高考数学概率与统计知识点
2024高考数学压轴题——概率与统计高考常见题型解题思路及知识点总结
2024高考数学压轴题——概率与统计高考常见题型解题思路及知识点总结2024高考数学压轴题——概率与统计的挑战与应对随着高考的临近,数学科目的复习也进入了关键阶段。
2024年的高考数学压轴题将会涉及到概率与统计的内容,这不仅考察学生的基本数学知识,更侧重于考察学生的逻辑思维能力、实际应用能力和问题解决能力。
本文将针对这一部分的常见题型、解题思路和知识点进行总结,希望能为广大考生提供一些帮助和指导。
一、常见题型的解题思路1、概率计算:在解决概率计算问题时,学生需要明确事件的独立性、互斥性和概率公式的应用。
尤其是古典概率和条件概率的计算,需要学生熟练掌握。
对于涉及多个事件的概率计算,学生需要理清事件的关联关系,采用加法、乘法或全概率公式进行计算。
2、随机变量及其分布:这部分要求学生掌握离散型和连续型随机变量的分布律及分布函数,理解并掌握几种常见的分布,如二项分布、泊松分布和正态分布等。
对于随机变量的数字特征,如期望、方差和协方差等,学生需要理解其含义并掌握计算方法。
3、统计推断:在统计推断问题中,学生需要掌握参数估计和假设检验的基本方法。
对于点估计,学生需要理解矩估计法和最大似然估计法的原理,并能够进行计算。
对于假设检验,学生需要理解显著性检验的原理,掌握单侧和双侧检验的方法。
4、相关与回归分析:相关与回归分析要求学生能够读懂散点图,理解线性相关性和线性回归的概念,掌握回归方程的拟合方法和拟合优度的评估方法。
二、概率与统计的相关知识点总结1、概率的基本概念:事件、样本空间、事件的概率、互斥事件、独立事件等。
2、随机变量及其分布:离散型随机变量和连续型随机变量,二项分布、泊松分布和正态分布等。
3、统计推断:参数估计、假设检验、点估计、置信区间、单侧和双侧检验等。
4、相关与回归分析:线性相关性和线性回归的概念,回归方程的拟合方法和拟合优度的评估方法。
三、示例分析下面我们通过一个具体的示例来演示如何分析和解决一道概率与统计的压轴题。
高考数学概率统计知识点总结(文理通用)
概率与统计知识点及专练(一)统计基础知识:1. 随机抽样:(1).简单随机抽样:设一个总体的个数为N ,如果通过逐个抽取的方法从中抽取一个样本,且每次抽取时各个个体被抽到的概率相等,就称这样的抽样为简单随机抽样.常用抽签法和随机数表法.(2).系统抽样:当总体中的个数较多时,可将总体分成均衡的几个部分,然后按照预先定出的规则,从每一部分抽取1个个体,得到所需要的样本,这种抽样叫做系统抽样(也称为机械抽样).(3).分层抽样:当已知总体由差异明显的几部分组成时,常将总体分成几部分,然后按照各部分所占的比进行抽样,这种抽样叫做分层抽样.2. 普通的众数、平均数、中位数及方差: (1).众数:一组数据中,出现次数最多的数(2).平均数:常规平均数:12nx x x x n ++⋅⋅⋅+=(3).中位数:从大到小或者从小到大排列,最中间或最中间两个数的平均数(4).方差:2222121[()()()]n s x x x x x x n =-+-+⋅⋅⋅+-(5).标准差:s3 .频率直方分布图中的频率:(1).频率 =小长方形面积:f S y d ==⨯距;频率=频数/总数; 频数=总数*频率(2).频率之和等于1:121n f f f ++⋅⋅⋅+=;即面积之和为1: 121n S S S ++⋅⋅⋅+=4. 频率直方分布图下的众数、平均数、中位数及方差: (1).众数:最高小矩形底边的中点(2).平均数:112233n n x x f x f x f x f =+++⋅⋅⋅+ 112233n n x x S x S x S x S =+++⋅⋅⋅+(3).中位数:从左到右或者从右到左累加,面积等于0.5时x 的值(4).方差:22221122()()()nn s x x f x x f x x f =-+-+⋅⋅⋅+-5.线性回归直线方程:(1).公式:ˆˆˆy bx a=+其中:1122211()()ˆ()n ni i i ii in ni ii ix x y y x y nxybx x x nx====---∑∑==--∑∑(展开)ˆˆa y bx=-(2).线性回归直线方程必过样本中心(,) x y(3).ˆ0:b>正相关;ˆ0:b<负相关(4).线性回归直线方程:ˆˆˆy bx a=+的斜率ˆb中,两个公式中分子、分母对应也相等;中间可以推导得到6. 回归分析:(1).残差:ˆˆi i ie y y=-(残差=真实值—预报值)分析:ˆie越小越好(2).残差平方和:2 1ˆ() ni iiy y =-∑分析:①意义:越小越好;②计算:222211221ˆˆˆˆ()()()() ni i n niy y y y y y y y =-=-+-+⋅⋅⋅+-∑(3).拟合度(相关指数):2 2121ˆ()1()ni iiniiy y Ry y==-∑=--∑分析:①.(]20,1R∈的常数;②.越大拟合度越高(4).相关系数:()()n ni i i ix x y y x y nx y r---⋅∑∑==分析:①.[1,1]r∈-的常数;②.0:r>正相关;0:r<负相关③.[0,0.25]r∈;相关性很弱;(0.25,0.75)r∈;相关性一般;[0.75,1]r∈;相关性很强7. 独立性检验:(1).2×2列联表(卡方图): (2).独立性检验公式①.22()()()()()n ad bc k a b c d a c b d -=++++②.上界P 对照表:(3).独立性检验步骤:①.计算观察值k :2()()()()()n ad bc k a b c d a c b d -=++++ ②.查找临界值0k :由犯错误概率P ,根据上表查找临界值0k③.下结论:0k k ≥即认为有P 的没把握、有1-P 以上的有把握认为两个量相关;0k k <:即认为没有1-P 以上的把握认为两个量是相关关系。
高考统计公式知识点总结
高考统计公式知识点总结统计学是一门研究数据收集、分析和解释的学科,其应用广泛而深入。
在高中阶段,学生们接触到的统计学知识主要集中在一些基本的统计公式上。
这些公式在高考中经常出现,对于顺利完成数学考试至关重要。
下面是对高考统计公式知识点的一些总结,希望对广大考生有所帮助。
1.概率概率是统计学中的一个重要概念,表示某个事件发生的可能性。
常用的概率公式包括:- 事件的概率公式:P(A) = n(A) / n(S),其中P(A)表示事件A发生的概率,n(A)表示事件A包含的基本事件数,n(S)表示样本空间中的基本事件数。
- 对立事件的概率公式:P(A') = 1 - P(A),其中A'表示事件A的对立事件。
2.排列组合排列组合是统计学中另一个重要概念,用于计算有关事物的不同排列或组合方式的个数。
常用的排列组合公式包括:- 排列公式:A(n, m) = n! / (n-m)!,表示从n个元素中取出m个元素进行排列的方式总数。
- 组合公式:C(n, m) = n! / (m!(n-m)!),表示从n个元素中取出m个元素进行组合的方式总数。
3.均值和标准差均值和标准差是描述一组数据分布特征的指标。
常用的计算公式包括:- 均值公式:μ = (x1 + x2 + ... + xn)/ n,其中μ表示均值,x表示数据的观测值,n表示数据的总数。
- 标准差公式:σ = √( (x1 - μ)² + ... + (xn - μ)² )/ n,其中σ表示标准差。
4.正态分布正态分布是一种常见的概率分布,其形状呈钟形曲线,对于统计学的许多问题具有重要的应用。
正态分布的概率可以通过标准正态分布表来查找,也可以利用相关的计算公式计算。
在高考中,统计学是数学考试的一个重要组成部分。
掌握以上提到的统计公式,对于正确理解和解答与统计学有关的问题至关重要。
考生可以通过多做一些相关的题目,熟悉这些公式的应用,提升自己的解题能力,在考试中取得好成绩。
高考数学中的概率统计相关知识点分析
高考数学中的概率统计相关知识点分析高考数学中,概率统计是一道不可忽略的大题,几乎每年都出现在高考试卷中,因此对于概率统计相关知识点的掌握程度直接影响到考生高考成绩的好坏。
要想在高考数学中获得优异的成绩,必须熟练掌握概率统计知识,并了解其相关考点。
本文将从以下几个方面,对高考数学中的概率统计知识点进行分析和总结。
