 .【考点】二项散布的希望与方差【名师点睛】判断一个随机变量能否听从二项散布,要看两点:①能否为n 次独立重复试验,在每次试验中事件 A 发生的概率能否均为p;②随机变量能否为在这 n 次独立重复试验中某事件发生的次数,且 p X k C n k p k 1 p n k表示在独立重复试验中,事件 A 恰巧发生 k 次的概率.14.函数f ( x) sin2x 3 cos x3( x[0, ]) 的最大值是____________.42【答案】 115.等差数列a的前 n 项和为S n,a33, S4n 1n10 ,则____________.k 1S k2n【答案】1n【分析】16.已知F是抛物线C :y28x 的焦点,M是C上一点,FM的延伸线交y 轴于点N.若M 为 FN 的中点,则 FN ____________.【答案】 6【分析】试题剖析:以下图,不如设点M 位于第一象限,设抛物线的准线与x 轴交于点F',作MB l 与点B, NA l 与点A,由抛物线的分析式可得准线方程为x2,则AN2, FF' 4 ,在直角梯形AN FF '3,由抛物线的定ANFF' 中,中位线BM2义有: MF MB 3 ,联合题意,有 MN MF 3,故 FN FM NM33 6 .【考点】抛物线的定义、梯形中位线在分析几何中的应用.【名师点睛】抛物线的定义是解决抛物线问题的基础,它能将两种距离(抛物线上的点到焦点的距离、抛物线上的点到准线的距离)进行等量转变.假如问题中波及抛物线的焦点和准线,又能与距离联系起来,那么用抛物线定义就能解决问题.所以,波及抛物线的焦半径、焦点弦问题,能够优先考虑利用抛物线的定义转变为点到准线的距离,这样就能够使问题简单化.三、解答题:共70 分.解答应写出文字说明、证明过程或演算步骤.第17~21 题为必考题,每个试题考生都一定作答.第22、23 题为选考题,考生依据要求作答.(一)必考题:共60 分.17.( 12 分)△ABC 的内角 A, B,C 的对边分别为a, b, c,已知sin A C8sin 2B.2(1)求cosB;(2)若a c 6,△ABC的面积为2,求b.【答案】( 1)cosB 15;( 2)b 2.17“边转角”“角转边”,此外要注意a c, ac, a2c2三者之间的关系,这样的题目小而活,备授命题者的喜爱.18.( 12 分)海水养殖场进行某水产品的新、旧网箱养殖方法的产量对照,收获时各随机抽取了100 个网箱,丈量各箱水产品的产量(单位:kg).其频次散布直方图以下:( 1)设两种养殖方法的箱产量互相独立,记 A 表示事件:“旧养殖法的箱产量低于50kg,新养殖法的箱产量不低于50kg”,预计 A 的概率;( 2)填写下边列联表,并依据列联表判断能否有99%的掌握以为箱产量与养殖方法有关:箱产量<50kg箱产量≥ 50kg旧养殖法新养殖法( 3)依据箱产量的频次散布直方图,求新养殖法箱产量的中位数的预计值(精准到0.01).附:,n(ad bc)2K 2(a b)(c d)( a c)(b d)【答案】( 1)0.4092;(2 )有99%的掌握以为箱产量与养殖方法有关;(3)52.35kg.【考点】独立事件概率公式、独立性查验原理、频次散布直方图预计中位数【名师点睛】(1)利用独立性查验,能够帮助我们对平时生活中的实质问题作出合理的推测和展望.独立性查验就是观察两个分类变量能否有关系,并能较为正确地给出这类判断的可信度,随机变量的观察值值越大,说明“两个变量有关系”的可能性越大.(2)利用频次散布直方图求众数、中位数和均匀数时,应注意三点:①最高的小长方形底边中点的横坐标即众数;②中位数左边和右边的小长方形的面积和是相等的;③均匀数是频次散布直方图的“重心”,等于频次散布直方图中每个小长方形的面积乘以小长方形底边中点的横坐标之和.19 .( 12 分)如图,四棱锥 P-ABCD 中,侧面 PAD 为等边三角形且垂直于底面,1ABC 90o,E是 PDABCD AB BC AD , BAD2的中点.(1)证明:直线CE∥平面PAB;(2)点M在棱PC上,且直线BM与底面ABCD所成角为45o,求二面角 M AB D 的余弦值.【答案】( 1)证明略;( 2)10.5【考点】判断线面平行、面面角的向量求法【名师点睛】(1)求解此题要注意两点:①两平面的法向量的夹角不必定是所求的二面角,②利用方程思想进行向量运算,要仔细仔细、正确计算.(2)设 m,n 分别为平面α,β的法向量,则二面角θ与<m,n>互补或相等,故有 |cos θ|=|cos<m,n>|= m n.求解时必定要注意联合实质图形判断所求角m n 是锐角仍是钝角.20.( 12 分)设 O 为坐标原点,动点M 在椭圆 C:x2y21上,过M作x轴的垂线,垂足为N,点 P 2uuur uuuur 知足 NP2NM .( 1)求点 P 的轨迹方程;uuur uuur( 2)设点 Q 在直线x3上,且OP PQ 1 .证明:过点P 且垂直于OQ 的直线 l 过 C 的左焦点F.【答案】( 1)x2y 2 2 ;(2)证明略.【考点】轨迹方程的求解、直线过定点问题【名师点睛】求轨迹方程的常用方法:(1)直接法:直接利用条件成立x,y 之间的关系 F(x,y)=0.(2)待定系数法:已知所求曲线的种类,求曲线方程.(3)定义法:先依据条件得出动点的轨迹是某种已知曲线,再由曲线的定义直接写出动点的轨迹方程.(4)代入 (有关点 )法:动点 P(x,y)依靠于另一动点 Q(x0,y0)的变化而运动,常利用代入法求动点 P(x, y)的轨迹方程.21 .( 12 分)已知函数 f ( x) ax 2 ax x ln x ,且 f ( x)0 .( 1)求 a ;( 2)证明: f ( x) 存在独一的极大值点 x 0 ,且 e 2f ( x 0 ) 2 2 .【答案】( 1) a1;(2)证明看法析.( 2)由( 1)知 f xx 2 x x ln x , f ' ( x) 2x2ln x .设 hx2x2 ln x ,则 h' ( x)2 1.x当 x(0, 1) 时, h' ( x)0 ;当 x( 1,) 时, h' ( x)0 ,22所以 h x在 (0,1) 上单一递减,在 ( 1, ) 上单一递加.2 2又 h e20, h( 1)0 , h 10 ,所以 h x 在 (0,1) 有独一零点 x 0,在[1, ) 有2 2 2独一零点 1,且当 x0, x 0 时, h x0 ;当 x x 0,1 时, h x 0 ,当 x 1,时, h x0 .由于 f ' (x) h x ,所以 xx 0 是 f x 的独一极大值点.由 f ' ( x 0 )0 得 ln x 02 x 0 1 ,故 f x 0 x 0 1 x 0 .由x00,1得 f x0 1 .4由于 x x0是f x 在(0,1)的最大值点,由e10,1,f '(e1) 0 得 f ( x0 ) f (e 1 ) e 2.所以e2f x022 .【考点】利用导数研究函数的单一性、利用导数研究函数的极值【名师点睛】导数是研究函数的单一性、极值(最值 )最有效的工具,而函数是高中数学中重要的知识点,所以在历届高考取,对导数的应用的观察都特别突出.导数专题在高考取的命题方向及命题角度:从高考来看,对导数的应用的观察主要从以下几个角度进行:( 1)观察导数的几何意义,常常与分析几何、微积分相联系;( 2)利用导数求函数的单一区间,判断单一性;已知单一性求参数;(3)利用导数求函数的最值(极值 ),解决生活中的优化问题;(4)观察数形联合思想的应用.(二)选考题:共10 分.请考生在第22、 23 题中任选一题作答.假如多做,则按所做的第一题计分.22.选修 4―4:坐标系与参数方程]( 10 分)在直角坐标系xOy 中,以坐标原点为极点,x 轴正半轴为极轴成立极坐标系,曲线C1的极坐标方程为cos4.( 1) M 为曲线C1上的动点,点P 在线段 OM 上,且知足| OM | |OP | 16,求点 P 的轨迹 C2的直角坐标方程;( 2)设点 A 的极坐标为(2,) ,点B在曲线 C2上,求△OAB面积的最大值.3【答案】( 1)224 x 0 ;(2) 2 3 .x 2y( 2)设点 B 的极坐标为B ,B 0 ,由题设知 OA 2,B 4cos,于是△ OAB 的面积S1OA B sin AOB 4cos| sin() | 2 |sin(2) 3 |23.2332时, S 获得最大值2 3 ,所以△OAB面积的最大值为 2 3 .当12【考点】圆的极坐标方程与直角坐标方程、三角形面积的最值【名师点睛】此题观察了极坐标方程的求法及应用。

