最新有理数专题练习(word版
最新七年级数学上册有理数单元测试题(Word版 含解析)
一、初一数学有理数解答题压轴题精选(难)1.认真阅读下面的材料,完成有关问题:材料:在学习绝对值时,我们已了解绝对值的几何意义,如|5-3|表示5、3在数轴上对应的两点之间的距离;又如|5+3|=|5-(-3)|,所以|5+3|表示5、-3在数轴上对应的两点之间的距离。
因此,一般地,点A,B在数轴上分别表示有理数a,b,那么A,B之间的距离(也就是线段AB的长度)可表示为|a-b|。
因此我们可以用绝对值的几何意义按如下方法求的最小值;即数轴上x与1对应的点之间的距离,即数轴上x与2对应的点之间的距离,把这两个距离在同一个数轴上表示出来,然后把距离相加即可得原式的值.设A、B、P三点对应的数分别是1、2、x.当1≤x≤2时,即P点在线段AB上,此时;当x>2时,即P点在B点右侧,此时= PA+PB=AB+2PB>AB;当x <1时,即P点在A点左侧,此时=PA+PB=AB+2PA>AB;综上可知,当1≤x≤2时(P点在线段AB上),取得最小值为1.请你用上面的思考方法结合数轴完成以下问题:(1)满足的x的取值范围是________。
(2)求的最小值为________,最大值为________。
备用图:【答案】(1)当x<-3或x>4(2)-3;3【解析】【解答】解:(1)由,在数轴上表示-3和4两点,当x<-3时, >7;当-3≤x≤4时, .当x>4时, .故当x<-3或x>4时 .( 2 )当x<-1,当-1≤x≤2,,此时当x=2时,取得最大值3,当x=-1时,取得最小值-3;当x>2时, .故的最小值为-3,最大值为3.【分析】(1)此题实质就是求表示x的点与-3的对应点的距离及表示x的点与4的对应点的距离和大于7时,x的取值范围,从而分当x<-3时、当-3≤x≤4时、当x>4时三种情况根据绝对值的意义分别去绝对值符号后一一判断即可得出答案;(2)此题实质就是求表示x的点与-1的对应点的距离及表示x的点与2的对应点的距离差最小值与最大值,从而分当x<-1、当-1≤x≤2、当x>2时三种情况根据绝对值的意义分别去绝对值符号考虑即可得出答案.2.如图,AB=12cm,点C在线段AB上,AC=3BC,动点P从点A出发,以4cm/s的速度向右运动,到达点B之后立即返回,以4cm/s的速度向左运动;动点Q从点C出发,以1cm/s的速度向右运动,到达点B之后立即返回,以1cm/s的速度向左运动.设它们同时出发,运动时间为t秒,当第二次重合时,P、Q两点停止运动.(1)AC=________cm,BC=________cm;(2)当t=________秒时,点P与点Q第一次重合;当t=________秒时,点P与点Q第二次重合;(3)当t为何值时,AP=PQ?【答案】(1)9;3(2)3;(3)解:在点P和点Q运动过程中,当AP=PQ时,存在以下三种情况:①点P与点Q第一次重合之前,可得:2×4t=9+t,解得t= ;②点P与点Q第一次重合后,P、Q由点B向点A运动过程中,可得:2×[12-(4t-12)]=12-(t-3),解得t= ;③当点P运动到点A,继续由点A向点B运动,点P与点Q第二次重合之前,可得:2×(4t-24)=12-(t-3),解得t=7.故当t为秒、秒或7秒时,AP=PQ.【解析】【解答】(1)∵AB=12cm,AC=3BC∴AC= AB=9,BC=12-9=3.故答案为:9;3.(2)设运动时间为t,则AP=4t,CQ=t,由题意,点P与点Q第一次重合于点B,则有4t-t=9,解得t=3;当点P与点Q第二次重合时有:4t+t=12+3+24,解得t= .故当t=3秒时,点P与点Q第一次重合;当t= 秒时,点P与点Q第二次重合.故答案为:3;.【分析】(1)由题目中AB=12cm,点C在线段AB上,AB=3BC,可直接求得;(2)根据运动过程,两点重合时他们走过距离之间的关系列方程即可求得;(3)满足AP=PQ,则2AP=AQ,在整个运动过程中正确的位置存在三处,依次分析列出方程即可求得.3.数轴上从左到右有A,B,C三个点,点C对应的数是10,AB=BC=20.(1)点A对应的数是________,点B对应的数是________.(2)动点P从A出发,以每秒4个单位长度的速度向终点C移动,同时,动点Q从点B 出发,以每秒1个单位长度的速度向终点C移动,设移动时间为t秒.①用含t的代数式表示点P对应的数是________,点Q对应的数是________;②当点P和点Q间的距离为8个单位长度时,求t的值.【答案】(1)﹣30;﹣10(2)4t﹣30,t﹣10;t的值为4或【解析】【解答】解:(1)∵AB=BC=20,点C对应的数是10,点A在点B左侧,点B 在点C左侧,∴点B对应的数为10﹣20=﹣10,点A对应的数为﹣10﹣20=﹣30.故答案为:﹣30;﹣10.(2)①当运动时间为t秒时,点P对应的数是4t﹣30,点Q对应的数是t﹣10.故答案为:4t﹣30;t﹣10.②依题意,得:|t﹣10﹣(4t﹣30)|=8,∴20﹣3t=8或3t﹣20=8,解得:t=4或t=.∴t的值为4或.【分析】(1)由AB,BC的长度结合点C对应的数及点A,B,C的位置关系,可得出点A,B对应的数;(2)①由点P,Q的出发点、运动方向及速度,可得出运动时间为t秒时点P,Q对应的数;②由①结合PQ=8,可得出关于t的含绝对值符号的一元一次方程,解之即可得出结论.4.已知 a、b、c 在数轴上的位置如图:(1)用“<”或“>”填空:a+1________0;c-b________0;b-1________0;(2)化简:;(3)若a+b+c=0,且b与-1的距离和c与-1的距离相等,求下列式子的值:2b -c - (a - 4c - b).【答案】(1)>;<;<(2)解:∵a+1>0,c-b<0,b-1<0,∴原式=a+1-(b-c)-(1-b)=a+1-b+c-1+b=a+c(3)解:由已知得:b+1=-1-c,即b+c=-2,∵a+b+c=0,即-2+a=0,∴a=2,则2b -c - (a - 4c - b).=2b -c - a + 4c + b=3(b+c)-2=【解析】【解答】解:(1)根据题意得:c<0<b<1<a∴a+1>0;c-b<0;b-1<0【分析】(1)根据数轴上点的位置进行计算比较大小即可;(2)利用数轴上点的位置判断出绝对值里边式子的正负,利用绝对值的代数意义化简,去括号合并即可得到结果(3)根据题意列出关系式,求出a与b+c的值,原式去括号合并得到最简结果,将a与b+c的值代入计算即可求出值.5.已知A、B、C三点在数轴上的位置如图所示,它们表示的数分别是a、b、c(1)填空:abc________0,a+b________ac,ab-ac________0;(填“>”,“=”或“<”)(2)若|a|=2,且点B到点A、C的距离相等① 当b2=16时,求c的值② 求b、c之间的数量关系③ P是数轴上B,C两点之间的一个动点设点P表示的数为x.当P点在运动过程中,bx+cx+|x-c|-10|x+a|的值保持不变,求b的值【答案】(1)<;>;>(2)解:① 且 , ,且 , .∵点B到点A,C的距离相等,∴∴ ,∴②∵ , ∴ ,③依题意,得∴原式=∵∴原式= 【此处不取-2没关系】∵当 P 点在运动过程中,原式的值保持不变,即原式的值与无关∴ ,∴【解析】【解答】解:(1)由题中的数轴可知,a<0<b<c,且∴abc<0,a+b>ac,ab-ac>0,故答案为:<,>,>;【分析】(1)根据数轴上的点所表示的数的特点得出a<0<b<c,且,从而根据有理数的乘法法则,加法法则、减法法则及有理数大小的比较方法即可一一判断得出答案;(2)①根据数轴上点的位置及绝对值的意义、有理数的乘方确定a、b的取值,进而根据点B到点A,C的距离相等,即即可求解;②根据数轴上两个点之间的距离及点B到点A,C的距离相等,即,即可得结论;③根据绝对值的意义把算式化简,再根据当P点在运动过程中,原式的值保持不变,即原式的值与无关列出方程,求解即可.6.先阅读下面的材料,再解答后面的各题:现代社会对保密要求越来越高,密码正在成为人们生活的一部分.有一种密码的明文(真实文)按计算机键盘字母排列分解,其中Q,W,E,……,N,M这26个字母依次对应1,2,3,……,25,26这26个自然数(见下表).Q W E R T Y U I O P A S D12345678910111213F G H J K L Z X C V B N M14151617181920212223242526将明文转成密文,如:,即R变为L;,即A 变为S.将密文转换成明文,如:,即X变为P;13 3×(13-8)-1=14,即D变为F.(1)按上述方法将明文NE T译为密文.(2)若按上方法将明文译成的密文为DWN,请找出它的明文.【答案】(1)解:即NET密文为MQP.(2)解:即密文DWN的明文为FYC .【解析】【分析】(1)由图表找出N、E、T对应的自然数,再根据变换公式变成密文即可;(2)由图表找出D、W、N对应的自然数,再根据变换公式变成明文即可.7.