一、概率统计的定义概率统计是数学中的一个重要分支,是一种研究随机现象规律性的数学工具,主要包括概率论和统计学两个方面。
概率论是用来描述随机现象可能发生的概率的数学理论,而统计学则是通过对样本数据的分析,来推断总体的性质和规律的一门学科。
二、常见的概率统计方法在高考数学中,常见的概率统计方法包括概率、期望、方差和标准差等。
其中,概率是指某一事件在所有可能事件中所占的比例,通常用百分数或小数表示。
期望是指一次随机试验中,所期待获得的数值,可以用公式E(X)=∑P(Xi)X i 来表示。
方差是指一组数据与其期望的差的平方值的平均数,可以用公式D(X)=E[X-E(X)]^2来表示。
标准差是方差的平方根,可以用公式σ=sqrt(D(X))来表示,α 和β 之间的数即为随机变量 X 的一个离散分布。
三、高考数学中的概率统计考点1.条件概率条件概率是指在某一事件已经发生的情况下,另一个事件发生的概率。
在高考数学中,条件概率经常被用来解决概率计算问题,如计算A事件在B事件发生的情况下的概率等。
通常来说,条件概率用公式P(A|B) = P(AB) / P(B) 来表示。
2.独立事件独立事件是指两个或多个事件之间不相互影响,即一个事件的发生与另一个事件的发生无关。
在高考概率统计中,考生需要掌握如何判定两个事件是否独立,以及如何根据独立事件的性质计算概率。
3.随机变量随机变量是指变量的取值不确定,以概率的形式来描述的变量。
高考概率统计中,随机变量通常用于求期望、方差、标准差等常见的概率统计方法。
四、概率统计的应用概率统计理论在现实生活中有着广泛的应用,在自然科学、社会科学、医学、经济学、政治学等领域都有重要的地位。
高考数学中的概率统计基础知识点
高考数学中的概率统计基础知识点概率统计是高考数学的其中一项重要内容,包括了概率、统计和随机变量等知识点。
学好这些基础知识点,不仅能够在高考中获得更高的分数,还可以为未来的学习和工作打下坚实的基础。
本文将对高考中的概率统计基础知识点进行详细介绍。
1. 概率概率指某件事情发生的可能性大小,通常用分数表示。
在高考中,概率通常分为两种:基本概率和条件概率。
基本概率是指一个事件在所有可能事件中发生的概率大小,通常用 P(A) 表示。
例如,掷一枚硬币,正反面概率相等,所以 P(正面)=1/2,P(反面)=1/2。
条件概率是指在已知某件事情发生的条件下,另一件事情发生的概率大小。
通常用 P(A|B) 表示,其中 B 是已知条件。
例如,从一副扑克牌中抽出一张黑桃牌的概率为 P(黑桃)=13/52。
如果已知这张牌是红色的,那么从已知条件来看,这张牌不能为黑桃,因此抽到黑桃的概率为 0。
所以 P(黑桃|红色)=0。
除了基本概率和条件概率,还有加法原理和乘法原理等概率计算方法。
2. 统计统计是一种描述和分析数据的方法。
在高考中,统计通常包括频率分布、中心位置和离散程度这三个方面。
频率分布是指给定一组数据之后,统计其分布的情况。
例如,统计某班同学的身高分布,可以把身高分为 140 厘米及以下、141-150 厘米、151-160 厘米、161-170 厘米、171 厘米及以上等几个组别,然后统计每个组别的人数。
中心位置是指一个数据集合中的“平均数”。
常用的中心位置有平均数、中位数和众数。
平均数是指所有数据之和除以数据个数得到的数值,中位数是指把数据集合分为两个部分,中间的数即为中位数,众数是指出现最频繁的数。
离散程度是指一组数据中的变化程度。
常用的离散程度有极差、方差和标准差等。
极差是指数据中的最大值减去最小值,方差是指每个数据与平均数的差的平方和的平均数,标准差是指方差的算术平方根。
3. 随机变量随机变量是指能够采取多个值的变量。
概率与统计高考知识点
概率与统计高考知识点在高考数学中,概率与统计是一个重要的考点。
概率与统计不仅涉及到数学方面的知识,也与现实生活密切相关。
本文将通过几个具体的例子,深入探讨概率与统计相关的知识点,帮助考生更好地理解这一部分内容。
一、概率与事件概率与事件是概率与统计中的基础概念。
概率是描述事件发生可能性大小的数值,通常用P(A)表示。
事件是指随机试验中的一种结果,可以是一个单一结果或若干个结果的组合。
例如,投掷一枚骰子,出现点数小于等于3的事件记为A,则P(A)为1/2。
二、基本事件与对立事件基本事件是指随机试验中的最简单、最基础的事件,它不可再分解成其他事件。
对立事件是指两个事件发生的可能性互相排斥,即当一个事件发生时,另一个事件不发生。
例如,投掷一枚硬币,出现正面和出现反面就是对立事件。
三、概率的性质概率具有以下几个性质:1.非负性:对于任何事件A,有P(A)≥0;2.必然性:对于必然事件S(整个样本空间),有P(S)=1;3.可加性:对于任意两个互不相容的事件A和B,有P(A∪B)=P(A)+P(B)。
四、条件概率条件概率是指在已经发生一个事件的条件下,另一个事件发生的概率。
条件概率表示为P(A|B),其中A是已知发生的事件,B是条件事件。
例如,某班级男生占总人数的1/4,女生占总人数的3/4,已知某学生是女生,求其也是该班级的概率。
我们可以使用条件概率计算得出P(女生|学生) = P(女生∩学生) / P(学生) = 3/4。
五、独立事件独立事件是指两个事件的发生与否互相不影响。
如果事件A和事件B是独立事件,则有P(A∩B) = P(A) × P(B)。
例如,抛掷一枚硬币和掷一枚骰子,两个事件是独立的。
六、随机变量与概率分布随机变量是表示随机试验结果的变量。
离散型随机变量只能取有限个或可列个数值,连续型随机变量可以取任意实数值。
概率分布是随机变量取各个值的概率。
例如,抛掷一枚骰子,骰子的点数就是一个随机变量,其概率分布为离散型。
高考统计概率知识点归纳总结大全
高考统计概率知识点归纳总结大全概率统计是高中数学考试的重要内容之一,也是高考中常考的一个知识点。
掌握好概率统计的知识,对提高数学成绩,甚至对生活中的决策问题都有着重要的意义。
本文将对高考概率统计的知识点进行归纳总结,希望对广大考生能够有所帮助。
1. 事件与概率概率统计的基本概念是事件和概率。
事件即我们所关注的问题,而概率则是描述这个事件发生可能性大小的数值。
事件通常用大写字母表示,如A、B,而概率用P(A)表示。
概率的取值范围是0到1之间。
2. 事件的运算事件之间有着不同的运算关系,包括和事件、积事件、差事件和补事件。
对于事件A和事件B,和事件表示同时发生的事件,用A∪B表示;积事件表示两个事件同时发生,用A∩B表示;差事件表示事件A发生而事件B不发生,用A-B表示;补事件表示事件A不发生的情况,用- A表示。
3. 概率的加法规则对于两个事件A和B,它们的和事件的概率计算公式为P(A∪B) = P(A) + P(B) - P(A∩B) ,即和事件的概率等于两个事件的概率之和减去积事件的概率。
4. 独立事件与互斥事件事件A和事件B独立指的是A事件的发生与否对B事件的发生没有影响,它们之间的概率关系为P(A∩B) = P(A) × P(B)。
而互斥事件指的是A事件和B事件不能同时发生,它们之间的概率关系为P(A∩B) = 0。
5. 条件概率与乘法法则条件概率是指在另一个事件已经发生的条件下,某个事件发生的概率。
条件概率的计算公式为P(A|B) = P(A∩B) / P(B)。
乘法法则是条件概率的推广,当某个事件发生的条件不再只有一个时,乘法法则可以用来计算多个事件同时发生的概率。
6. 伯努利试验与二项分布伯努利试验是指只有两种可能结果的一类实验,如抛硬币、掷骰子等。
二项分布是指在n次独立重复伯努利试验中,事件A出现k 次的概率分布。
二项分布的概率计算公式为P(X=k) = C(n, k) × P^k × (1-P)^(n-k),其中C(n, k)表示组合数。
高中概率统计知识点_高三概率知识点总结范文
《高中概率统计知识点总结》高中概率统计是数学中的重要组成部分,它不仅在高考中占据着重要的地位,而且在实际生活中也有着广泛的应用。
本文将对高中概率统计的知识点进行全面总结,帮助高三学生更好地掌握这部分内容。
一、随机事件与概率1. 随机事件随机事件是在一定条件下可能发生也可能不发生的事件。
必然事件是在一定条件下必然发生的事件,不可能事件是在一定条件下不可能发生的事件。