2017年高考真题及答案:理科数学(全国Ⅱ卷)

2017年高考真题及答案:理科数学(全国Ⅱ卷)

3
D.
3

A. 1 D.1
B. 2e 3
C. 5e 3
12.已知 ABC 是边长为 2 的等边三角形, P 为平面 ABC内一点,则 PA ( PB PC ) 的最小
值是( )
A. 2
3
B.
2
4
C.
3
二、填空题:本题共 4 小题,每小题 5 分,共 20 分。
13.一批产品的二等品率为 0.02 ,从这批产品中每次随机取一件,有放回地抽取
P(错误!未找到引用 源。)
0.050
k
3.841
K2
n( ad bc) 2
(a b)( c d )(a c)(b d )
0.010 6.635
0.001 10.828
19.(12 分) 如图,四棱锥 P-ABCD中,侧面 PAD为等比三角形且垂直于底面
1 AB BC AD , BAD
2
ABC
(1)证明:直线 CE / / 平面 PAB
表示抽到的二等品件数,则 D

D. 1 100 次,
14.函数 f x sin 2 x
3 3 cos x ( x
0,
)的最大值是

4
2
n1
15.等差数列 an 的前 n 项和为 Sn , a3
3 , S4
10,则 k 1 Sk

16.已知 F 是抛物线 C : y2 8x 的焦点, 是 C 上一点, F 的延长线交 y 轴于点 .若
下一层灯数是上一层灯数的 2 倍,则塔的顶层共有灯(

A.1 盏
B. 3 盏
C. 5 盏
D. 9 盏
4.如图,网格纸上小正方形的边长为 1,学 科& 网粗实线画出的是某几何体的三视图,该几

2017年高考全国Ⅱ理科数学试题及答案(word解析版)

2017年高考全国Ⅱ理科数学试题及答案(word解析版)