如图,数轴上两点分别表示有理数-2和5,我们用来表示两点之间的距离.(1)直接写出的值=________;(2)若数轴上一点表示有理数m,则的值是________;(3)当代数式∣n +2∣+∣n -5∣的值取最小值时,写出表示n的点所在的位置;(4)若点分别以每秒2个单位长度和每秒3个单位长度的速度同时向数轴负方向运动,求经过多少秒后,点到原点的距离是点到原点的距离的2倍.【答案】(1)7(2)(3)解:n点位于线段AB上(包括A、B两点),即时有最小值7;即:(4)解:设经过x秒后点A到原点的距离是点B到原点的距离的2倍,第一种情况:2+2x=2(5-3x),解得:x=1第二种情况:2+2x=2(3x-5),解得:x=3答:经过1秒或3秒后点A到原点的距离是点B到原点的距离的2倍.【解析】【解答】解:(1)故答案为:7(2)【分析】(1)根据两点间距离公式求解即可;(2)根据两点间距离公式求解即可;(3)根据n+2和n-5以及两点间距离公式,即可得出n的取值范围;(4)设经过x秒后点A到原点的距离是点B到原点的距离的2倍,利用两点间距离公式分两种情况列出方程,求解即可.8.阅读下列材料:对于排好顺序的三个数: 称为数列 .将这个数列如下式进行计算: ,,,所得的三个新数中,最大的那个数称为数列的“关联数值”.例如:对于数列因为所以数列的“关联数值”为6.进一步发现:当改变这三个数的顺序时,所得的数列都可以按照上述方法求出“关联数值”,如:数列的“关联数值”为0;数列的“关联数值”为 3...而对于“ ”这三个数,按照不同的排列顺序得到的不同数列中,“关联数值"的最大值为6.(1)数列的“关联数值”为________;(2)将“ ”这三个数按照不同的顺序排列,可得到若干个不同的数列,这些数列的“关联数值”的最大值是________,取得“关联数值”的最大值的数列是________ (3)将“ ” 这三个数按照不同的顺序排列,可得到若干个不同的数列,这些数列的“关联数值”的最大值为10,求的值,并写出取得“关联数值”最大值的数列.【答案】(1)-4(2)7;-3、4、2(3)解:∵-3=-3,-3+(-6)=-9,-3+(-6)-a=-9-a,a>0,∴-9-a<-9<-3,∴数列3、-6、a的“关联数值”为-3,∵-3=-3,-3+a=a-3,-3+a-(-6)=a+3,a>0,∴-3<-3+a<a+3,∴数列3、a、-6的“关联数值”为a+3,∵-(-6)=6,-(-6)+a=a+6,-(-6)+a-3=a+3,a>0,∴a+6>6,a+6>a+3,∴数列-6、a、3的“关联数值”为a+6,∵-(-6)=6,-(-6)+3=9,-(-6)+3-a=9-a,a>0,∴9>9-a,9>6,∴数列-6、3、a的“关联数值”为9,∵-a=-a,-a+(-6)=-a-6,-a+(-6)-3=-a-9,a>0,∴-a-9<-a-6<-a,∴数列a、-6、3的“关联数值”为-a,∵-a=-a,-a+3=3-a,-a+3-(-6)=9-a,a>0,∴-a<3-a<9-a,∴数列a、3、-6的“关联数值”为9-a,∵a>0,这些数列的“关联数值”的最大值为10,∴-3、9、-a、9-a不符合题意,∵a+6>a+3,∴a+6=10,解得:a=4.取得“关联数值”最大值的数列为-6,4、3.【解析】【解答】(1)∵-4=-4,-4+(-3)=-7,-4+(-3)-2=-9,∴数列的“关联数值”为-4.故答案为-4(2)“4、-3、2”这三个数按照不同的顺序排列有4、-3、2;4、2、-3;-3、4、2;-3、2、4;2、4、-3;2、-3、4共6种排列顺序,由(1)得数列的“关联数值”为-4.∵-4=-4,-4+2=-2,-4+2-(-3)=1,∴数列4,2,-3的“关联数值”为1,∵-(-3)=3,-(-3)+4=7,-(-3)+4-2=5,∴数列-3、4、2的“关联数值”为7,∵-(-3)=3,-(-3)+2=5,-(-3)+2-4=1,∴数列-3、2、4的“关联数值”为5,∵-2=-2,-2+4=2,-2+4-(-3)=5,∴数列2、4、-3的“关联数值”为5,∵-2=-2,-2+(-3)=-5,-2+(-3)-4=-9,∴数列2、-3、4的“关联数值”为-2,∴这些数列的“关联数值”的最大值是7,取得“关联数值”的最大值的数列是-3、4、2故答案为7;-3、4、2【分析】(1)根据材料所给计算方法计算即可;(2)按不同顺序计算出“关联数值”即可;(3)按不同顺序计算出“ ” 这三个数的“关联数值”,根据a>0,这些数列的“关联数值”的最大值为10,求出a值即可.9.阅读材料:求的值.解:设将等式两边同时乘以2,得将下式减去上式,得即请你仿照此法计算:(1)(2)【答案】(1)解:根据材料,设M= ①,∴将等式两边同时乘以3,则3M= ②,由② ①,得:,∴;∴ .(2)解:根据材料,设N= ③,∴将等式两边同时乘以5,④,由④ ③,得:,∴;∴ .【解析】【分析】(1)设M= ,将等式两边同时乘以3,然后按照材料中的方法进行计算,即可得到答案;(2)设N=,将等式两边同时乘以5,然后按照材料中的方法进行计算,即可得到答案.10.已知数轴上,点A和点B分别位于原点O两侧,AB=14,点A对应的数为a,点B对应的数为b.(1)若b=-4,则a的值为________.(2)若OA=3OB,求a的值.(3)点C为数轴上一点,对应的数为c.若O为AC的中点,OB=3BC,直接写出所有满足条件的c的值.【答案】(1)10(2)解:当A在原点O的右侧时(如图):设OB=m,列方程得:m+3m=14,解这个方程得,,所以,OA= ,点A在原点O的右侧,a的值为 .当A在原点的左侧时(如图),a=-综上,a的值为± .(3)解:当点A在原点的右侧,点B在点C的左侧时(如图), c=- .当点A在原点的右侧,点B在点C的右侧时(如图), c=-8.当点A在原点的左侧,点B在点C的右侧时,图略,c= .当点A在原点的左侧,点B在点C的左侧时,图略,c=8.综上,点c的值为:±8,± .【解析】【分析】(1)根据题意画出数轴,由已知条件得出AB=14,OB=4,则OA=10,得出a的值为10.(2)分两种情况,点A在原点的右侧时,设OB=m,列一元一次方程求解,进一步得出OA 的长度,从而得出a的值.同理可求出当点A在原点的左侧时,a的值.(3)画数轴,结合数轴分四种情况讨论计算即可.11.同学们都知道,|5-(-2)|表示5与-2之差的绝对值,实际上也可理解为5与-2两数在数轴上所对的两点之间的距离.试探索:(1)求|5-(-2)|=________.(2)找出所有符合条件的整数x,使得|x+5|+|x-2|=7这样的整数是________.(3)由以上探索猜想对于任何有理数x,|x-3|+|x-6|是否有最小值?如果有写出最小值,如果没有说明理由.【答案】(1)7(2)-5,-4,-3,-2,-1, 0, 1, 2(3)解:|x﹣3|+|x﹣6|有最小值,最小值是3.理由如下:当x>6时,|x﹣3|+|x﹣6|=x﹣3+x﹣6=2x﹣9>3;当3≤x≤6时,|x﹣3|+|x﹣6|=x﹣3+6﹣x=3;当x<3时,|x﹣3|+|x﹣6|=3﹣x+6﹣x=9﹣2x>3.故|x﹣3|+|x﹣6|有最小值,最小值是3【解析】【解答】(1)|5﹣(﹣2)|=|5+2|=7.故答案为:7;(2)当x>2时,|x+5|+|x﹣2|=x+5+x﹣2=7,解得:x=2与x>2矛盾,故此种情况不存在;当﹣5≤x≤2时,|x+5|+|x﹣2|=x+5+2﹣x=7,故﹣5≤x≤2时,使得|x+5|+|x﹣2|=7,故使得|x+5|+|x﹣2|=7的整数是﹣5、﹣4、﹣3、﹣2、﹣1、0、1、2;当x<﹣5时,|x+5|+|x﹣2|=﹣x﹣5+2﹣x=﹣2x+3=7,得x=﹣5与x<﹣5矛盾,故此种情况不存在.故答案为:﹣5、﹣4、﹣3、﹣2、﹣1、0、1、2;【分析】(1)根据题目中的式子和绝对值可以解答本题;(2)利用分类讨论的数学思想可以解答本题;(3)根据题意,利用分类讨论的数学思想可以解答本题.12.如图,数轴上点A,B分别对应数a,b.其中a<0,b>0.(1)当a=﹣2,b=6时,求a-b=________,线段AB的中点对应的数是________;(直接填结果)(2)若该数轴上另有一点M对应着数m.①当a=﹣4,b=8,点M在A,B之间,且AM=3BM时,求m的值.②当m=2,b>2,且AM=2BM时,求代数式a+2b+20的值.【答案】(1)-8;2(2)解:①∵AM=3BM②∵AM=2BM整理得【解析】【解答】(1),所以线段AB的中点对应的数是2故答案为-8,2【分析】(1)直接利用有理数的减法即可求出的值;即为中点对应的数;(2)①根据AM=3BM,可得出 ,利用a,b两点可求出AB之间的距离,进而可求AM的长度,则m的值可求.②可根据AM=2BM之间的关系式,找到a,b之间的一个等式,然后整体代入a+2b+20中即可求值.。
最新七年级数学上册有理数专题练习(word版