2. 概率的定义概率是对随机事件发生可能性大小的度量。
对于一个随机事件A,它的概率 P(A)满足0≤P(A)≤1。
当 P(A)=1 时,事件 A 为必然事件;当 P(A)=0 时,事件 A 为不可能事件。
3. 概率的基本性质(1)概率的加法公式:对于任意两个互斥事件 A 和 B,P(A∪B)=P(A)+P(B)。
(2)对立事件的概率:若事件 A 的对立事件为\(\overline{A}\),则 P(A)+P(\(\overline{A}\))=1。
二、古典概型1. 古典概型的特点(1)试验中所有可能出现的基本事件只有有限个。
(2)每个基本事件出现的可能性相等。
2. 古典概型的概率计算公式如果一次试验中共有 n 个基本事件,事件 A 包含其中的 m 个基本事件,则事件 A 的概率 P(A)=\(\frac{m}{n}\)。
三、几何概型1. 几何概型的特点(1)试验中所有可能出现的结果(基本事件)有无限多个。
(2)每个基本事件出现的可能性相等。
2. 几何概型的概率计算公式一般地,在几何区域 D 中随机地取一点,记事件“该点落在其内部一个区域 d 内”为事件 A,则事件 A 发生的概率P(A)=\(\frac{d 的测度}{D 的测度}\)。
这里测度可以是长度、面积、体积等。
四、互斥事件与独立事件1. 互斥事件若事件 A 与事件 B 不能同时发生,则称事件 A 与事件 B 为互斥事件。
互斥事件的概率加法公式为P(A∪B)=P(A)+P(B)(A、B 互斥)。
2024高考数学概率统计知识点总结与题型分析
2024高考数学概率统计知识点总结与题型分析概率统计作为数学课程的一个重要分支,在高考中占有重要的一席之地。
它是一个与现实生活息息相关的学科,旨在通过收集、整理和分析数据,帮助我们做出正确的判断和决策。
本文对2024高考数学概率统计的知识点进行了总结,并对可能出现的题型进行了分析。
一、基本概念和公式1. 随机事件:指在一次试验中可能发生也可能不发生的事件。
2. 样本空间:指一个试验所有可能结果的集合。
3. 必然事件:指在一次试验中一定会发生的事件。
4. 不可能事件:指在一次试验中一定不会发生的事件。
5. 事件的概率:指随机事件发生的可能性大小。
6. 加法原理:对于两个互不相容的事件A和B,它们的和事件A∪B的概率等于各个事件的概率之和。
P(A∪B) = P(A) + P(B)7. 乘法原理:对于两个相互独立的事件A和B,它们的积事件A∩B的概率等于各个事件的概率之积。
P(A∩B) = P(A) × P(B)二、概率计算1. 事件的概率计算:对于离散型随机事件,概率可通过频率估计和计数原理计算。
对于连续型随机事件,概率可通过定积分计算。
2. 事件的互斥与独立:如果两个事件A和B互斥(即不能同时发生),则它们的和事件A∪B的概率等于各自事件的概率之和。
如果两个事件A和B相互独立(即一个事件的发生不受另一个事件发生与否的影响),则它们的积事件A∩B的概率等于各自事件的概率之积。
三、排列组合与概率计算1. 排列:排列是从n个不同元素中取出m个元素(m≤n),并有顺序地排成一列的方式。
排列的计算公式为:A(n,m) = n! / (n-m)!2. 组合:组合是从n个不同元素中取出m个元素(m≤n),不考虑顺序地组成一个集合的方式。
组合的计算公式为:C(n,m) = n! / [m! × (n-m)!]3. 概率计算中的排列组合:当事件A与某个事件B相关时,在计算A的概率时,需要考虑B 发生的不同排列组合情况。
高考统计概率知识点归纳总结大全
高考统计概率知识点归纳总结大全统计概率是高考数学中的重要知识点,也是考查学生逻辑思维和数据分析能力的一种方式。
掌握统计概率的基本概念和计算方法对于解题至关重要。
本文将对高考统计概率的相关知识点进行归纳总结,以帮助同学们更好地复习和应对考试。
一、基本概念1. 实验与事件:实验是指进行一次观察或测量的过程,事件是实验的结果。
2. 样本空间:样本空间是指实验中所有可能的结果的集合。
3. 事件的概率:事件的概率是指事件在随机试验中发生的可能性大小,用P(A)表示。
4. 必然事件和不可能事件:必然事件是指在每次实验中都会发生的事件,概率为1;不可能事件是指在每次实验中都不会发生的事件,概率为0。
二、概率的计算方法1. 频率与概率:频率指某个事件在实验中发生的次数与实验总次数之比,频率接近一个值时,该值即为事件的概率。
2. 古典概型:对于样本空间中的每一个结果,概率是相等的,可以用总事件数与有利事件数之比来计算概率。
3. 几何概率:对于几何概型,可以根据几何图形的面积或长度比例来计算概率。
4. 概率的运算:并、交、差、余等运算。
三、条件概率1. 条件概率的定义:在事件B发生的条件下,事件A发生的概率记作P(A|B),表示已知事件B发生的前提下,事件A发生的概率。
2. 乘法定理:P(AB) = P(A|B) × P(B),即事件A和事件B同时发生的概率等于事件B发生的概率乘以事件A在事件B发生的条件下发生的概率。
3. 全概率公式:设B1,B2,...,Bn为一组互不相容的事件且构成对空间Ω的一个分割,即它们的并为Ω,且Bi ∩ Bj = ∅ (i ≠ j),则对于任意事件A,有P(A) = P(A|B1)P(B1) + P(A|B2)P(B2) + ... +P(A|Bn)P(Bn)。
4. 贝叶斯定理:设B1,B2,...,Bn为一组互不相容的事件且构成对空间Ω的一个分割,即它们的并为Ω,且Bi ∩ Bj = ∅ (i ≠ j),则对于任意事件A,有P(Bi|A) = P(A|Bi)P(Bi) / [P(A|B1)P(B1) +P(A|B2)P(B2) + ... + P(A|Bn)P(Bn)]。
高中数学统计知识点高中数学概率与统计
高中数学统计知识点高中数学概率与统计
高中数学统计知识点包括以下内容:
1. 数据的收集和整理:包括原始数据的收集和整理,如问卷调查、实验结果等。
2. 描述统计:用于对数据进行总结和描述的方法,包括平均数、中位数、众数、极差、标准差等。
3. 概率:研究随机事件发生的可能性的数学分支,包括基本概念、概率的计算方法和
性质。
4. 概率分布:描述随机变量取值与相应概率的分布,包括离散型随机变量和连续型随
机变量的分布。
5. 统计推断:从样本数据中推断总体的特征的方法,包括点估计和区间估计。
6. 假设检验:用于推断总体参数的假设检验方法,包括单样本检验、双样本检验和相
关性检验等。
7. 相关分析:研究两个或多个变量之间关系的方法,包括相关系数和回归分析等。
8. 抽样调查:从总体中随机选择样本进行调查和统计分析的方法,包括简单随机抽样、系统抽样和分层抽样等。
以上是高中数学概率与统计的主要知识点,通过掌握这些知识,可以进行数据的整理
和分析,并进行相关的统计推断和假设检验。
新高考概率统计知识点
新高考概率统计知识点新高考是指我国自2014年开始试行的高考改革方案,其目的是全面促进学生素质的综合发展。
其中,概率统计成为新高考数学科目中重要的一部分。
下面将介绍一些与概率统计相关的知识点。
一、概率的基本概念概率是指事物发生的可能性大小,通常用数字来表示。
例如,掷一颗骰子,出现点数1的概率是1/6。
在概率统计中,常常涉及各种事件的概率计算,如何准确地计算概率是非常关键的。
二、概率的加法和乘法规则在概率统计中,有两个基本的计算规则,分别是概率的加法规则和乘法规则。
概率的加法规则用于计算两个事件中至少一个事件发生的概率。
例如,抛一次硬币,出现正面或反面的概率是1/2 + 1/2 = 1。
概率的乘法规则用于计算两个事件同时发生的概率。
例如,在一副52张的扑克牌中,从中任意抽取2张,同时是红心牌的概率是(13/52) * (12/51) = 1/17。
三、条件概率与独立性条件概率是指在已知一些信息的情况下,某个事件发生的概率。
例如,在一堆牌中,已知第一张牌是红心的情况下,第二张牌是红心的概率是(25/51)。
独立性是指两个事件之间的发生没有关联。
当两个事件是独立的时候,它们的联合概率等于各自概率的乘积。
例如,从一副牌中抽取两张牌,第一张牌是红心的概率为(1/2),第二张牌也是红心的概率为(1/2),两者同时发生的概率为(1/2) * (1/2) = 1/4。
四、随机变量与概率分布随机变量是指可随机取值的变量,在概率统计中常用大写字母表示。