2017年普通高等学校招生全国统一考试(全国II)数学(理科)一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.(1)【2017年全国Ⅱ,理1,5分】31ii+=+( )(A )12i + (B )12i - (C)2i + (D)2i - 【答案】D【解析】()()()()3i 1i 3i 42i2i 1i 1i 1i 2+-+-===-++-,故选D . (2)【2017年全国Ⅱ,理2,5分】设集合{}1,2,4A =,{}240B x x x m =-+=.若{1}A B =,则B =( )(A ){}1,3- (B ){}1,0 (C){}1,3 (D){}1,5 【答案】C【解析】集合{}1,2,4A =,24{|}0B x x x m -=+=.若{}1AB =,则1A ∈且1B ∈,可得140m -+=-,解得3m =, 即有243013{|}{,}B x x x =+==-,故选C .(3)【2017年全国Ⅱ,理3,5分】我国古代数学名著《算法统宗》中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?"意思是:一座7层塔共挂了381盏灯,且相邻两层中的下一层灯数是上一层灯数的2倍,则塔的顶层共有灯( )(A )1盏 (B)3盏 (C )5盏 (D )9盏 【答案】B【解析】设这个塔顶层有a 盏灯,∵宝塔一共有七层,每层悬挂的红灯数是上一层的2倍,∴从塔顶层依次向下每层灯数是以2为公比、a 为首项的等比数列,又总共有灯381盏,∴()71238112712a a -==-,解得3a =,则这个塔顶层有3盏灯,故选B .(4)【2017年全国Ⅱ,理4,5分】如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,该几何体由一平面将一圆柱截去一部分后所得,则该几何体的体积为( ) (A)90π (B )63π (C )42π (D )36π 【答案】B【解析】由三视图可得,直观图为一个完整的圆柱减去一个高为6的圆柱的一半,22131036632V πππ=⋅⨯-⋅⋅⨯=,故选B .(5)【2017年全国Ⅱ,理5,5分】设x ,y 满足约束条件2330233030x y x y y +-≤⎧⎪-+≥⎨⎪+≥⎩,则2z x y =+的最小值是( )(A )15- (B )9- (C )1 (D)9 【答案】A【解析】x 、y 满足约束条件2330233030x y x y y +-≤⎧⎪-+≥⎨⎪+≥⎩的可行域如图:2z x y =+经过可行域的A时,目标函数取得最小值,由32330y x y =-⎧⎨-+=⎩解得()6,3A --,则2z x y =+的最小值是:15-,故选A .(6)【2017年全国Ⅱ,理6,5分】安排3名志愿者完成4项工作,每人至少完成1项,每项工作由1人完成,则不同的安排方式共有( )(A )12种 (B)18种 (C )24种 (D )36种【答案】D【解析】4项工作分成3组,可得:24C 6=,安排3名志愿者完成4项工作,每人至少完成1项,每项工作由1人完成,可得:336A 36⨯=种,故选D .(7)【2017年全国Ⅱ,理7,5分】甲、乙、丙、丁四位同学一起去向老师询问成语竞赛的成绩.老师说:你们四人中有2位优秀,2位良好,我现在给甲看乙、丙的成绩,给乙看丙的成绩,给丁看甲的成绩.看后甲对大家说:我还是不知道我的成绩.根据以上信息,则( )(A )乙可以知道四人的成绩 (B )丁可以知道四人的成绩 (C )乙、丁可以知道对方的成绩 (D )乙、丁可以知道自己的成绩 【答案】D【解析】四人所知只有自己看到,老师所说及最后甲说话,甲不知自己的成绩→乙丙必有一优一良,(若为两优,甲会知道自己的成绩;若是两良,甲也会知道自己的成绩)→乙看到了丙的成绩,知自己的成绩→丁看到甲、丁中也为一优一良,丁知自己的成绩,故选D .(8)【2017年全国Ⅱ,理8,5分】执行右面的程序框图,如果输入的1a =-,则输出的S = ( )(A )2 (B )3 (C )4 (D)5 【答案】B【解析】执行程序框图,有0S =,1k =,1a =-,代入循环,第一次满足循环,1S =-,1a =,2k =;满足条件,第二次满足循环,1S =,1a =-,3k =;满足条件,第三次满足循环,2S =-, 1a =,4k =;满足条件,第四次满足循环,2S =,1a =-,5k =;满足条件,第五次满足 循环,3S =-,1a =,6k =;满足条件,第六次满足循环,3S =,1a =-,7k =;76≤不 成立,退出循环输出,3S =,故选B .(9)【2017年全国Ⅱ,理9,5分】若双曲线()2222:10,0x y C a b a b-=>>的一条渐近线被圆()2224x y -+=所截得的弦长为2,则C 的离心率为( )(A)2 (B)3 (C )2 (D)233【答案】A【解析】双曲线()2222:10,0x y C a b a b-=>>的一条渐近线不妨为:0bx ay +=,圆()2242x y +=-的圆心()2,0,半径为:2,双曲线()2222:10,0x y C a b a b-=>>的一条渐近线被圆()2242x y +=-所截得的弦长为2,可得圆心到直线的距离为:22222213b a b -==+,得:222443c a c -=,可得2e 4=,即e 2=,故选A . (10)【2017年全国Ⅱ,理10,5分】已知直三棱柱111ABC A B C -中,120ABC ∠=,2AB =,11BC CC ==,则异面直线1AB 与1BC 所成角的余弦值为( ) (A)32(B ) 155(C ) 105(D)33【答案】C【解析】如图所示,设M 、N 、P 分别为AB ,1BB 和11B C 的中点,则1AB 、1BC 夹角为MN和NP 夹角或其补角(因异面直线所成角为0,2π⎛⎤⎥⎝⎦,可知11522MN AB ==,11222NP BC ==;作BC 中点Q ,则PQM ∆为直角三角形;∵1PQ =,12MQ AC =, ABC ∆中,由余弦定理得2222AC AB BC AB BC cos ABC =+-⋅⋅∠141221172⎛⎫=+-⨯⨯⨯-= ⎪⎝⎭,∴7AC =,∴72MQ =;在MQP ∆中,22112MP MQ PQ =+=;在PMN ∆中,由余弦定理得222222521122210cos 2552222MN NP PM MNP MH NP ⎛⎫⎛⎫⎛⎫+- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪+-⎝⎭⎝⎭⎝⎭∠===-⋅⋅⨯⨯;又异面 直线所成角的范围是0,2π⎛⎤⎥⎝⎦,∴1AB 与1BC 所成角的余弦值为105,故选C .(11)【2017年全国Ⅱ,理11,5分】若2x =-是函数21`()(1)x f x x ax e -=+-的极值点,则()f x 的极小值为( ) (A )1- (B )32e -- (C )35e - (D)1【答案】A【解析】函数()()121x f x x ax e -=+-,得()()()11221x x e f x x a x ax e --'=+++-,2x =-是21`()(1)x f x x ax e -=+-的极值点,得:()4320a a -++-=.得1a =-.可得()()()()211212211x x x e e x x e f x x x x ---'=-+--=+-,函数的极值点为:2x =-,1x =,当2x <-或1x >时,()0f x '>函数是增函数,()2,1x ∈-时,函数是减函数,1x =时,函数取得极小值:()()21111111f e -=--=-,故选A .(12)【2017年全国Ⅱ,理12,5分】已知ABC ∆是边长为2的等边三角形,P 为平面ABC 内一点,则()PA PB PC ⋅+的最小值是( )(A )2- (B )32- (C)43- (D )1-【答案】B【解析】建立如图所示的坐标系,以BC 中点为坐标原点,则()0,3A ,()1,0B -,()1,0C ,设(),P x y ,则(),3PA x y =--,()1,PB x y =---,()1,PC x y =--,则()PA PB PC ⋅+2222332232224x y y x y ⎡⎤⎛⎫⎢⎥=-+=+-- ⎪ ⎪⎢⎥⎝⎭⎣⎦∴当0x =,32y =时,取得最小值33242⎛⎫⨯-=- ⎪⎝⎭,故选B . 二、填空题:本题共4小题,每小题5分,共20分. (13)【2017年全国Ⅱ,理13,5分】一批产品的二等品率为0.02,从这批产品中每次随机取一件,有放回地抽取100次,X 表示抽到的二等品件数,则DX =______. 【答案】1.96【解析】由题意可知,该事件满足独立重复试验,是一个二项分布模型,其中,0.02p =,100n =,则()11000.020.98 1.96DX npq np p ==-=⨯⨯=.(14)【2017年全国Ⅱ,理14,5分】函数()23sin 3cos 0,42f x x x x π⎛⎫⎡⎤=+-∈ ⎪⎢⎥⎣⎦⎝⎭的最大值是______.【答案】1【解析】()2233sin 3cos 1cos 3cos 44f x x x x x =+-=-+-,令cos x t =且[]0,1t ∈,则()22133142f t t t t ⎛⎫=-++=--+ ⎪ ⎪⎝⎭,当32t =时,()max 1f t =,即()f x 的最大值为1. (15)【2017年全国Ⅱ,理15,5分】等差数列{}n a 的前n 项和为n S ,33a =,410S =,则11nk kS ==∑______. 【答案】21nn + 【解析】等差数列{}n a 的前n 项和为n S ,33a =,410S =,()423210S a a =+=,可得22a =,数列的首项为1,公差为1,()12n n n S -=,()1211211n S n n n n ⎛⎫==- ⎪++⎝⎭,则11111111121223341nk kS n n =⎡⎤=-+-+-++-⎢⎥+⎣⎦∑122111n n n ⎛⎫=-=⎪++⎝⎭. (16)【2017年全国Ⅱ,理16,5分】已知F 是抛物线C :28y x =的焦点,M 是C 上一点,FM 的延长线交y 轴于点N .若M 为FN 的中点,则FN =_______.【答案】6【解析】抛物线C :28y x =的焦点()2,0F ,M 是C 上一点,FM 的延长线交y 轴于点N .若M 为FN 的中点,可知M 的横坐标为:1,则M 的纵坐标为:22±,()()2222122206FN FM ==-+±-=.三、解答题:共70分。