一、初一数学有理数解答题压轴题精选(难)1.如图所示,一个点从数轴上的原点开始,先向右移动3个单位长度,再向左移动5个单位长度,可以看到终点表示的数是﹣2,已知点A、B是数轴上的点,请参照图并思考,完成下列各题.(1)如果点A表示数﹣3,将点A向右移动7个单位长度,那么终点B表示的数是________,A、B两点间的距离是________;(2)如果点A表示数3,将A点向左移动7个单位长度,再向右移动5个单位长度,那么终点B表示的数是________,A、B两点间的距离为________;(3)如果点A表示数﹣4,将A点向右移动16个单位长度,再向左移动25个单位长度,那么终点B表示的数是________,A、B两点间的距离是________;(4)一般地,如果A点表示的数为m,将A点向右移动n个单位长度,再向左移动p个单位长度,那么请你猜想终点B表示什么数?A、B两点间的距离为多少?【答案】(1)4;7(2)1;2(3)﹣13;9(4)解:一般地,如果A点表示的数为m,将A点向右移动n个单位长度,再向左移动p 个单位长度,那么请你猜想终点B表示m+n﹣p,A、B两点间的距离为|n﹣p|.【解析】【解答】解:(1)如果点A表示数﹣3,将点A向右移动7个单位长度,那么终点B表示的数是4,A、B两点间的距离是7;(2)如果点A表示数3,将A点向左移动7个单位长度,再向右移动5个单位长度,那么终点B表示的数是1,A、B两点间的距离为2;(3)如果点A表示数﹣4,将A点向右移动16个单位长度,再向左移动25个单位长度,那么终点B表示的数是﹣13,A、B两点间的距离是9;【分析】(1)根据数轴上的点向右平移加,可得B点表示的数,根据数轴上两点间的距离是大数减小数,可得答案;(2)根据数轴上的点向右平移加,向左平移减,可得B点表示的数,根据数轴上两点间的距离是大数减小数,可得答案;(3)根据数轴上的点向右平移加,向左平移减,可得B点表示的数,根据数轴上两点间的距离是大数减小数,可得答案;(4)根据数轴上的点向右平移加,向左平移减,可得B点表示的数,根据数轴上两点间的距离是大数减小数,可得答案;2.如图,数轴的单位长度为1.(1)如果点B,D表示的数互为相反数,那么图中点A、点D表示的数分别是________、________;(2)当点B为原点时,在数轴上是否存在点M,使得点M到点A的距离是点M到点D的距离的2倍,若存在,请求出此时点M所表示的数;若不存在,说明理由;(3)在(2)的条件下,点A、点C分别以2个单位长度/秒和0.5个单位长度同时向右运动,同时点P从原点出发以3个单位长度/秒的速度向左运动,当点A与点C之间的距离为3个单位长度时,求点P所对应的数是多少?【答案】(1)-4;2(2)解:存在,如图:当点M在A,D之间时,设M表示的数为x,则x﹣(﹣2)=2(4﹣x)解得:x=2,当点M在A,D右侧时,则x﹣(﹣2)=2(x﹣4),解得:x=10,所以点M 所表示的数为2或10(3)解:设当点A与点C之间的距离为3个单位长度时,运动时间为t,A点运动到:﹣2+2t,C点运动到:3+0.5t,①﹣2+2t﹣(3+0.5t)=3,解得:t=6,所以P点对应运动的单位长度为:3×6=18,所以点P表示的数为﹣18.②3+0.5t﹣(﹣2+2t)=3,解得:t= ,所以P点对应运动的单位长度为:3× =4,所以点P表示的数为﹣4.答:点P表示的数为﹣18或﹣4.【解析】【解答】解:(1)∵点B,D表示的数互为相反数,∴点B为﹣2,D为2,∴点A为﹣4,故答案为:﹣4,2;【分析】(1)由数轴上表示的互为相反数的两个数,分别位于原点的两侧,并且到原点的距离相等得出BD的中点就是原点,进而即可得出点A,C所表示的数;(2)存在,如图:分类讨论:当点M在A,D之间时,设M表示的数为x ,则AM=x-(-2),DM=4-x,根据AM=2DM列出方程,求解即可;当点M在A,D右侧时,AM=x-(-2),DM=x-4,根据AM=2DM列出方程,求解即可;(3)设当点A与点C之间的距离为3个单位长度时,运动时间为t,A点运动到:﹣2+2t,C点运动到:3+0.5t,① 追击前根据两点间的距离公式列出方程3+0.5t﹣(﹣2+2t)=3 求解算出t的值,进而根据即可算出点P所表示的数;② 追击后根据两点间的距离公式列出方程﹣2+2t﹣(3+0.5t)=3求解算出t的值,进而根据即可算出点P所表示的数,综上所述即可得出答案。
(完整word版)有理数的概念及分类的练习题.docx
有理数概念及分类1.按要求下列各数:1, -0.037 , +0.62 , -3 ,3198 , 3 , 0 , -1.5 ,,, +2 , -7428属于整数集合的有__________属于分数集合的有_________ _属于正数集合的有_______________属于数集合的有 _____________ 属于正整数集合的有 ____________属于整数集合的有____________正分数集合的有_____________ 属于分数集合的有__________ 属于非整数集合的有属于非数集合的有_________ 属于非整数集合的有_________属于非正整数集合的有_______________2 .主学网料公司生的一种瓶装料外包装上印有“600 ±30 ( mL )”字,“±30mL”是什么含?局品抽 5 瓶,容量分603mL,611mL, 589mL, 573mL, 627mL,抽品的容量是否合格?3.若密云水的水位比准水位高出1cm ,3 日水位+ 4cm ,(3cm+)3cm,某月的水位中示, 1 日水位-5cm,2日水位-A.1日与 2 日水位相差6cmB.1日与 3 日水位相差1cmC.2日与 3 日水位相差5cmD.均不正确4.球的量,超准量的克数正数,不足准量的克数数,的果如下表:球号12345与准量的差(克)+4+7-3-8+9最接近准量的是_______ 号球;量最大的球比量最小的球重_______ 克.5.察下面一列数,根据律写出横上的数,-1;1;-1;1;;;⋯⋯;第 2003个数是。
12346 .把下列各数填在相的集合内。
整数集合:{数集合:{分数集合:{非数集合:{正有理数集合:{分数集合:{⋯⋯}⋯⋯}⋯⋯}⋯⋯}⋯⋯}⋯⋯}7.探索律将的偶 2, 4 , 6 , 8 ,⋯,排成如下表:246810121416182022242628303234363840⋯⋯( 1 )十字框中的五个数的和与中的数和16 有什么关系?( 2 )中的数x ,用代数式表示十字框中的五个数的和.( 3 )若将十字框上下左右移,可框住另外的五位数,其它五位数的和能等于201 ?如能,写出五位数,如不能,明理由。
完整版)有理数专题训练
完整版)有理数专题训练专题一有理数的概念及其应用例1:已知a,b互为相反数,c,d互为倒数,x的绝对值是2,求(a+b+c*d)*m-cd的值。
解:根据题意可得a=-b,c=1/d,|x|=2,代入原式得:a+b+c*d)*m-cd=(0+c*d)*m-cd=cd*(m-1)练:已知a,b互为相反数,c,d互为倒数,|x|=3,求代数式a+b-cdx+x/3的值。
解:根据题意可得a=-b,c=1/d,|x|=3,代入原式得:a+b-cdx+x/3=-2b-cd*x+x/3=-2b-cd*3+x/3=-2b-3c+x/3巩固:已知a,b互为相反数,c,d互为倒数,x的平方等于4,试求x^2-cd*x+(a+b)*2010-cd*2009的值。
解:根据题意可得a=-b,c=1/d,x^2=4,代入原式得:x^2-cd*x+(a+b)*2010-cd*2009=4-cd*x-2b+2010c-2009cd=2010c-2b-3cd专题二非负数的性质例2:若x+1+(y-2)^2=0,求xy的值。
解:由非负数的性质可知,(y-2)^2>=0,所以x+1<=0,即x<=-1.又因为x+1+(y-2)^2=0,所以(y-2)^2=-(x+1)<=0,所以y=2.因此,xy=-2.练:已知有理数满足a-1+b+3+3c-1=0,求(a*b*c)^(1/7)*2011的值。
解:整理得a+b+3c=1,代入原式得:a*b*c)^(1/7)*2011=(a*b*c)^(1/7)*(a+b+3c)^2011=(a*b*c)^(1/7)巩固:若x-1与(y+2)^2互为相反数,求x^2015+y^3的值。
解:由非负数的性质可知,(y+2)^2>=0,所以x-1<=0,即x<=1.又因为x-1=-(y+2)^2,所以(y+2)^2=1-x<=2,所以y<=sqrt(2)-2.因此,x^2015+y^3<=1+(sqrt(2)-2)^3,具体值需要进一步计算。
(word完整版)上海市六年级数学有理数综合练习试题.doc