概率分布是随机变量取值的概率情况。
常见的概率分布有离散型概率分布和连续型概率分布。
离散型概率分布用于描述离散变量的取值情况,例如二项分布、泊松分布等。
连续型概率分布用于描述连续变量的取值情况,例如正态分布、指数分布等。
五、大数定律与中心极限定理大数定律是概率统计中的重要定律之一,它指出随着样本容量的增加,样本均值将趋近于总体均值。
中心极限定理是概率统计中的另一个重要定理,它指出在一定条件下,多个相互独立的随机变量的和或均值的分布将趋近于正态分布。
高考数学概率统计
高考数学概率统计一、引言概率统计是高考数学中的一个重要知识点,它是现代科学与技术发展的基础,也是我们进行科学研究和决策的重要工具。
在高考中,概率统计占据了一定的分值比例,对于考生来说,掌握好概率统计非常重要。
本文将以概率统计为主题,系统介绍高考概率统计的基本概念、方法和应用。
二、概率的基本概念概率是事件发生的可能性大小的度量,它的取值范围是0到1之间。
其中,0表示不可能事件,1表示必然事件。
对于一个随机试验,其样本空间S是所有可能的结果的集合。
事件A是样本空间的一个子集,表示一个或多个结果的集合。
事件A发生的概率就是事件A所含结果数与样本空间结果数之比。
在概率统计中,常用的计算方式有古典概型和几何概型。
古典概型适用于样本空间中所有元素发生的概率相等的情况,例如投掷硬币、掷骰子等。
几何概型适用于样本空间中的结果具有几何性质的随机试验,例如求点在某个区域的概率。
三、概率的性质和运算法则在概率统计中,有一些重要的性质和运算法则,它们对于计算概率具有重要的指导作用。
1.互补事件的概率:事件A和事件A的互补事件A'的概率之和为1,即P(A) + P(A') = 1。
2.事件的包含关系:事件A包含事件B的充分必要条件是P(A) ≥P(B)。
3.加法定理:对于任意两个事件A和B,有P(A∪B) = P(A) + P(B) - P(A∩B)。
4.乘法定理:对于任意两个事件A和B,有P(A∩B) = P(A) × P(B|A)。
其中,P(B|A)表示在事件A已经发生的条件下,事件B发生的概率。
四、离散型随机变量及其分布律在概率统计中,随机变量是一种可以用实数来表示不确定结果的数学量。
它可以是离散型的,也可以是连续型的。
离散型随机变量的取值只能是有限个或者可数个,例如掷骰子时的点数。
离散型随机变量的概率分布可以用分布律来描述。
分布律是指随机变量取各个值时的概率。
对于一个离散型随机变量X,其分布律可以用一个函数P(x)表示,其中x表示随机变量的取值。
文科高考概率统计知识点
文科高考概率统计知识点在文科高考中,概率统计是一个重要的数学知识点,它涉及到了随机事件的发生规律以及对数据的分析和归纳能力。
掌握好概率统计的知识,对于学生在高考数学中的成绩起着至关重要的作用。
下面,本文将从概率的基本概念、事件的概率、独立事件、条件概率和统计与分布等角度,详细阐述文科高考中的概率统计知识点。
概率的基本概念是概率统计的基础,要了解概率,首先需要明白什么是随机事件。
随机事件是在一定条件下可能发生的结果,它有唯一确定的结果,但在每次实验中的结果却是不确定的。
概率则是对随机事件发生可能性的量化。
概率的计算方法多种多样,常用的有古典概型、几何概型和统计概型等。
几何概型中,概率等于事件所包含的有利结果个数与总结果个数之比。
统计概型中,概率可以通过大量实验的结果频率来估算。
在考试中,经常会遇到求多个事件同时发生的概率问题。
这时,我们需要使用事件的乘法定理。
乘法定理表明,多个事件同时发生的概率等于各事件单独发生的概率相乘。
在解决问题时,需要根据题目条件进行筛选和计算。
对于互不影响的事件,可以直接将各个事件的概率相乘;对于有依赖关系的事件,需要利用条件概率的概念。
条件概率是指在已知某一事件发生的条件下,另一事件发生的概率。
条件概率的计算是通过主事件和次事件的交集的概率与主事件的概率之比来得出的。
在考试中,条件概率的应用非常广泛,可以用来解决很多实际问题。
例如,某班级男生与女生的比例问题,或者某地区某种疾病的发病率问题等等。
独立事件是指两个事件之间没有任何联系,即一个事件的发生与另一个事件的发生没有任何影响。
在概率计算中,如果两个事件是独立事件,那么它们同时发生的概率就等于各个事件单独发生的概率的乘积。
判断两个事件是否独立需要根据题目的具体条件进行分析和推理。
在解题实践过程中,要善于运用事件独立性的概念,确定事件之间的关系。
在高考中,概率统计的应用不仅仅停留在概率的计算上,还需要对数据进行统计和分析。
如何备考高考数学统计与概率部分重点知识点及解题思路
如何备考高考数学统计与概率部分重点知识点及解题思路备考高考数学统计与概率部分是每位考生所面临的一项重要任务。
为了提高备考效果,考生需要明确重点知识点及解题思路,并采取相应的备考策略。
本文将为考生介绍备考高考数学统计与概率部分的重点知识点,以及提供解题思路和备考策略。
一、概率的基本概念与性质在备考高考数学统计与概率部分时,考生首先需要掌握概率的基本概念与性质。
考生需要了解事件、样本空间、随机事件、概率的定义以及概率的性质等基本概念。
此外,考生还需了解概率的加法定理、乘法定理、全概率公式、贝叶斯定理等概率的性质,以便在解题时能够准确运用这些概率原理。
二、随机变量与概率分布备考高考数学统计与概率部分时,考生还需要学习随机变量与概率分布的相关知识。
随机变量是概率论中的重要概念,它可以通过数值来表示随机试验的结果。
考生需要了解离散型随机变量和连续型随机变量的性质与特点,并能够判断给定随机变量是离散型还是连续型,并给出相应的概率分布。
三、常用的离散概率分布备考高考数学统计与概率部分时,考生需要熟悉常用的离散概率分布。
例如,考生需要了解二项分布、泊松分布和几何分布等离散概率分布的概念、性质和应用等方面的知识。
考生还需能够通过题目进行识别,根据给定的条件判断使用哪种离散概率分布,并运用相应的概率公式进行计算。
四、常用的连续概率分布备考高考数学统计与概率部分时,考生还需要熟悉常用的连续概率分布。
例如,考生需要了解均匀分布、正态分布和指数分布等连续概率分布的概念、性质和应用等方面的知识。
考生需要能够根据给定的条件判断使用哪种连续概率分布,并掌握相应的概率公式和计算方法。
五、抽样与统计推断备考高考数学统计与概率部分时,考生还需要学习抽样与统计推断的相关知识。
考生需要了解抽样的目的与方法,并能够分析样本数据的特征与规律。
此外,考生还需要掌握点估计与区间估计的概念与计算方法,并能够应用于实际问题中。
六、假设检验备考高考数学统计与概率部分时,考生还需要学习假设检验的相关知识。
统计概率高考知识点总结
统计概率高考知识点总结统计概率是高考数学中的重要知识点之一,它涉及到概率的计算、问题的解决以及对数据的分析等等。
本文将以总结的方式,从概率基本概念到常见题型,全面介绍统计概率的考点。
一、基本概念与定义1. 概率的定义:概率是指某个事件发生的可能性的大小,通常用一个介于0和1之间的值来表示。
若事件A发生的概率为P(A),则0≤P(A)≤1。
2. 事件与样本空间:样本空间是指一个随机试验中所有可能结果的集合,通常用S表示。
而事件是指样本空间S的一个子集,表示了试验中所关心的结果。
3. 事件的互斥与独立:两个事件互斥是指它们不能同时发生,而独立是指一个事件的发生不影响另一个事件发生的可能性。
二、概率计算方法1. 古典概率:对于一个有限样本空间,每个样本发生的概率相等时,可以用古典概率计算。
公式为P(A)=事件A包含的样本数/样本空间的样本总数。
2. 几何概率:对于连续的样本空间,可以使用几何概率计算。
首先确定事件的范围,然后计算其在总样本空间中的比例。
3. 频率概率:通过实验证明一个事件发生的频率逼近其概率。
4. 条件概率:事件A在事件B已经发生的条件下发生的概率,记作P(A|B)。
计算公式为P(A|B)=P(AB)/P(B)。
5. 乘法定理与加法定理:乘法定理是指两个事件同时发生的概率等于各自概率的乘积。
加法定理是指两个互斥事件同时发生的概率等于各自概率之和。
三、常见题型1. 排列组合与概率:通过排列组合的方法来计算某个事件发生的概率。
如计算从n个元素中取出r个的组合数C(n,r),再除以总的可能数。
2. 生日悖论:假设有23个人在同一天生日的概率有多大?通过利用概率计算方法可以推断出令人惊讶的结果。