2017年高考理科数学全国2卷(附答案)

2017年高考理科数学全国2卷(附答案)

学校:___________________________年_______班姓名:____________________学号:________---------密封线---------密封线---------绝密★启用前2017年普通高等学校招生全国统一考试理科数学全国II 卷(全卷共10页)(适用地区:甘肃、青海、内蒙古、黑龙江、吉林、辽宁、宁夏、新疆、陕西、重庆、西藏)注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其它答案标号,回答非选择题时,将答案写在答题卡上,写在本试卷上无效。

3.考试结束后,将本试卷和答案卡一并交回。

一、选择题:本题共12小题,每小题5分,共60分。

在每个小题给出的四个选项中,只有一项是符合题目要求的。

1. 3+i 1+i=A .1+2i B.1–2i C.2+i D .2–i2. 设集合A={1,2,4},B={x 2–4x +m=0},若A ∩B={1},则 B =A .{1,–3} B.{1,0} C.{1,3} D.{1,5}3. 我国古代数学名著《算法统宗》中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”意思是:一座7层塔共挂了381盏灯,且相邻两层中的下一层灯数是上一层灯数的2倍,则塔的顶层共有灯A .1盏 B.3盏 C.5盏 D.9盏4. 如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,该几何体由一平面将一圆柱截去一部分后所得,则该几何体的体积为A .90π B .63π C .42πD .36π5. 设x 、y 满足约束条件2x+3y –3≤02x –3y+3≥0y+3≥0,则z=2x+y 的最小值是A .–15 B.–9 C.1 D.96. 安排3名志愿者完成4项工作,每人至少完成1项,每项工作由1人完成,则不同的安排方式共有A .12种 B.18种 C . 24种 D .36种7. 甲、乙、丙、丁四位同学一起去向老师询问成语竞猜的成绩。

2017全国2卷理科数学与答案

2017全国2卷理科数学与答案

2017年普通高等学校招生全国统一考试(Ⅱ卷)逐题解析理科数学一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

【题目1】(2017·新课标全国Ⅱ卷理1)1。

31ii+=+( ) A .12i + B .12i - C .2i + D .2i -【命题意图】本题主要考查复数的四则运算及共轭复数的概念,意在考查学生的运算能力。