六年级数学《有理数及其运算》单元测试题( 一)一、认真填一填,相信你可以把正确的答案填上.1.︱ - 1︱倒数是 ______,︱ -2︱相反数是______.若a 与2 互为相反数,则︱a+3 ︱=_______.22.温度3℃比 -7℃高 _______;温度 -8℃比 -2℃低 _______.海拔 -200m 比300m 高________;从海拔250m 下降到100m ,下降了________.3.实数a 在数轴上位置如图所示,则︱a+1 ︱的结果是_________.a -1 0 14.绝对值等于 5 的有理数是 __________.绝对值最小的数是 _____.绝对值大于 2 小于 5 的所有整数和为_______.5有理数的减法法则是:减去一个数等于加上这个数的 ___________,用字母表示成:_______________________________6 .计算:(-2)-(-5)=(-2)+(______) ;0-(-4)=0+(______) ;(-6)-3=(-6)+(______) ;1-(+37)=1+(______) .71的绝对值的相反数是 ____________________.28.若 a 与 b 的绝对值分别为 2 和 5,且数轴上 a 在 b左侧,则a+b的值为________.9.若用 A 、B、C 分别表示有理数 a 、b 、c,0 为原点如图所示 .已知 a<c<0,b>0.ACO B 化简 c+ │ a+b │ +│c-b │-│c-a │=_____________.10 .数轴上与 2 这个点的距离等于 6 个单位长度的点所表示的数是.11. ( 1) 的相反数是. | 1| 的相反数是.12. 计算:(1) 1 1 _____;(2)| 2 | ( 1) ;13. 绝对值小于 2008 的所有整数的和为.14.| 3 | 的意义是.| 3 |= .15. 哥哥今年 12 岁,弟弟今年 9 岁,用算式表示弟弟比哥哥大多少岁,应为:,计算结....果为:,16. 若三个有理数的乘积为负数,则在这三个有理数中,有个负数.17. 用算式表示:温度由 4 ℃上升 7 ℃,达到的温度是.18. 规定 a b 5a 2b 1,则( 4) 6 的值为.19. 已知 | a | 3 , | b | 2 ,且ab<0,则a b = .20.如果一个数与另一个数的和是 -50, 其中一个数比 6 的相反数小 5,?另一个数是 ___________.21.大于 2 且小于 5 的所有整数的和是 _________.22.若│ a │=5, │b │=2, 且 a,b 同号 ,│ a-b │ =_________.23. 已知 a 是最小的正整数, b 的相反数比它本身大 2 , c 比最大的整数大 3 ,算(2 a +3c )· b =_________.24 .用“>”或“<”号填空:(1) 如果 a >0, b > 0,那么 a+b ______0;(2) 如果 a <0, b < 0,那么 a+b ______0 ;(3) 如果 a >0,b <0,|a| >|b| ,那么 a+b ______0 ;(4) 如果 a <0,b >0,|a| >|b| ,那么 a+b ______0.25 .若 x>3 ,︱ x-3 ︱=_______;若 x<3, ︱ x-3 ︱=_______.26 .若︱ x-2︱+︱ y +3 ︱=0 , 2x-3y=_______ .27 .算︱1-1 ︱+︱1 -1︱+︱1 - 1 ︱ +⋯ +︱ 1 -1︱=_______.2 3 2 4 3 100 9928.把 -0.11+(-5.24)-(+0.15)-(-10 1) 写成省略括号的和的形式 _________. 529.大于 4 小于 12 的所有整数的和是 ________. 30.31 .-3 减去 4 1与-31的和所得的差是 ________.2 432 .-6, -3.5 ,4 三数的和比三数的的和小________.33.求 -1,+2 ,-3,+4 ,-5,⋯, -99,100100 个数的和 ________.34.定了一种新运算 *:若 a 、b 是有理数, a *b = 3a 2b ,算 2*(-5) =35.已知甲地高度是 -10m ,甲地比乙地高 10m ,又乙地比丙地高 6m ,甲地比丙地高 ________.36. 已知 |x-1|=2 , |1+x|-5 =_______ .37. 从 -1 中减去 - 3 , 2 ,与1 的和,所得的差是。
最新有理数单元达标训练题(Word版 含答案)
一、初一数学有理数解答题压轴题精选(难)1.【概念学习】规定:求若干个相同的有理数(均不等于0)的除法运算叫做除方,如2÷2÷2,(﹣3)÷(﹣3)÷(﹣3)÷(﹣3)等.类比有理数的乘方,我们把2÷2÷2记作2③,读作“2的圈3次方”,(﹣3)÷(﹣3)÷(﹣3)÷(﹣3)记作(﹣3)④,读作“﹣3的圈4次方”,一般地,把(a≠0)记作aⓝ,读作“a的圈n次方”.(1)(【初步探究】直接写出计算结果:2③=________,(- )⑤=________;(2)【深入思考】我们知道,有理数的减法运算可以转化为加法运算,除法运算可以转化为乘法运算,有理数的除方运算如何转化为乘方运算呢?Ⅰ.试一试:仿照上面的算式,将下列运算结果直接写成幂的形式.(﹣3)④=________;5⑥=________;(- ) ⑩=________.Ⅱ.想一想:将一个非零有理数a的圈n次方写成幂的形式等于________;Ⅲ.算一算:12²÷(- )④×(-2)⑤-(- )⑥÷3³.________【答案】(1);-8(2);;;;解:【解析】【解答】解:(1)【初步探究】,故答案为:,-8;( 2 )【深入思考】Ⅰ.;;故答案为:;;;Ⅱ.【分析】(1)①按除方法则进行计算即可;②按除方法则进行计算即可;(2)①把除法化为乘法,第一个数不变,从第二个数开始依次变为倒数,由此分别得出结果;②结果前两个数相除为1,第三个数及后面的数变为,则aⓝ=a×()n−1= ;③将第二问的规律代入计算,注意运算顺序.2.同学们都知道,|3-(-1)∣表示3与-1的差的绝对值,其结果为4,实际上也可以理解为3与-1两数在数轴上所对应的两点之间的距离,其距离同样是4;同理,∣x-5|也可以理解为x与5两数在数轴上所应的两点之间的距离,试利用数轴探索:(1)试用“| |”符号表示:4与-2在数轴上对应的两点之间的距离,并求出其结果;(2)若|x-2|=4,求x的值;(3)同理,|x-3|+|x+2|表示数轴上有理数x所对应的点到3和-2所对应的两点距离之和,请你直接写出所有符合条件的整数x,使得|x-3|+|x+2|=5;试求代数式|x-3|+|x+2|的最小值.【答案】(1)解:|4-(-2)|=6(2)解:x与2的距离是4,在数轴上可以找到x=-2或6(3)解:当-2≤x≤3时,x所对应的点到3和-2所对应的两点距离之和是5,∴符合条件的整数x=-2,-1,0,1,2,3;当x<-2或x>3时,x所对应的点到3和-2所对应的两点距离之和大于5,∴|x-3|+|x+2|的最小值是5【解析】【分析】(1)根据已知列式求解即可;(2)按照已知去绝对值符号即可求解.(3)当-2≤x≤3时,x所对应的点到3和-2所对应的两点距离之和是5;当x<-2或x>3时,x所对应的点到3和-2所对应的两点距离之和大于5,由此即可得出结论.3.已知,数轴上点A和点B所对应的数分别为,点P为数轴上一动点,其对应的数为.(1)填空: ________ , ________ .(2)若点 P到点 A、点 B 的距离相等,求点 P 对应的数.(3)现在点 A、点 B分别以 2 个单位长度/秒和 0.5 个单位长度/秒的速度同时向右运动,点 P以 3 个单位长度/秒的速度同时从原点向左运动.当点 A与点 B之间的距离为2个单位长度时,求点 P所对应的数是多少?【答案】(1)-1;3(2)解:依题可得:PA=|x+1|,PB=|3-x|,∵点P到点A、点B的距离相等,∴PA=PB,即|x+1|=|3-x|,解得:x=1,∴点P对应的数为1.(3)解:∵点A、点B 速度分别以 2 个单位长度/秒、 0.5 个单位长度/秒的速度同时向右运动,∴A点对应的数为2t-1,点B对应的数为3+0.5t,①当点A在点B左边时,∵AB=2,∴(3+0.5t)-(2t-1)=2,解得:t=,∵点P以 3 个单位长度/秒的速度同时从原点向左运动,∴×3=4,∴P点对应的数为:-4.②当点A在点B右边时,∵AB=2,∴(2t-1)-(3+0.5t)=2,解得:t=4,∵点P以 3 个单位长度/秒的速度同时从原点向左运动,∴4×3=12,∴P点对应的数为:-12.【解析】【解答】解:(1)∵(a+1)2+|b-3|=0,∴,解得:.故答案为:-2;3.【分析】(1)根据平方和绝对值的非负性列出方程,解之即可得出答案.(2)根据题意可得PA=|x+1|,PB=|3-x|,再由PA=PB得|x+1|=|3-x|,解之即可得出点P对应的数.(3)根据题意可得A点对应的数为2t-1,点B对应的数为3+0.5t,分情况讨论:①当点A 在点B左边时,②当点A在点B右边时,由AB=2分别列出方程,解之得出t值,再由P 点的速度得出点P对应的数.4.观察下面的式子:, , ,(1)你发现规律了吗?下一个式子应该是________;(2)利用你发现的规律,计算:【答案】(1)(2)解:==== .