3. 事件的独立性:判断两个或多个事件是否独立,可以通过计算它们的条件概率或使用乘法定理验证。
4. 贝叶斯定理:用于计算在已知某一次试验前提下,另一次试验发生某个事件的概率。
四、概率统计与数据分析1. 频率分布表:通过统计数据的频率分布表,可以了解到数据的集中趋势、离散程度等信息。
高考数学概率与统计知识点
高中数学之概率与统计求等可能性事件、互斥事件和相互独立事件的概率解此类题目常应用以下知识:(1)等可能性事件(古典概型)的概率:P(A)=)()(I card A card =n m;等可能事件概率的计算步骤:计算一次试验的基本事件总数n ;设所求事件A ,并计算事件A 包含的基本事件的个数m ; 依公式()mP A n =求值;答,即给问题一个明确的答复.(2)互斥事件有一个发生的概率:P(A +B)=P(A)+P(B); 特例:对立事件的概率:P(A)+P(A )=P(A +A )=1. (3)相互独立事件同时发生的概率:P(A ·B)=P(A)·P(B);特例:独立重复试验的概率:Pn(k)=kn k k n p p C --)1(.其中P 为事件A 在一次试验中发生的概率,此式为二项式[(1-P)+P]n 展开的第k+1项. (4)解决概率问题要注意“四个步骤,一个结合”:求概率的步骤是:第一步,确定事件性质⎧⎪⎪⎨⎪⎪⎩等可能事件 互斥事件 独立事件 n 次独立重复试验即所给的问题归结为四类事件中的某一种. 第二步,判断事件的运算⎧⎨⎩和事件积事件即是至少有一个发生,还是同时发生,分别运用相加或相乘事件.第三步,运用公式()()()()()()()()(1)k k n k n n m P A nP A B P A P B P A B P A P B P k C p p -⎧=⎪⎪⎪+=+⎨⎪⋅=⋅⎪=-⎪⎩等可能事件: 互斥事件: 独立事件: n 次独立重复试验:求解第四步,答,即给提出的问题有一个明确的答复. 例1. 在五个数字12345,,,,中,。
例2. 若随机取出三个数字,则剩下两个数字都是奇数的概率是 (结果用数值表示).[解答过程]0.3提示:1335C 33.54C 102P ===⨯例2.一个总体含有100个个体,以简单随机抽样方式从该总体中抽取一个容量为5的样本,则指定的某个个体被抽到的概率为 .[解答过程]1.20提示:51.10020P == 例3.接种某疫苗后,出现发热反应的概率为0.80.现有5人接种该疫苗,至少有3人出现发热反应的概率为__________.(精确到0.01)[考查目的] 本题主要考查运用组合、概率的基本知识和分类计数原理解决问题的能力,以及推理和运算能力.[解答提示]至少有3人出现发热反应的概率为33244555550.800.200.800.200.800.94C C C ⋅⋅+⋅⋅+⋅=.故填0.94.离散型随机变量的分布列 1.随机变量及相关概念①随机试验的结果可以用一个变量来表示,这样的变量叫做随机变量,常用希腊字母ξ、η等表示.②随机变量可能取的值,可以按一定次序一一列出,这样的随机变量叫做离散型随机变量. ③随机变量可以取某区间内的一切值,这样的随机变量叫做连续型随机变量. 2.离散型随机变量的分布列①离散型随机变量的分布列的概念和性质一般地,设离散型随机变量ξ可能取的值为1x ,2x ,……,ix ,……,ξ取每一个值ix (=i 1,2,……)的概率P (i x =ξ)=i P ,则称下表.为随机变量ξ的概率分布,简称ξ的分布列.由概率的性质可知,任一离散型随机变量的分布列都具有下述两个性质: (1)0≥i P ,=i 1,2,…;(2)++21P P …=1. ②常见的离散型随机变量的分布列: (1)二项分布n 次独立重复试验中,事件A 发生的次数ξ是一个随机变量,其所有可能的取值为0,1,2,…n ,并且kn k k n k q p C k P P -===)(ξ,其中n k ≤≤0,p q -=1,随机变量ξ的分布列如下:ξ 01 …k…nPn n qp C 00111-n n qp C…kn k k n q p C -0qp C n n n称这样随机变量ξ服从二项分布,记作),(~p n B ξ,其中n 、p 为参数,并记:),;(p n k b q p C kn k k n =- .ξ1x2x (i)x… PP1P2…iP…(2) 几何分布在独立重复试验中,某事件第一次发生时所作的试验的次数ξ是一个取值为正整数的离散型随机变量,“k ξ=”表示在第k 次独立重复试验时事件第一次发生. 随机变量ξ的概率分布为:ξ1 2 3… k… Pp qp2q p…1k qp -…例1.厂家在产品出厂前,需对产品做检验,厂家将一批产品发给商家时,商家按合同规定也需随机抽取一定数量的产品做检验,以决定是否接收这批产品.(Ⅰ)若厂家库房中的每件产品合格的概率为0.8,从中任意取出4件进行检验,求至少有1件是合格的概率;(Ⅱ)若厂家发给商家20件产品中,其中有3件不合格,按合同规定该商家从中任取2件.都进行检验,只有2件都合格时才接收这批产品.否则拒收,求出该商家检验出不合格产品数ξ的分布列及期望ξE ,并求出该商家拒收这批产品的概率.[解答过程](Ⅰ)记“厂家任取4件产品检验,其中至少有1件是合格品”为事件A 用对立事件A 来算,有()()4110.20.9984P A P A =-=-=(Ⅱ)ξ可能的取值为0,1,2.()2172201360190C P C ξ===, ()11317220511190C C P C ξ===,()2322032190C P C ξ===136513301219019019010E ξ=⨯+⨯+⨯=.记“商家任取2件产品检验,都合格”为事件B ,则商家拒收这批产品的概率()136271119095P P B =-=-=.所以商家拒收这批产品的概率为2795.例12.某项选拔共有三轮考核,每轮设有一个问题,能正确回答问题者进入下一轮考核,否则即ξ12P136190511903190被淘汰. 已知某选手能正确回答第一、二、三轮的问题的概率分别为54、53、52,且各轮问题能否正确回答互不影响.(Ⅰ)求该选手被淘汰的概率;(Ⅱ)该选手在选拔中回答问题的个数记为ξ,求随机变量ξ的分布列与数学期望. (注:本小题结果可用分数表示)[解答过程]解法一:(Ⅰ)记“该选手能正确回答第i 轮的问题”的事件为(123)i A i =,,,则14()5P A =,23()5P A =,32()5P A =, ∴该选手被淘汰的概率112223112123()()()()()()()P P A A A A A A P A P A P A P A P A P A =++=++142433101555555125=+⨯+⨯⨯=.(Ⅱ)ξ的可能值为123,,,11(1)()5P P A ξ===,1212428(2)()()()5525P P A A P A P A ξ====⨯=, 12124312(3)()()()5525P P A A P A P A ξ====⨯=.ξ∴的分布列为ξ 123 P15825 12251812571235252525E ξ∴=⨯+⨯+⨯=.解法二:(Ⅰ)记“该选手能正确回答第i 轮的问题”的事件为(123)i A i =,,,则14()5P A =,23()5P A =,32()5P A =.∴该选手被淘汰的概率1231231()1()()()P P A A A P A P A P A =-=-4321011555125=-⨯⨯=. (Ⅱ)同解法一.(3)离散型随机变量的期望与方差 随机变量的数学期望和方差(1)离散型随机变量的数学期望:++=2211p x p x E ξ…;期望反映随机变量取值的平均水平.⑵离散型随机变量的方差:+-+-=222121)()(p E x p E x D ξξξ…+-+n n p E x 2)(ξ…;方差反映随机变量取值的稳定与波动,集中与离散的程度.⑶基本性质:b aE b a E +=+ξξ)(;ξξD a b a D 2)(=+.(4)若ξ~B(n ,p),则 np E =ξ ; D ξ =npq (这里q=1-p ) ;如果随机变量ξ服从几何分布,),()(p k g k P ==ξ,则p E 1=ξ,D ξ =2p q 其中q=1-p.例1.