【解析】解法一:常规解法()()()()3134221112i i i ii i i i +-+-===-++- 解法二:对十法31i i ++可以拆成两组分式数3111,运算的结果应为a bi +形式,223111211a ⨯+⨯==+(分子十字相乘,分母为底层数字平方和),221131111b ⨯-⨯==-+(分子对位之积差,分母为底层数字平方和).解法三:分离常数法()()1132121121111i i i i i i i i i+-+++==+=+=-++++ 解法四:参数法()()()()3331311a b ia bi i a bi i i ab a b i a b i -=⎧+=+⇒+=++⇒+=-++⇒⎨+=+⎩,解得21a b =⎧⎨=-⎩故321ii i+=-+ 【知识拓展】复数属于新课标必考点,考复数的四则运算的年份较多,复数考点有五:1。

复数的 几何意义(2016年);2.复数的四则运算;3。

复数的相等的充要条件;4.复数的分类及共轭复数; 5。

复数的模【题目2】(2017·新课标全国Ⅱ卷理2)2.设集合{}1,2,4A =,{}240x x x m B =-+=.若{}1AB =,则B =( )A .{}1,3-B .{}1,0C .{}1,3D .{}1,5【命题意图】本题主要考查一元二次方程的解法及集合的基本运算,以考查考生的运算能力为目 的。

【解析】解法一:常规解法∵ {}1AB = ∴ 1是方程240x x m -+=的一个根,即3m =,∴ {}2430B x x x =-+=故 {}1,3B = 解法二:韦达定理法 ∵ {}1AB = ∴ 1是方程240x x m -+=的一个根,∴ 利用伟大定理可知:114x +=,解得:13x =,故 {}1,3B =解法三:排除法∵集合B 中的元素必是方程方程240x x m -+=的根,∴ 124x x +=,从四个选项A ﹑B ﹑C ﹑D 看只有C 选项满足题意.【知识拓展】集合属于新课标必考点,属于函数范畴,常与解方程﹑求定义域和值域﹑数集意义 相结合,集合考点有二:1。

(完整版)2017全国二卷理科数学高考真题及答案

(完整版)2017全国二卷理科数学高考真题及答案

2017年普通高等学校招生全国统一考试理科数学(全国2卷)一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.31ii+=+() A .12i + B .12i - C .2i + D .2i -2.设集合{}1,2,4A =,{}240x x x m B =-+=.若{}1AB =,则B =()A .{}1,3-B .{}1,0C .{}1,3D .{}1,53.我国古代数学名著《算法统宗》中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”意思是:一座7层塔共挂了381盏灯,且相邻两层中的下一层灯数是上一层灯数的2倍,则塔的顶层共有灯()A .1盏B .3盏C .5盏D .9盏4.如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,该几何体由一平面将一圆柱截去一部分后所得,则该几何体的体积为() A .90π B .63π C .42π D .36π5.设x ,y 满足约束条件2330233030x y x y y +-≤⎧⎪-+≥⎨⎪+≥⎩,则2z x y =+的最小值是()A .15-B .9-C .1D .96.安排3名志愿者完成4项工作,每人至少完成1项,每项工作由1人完成,则不同的安排方式共有() A .12种 B .18种 C .24种 D .36种7.甲、乙、丙、丁四位同学一起去向老师询问成语竞赛的成绩.老师说:你们四人中有2位优秀,2位良好,我现在给甲看乙、丙的成绩,给乙看丙的成绩,给丁看甲的成绩.看后甲对大家说:我还是不知道我的成绩.根据以上信息,则()A .乙可以知道四人的成绩B .丁可以知道四人的成绩C .乙、丁可以知道对方的成绩D .乙、丁可以知道自己的成绩 8.执行右面的程序框图,如果输入的1a =-,则输出的S =()A .2B .3C .4D .59.若双曲线C:22221x y a b-=(0a >,0b >)的一条渐近线被圆()2224x y -+=所截得的弦长为2,则C 的离心率为()A .2B .3C .2D .23310.已知直三棱柱111C C AB -A B 中,C 120∠AB =,2AB =,1C CC 1B ==,则异面直线1AB 与1C B 所成角的余弦值为()输出S K=K+1a =a S =S +a ∙K 是否输入a S =0,K =1结束K ≤6开始ABCD11.若2x =-是函数21`()(1)x f x x ax e -=+-的极值点,则()f x 的极小值为()A.1-B.32e --C.35e -D.1 12.已知ABC ∆是边长为2的等边三角形,P 为平面ABC 内一点,则()PA PB PC ⋅+的最小值是() A.2- B.32-C. 43- D.1- 二、填空题:本题共4小题,每小题5分,共20分。

2017年高考理科数学全国2卷(附答案)

2017年高考理科数学全国2卷(附答案)

学校:___________________________年_______班姓名:____________________学号:________---------密封线---------密封线---------绝密★启用前2017年普通高等学校招生全国统一考试理科数学全国II 卷(全卷共10页)(适用地区:甘肃、青海、内蒙古、黑龙江、吉林、辽宁、宁夏、新疆、陕西、重庆、西藏)注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其它答案标号,回答非选择题时,将答案写在答题卡上,写在本试卷上无效。

3.考试结束后,将本试卷和答案卡一并交回。

一、选择题:本题共12小题,每小题5分,共60分。

在每个小题给出的四个选项中,只有一项是符合题目要求的。

1. 3+i 1+i=A .1+2i B.1–2i C.2+i D .2–i2. 设集合A={1,2,4},B={x 2–4x +m=0},若A ∩B={1},则 B =A .{1,–3} B.{1,0} C.{1,3} D.{1,5}3. 我国古代数学名著《算法统宗》中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”意思是:一座7层塔共挂了381盏灯,且相邻两层中的下一层灯数是上一层灯数的2倍,则塔的顶层共有灯A .1盏 B.3盏 C.5盏 D.9盏4. 如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,该几何体由一平面将一圆柱截去一部分后所得,则该几何体的体积为A .90π B .63π C .42πD .36π5. 设x 、y 满足约束条件2x+3y –3≤02x –3y+3≥0y+3≥0,则z=2x+y 的最小值是A .–15 B.–9 C.1 D.96. 安排3名志愿者完成4项工作,每人至少完成1项,每项工作由1人完成,则不同的安排方式共有A .12种 B.18种 C . 24种 D .36种7. 甲、乙、丙、丁四位同学一起去向老师询问成语竞猜的成绩。