【解析】【解答】(1)根据规律,下一个式子是:【分析】(1)规律:两个自然数(0除外)的乘积的倒数等于这两个自然数倒数的差,据此写出结论即可;(2)利用规律将原式转化为加减运算,然后利用加法结合律进行计算即可.5.如图,已知数轴上点A表示的数为8,B是数轴上位于点A左侧一点,且AB=20,(1)写出数轴上点B表示的数________;(2)|5-3|表示5与3之差的绝对值,实际上也可理解为5与3两数在数轴上所对的两点之间的距离.如的几何意义是数轴上表示有理数的点与表示有理数3的点之间的距离.试探索:①:若,则=________.②:的最小值为________.(3)动点P从O点出发,以每秒2个单位长度的速度沿数轴向右匀速运动,设运动时间为(>0)秒.①:当 =1时,A,P两点之间的距离为________;②:当 =________时,A,P之间的距离为2.(4)动点P,Q分别从O,B两点,同时出发,点P以每秒4个单位长度沿数轴向右匀速运动,Q点以P点速度的两倍,沿数轴向右匀速运动,设运动时间为t(t>0)秒.当t=________,P,Q之间的距离为4.【答案】(1)-12(2)6或10;20(3)6;3或5(4)2或4【解析】【解答】解:(1)∵AB=20,点A表示的数是8,B是数轴上位于点A左侧一点,∴点B表示的数是8-20=-12.故答案为:-12.(2)∵|x-8|=2∴x-8=±2解之:x=10或x=6;|x-(-12)|+|x-8|的最小值为8-(-12)=20.故答案为:6或10;20.(3)动点P从O点出发,以每秒2个单位长度的速度沿数轴向右匀速运动,∴OP=2t∴AP=8-2t当t=1时,AP=8-2×1=6;当AP=2时,则|8-2t|=2,解之:t=5或t=3.故答案为:6;3或5.(4)∵点P以每秒4个单位长度沿数轴向右匀速运动,Q点以P点速度的两倍,沿数轴向右匀速运动,∴点Q的速度为每秒8个单位长度,设运动时间为t(t>0)秒时,P,Q之间的距离为4.∴8t-4t-12=4或12+4t-8t=4解之:t=4或t=2故答案为:2或4.【分析】(1)根据点A表示的数和点B的位置关系,就可得到点B所表示的数。
(word完整版)1.1有理数练习试题
有理数练习题一、双基回顾1、正数、负数及0的意义(1)大于 的数叫做正数,正数前面的“+”号通常省略不写。
(2)在正数前面加上 的数叫做负数。
(小于 的数叫做负数) (3)0既不是 ,也不是 ;0是 与 的分界。
练习:〔1〕某食品包装上标有“净含量385±5克”,这袋食品的合格率含量范围是 克至 克。
〔2〕已知数:-7,2.1,0,-1/3,13中,正数有 ;负数有 ;不是负数的数是 ;不是正数的数是 .〔注〕不是负数的数叫非负数;不是正数的数叫非正数。
2、用正负数表示具有相反意义的量正负数用来表示具有相反意义的量,如+2元表示股票上升2元,-3元表示 。
在一个数的前面加上“-”号,所得的数表示的意义与原数表示的意义 。
〔3〕下列说法中错误的是 .①零上6℃的相反意义只有零下6℃;②收入和支出是一对相反意义的量;③运出5吨与收入5元是一对具有相反意义的量。
〔注〕相反意义的量包含两个要素:一是它们的意义相反,二是它们都具有数量,而且必须是同类量。
〔4〕如果零上5℃记作+5℃,那么零下5℃记作〔 〕A 、-5B 、-10C 、-10℃D 、-5℃ 〔注〕在实际问题的解答中要注意相应量的单位。
3、有理数及其相关概念(1) 统称为整数; (2) 统称为分数; (3) 统称为有理数。
〔注〕因为有限小数和无限循环小数都可以化为分数,所以有限小数和无限循环小数也都是有理数。
4、有理数的分类 (1)按定义分: (2)按符号分:〔注〕分类要按同一个标准,做到不重复不遗漏。
1.若向北走20m 记作+20m 。
那么向南走10m 记作____,-25m 的意思是______,原地不动记作_____.2.本地区夏天的最高温度是零上39℃.冬天的最低温度是零下7℃,它们分别记作_______,_______. 3.吐鲁番盆地的海拔高度为-155m 的意义是_____ ___.4.如果支出200元记作-200元,那么收入-200元的意义是___________;收入1000元记作_____________.5.甲、乙两人同时从A 地出发.如果甲向东走48m 记作+48m ,则乙向西走32m 记为__________m ,这时甲、乙两人相距_____________m .6.A 、B 两冷库,A 冷库的温度是-8℃,B 冷库温度是-15℃,则两冷库中,_______冷库的温度较高,高________度。
有理数(基础篇)(Word版 含解析)
一、初一数学有理数解答题压轴题精选(难)1.结合数轴与绝对值的知识回答下列问题:(1)数轴上表示4和1的两点之间的距离是________;表示-3和2两点之间的距离是________;一般地,数轴上表示数m和数n的两点之间的距离等于|m-n|.(2)如果|x+1|=3,那么x=________;(3)若|a-3|=2,|b+2|=1,且数a、b在数轴上表示的数分别是点A、点B,则A、B 两点间的最大距离是________.(4)若数轴上表示a的点位于-4与2之间,则|a+4|+|a-2=________.【答案】(1)3;5(2)2或-4(3)8(4)6【解析】【解答】解:数轴上表示4和1的两点之间的距离是:;表示和两点之间的距离是:故答案为:或或故答案为:或(3)或或当时,则两点间的最大距离是,当a=5,b=-1时,A、B两点间的距离是6,当a=1,b=-3时,A、B两点间的距离是4,当时,则两点间的最小距离是,则两点间的最大距离是,最小距离是故答案为:(4)数轴上表示a的点位于-4与2之间,则故答案为:【分析】(1)根据数轴上任意两点间的距离等于这两点所表示的数的绝对值即可算出答案;(2)根据绝对值的意义去绝对值的符号,再解方程即可;(3)根据绝对值的意义去绝对值的符号,再解方程求出a,b的值,然后分四种情况求出ab 之间的距离,再比大小即可;(4)根据数轴上的点所表示的数的特点可知-4<a<2,所以a+4>0,a-2<0,再根据绝对值的意义去绝对值符号并合并同类项即可.2.通过学习绝对值,我们知道的几何意义是数轴上表示数在数轴上的对应点与原点的距离,如:表示在数轴上的对应点到原点的距离. ,即表示、在数轴上对应的两点之间的距离,类似的, ,即表示、在数轴上对应的两点之间的距离;一般地,点,在数轴上分别表示数、,那么,之间的距离可表示为 .请根据绝对值的几何意义并结合数轴解答下列问题:(1)数轴上表示和的两点之间的距离是________;数轴上、两点的距离为,点表示的数是,则点表示的数是________.(2)点,,在数轴上分别表示数、、 ,那么到点 .点的距离之和可表示为_ (用含绝对值的式子表示);若到点 .点的距离之和有最小值,则的取值范围是_ __.(3)的最小值为_ __.【答案】(1)2;1或7(2)|x+1|+|x-2||-1≤x≤2(3)3【解析】【解答】解:(1)数轴上表示2和4的两点之间的距离是4-2=2;数轴上P、Q两点的距离为3,点P表示的数是4,则点Q表示的数是4-3=1或4+3=7;( 2 )A到B的距离与A到C的距离之和,可表示为|x+1|+|x-2|,∵|x-3|+|x+2|=7,当x<-1时,|x+1|+|x-2|=2-x-x-1=1-2x无最小值,当-1≤x≤2时,|x+1|+|x-2|=x+1+2-x=3,当x>2时,x+1+x-2=2x-1>3,故若A到点B、点C的距离之和有最小值,则x的取值范围是-1≤x≤2;(3)原式=|x-1|+|x-4|.当1≤x≤4时,|x-1|+|x-4|有最小值为|4-1|=3故答案为:(1)2,1或7;(2)|x+1|+|x-2|,-1≤x≤2;(3)3【分析】(1)根据数轴上两点间的距离的求法“数轴上两点间的距离即数轴上表示两个点的数的差的绝对值.”可求解;(2)同理可求解;(3)由(2)中求得的x的取值范围去绝对值,然后合并同类项即可求解.3.如图,AB=12cm,点C在线段AB上,AC=3BC,动点P从点A出发,以4cm/s的速度向右运动,到达点B之后立即返回,以4cm/s的速度向左运动;动点Q从点C出发,以1cm/s的速度向右运动,到达点B之后立即返回,以1cm/s的速度向左运动.设它们同时出发,运动时间为t秒,当第二次重合时,P、Q两点停止运动.(1)AC=________cm,BC=________cm;(2)当t=________秒时,点P与点Q第一次重合;当t=________秒时,点P与点Q第二次重合;(3)当t为何值时,AP=PQ?【答案】(1)9;3(2)3;(3)解:在点P和点Q运动过程中,当AP=PQ时,存在以下三种情况:①点P与点Q第一次重合之前,可得:2×4t=9+t,解得t= ;②点P与点Q第一次重合后,P、Q由点B向点A运动过程中,可得:2×[12-(4t-12)]=12-(t-3),解得t= ;③当点P运动到点A,继续由点A向点B运动,点P与点Q第二次重合之前,可得:2×(4t-24)=12-(t-3),解得t=7.故当t为秒、秒或7秒时,AP=PQ.