甲、乙两名工人加工同一种零件,两人每天加工的零件数相等,所得次品数分别为ε、η,ε和η的分布列如下:ε 0 1 2 η 0 1 2 P 610 110 103 P 510 103 210则比较两名工人的技术水平的高低为 .思路:一是要比较两名工人在加工零件数相等的条件下出次品数的平均值,即期望;二是要看出次品数的波动情况,即方差值的大小.解答过程:工人甲生产出次品数ε的期望和方差分别为:7.0103210111060=⨯+⨯+⨯=εE ,891.0103)7.02(101)7.01(106)7.00(222=⨯-+⨯-+⨯-=εD ;工人乙生产出次品数η的期望和方差分别为:7.0102210311050=⨯+⨯+⨯=ηE ,664.0102)7.02(103)7.01(105)7.00(222=⨯-+⨯-+⨯-=ηD由E ε=E η知,两人出次品的平均数相同,技术水平相当,但D ε>D η,可见乙的技术比较稳定.小结:期望反映随机变量取值的平均水平;方差反映随机变量取值的稳定与波动,集中与离散的程度. 例2.某商场经销某商品,根据以往资料统计,顾客采用的付款期数ξ的分布列为ξ 1 2 3 4 5 P0.40.20.20.10.1商场经销一件该商品,采用1期付款,其利润为200元;分2期或3期付款,其利润为250元;分4期或5期付款,其利润为300元.η表示经销一件该商品的利润.(Ⅰ)求事件A :“购买该商品的3位顾客中,至少有1位采用1期付款”的概率()P A ;(Ⅱ)求η的分布列及期望E η.[解答过程](Ⅰ)由A 表示事件“购买该商品的3位顾客中至少有1位采用1期付款”.知A 表示事件“购买该商品的3位顾客中无人采用1期付款”2()(10.4)0.216P A =-=, ()1()10.2160.784P A P A =-=-=.(Ⅱ)η的可能取值为200元,250元,300元.(200)(1)0.4P P ηξ====,(250)(2)(3)0.20.20.4P P P ηξξ===+==+=,(300)1(200)(250)10.40.40.2P P P ηηη==-=-==--=.η的分布列为η200 250 300 P0.4 0.4 0.22000.42500.43000.2E η=⨯+⨯+⨯240=(元).抽样方法与总体分布的估计 抽样方法1.简单随机抽样:设一个总体的个数为N ,如果通过逐个抽取的方法从中抽取一个样本,且每次抽取时各个个体被抽到的概率相等,就称这样的抽样为简单随机抽样.常用抽签法和随机数表法.2.系统抽样:当总体中的个数较多时,可将总体分成均衡的几个部分,然后按照预先定出的规则,从每一部分抽取1个个体,得到所需要的样本,这种抽样叫做系统抽样(也称为机械抽样).3.分层抽样:当已知总体由差异明显的几部分组成时,常将总体分成几部分,然后按照各部分所占的比进行抽样,这种抽样叫做分层抽样. 总体分布的估计由于总体分布通常不易知道,我们往往用样本的频率分布去估计总体的分布,一般地,样本容量越大,这种估计就越精确.总体分布:总体取值的概率分布规律通常称为总体分布.当总体中的个体取不同数值很少时,其频率分布表由所取样本的不同数值及相应的频率表示,几何表示就是相应的条形图.当总体中的个体取值在某个区间上时用频率分布直方图来表示相应样本的频率分布.总体密度曲线:当样本容量无限增大,分组的组距无限缩小,那么频率分布直方图就会无限接近于一条光滑曲线,即总体密度曲线. 典型例题例1.某工厂生产A 、B 、C 三种不同型号的产品,产品数量之比依次为2:3:5.现用分层抽样方法抽出一个容量为n 的样本,样本中A 种型号产品有16件.那么此样本的容量n= .解答过程:A 种型号的总体是210,则样本容量n=1016802⨯=.例2.一个总体中有100个个体,随机编号0,1,2,…,99,依编号顺序平均分成10个小组,组号依次为1,2,3,…,10.现用系统抽样方法抽取一个容量为10的样本,规定如果在第1组随机抽取的号码为m ,那么在第k 组中抽取的号码个位数字与m k +的个位数字相同,若6m =,则在第7组中抽取的号码是 .解答过程:第K 组的号码为(1)10k - ,(1)101k -+,…,(1)109k -+,当m=6时,第k 组抽取的号的个位数字为m+k 的个位数字,所以第7组中抽取的号码的个位数字为3 ,所以抽取号码为63.正态分布与线性回归1.正态分布的概念及主要性质(1)正态分布的概念如果连续型随机变量ξ 的概率密度函数为 222)(21)(σμπσ--=x ex f ,x R ∈ 其中σ、μ为常数,并且σ>0,则称ξ服从正态分布,记为~N ξ(μ,2σ).(2)期望E ξ =μ,方差2σξ=D .(3)正态分布的性质 正态曲线具有下列性质:①曲线在x 轴上方,并且关于直线x =μ对称.②曲线在x=μ时处于最高点,由这一点向左右两边延伸时,曲线逐渐降低.③曲线的对称轴位置由μ确定;曲线的形状由σ确定,σ越大,曲线越“矮胖”;反之越“高瘦”. 三σ原则即为 数值分布在(μ—σ,μ+σ)中的概率为0.6526 数值分布在(μ—2σ,μ+2σ)中的概率为0.9544 数值分布在(μ—3σ,μ+3σ)中的概率为0.9974 (4)标准正态分布当μ=0,σ=1时ξ服从标准的正态分布,记作~N ξ(0,1) (5)两个重要的公式①()1()x x φφ-=-,② ()()()P a b b a ξφφ<<=-.(6)2(,)N μσ与(0,1)N 二者联系. 若2~(,)N ξμσ,则~(0,1)N ξμησ-=;②若2~(,)N ξμσ,则()()()b a P a b μμξφφσσ--<<=-.2.线性回归简单的说,线性回归就是处理变量与变量之间的线性关系的一种数学方法.变量和变量之间的关系大致可分为两种类型:确定性的函数关系和不确定的函数关系.不确定性的两个变量之间往往仍有规律可循.回归分析就是处理变量之间的相关关系的一种数量统计方法.它可以提供变量之间相关关系的经验公式.具体说来,对n 个样本数据(11,x y ),(22,x y ),…,(,n n x y ),其回归直线方程,或经验公式为:a bx y+=ˆ.其中,,)(1221x b y a x n xyx n yx b ni ini ii⋅-=--=∑∑==,其中y x ,分别为|i x |、|i y |的平均数.例1.如果随机变量ξ~N (μ,σ2),且E ξ=3,D ξ=1,则P (-1<ξ≤1=等于( ) A.2Φ(1)-1 B.Φ(4)-Φ(2) C.Φ(2)-Φ(4) D.Φ(-4)-Φ(-2)解答过程:对正态分布,μ=E ξ=3,σ2=D ξ=1,故P (-1<ξ≤1)=Φ(1-3)-Φ(-1-3)=Φ(-2)-Φ(-4)=Φ(4)-Φ(2). 答案:B例2. 将温度调节器放置在贮存着某种液体的容器内,调节器设定在 d ℃,液体的温度ξ(单位:℃)是一个随机变量,且ξ~N (d ,0.52). (1)若d=90°,则ξ<89的概率为 ;(2)若要保持液体的温度至少为80 ℃的概率不低于0.99,则d 至少是 ?(其中若η~N (0,1),则Φ(2)=P (η<2)=0.9772,Φ(-2.327)=P (η<-2.327)=0.01). 解答过程:(1)P (ξ<89)=F (89)=Φ(5.09089-)=Φ(-2)=1-Φ(2)=1-0.9772=0.0228.(2)由已知d 满足0.99≤P (ξ≥80),即1-P (ξ<80)≥1-0.01,∴P (ξ<80)≤0.01.∴Φ(5.080d-)≤0.01=Φ(-2.327).∴5.080d -≤-2.327.∴d ≤81.1635.故d 至少为81.1635.小结:(1)若ξ~N (0,1),则η=σμξ-~N (0,1).(2)标准正态分布的密度函数f(x )是偶函数,x<0时,f (x )为增函数,x>0时,f (x )为减函数.。
高考数学概率统计知识点(大全)
高考数学概率统计知识点(大全)高考数学概率统计知识点一、随机事件(1)事件的三种运算:并(和)、交(积)、差;注意差A—B可以表示成A与B 的逆的积。
(2)四种运算律:交换律、结合律、分配律、德莫根律。
(3)事件的五种关系:包含、相等、互斥(互不相容)、对立、相互独立。