(完整版)2017年全国高考理科数学试题及答案-全国卷2,推荐文档

(完整版)2017年全国高考理科数学试题及答案-全国卷2,推荐文档

绝密★启用前理科数学注意事项:1. 答题前,考生先将自己的姓名、 准考证号填写清楚, 将条形码准确粘贴在条形码区域 内。

2. 选择题必须使用2B 铅笔填涂;非选择题必须使用 0.5毫米黑色字迹的签字笔书写,字体工整,笔迹清楚3. 请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效; 在草稿纸、试卷上答题无效4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。

5•保持卡面清洁,不要折叠、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀项是符合题目要求的。

A. 1 2i灯三百八十一,请问尖头几盏灯?”意思是:一座 7层塔共挂了 381盏灯,且相邻两层中的下一层灯数是上一层灯数的 2倍,则塔的顶层共有灯() A. 1盏B. 3盏C. 5盏D. 9盏4. 如图,网格纸上小正方形的边长为 1,粗实线画出的是某几何体的三视图,该几何体由一平面将一圆柱截去一部分后所得,则该几何体的体积为( ) A. 90B . 63C. 42D . 362x 3y 3 05.设x , y 满足约束条件 2x 3y 3 0,则z 2x y 的最小值是()y 3 02017年普通高等学校招生全国统一考试(全国卷2)、选择题:本题共12小题,每5分,共60分。

在每小题给出的四个选项中,只有 2.设集合A1,2,4 ,4x•若 AI B{1},则 B3. A.1, 3 1,01,31,5我国古代数学名着《算法统宗》中有如下问题:"远望巍巍塔七层,红光点点倍加增,共 2i26. 7. 8. 9. 10. 11. 12. A.15安排3名志愿者完成 排方式共有( )A. 12 种4项工作,每人至少完成.18种1项,每项工作由 .24种 1人完成,则不同的安.36种甲乙、丙、丁四位同学一起去向老师询问成语竞赛的成绩.老师说:你们四人中有位优秀,2位良好,我现在给甲看乙、 后甲对大家说:我还是不知道我的成绩. A.乙可以知道四人的成绩 C.乙、丁可以知道对方的成绩 执行右面的程序框图,如果输入的 A. B. C. D.若双曲线C: A. 2C. 2丙的成绩,给乙看丙的成绩,给丁看甲的成绩.看 根据以上信息,则( .丁可以知道四人的成绩 2x~~2a已知直三棱柱 4所截得的弦长为2,.-.3.乙、丁可以知道自己的成绩DABC AB1G 中,C 120o ,C CC 1 1,则异面直线 1与G 所成角的余弦值为(15 5.10 5若x 2是函数f(x)(x 2axx 1'1)e 的极值点,则f(x)的极小值为A. 1B.2e 3C.5e 3D.1已知 ABC 是边长为2uun 的等边三角形, P 为平面ABC 内一点,贝U PA uuu uuu(PB PC)的最小值是( ) 3 4 A. 2B.C.D.123二、填空题:本题共 4小题,每小题5分,共20分。

2017年高考全国2卷理科数学及答案

2017年高考全国2卷理科数学及答案

绝密★启用前2017年普通高等学校招生全国统一考试理科数学 全国II 卷(全卷共10页)(适用地区:甘肃、青海、内蒙古、黑龙江、吉林、辽宁、宁夏、新疆、陕西、重庆、西藏)注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2. 回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其它答案标号,回答非选择题时,将答案写在答题卡上,写在本试卷上无效。

3.考试结束后,将本试卷和答案卡一并交回。

一、 选择题:本题共12小题,每小题5分,共60分。

在每个小题给出的四个选项中, 只有一项是符合题目要求的。

1. 3+i 1+i=A .1+2iB .1–2iC .2+iD .2–i 2. 设集合A={1,2,4},B={x 2–4x +m=0},若A∩B={1},则B = A .{1,–3} B .{1,0} C .{1,3} D .{1,5}3. 我国古代数学名著《算法统宗》中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”意思是:一座7层塔共挂了381盏灯,且相邻两层中的下一层灯数是上一层灯数的2倍,则塔的顶层共有灯A .1盏B .3盏C .5盏D .9盏4. 如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,该几何体由一平面将一圆柱截去一部分后所得,则该几何体的体积为 A .90π B .63π C .42π D .36π5. 设x 、y 满足约束条件⎩⎨⎧2x+3y–3≤02x–3y+3≥0y+3≥0,则z=2x+y 的最小值是A .–15B .–9C .1D .96. 安排3名志愿者完成4项工作,每人至少完成1项,每项工作由1人完成,则不同的安排方式共有A .12种B .18种C . 24种D .36种7. 甲、乙、丙、丁四位同学一起去向老师询问成语竞猜的成绩。

老师说:你们四人中有2位优秀,2位良好,我现在给甲看乙、丙的成绩,给乙看丙的成绩,给丁看甲的成绩。

2017年高考真题全国2卷理科数学(附答案解析)

2017年高考真题全国2卷理科数学(附答案解析)

说不知道自已的成绩,假定丙是优,则乙是良,乙就知道自己成绩.给丁看甲成绩,因
为甲不知道自己成绩,乙丙是一优一良,则甲丁也是一优一良,丁看到甲成绩,假定甲
是优,则丁是良,丁肯定知道自已的成绩了
故选:D.
【点睛】
本题考查了合情推理的问题,关键掌握四人所知只有自己看到,老师所说及最后甲说话,
属于中档题. 8.B
2x + 3y − 3 ≤ 0 作出 2x − 3y + 3 ≥ 0 表示的可行域,如图,
y + 3 ≥ 0
2x + 3y − 3 =0 x = −6