【解析】【解答】(1)∵AB=12cm,AC=3BC∴AC= AB=9,BC=12-9=3.故答案为:9;3.(2)设运动时间为t,则AP=4t,CQ=t,由题意,点P与点Q第一次重合于点B,则有4t-t=9,解得t=3;当点P与点Q第二次重合时有:4t+t=12+3+24,解得t= .故当t=3秒时,点P与点Q第一次重合;当t= 秒时,点P与点Q第二次重合.故答案为:3;.【分析】(1)由题目中AB=12cm,点C在线段AB上,AB=3BC,可直接求得;(2)根据运动过程,两点重合时他们走过距离之间的关系列方程即可求得;(3)满足AP=PQ,则2AP=AQ,在整个运动过程中正确的位置存在三处,依次分析列出方程即可求得.4.数轴上,,三个点对应的数分别为,,,且,到所对应的点的距离都等于7,点在点的右侧,(1)请在数轴上表示点,位置, ________, ________;(2)请用含的代数式表示 ________;(3)若点在点的左侧,且,点以每秒2个单位长度的速度沿数轴向右运动,当且点在的左侧时,求点移动的时间.【答案】(1);6(2)(3)解:点在点的左侧,且,,.设点移动的时间为秒.当点在点的左侧时,,解得:,此时点对应的数为14,在点的右侧,不合题意,舍去;当点在点的右侧且在点的左侧时,,解得:.点移动的时间为秒.【解析】【解答】(1)解:(1)根据题意得:,,,,将其表示在数轴上,如图所示.故答案为:;62)解:根据题意得:.故答案为:【分析】(1)由,到所对应的点的距离都等于7,点在点的右侧,可得出关于,的一元一次方程,解之即可得出,的值;(2)由点,对应的数,利用两点间的距离公式可找出的值;(3)由点在点的左侧及的值可得出的值,设点移动的时间为秒,分点在点的左侧和点在点的右侧且在点的左侧两种情况考虑,由,找出关于的一元一次方程,解之即可得出结论.5.如图,在数轴上点A表示数−20,点C表示数30,我们把数轴上两点之间的距离用表示两点的大写字母一起标记.比如,点A与点B之间的距离记作AB,点B与点C之间的距离记作BC…(1)点A与点C之间的距离记作AC,则AC的长为________;若数轴上有一点D满足CD=AD,则D点表示的数为________;(2)动点B从数1对应的点开始向右运动,速度为每秒1个单位长度,同时点A、C在数轴上运动,点A、C 的速度分别为每秒2个单位长度,每秒3个单位长度,运动时间为t秒.①若点A向右运动,点C向左运动,AB=BC,求t的值________;②若点A向左运动,点C向右运动,2AB−m×BC的值不随时间t的变化而改变,则2AB−m×BC的值为________(直接写出答案).【答案】(1)50;5(2)10或;-45.【解析】【解答】(1)解:∵A表示的数为-20,C表示的数为30,∴AC=30-(-20)=50;∵CD=AD∴点D为AC的中点∴D所表示的数为 =5,故答案为50;5(2)解:①根据题意,A所表示的数为-20+2t,C所表示的数为30-3t,B 所表示的数为1+t,AB=|-20+2t-(1+t)|=|-21+t|,BC=|30-3t-(1+t)|=|29-4t|,∵AB=BC∴|-21+t|=|29-4t|,-21+t=29-4t,解得t=10,-21+t=4t-29解得t= .∴当AB=BC时,t=10或.②根据题意,A所表示的数为-20-2t,B所表示的数为1+t,C所表示的数为30+3t,AB=1+t-(-20-2t)=21+3t,BC=30+3t-(1+t)=29+2t,∴2AB-m×BC=2(21+3t)-m×(29+2t)=42+6t-29m-2mt,∵2AB-m×BC的值不随时间t的变化而改变,∴6t-2mt=0,∴m=3,∴42+6t-29m-2mt=-45,∴2AB-m×BC=-45.故答案为-45.【分析】(1)在数轴上表示两点所组成的线段长度用右边点所表示的数减去左边点所表示的数即可.(2)当数轴上想表示两个点之间的距离,根据绝对值的意义可用绝对值进行处理.动点在数轴上运动,在已知运动的方向和速度之后,就可以利用原来所在的数如果向右移动就加上向右移动的距离,如果向左移动,就减去向左移动的距离.6.已知数轴上点A、B分别表示的数是、 ,记A、B两点间的距离为AB(1)若a=6,b=4,则AB=________;若a=-6,b=4,则AB=________;(2)若A、B两点间的距离记为,试问和、有何数量关系?(3)写出所有符合条件的整数点P,使它到5和-5的距离之和为10,并求所有这些整数的和.(4)|x-1|+|x+2|取得的值最小为________,|x-1|-|x+2|取得最大值为________.【答案】(1)2;10(2)解:d和a、b之间的数量关系:d=|a-b|(3)解:∵5-(-5)=5+5=10,∴点P在5和-5之间∴符合条件的整数点P表示的数为-5、-4、-3、-2、-1、0、1、2、3、4、5,∴这些整数的和=-5-4-3-2-1+0+1+2+3+4+5=0(4)3;3【解析】【解答】解:(1)若a=6,b=4,则AB=6-4=2;若a=-6,b=4,则AB=4-(-6)=10;( 4 )设|x-1|表示点C到1的距离,|x+2|表示点C到-2的距离,∵1到-2的距离是1-(-2)=3,∴当点C在-1到2(含-1和2)之间时,|x-1|+|x+2|取得的值最小,最小值是3;当点C在2的左边(含2)时,|x-1|-|x+2|取得的值最大,最大值是3.【分析】(1)根据各数据分别计算即可得解;(2)根据计算结果列出算式即可;(3)求出-5到5的距离正好等于10,可知-5到5之间的所有整数点都可以,然后求解即可;(4)设|x-1|表示点C到1的距离,|x+2|表示点C到-2的距离,则|x-1|+|x+2|表示两个距离的和,|x-1|-|x+2|表示两个距离的差,根据此意义即可求得.7.平移和翻折是初中数学两种重要的图形变化.(1)平移运动①把笔尖放在数轴的原点处,先向负方向移动个单位长度,再向正方向移动个单位长度,这时笔尖的位置表示什么数?用算式表示以上过程及结果是(________)A. B.C. D.②一机器人从原点O开始,第1次向左跳1个单位,紧接着第2次向右跳2个单位,第3次向左跳3个单位,第4次向右跳4个单位,……,依次规律跳,当它跳2019次时,落在数轴上的点表示的数是________.(2)翻折变换①若折叠纸条,表示-1的点与表示3的点重合,则表示2019的点与表示________的点重合;②若数轴上A、B两点之间的距离为2019(A在B的左侧,且折痕与①折痕相同),且A、B两点经折叠后重合,则A点表示________B点表示________.③若数轴上折叠重合的两点的数分别为a,b,折叠中间点表示的数为________.(用含有a,b的式子表示)【答案】(1)D;-1010(2)-2017;-1008.5;1010.5;【解析】【解答】解:①∵笔尖放在数轴的原点处,先向负方向移动3个单位长度,再向正方向移动2个单位长度,∴(-3)+(+2)=-1故答案为:D.②∵一机器人从原点O开始,第1次向左跳1个单位,紧接着第2次向右跳2个单位,第3次向左跳3个单位,第4次向右跳4个单位…∴-1+2-3+4-…+2018-2019=(-1+2)+(-3+4)+…+(-2017+2018)-2019=1+1+…-2019=1009-2019=-1010故答案为:D,-1010.(2)①∵折叠纸条,表示-1的点与表示3的点重合∴对称中心为:,∴2019-1=2018,∴与表示2019的点重合的点在1的左边,∴1-2018=-2017.②∵数轴上A、B两点之间的距离为2019,折痕与①折痕相同∴点B和1,点A和1之间的距离相等,∴点A和1之间的距离为2019÷2=1009.5∵A在B的左侧,∴点A表示的数为1-1009.5=-1008.5点B表示的数为:1009.5+1=1010.5;③根据以上规律可知数轴上折叠重合的两点的数分别为a,b,折叠中间点表示的数为.故答案为:-2017、-1008.5、1010.5、.【分析】(1)点在数轴上平移的规律为:左减右加,列式计算。
人教版七年级上册第1章《有理数》章末综合训练题 word版,含答案