二、概率定义(1)统计定义:频率稳定在一个数附近,这个数称为事件的概率;(2)古典定义:要求样本空间只有有限个基本事件,每个基本事件出现的可能性相等,则事件A所含基本事件个数与样本空间所含基本事件个数的比称为事件的古典概率;(3)几何概率:样本空间中的元素有无穷多个,每个元素出现的可能性相等,则可以将样本空间看成一个几何图形,事件A看成这个图形的子集,它的概率通过子集图形的大小与样本空间图形的大小的比来计算;(4)公理化定义:满足三条公理的任何从样本空间的子集集合到[0,1]的映射。
三、概率性质与公式(1)加法公式:P(A+B)=p(A)+P(B)—P(AB),特别地,如果A与B互不相容,则P(A+B)=P(A)+P(B);(2)差:P(A—B)=P(A)—P(AB),特别地,如果B包含于A,则P(A—B)=P(A)—P(B);(3)乘法公式:P(AB)=P(A)P(B|A)或P(AB)=P(A|B)P(B),特别地,如果A与B相互独立,则P(AB)=P(A)P(B);(4)全概率公式:P(B)=∑P(Ai)P(B|Ai)。
它是由因求果,贝叶斯公式:P(Aj|B)=P(Aj)P(B|Aj)/∑P(Ai)P(B|Ai)。
它是由果索因;如果一个事件B可以在多种情形(原因)A1,A2,...,An下发生,则用全概率公式求B发生的概率;如果事件B已经发生,要求它是由Aj引起的概率,则用贝叶斯公式。
(5)二项概率公式:Pn(k)=C(n,k)p^k(1—p)^(n—k),k=0,1,2,...,n。
当一个问题可以看成n重贝努力试验(三个条件:n次重复,每次只有A与A的逆可能发生,各次试验结果相互独立)时,要考虑二项概率公式。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中数学之概率与统计求等可能性事件、互斥事件和相互独立事件的概率解此类题目常应用以下知识:(1)等可能性事件(古典概型)的概率:P(A)=)()(I card A card =n m;等可能事件概率的计算步骤: 计算一次试验的基本事件总数n ;设所求事件A ,并计算事件A 包含的基本事件的个数m ; 依公式()mP A n =求值;答,即给问题一个明确的答复.(2)互斥事件有一个发生的概率:P(A +B)=P(A)+P(B); 特例:对立事件的概率:P(A)+P(A )=P(A +A )=1. (3)相互独立事件同时发生的概率:P(A ·B)=P(A)·P(B);特例:独立重复试验的概率:Pn(k)=kn k k n p p C --)1(.其中P 为事件A 在一次试验中发生的概率,此式为二项式[(1-P)+P]n 展开的第k+1项. (4)解决概率问题要注意“四个步骤,一个结合”:求概率的步骤是:第一步,确定事件性质⎧⎪⎪⎨⎪⎪⎩等可能事件互斥事件 独立事件 n 次独立重复试验即所给的问题归结为四类事件中的某一种.第二步,判断事件的运算⎧⎨⎩和事件积事件即是至少有一个发生,还是同时发生,分别运用相加或相乘事件.第三步,运用公式()()()()()()()()(1)k k n k n n m P A nP A B P A P B P A B P A P B P k C p p -⎧=⎪⎪⎪+=+⎨⎪⋅=⋅⎪=-⎪⎩等可能事件: 互斥事件: 独立事件: n 次独立重复试验:求解第四步,答,即给提出的问题有一个明确的答复. 例1. 在五个数字12345,,,,中,。
例2. 若随机取出三个数字,则剩下两个数字都是奇数的概率是(结果用数值表示).[解答过程]0.3提示:1335C 33.54C 102P ===⨯例2.一个总体含有100个个体,以简单随机抽样方式从该总体中抽取一个容量为5的样本,则指定的某个个体被抽到的概率为 .[解答过程]1.20提示:51.10020P == 例3.接种某疫苗后,出现发热反应的概率为0.80.现有5人接种该疫苗,至少有3人出现发热反应的概率为__________.(精确到0.01) [考查目的] 本题主要考查运用组合、概率的基本知识和分类计数原理解决问题的能力,以及推理和运算能力.[解答提示]至少有3人出现发热反应的概率为33244555550.800.200.800.200.800.94C C C ⋅⋅+⋅⋅+⋅=.故填0.94.离散型随机变量的分布列 1.随机变量及相关概念①随机试验的结果可以用一个变量来表示,这样的变量叫做随机变量,常用希腊字母ξ、η等表示.②随机变量可能取的值,可以按一定次序一一列出,这样的随机变量叫做离散型随机变量. ③随机变量可以取某区间内的一切值,这样的随机变量叫做连续型随机变量. 2.离散型随机变量的分布列①离散型随机变量的分布列的概念和性质一般地,设离散型随机变量ξ可能取的值为1x ,2x ,……,i x ,……,ξ取每一个值i x (=i 1,2,……)的概率P (i x =ξ)=i P ,则称下表.为随机变量ξ的概率分布,简称ξ的分布列.由概率的性质可知,任一离散型随机变量的分布列都具有下述两个性质: (1)0≥i P ,=i 1,2,…;(2)++21P P …=1. ②常见的离散型随机变量的分布列: (1)二项分布n 次独立重复试验中,事件A 发生的次数ξ是一个随机变量,其所有可能的取值为0,1,2,…n ,并且kn k k n k q p C k P P -===)(ξ,其中n k ≤≤0,p q -=1,随机变量ξ的分布列如下:称这样随机变量ξ服从二项分布,记作),(~p n B ξ,其中n 、p 为参数,并记:),;(p n k b q p C kn k k n =- .(2)几何分布在独立重复试验中,某事件第一次发生时所作的试验的次数ξ是一个取值为正整数的离散型随机变量,“k ξ=”表示在第k 次独立重复试验时事件第一次发生. 随机变量ξ的概率分布为:例1.厂家在产品出厂前,需对产品做检验,厂家将一批产品发给商家时,商家按合同规定也需随机抽取一定数量的产品做检验,以决定是否接收这批产品. (Ⅰ)若厂家库房中的每件产品合格的概率为0.8,从中任意取出4件进行检验,求至少有1件是合格的概率; (Ⅱ)若厂家发给商家20件产品中,其中有3件不合格,按合同规定该商家从中任取2件.都进行检验,只有2件都合格时才接收这批产品.否则拒收,求出该商家检验出不合格产品数ξ的分布列及期望ξE ,并求出该商家拒收这批产品的概率.[解答过程](Ⅰ)记“厂家任取4件产品检验,其中至少有1件是合格品”为事件A 用对立事件A 来算,有()()4110.20.9984P A P A =-=-=(Ⅱ)ξ可能的取值为0,1,2.()2172201360190C P C ξ===, ()11317220511190C C P C ξ===,()2322032190C P C ξ===136513301219019019010E ξ=⨯+⨯+⨯=.记“商家任取2件产品检验,都合格”为事件B ,则商家拒收这批产品的概率()136271119095P P B =-=-=.所以商家拒收这批产品的概率为2795.例12.某项选拔共有三轮考核,每轮设有一个问题,能正确回答问题者进入下一轮考核,否则即被淘汰. 已知某选手能正确回答第一、二、三轮的问题的概率分别为54、53、52,且各轮问题能否正确回答互不影响.(Ⅰ)求该选手被淘汰的概率;(Ⅱ)该选手在选拔中回答问题的个数记为ξ,求随机变量ξ的分布列与数学期望. (注:本小题结果可用分数表示)[解答过程]解法一:(Ⅰ)记“该选手能正确回答第i 轮的问题”的事件为(123)i A i =,,,则14()5P A =,23()5P A =,32()5P A =, ∴该选手被淘汰的概率112223112123()()()()()()()P P A A A A A A P A P A P A P A P A P A =++=++142433101555555125=+⨯+⨯⨯=.(Ⅱ)ξ的可能值为123,,,11(1)()5P P A ξ===,1212428(2)()()()5525P P A A P A P A ξ====⨯=, 12124312(3)()()()5525P P A A P A P A ξ====⨯=.ξ∴的分布列为11235252525E ξ∴=⨯+⨯+⨯=.解法二:(Ⅰ)记“该选手能正确回答第i轮的问题”的事件为(123)i A i =,,,则14()5P A =,23()5P A =,32()5P A =.