可得

2x − 3y + 3 =0 y = −3
将=z 2x + y 变形为 y =−2x + z , 平移直线 y =−2x + z ,
由图可知当直 y =−2x + z 经过点 (−6, −3) 时,
4 − 2i
=2-i.
2
参考答案
故选 D. 【点睛】 这个题目考查了复数的除法运算,复数常考的还有几何意义,z=a+bi(a,b∈R)与复平面上
uuur 的点 Z(a,b)、平面向量 OZ 都可建立一一对应的关系(其中 O 是坐标原点);复平面内,实
轴上的点都表示实数;虚轴上的点除原点外都表示纯虚数.涉及到共轭复数的概念,一般地, 当两个复数的实部相等,虚部互为相反数时,这两个复数叫做互为共轭复数,复数 z 的共轭
a2 b2

得的弦长为 2,则 C 的离心率为
()
A.2
B. 3
C. 2
D. 2 3 3
10.已知直三棱柱 ΑΒC − Α1Β1C1 中, ∠ΑΒC = 120o, ΑΒ = 2 , ΒC= CC=1 1,则

2017高考理科数学全国2卷-含答案.pdf

2017高考理科数学全国2卷-含答案.pdf

A.1 盏
B. 3 盏
C. 5 盏
D. 9 盏
4.如图,网格纸上小正方形的边长为 1,粗实线画出的是某几何体的三视图,
该几何体由一平面将一圆柱截去一部分后所得,则该几何体的体积为()
A. 90
B. 63
C. 42
D. 36
5.设 x , y 满足约束条件
2x 3y 3 0
2x 3y 3 0
y30
,则 z 2x y 的最小值是()
20.解
uuur NP ( 1)设 P( x,y) ,M ( x0,y0) ,设 N(x0,0) ,
uuuur x x0 , y , NM
0, y0
uuur 由 NP
uuuur 2 NM

x 0 =x,
y0
2 y2Biblioteka x2y21
因为 M ( x0,y0)在 C 上,所以 2 2
因此点 P 的轨迹方程为 x2 y2 2
A. 15
B. 9
C. 1
D. 9
6.安排 3 名志愿者完成 4 项工作,每人至少完成 1 项,每项工作由 1 人完成,则不同的安排方式共有()
A.12 种
B. 18 种
C. 24 种
D. 36 种
7. 甲、乙、丙、丁四位同学一起去向老师询问成语竞赛的成绩.老师说:你们四人中 有 2 位优秀, 2 位良好,我现在给甲看乙、丙的成绩,给乙看丙的成绩,给丁看甲的
.若
I
1 ,则
()
A. 1, 3
B. 1,0
C. 1,3
D. 1,5
3.我国古代数学名著 《算法统宗》 中有如下问题: “远望巍巍塔七层, 红光点点倍加增, 共灯三百八十一,
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

理科数学 2017年高三2017年全国甲卷理科数学理科数学题型单选题填空题简答题总分得分单选题(本大题共12小题,每小题____分,共____分。

)1.( )A.B.C.D.2.设集合,.若,则( )A.B.C.D.3.我国古代数学名著《算法统宗》中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几灯?”意思是:一座7层塔共挂了381盏灯,且相邻两层中的下一层灯数是上一层灯数的2倍,则塔的顶层共有灯( )A. 1盏B. 3盏C. 5盏D. 9盏4.如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,该几何体由一平面将一圆柱截去一部分后所得,则该几何体的体积为( )A.B.C.D.5.设,满足约束条件,则的最小值是( )A.B.C.D.6.安排3名志愿者完成4项工作,每人至少完成1项,每项工作由1人完成,则不同的安排方式共有( )A. 12种B. 18种C. 24种D. 36种7.甲、乙、丙、丁四位同学一起去向老师询问成语竞赛的成绩.老师说:你们四人中有2位优秀,2位良好,我现在给甲看乙、丙的成绩,给乙看丙的成绩,给丁看甲的成绩.看后甲对大家说:我还是不知道我的成绩.根据以上信息,则( )A. 乙可以知道四人的成绩B. 丁可以知道四人的成绩C. 乙、丁可以知道对方的成绩D. 乙、丁可以知道自己的成绩8.执行右面的程序框图,如果输入的,则输出的( )A. 2B. 3C. 4D. 59.若双曲线(,)的一条渐近线被圆所截得的弦长为2,则的离心率为( )A. 2B.C.D.10.已知直三棱柱中,,,,则异面直线与所成角的余弦值为( )A.B.C.D.11.若是函数的极值点,则的极小值为( )A.B.C.D. 112.已知是边长为2的等边三角形,为平面内一点,则的最小是( )A.B.C.D.填空题(本大题共4小题,每小题____分,共____分。

)13.一批产品的二等品率为,从这批产品中每次随机取一件,有放回地抽取次,表示抽到的二等品件数,则____________.14.函数的最大值是____________.15.等差数列的前项和为,,,则____________.16.已知是抛物线的焦点,是上一点,的延长线交轴于点.若为的中点,则____________.简答题(综合题)(本大题共7小题,每小题____分,共____分。