人教版七年级上册第1章《有理数》章末综合训练题一、选择题1.2020-的相反数是( )A .2020B .2020-C .12020D .12020- 2.如果80 m 表示向东走80 m ,则-60 m 表示( ).A .向东走60 mB .向西走60 mC .向南走60 mD .向北走60 m 3.我国是世界上严重缺水的国家,目前每年可利用的淡水资源总量为27500亿立方米,人均占有淡水量居世界第110位,因此我们要节约用水,其中27500用科学记数法表示为( ) A .275×102 B .2.75×104C .2.75×105D .27.5×103 4.有理数()()2201922102-------,,,,中,负数的个数有( )A .2个B .3个C .4个D .5个5.在1,-2,0,23这四个数中,最大的数是( ) A .-2 B .0 C .23 D .16.由四舍五入法得到的近似数8.16万,下列说法正确的是( )A .精确到万位B .精确到百位C .精确到千分位D .精确到百分位7.如图,四个有理数在数轴上的对应点M ,P ,N ,Q ,若点M ,N 表示的有理数互为相反数,则图中表示绝对值最小的数的点是( )A .点MB .点NC .点PD .点Q 8.下面说法正确的有( )①π的相反数是-3.14;①符号相反的数互为相反数;① -(-3.8)的相反数是-3.8;①一个数和它的相反数不可能相等;①正数与负数互为相反数.A .0个B .1个C .2个D .3个 9.已知,a b 表示两个非零的实数,则a ab b +的值不可能是( ) A .2 B .–2 C .1 D .010.有理数a 、b 在数轴上的位置如图所示,现有下列结论:①0a b +<;①0b a ->;①11b a>-;①30a b ->①0a b -->.其中正确的有( )A .①①①B .①①①C .①①①①D .①①①①二、填空题11.有限小数和无限循环小数统称________________数.12.某市某日的最高气温为 7①,最低气温为-5①,那么这天的最高气温比最低气温高_____①.13.化简:34ππ-+-=________.14.若数轴上的点A 所对应的数是﹣2,那么与点A 相距3个单位长度的点所表示的数是_____.15.小明写作业时,不慎将墨水滴在数轴上,根据图中数值,请你确定墨迹盖住部分的整数共有_____个.16.观察下面一列数,按规律在横线上填写适当的数:1357,,,261220--,______,________. 三、解答题17.把下列各数填入它所属的括号内:15,−19,-5,512,0,-5.32,37% (1)分数集合{ …};(2)整数集合{ …}.18.计算:(1)154924523⎛⎫⎛⎫⎛⎫-⨯-+⨯- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭(2)()11124326⎛⎫-⨯-+ ⎪⎝⎭19.计算:253()12(2)|1|64-⨯÷-+- .20.用数轴表示下列各数:0,()4-+,132,()2--,3-,()5+-,并用“<”号连接.21.已知不相等的两数,a b 互为相反数,,c d 互为倒数,3m =,求a+b -cd -m 的值.22.已知|a |=2,|b |=5(1)求a +b ; (2)若又有a >b ,求a +b .23.在有些情况下,不需要计算出结果也能把绝对值符号去掉.例如:6+7=6+7, 6776,-=- 7676,6767.-=---=+根据上面的规律,把下列各式写成去掉绝对值符号的形式:(1)721-=________;(2)10.82-+=________; (3)771718-=________; (4)23.2 2.83--=_____________________; (5)用合理的方法计算:115015011.555755722-+---24.随着手机的普及,微信(一种聊天软件)的兴起,许多人抓住这种机会,做起了“微商”,很多农产品也改变了原来的销售模式,实行了网上销售,这不刚大学毕业的小明把自家的冬枣产品也放到了网上实行包邮销售,他原计划每天卖100斤冬枣,但由于种种原因,实际每天的销售量与计划量相比有出入,下表是某周的销售情况(超额记为正,不足记为负.单位:斤);(1)根据记录的数据可知前三天共卖出_____斤;(2)根据记录的数据可知销售量最多的一天比销售量最少的一天多销售______斤;(3)若冬季每斤按7元出售,每斤冬枣的运费平均2元,那么小明本周一共收入多少元?参考答案1.A【分析】直接利用相反数的定义得出答案.【详解】解:-2020的相反数是:2020.故选:A.【点睛】此题主要考查了相反数,正确掌握相反数的定义是解题关键.2.B【解析】试题分析:由题意可知:把向东走记为正数,则向西走记为负数,所以-60m表示向西走60m.故选B.考点:用正负数表示具有相反意义的量.3.B【解析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数,所以:27500 = 2.75×104,故选B.4.B【分析】计算出每个式子的值,再进行判断即可.【详解】--=-,是负数;2019222-表示20192的相反数,是负数;-(-1)=1,是正数;0既不是正数也不是负数;()224--=-,是负数.所以负数的个数是3个.故选:B【点睛】本题考查的是有理数的分类,掌握绝对值、相反数、平方的定义及化简方法是关键.5.D【解析】【分析】根据正数大于零,零大于负数,可得答案.【详解】由正数大于零,零大于负数,得:﹣2<032<<1.最大的数是1.故选D .【点睛】本题考查了有理数的大小比较,注意两个负数比较大小,绝对值大的数反而小.6.B【分析】利用近似数的精确度进行判断,看数字6在哪一位即可.【详解】解:由四舍五入法得到的近似数8.16万,精确到了0.01万位,也就是精确到了百位,故选B .【点睛】本题考查了近似数和有效数字:精确到第几位和有几个有效数字是精确度的两种常用的表示形式,它们的实际意义是不一样的,前者可以体现出误差值绝对数的大小,而后者往往可以比较几个近似数中哪个相对精确一些.7.C【详解】试题分析:①点M ,N 表示的有理数互为相反数,①原点的位置大约在O 点,①绝对值最小的数的点是P 点,故选C .考点:有理数大小比较.8.B【分析】两数互为相反数,它们的和为0.本题可对5个选项进行一一分析进而得出答案即可.【详解】解:①根据π的相反数是-π;故①错误;①符号相反的数不一定互为相反数;故①错误;①-(-3.8)=3.8,3.8的相反数是-3.8;故①正确;①一个数和它的相反数有可能相等;如0的相反数等于0,故①错误; ①正数与负数不一定互为相反数,如2与-1,故①错误;故正确的有1个,故选:B .【点睛】本题考查的是相反数的概念,根据两数互为相反数,它们的和为0得出是解题关键.9.C【详解】①当0a >时,1a a a a ==;当0a <时,1a a a a-==-; 当0b >时,1b b b b ==;当0b <时,1b b b b-==-; ①①当00a b >>,时,112a b a b+=+=; ①当00a b <<,时,()112a b a b+=-+-=-; ①当00a b ><,时,()110a b a b+=+-=; ①当00a b ,时,110a b a b+=-+=; ①综上所述,a b a b +的值可能为2,-2,0,不可能为1. 故选C.点睛:(1)正数的绝对值是它本身,负数的绝对值是它的相反数;(2)分情况讨论时,虽然①①两种情况在本题中的计算结果是一样的,但在分类讨论时,还是要分为两种.10.D【分析】根据有理数a 、b 在数轴上的位置判断出a 、b 的取值范围,进而根据有理数的大小关系计算即可得出结论.【详解】由图可知0a >,0b a b <<,, +0<000a b b a a b a b ∴<-->-->,,3,,11b a>- 因此①错误,①①①①正确故选:D .【点睛】本题考查实数与数轴、有理数的大小比较等知识,是基础考点,难度较易,掌握相关知识是解题关键.11.有理数【解析】如果将整数看成小数部分为零的特殊小数,那么有限小数和无限循环小数可以与整数和分数相互转化. 由于整数和分数统称有理数,所以有限小数和无限循环小数统称有理数.故本题应填写:有理.12.12【分析】最高气温减去最低气温即可得到答案.【详解】①最高气温为 7①,最低气温为-5①①最高气温-最低气温高()=7--5=7+5=12①故答案为:12.【点睛】本题考查了有理数加减法的知识;求解的关键是熟练掌握有理数加减法的性质,从而完成求解.13.1【分析】根据绝对值的定义即可得出答案,去掉绝对值再计算.【详解】解:|π-3|+|4-π|=π-3+4-π=1,故答案为:1.【点睛】本题主要考查了绝对值的定义,解题的关键是熟记求绝对值的法则.14.﹣5或1【分析】画出数轴,找出A对应的数,向左向右移动3个单位即可得到结果.【详解】如图:在点A左侧距离点A3个单位长度的点是-5,在点A右侧距离点A3个单位长度的点是1.故答案为-5或1.【点睛】此题考查了数轴,画出相应的数轴是解本题的关键.15.3【分析】根据实数与数轴的对应关系,先确定被污染部分的取值范围,继而求出整数解.【详解】设被污染的部分为a,由题意得13-<<,在数轴上这一部分的整数有:0,1,2,a∴被污染的部分共有3个整数,故答案为:3.【点睛】本题考查数轴,是重要考点,难度容易,掌握相关知识是解题关键.16.93011 42 -【分析】根据所给的数得出分子都相差2,分母分别相差4,6,8,10,12,…,并且第奇数个数是正数,第偶数个数是负数,即可得出答案.【详解】解:因为从所给数的分子可以看出,它们分别是1,3,5,7,9,11,所以第五个数的分子是9,第六个数的分子是11,因为从分母可以看出2到6相差4,6到12相差6,12到20相差8,所以分别相差4,6,8,10,12,可以得出第五个数的分母是30,第六个数的分母是42,从所给的符号可以看出,第奇数项是正数,第偶数项是负数,所以第五个数是:930,第六个数是:1142-,故答案为:930,1142-.