∴该选手被淘汰的概率1231231()1()()()P P A A A P A P A P A =-=-4321011555125=-⨯⨯=. (Ⅱ)同解法一.(3)离散型随机变量的期望与方差 随机变量的数学期望和方差(1)离散型随机变量的数学期望:++=2211p x p x E ξ…;期望反映随机变量取值的平均水平.⑵离散型随机变量的方差:+-+-=222121)()(p E x p E x D ξξξ…+-+n n p E x 2)(ξ…;方差反映随机变量取值的稳定与波动,集中与离散的程度.⑶基本性质:b aE b a E +=+ξξ)(;ξξD a b a D 2)(=+.(4)若ξ~B(n ,p),则 np E =ξ ; D ξ =npq (这里q=1-p ) ;如果随机变量ξ服从几何分布,),()(p k g k P ==ξ,则p E 1=ξ,D ξ =2p q 其中q=1-p.例1.甲、乙两名工人加工同一种零件,两人每天加工的零件数相等,所得次品数分别为ε、思路:一是要比较两名工人在加工零件数相等的条件下出次品数的平均值,即期望;二是要看出次品数的波动情况,即方差值的大小.解答过程:工人甲生产出次品数ε的期望和方差分别为:7.0103210111060=⨯+⨯+⨯=εE ,891.0103)7.02(101)7.01(106)7.00(222=⨯-+⨯-+⨯-=εD ;工人乙生产出次品数η的期望和方差分别为:7.0102210311050=⨯+⨯+⨯=ηE ,664.0102)7.02(103)7.01(105)7.00(222=⨯-+⨯-+⨯-=ηD由E ε=E η知,两人出次品的平均数相同,技术水平相当,但D ε>D η,可见乙的技术比较稳定.小结:期望反映随机变量取值的平均水平;方差反映随机变量取值的稳定与波动,集中与离散的程度. 例2.某商场经销某商品,根据以往资料统计,顾客采用的付款期数ξ的分布列为250元;分4期或5期付款,其利润为300元.η表示经销一件该商品的利润.(Ⅰ)求事件A :“购买该商品的3位顾客中,至少有1位采用1期付款”的概率()P A ; (Ⅱ)求η的分布列及期望E η.[解答过程](Ⅰ)由A 表示事件“购买该商品的3位顾客中至少有1位采用1期付款”. 知A 表示事件“购买该商品的3位顾客中无人采用1期付款”2()(10.4)0.216P A =-=, ()1()10.2160.784P A P A =-=-=.(Ⅱ)η的可能取值为200元,250元,300元.(200)(1)0.4P P ηξ====,(250)(2)(3)0.20.20.4P P P ηξξ===+==+=,(300)1(200)(250)10.40.40.2P P P ηηη==-=-==--=.η的分布列为2000.42500.43000.2E η=⨯+⨯+⨯240=(元).抽样方法与总体分布的估计 抽样方法1.简单随机抽样:设一个总体的个数为N ,如果通过逐个抽取的方法从中抽取一个样本,且每次抽取时各个个体被抽到的概率相等,就称这样的抽样为简单随机抽样.常用抽签法和随机数表法.2.系统抽样:当总体中的个数较多时,可将总体分成均衡的几个部分,然后按照预先定出的规则,从每一部分抽取1个个体,得到所需要的样本,这种抽样叫做系统抽样(也称为机械抽样).3.分层抽样:当已知总体由差异明显的几部分组成时,常将总体分成几部分,然后按照各部分所占的比进行抽样,这种抽样叫做分层抽样. 总体分布的估计由于总体分布通常不易知道,我们往往用样本的频率分布去估计总体的分布,一般地,样本容量越大,这种估计就越精确.总体分布:总体取值的概率分布规律通常称为总体分布.当总体中的个体取不同数值很少时,其频率分布表由所取样本的不同数值及相应的频率表示,几何表示就是相应的条形图.当总体中的个体取值在某个区间上时用频率分布直方图来表示相应样本的频率分布.总体密度曲线:当样本容量无限增大,分组的组距无限缩小,那么频率分布直方图就会无限接近于一条光滑曲线,即总体密度曲线. 典型例题例1.某工厂生产A 、B 、C 三种不同型号的产品,产品数量之比依次为2:3:5.现用分层抽样方法抽出一个容量为n 的样本,样本中A 种型号产品有16件.那么此样本的容量n= .解答过程:A 种型号的总体是210,则样本容量n=1016802⨯=.例2.一个总体中有100个个体,随机编号0,1,2,…,99,依编号顺序平均分成10个小组,组号依次为1,2,3,…,10.现用系统抽样方法抽取一个容量为10的样本,规定如果在第1组随机抽取的号码为m ,那么在第k 组中抽取的号码个位数字与m k +的个位数字相同,若6m =,则在第7组中抽取的号码是 .解答过程:第K 组的号码为(1)10k - ,(1)101k -+,…,(1)109k -+,当m=6时,第k 组抽取的号的个位数字为m+k 的个位数字,所以第7组中抽取的号码的个位数字为3 ,所以抽取号码为63.正态分布与线性回归 1.正态分布的概念及主要性质(1)正态分布的概念如果连续型随机变量ξ 的概率密度函数为 222)(21)(σμπσ--=x ex f ,x R ∈ 其中σ、μ为常数,并且σ>0,则称ξ服从正态分布,记为~N ξ(μ,2σ).(2)期望E ξ =μ,方差2σξ=D .(3)正态分布的性质 正态曲线具有下列性质:①曲线在x 轴上方,并且关于直线x =μ对称.②曲线在x=μ时处于最高点,由这一点向左右两边延伸时,曲线逐渐降低.③曲线的对称轴位置由μ确定;曲线的形状由σ确定,σ越大,曲线越“矮胖”;反之越“高瘦”.三σ原则即为数值分布在(μ—σ,μ+σ)中的概率为0.6526 数值分布在(μ—2σ,μ+2σ)中的概率为0.9544数值分布在(μ—3σ,μ+3σ)中的概率为0.9974 (4)标准正态分布当μ=0,σ=1时ξ服从标准的正态分布,记作~N ξ(0,1) (5)两个重要的公式①()1()x x φφ-=-,② ()()()P a b b a ξφφ<<=-.(6)2(,)N μσ与(0,1)N 二者联系.若2~(,)N ξμσ,则~(0,1)N ξμησ-=;②若2~(,)N ξμσ,则()()()b a P a b μμξφφσσ--<<=-.2.线性回归简单的说,线性回归就是处理变量与变量之间的线性关系的一种数学方法.变量和变量之间的关系大致可分为两种类型:确定性的函数关系和不确定的函数关系.不确定性的两个变量之间往往仍有规律可循.回归分析就是处理变量之间的相关关系的一种数量统计方法.它可以提供变量之间相关关系的经验公式.具体说来,对n 个样本数据(11,x y ),(22,x y ),…,(,n n x y ),其回归直线方程,或经验公式为:a bx y+=ˆ.其中,,)(1221x b y a x n xyx n yx b ni ini ii⋅-=--=∑∑==,其中y x ,分别为|i x |、|i y |的平均数.例1.如果随机变量ξ~N (μ,σ2),且E ξ=3,D ξ=1,则P (-1<ξ≤1=等于( ) A.2Φ(1)-1 B.Φ(4)-Φ(2) C.Φ(2)-Φ(4) D .Φ(-4)-Φ(-2)解答过程:对正态分布,μ=E ξ=3,σ2=D ξ=1,故P (-1<ξ≤1)=Φ(1-3)-Φ(-1-3)=Φ(-2)-Φ(-4)=Φ(4)-Φ(2). 答案:B例2. 将温度调节器放置在贮存着某种液体的容器内,调节器设定在d ℃,液体的温度ξ(单位:℃)是一个随机变量,且ξ~N (d ,0.52). (1)若d=90°,则ξ<89的概率为 ;(2)若要保持液体的温度至少为80 ℃的概率不低于0.99,则d 至少是 ?(其中若η~N (0,1),则Φ(2)=P (η<2)=0.9772,Φ(-2.327)=P (η<-2.327)=0.01).解答过程:(1)P (ξ<89)=F (89)=Φ(5.09089-)=Φ(-2)=1-Φ(2)=1-0.9772=0.0228.(2)由已知d 满足0.99≤P (ξ≥80),即1-P (ξ<80)≥1-0.01,∴P (ξ<80)≤0.01.∴Φ(5.080d-)≤0.01=Φ(-2.327).∴5.080d -≤-2.327.∴d ≤81.1635.故d至少为81.1635.小结:(1)若ξ~N(0,1),则η=σμξ-~N(0,1).(2)标准正态分布的密度函数f(x)是偶函数,x<0时,f(x)为增函数,x>0时,f(x)为减函数.。