)17.(12分)的内角的对边分别为,已知.(1)求;(2)若,的面积为,求.18.(12分)海水养殖场进行某水产品的新、旧网箱养殖方法的产量对比,收获时各随机抽取了100 个网箱,测量各箱水产品的产量(单位:kg).其频率分布直方图如下:(1)设两种养殖方法的箱产量相互独立,记A表示事件:“旧养殖法的箱产量低于50kg,新养殖法的箱产量不低于50kg”,估计A的概率;(2)填写下面列联表,并根据列联表判断是否有99%的把握认为箱产量与养殖方法有关:(3)根据箱产量的频率分布直方图,求新养殖法箱产量的中位数的估计值(精确到0.01).附:,19.(12分)如图,四棱锥P-ABCD中,侧面PAD为等边三角形且垂直于底面ABCD,E是PD的中点.(1)证明:直线平面PAB;(2)点M在棱PC 上,且直线BM与底面ABCD所成角为,求二面角的余弦值.20.(12分)设O为坐标原点,动点M在椭圆C:上,过M作x轴的垂线,垂足为N,点P满足.(1)求点P的轨迹方程;(2)设点Q在直线上,且.证明:过点P且垂直于OQ的直线l过C 的左焦点F.21.(12分)已知函数,且.(1)求;(2)证明:存在唯一的极大值点,且.所以.22.选考题:共10分.请考生在第22、23题中任选一题作答.如果多做,则按所做的第一题计分.[选修4―4:坐标系与参数方程](10分)在直角坐标系中,以坐标原点为极点,x轴正半轴为极轴建立极坐标系,曲线的极坐标方程为.(1)M为曲线上的动点,点P在线段OM上,且满足,求点P的轨迹的直角坐标方程;(2)设点A的极坐标为,点B在曲线上,求面积的最大值.23.选考题:共10分.请考生在第22、23题中任选一题作答.如果多做,则按所做的第一题计分.[选修4—5:不等式选讲](10分)已知.证明:(1);(2).答案单选题1. D2. C3. B4. B5. A6. D7. D8. B9. A 10. C 11. A 12. B 填空题13.14.115.16.6简答题17.(1)(2)18.(1)(2)见解析(3)19.(1)见解析;(2)20.(1);(2)见解析21.(1);(2)见解析22.(1).(2)23.(1)见解析(2)见解析解析单选题1.由复数的除法运算法则有:,故选D.2.由得,即是方程的根,所以,,故选C.3.设塔的顶层共有灯盏,则各层的灯数构成一个首项为,公比为2的等比数列,结合等比数列的求和公式有:,解得,即塔的顶层共有灯3盏,故选B.4.由题意,其体积,其体积,故该组合体的体积.故选B.5.绘制不等式组表示的可行域,结合目标函数的几何意义可得函数在点处取得最小值,最小值为.故选A.6.由题意可得,一人完成两项工作,其余两人每人完成一项工作,据此可得,只要把工作分成三份:有种方法,然后进行全排列,由乘法原理,不同的安排方式共有种.故选D.7.四人所知只有自己看到,老师所说及最后甲说的话.甲不知自己成绩→乙、丙中必有一优一良,(若为两优,甲会知道自己成绩;两良亦然)→乙看了丙成绩,知自己成绩→丁看甲,甲、丁中也为一优一良,丁知自己成绩.8.阅读程序框图,初始化数值.循环结果执行如下:第一次:;第二次:;第三次:;第四次:;第五次:;第六次:;结束循环,输出.故选B.9.取渐近线,化成一般式,圆心到直线距离为得,,.10.如图所示,补成直四棱柱,则所求角为,易得,因此,故选C.11.,则,则,,令,得或,当或时,,当时,,则极小值为.12.如图,以为轴,的垂直平分线为轴,为坐标原点建立平面直角坐标系,则,,,设,所以,,,所以,,当时,所求的最小值为,故选B.填空题13.由题意可得,抽到二等品的件数符合二项分布,即,由二项分布的期望公式可得.14.化简三角函数的解析式,则,由可得,当时,函数取得最大值1.15.设首项为,公差为.则求得,,则,16.如图所示,不妨设点M位于第一象限,设抛物线的准线与轴交于点,作与点,与点,由抛物线的解析式可得准线方程为,则,在直角梯形中,中位线,由抛物线的定义有:,结合题意,有,故.简答题17.(1)依题得:.∵,∴,∴,∴,(2)由⑴可知.∵,∴,∴,∴,∵,∴,∴,∴,∴,∴.18.(1)记:“旧养殖法的箱产量低于”为事件“新养殖法的箱产量不低于”为事件而(2)由计算可得的观测值为∵∴∴有以上的把握产量的养殖方法有关.(3),,,∴中位数为.19.(1)令中点为,连结,,.∵,为,中点,∴为的中位线,∴.又∵,∴.又∵,∴,∴.∴四边形为平行四边形,∴.又∵,∴(2)取中点,连,由于为正三角形∴又∵平面平面,平面平面∴平面,连,四边形为正方形。

∵平面,∴平面平面而平面平面过作,垂足为,∴平面∴为与平面所成角,∴在中,,∴,设,,,∴,∴在中,,∴∴,,以为坐标原点,、、分别为、、轴建立空间直角坐标系,,,,,设平面的法向量为,,∴∴,而平面的法向量为设二面角的大角为(为锐角)∴20.(1)设,设,.由得.因为在C上,所以.因此点P的轨迹方程为.(2)由题意知.设,则,.由得,又由(1)知,故,所以,即.又过点P存在唯一直线垂直于OQ,所以过点P且垂直于OQ的直线过C的左焦点F.21.(1)的定义域为设,则等价于因为若a=1,则.当0<x<1时,单调递减;当x>1时,>0,单调递增.所以x=1是的极小值点,故综上,⑵,,.令,则,.令得,当时,,单调递减;当时,,单调递增.所以,.因为,,,,所以在和上,即各有一个零点.设在和上的零点分别为,因为在上单调减,所以当时,,单调增;当时,,单调减.因此,是的极大值点.因为,在上单调增,所以当时,,单调减,时,单调增,因此是的极小值点.所以,有唯一的极大值点.由前面的证明可知,,则.因为,所以,则又,因为,所以.因此,.22.⑴设则.解得,化为直角坐标系方程为.(2)设点B的极坐标为,由题设知,于是△OAB面积当时,S取得最大值所以△OAB面积的最大值为23.(1)(2)因为所以,因此.。

相关文档
最新文档