【点睛】此题考查了数字的变化类,解题的关键是通过观察,分析、归纳找出数字之间的变化规律,再利用规律得出答案.17.(1)分数集合{−19,512,-5.32,37%…};(2)整数集合{15,-5,0,…}.【分析】(1)按照有理数的分类找出分数即可;(2)按照有理数的分类找出整数即可.【详解】解:(1)分数集合{−19,512,-5.32,37%…};(2)整数集合{15,-5,0,…}.【点睛】本题考查了有理数的分类,解题关键是明确分数和整数的定义,准确进行分类.18.(1)0;(2)0【分析】(1)先算乘法,再算加减法;(2)利用乘法分配律计算.【详解】解:(1)154924523⎛⎫⎛⎫⎛⎫-⨯-+⨯- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭=33-=0;(2)()11124326⎛⎫-⨯-+ ⎪⎝⎭ =()()()111242424326-⨯--⨯+-⨯=8124-+-=0【点睛】本题考查了有理数的混合运算,解题的关键是掌握运算法则和运算顺序,注意运算律的运用.19.34【分析】先利用乘法的分配率和乘方的意义计算,再算除法,后算加减.【详解】解:原式=53(1212)(4)|1|64⨯-⨯÷-+-=(109)(4)1-÷-+ =114-+ =34.【点睛】本题考查了有理数的混合运算,熟练掌握混合运算的顺序是解答本题的关键.混合运算的顺序是先算乘方,再算乘除,最后算加减;同级运算,按从左到右的顺序计算;如果有括号,先算括号里面的,并按小括号、中括号、大括号的顺序进行;有时也可以根据运算定律改变运算的顺序.20.见解析,()5+-<()4-+<0<()2--<3-<132【分析】将原数化简,然后先在数轴上表示出各个数,再利用数轴比较大小即可.【详解】解:()4=4-+-,()2=2--,3=3-,()5=5+--数轴如下:①()5+-<()4-+<0<()2--<3-<132【点睛】本题考查了数轴和有理数的大小比较,能熟记有理数的大小比较法则的内容是解此题的关键,注意:在数轴上表示的数,右边的数总比左边的数大. 21.-4或2【分析】根据相反数之和为0,倒数之积等于1,可得a +b =0,cd =1,再根据绝对值的性质可得m =±3,然后代入计算即可.【详解】解:由题意可得:a +b =0,cd =1,m =±3,当m =3时,a +b -cd -m =0-1-3=-4,当m =-3时,a +b -cd -m =0-1-(-3)=2.【点睛】此题主要考查了代数式求值,关键是掌握相反数之和为0,倒数之积等于1. 22.(1)7或-3或3或-7,(2)-3或-7【分析】(1)先根据绝对值求出a 、b 的值,再计算a +b ;(2)根据a >b ,确定a 、b 的值,再计算a +b .【详解】解:(1)①|a |=2,|b |=5,①a =±2,b =±5,当a =2,b =5时,a +b =2+5=7;当a =2,b =-5时,a +b =2+(-5)=-3;当a =-2,b =5时,a +b =-2+5=3;当a =-2,b =-5时,a +b =-2+(-5)=-7;(2)①|a |=2,|b |=5,a >b ,①a =±2,b =-5,当a =2,b =-5时,a +b =2+(-5)=-3;当a =-2,b =-5时,a +b =-2+(-5)=-7.【点睛】本题考查了绝对值和有理数的加法,解题关键是明确绝对值的意义,准确进行计算.23.(1)217-;(2)10.82-;(3)771718-; (4)2 3.2 2.83-+;(5)1.5- 【分析】(1)知21>7即可,(2)知10.82>即可,(3)知771718>即可, (4)知22.83.23+>即可,(5)知15011150,55752557>>即可. 【详解】()1721217-=-;故答案为217-;()1120.80.822-+=-,故答案为10.82-; ()7777317181718-=-,故答案为771718-; ()224 3.2 2.8 3.2 2.833--=-+,故答案为2 3.2 2.83-+; ()5原式150111501557525572=-+--15=-. 【点睛】本题考查有理数的混合运算的题目,解题关键在于掌握正数的绝对值等于本身,负数的绝对值等于它的相反数.24.(1)296 ;(2)31; (3)3575.【分析】(1)根据前三天销售量相加计算即可;(2)将销售量最多的一天与销售量最少的一天相减计算即可;(3)将总数量乘以价格差解答即可.【详解】解:(1)4-3-5+300=296(斤).答:根据记录的数据可知前三天共卖出296斤.(2)23+8=31(斤).答:根据记录的数据可知销售量最多的一天比销售量最少的一天多销售31斤.(3)①+4-3-5+10-8+23-6=15>0,①一周收入=(15+100×7)×(7-2)=715×5=3575(元).答:小明本周一共收入3575元.故答案为296;31;3575元.。
(完整word版)正数和负数、有理数、有理数的加减法练习
___ 班级:______________ 姓名:__________________ 考号:___________________--------------------------------------------------------------------------------------------------------------------正数和负数、有理数、有理数的加减法练习1、下列说法正确的个数是( )①一个有理数不是整数就是分数;②一个有理数不是正数就是负数; ③一个整数不是正的,就是负的;④一个分数不是正的,就是负的。
A 、1个B 、2个C 、3个D 、4个2、下列说法错误的是( ) A 、所有的有理数都可以用数轴上的点表示B 、数轴上的原点表示0 C 、在数轴上表示-3的点与表示+1的点之间的距离是2D 、数轴上表示-5的点在原点左边5个单位长度 3、下列各式中,错误的是( )A 、)51()2.0(++=-- B 、)5()5(-+=+- C 、[]6)6(=--- D 、0=-04、2-的相反数是( )A 、21B 、—2C 、—21D 、25、下列推断正确的是( ) A 、ba b a ==,则若 B 、ba b a ==,则若C 、n m n m =-=,则若 D 、nm n m =-=,则若6、下列计算正确的是A .7-(-7)=0;B .0-3=-3;C .212141=- ; D .(-5)-(-6)=-1 7、如图2—11所示,a 、b 在数轴上的位置分别在原点的两旁,则|a -b|化简的结果是A .a -bB .b -aC .-(a -b)D .-(b -a)图2—11 8、若家用电冰箱冷藏室的温度是4℃,冷冻室的温度比冷藏室的温度低22℃,则冷冻室的温度(℃)可列式计算为( )(A )4-22=-18 (B )22-4=18 (C )22-(-4)=26 (D )-4-22=-26 9、将()()()6372-+--+-中的减法改成加法并写成省略加号的代数和的形式应是( )A 、6+3+7-2B 、6-3-7-2C 、6-3+7-2D 、6-3-7+210、如果一个物体沿着东、西两个方向运动,若向东记为正,向西记为负,则(1)向东运动2米,记作________,向西运动4米,记作________; (2)+3米表示向________运动________米,-6米表示________运动________米;___ 班级:______________ 姓名:__________________ 考号:___________________--------------------------------------------------------------------------------------------------------------------(3)物体原地不动,记作________米。
七年级上册第2章 有理数的运算练习(约100题 Word版含答案)
2021暑假新初一七年级上册二单元练习(100题有答案)有理数的运算一,单选题1.下列各式能用加法运算律简化的是( ) A .113(5)23+-B .214253++C .(-7)+(-8.2)+(-3)+(+-6. 2)D .13114()(2)(7)3725+-+-+-2.若0a b +>,0ab>,则( ) A .0a >,0b > B .0a <,0b <C .a 、b 中一正一负,且正的绝对值较大D .a 、b 中一正一负,且负的绝对值较大 3.下列说法错误的是( )A .任何有理数都有倒数B .互为倒数的两个数的积为1C .互为倒数的两数符号相同D .1 和-1 互为负倒数 4.计算1(1)(3)3-÷-⨯的结果是( )A .-1B .19C .1D .-95.计算 18÷6÷2 时,下列各式中错误的是( ) A .111862⨯⨯B . 18÷ (6÷2)C .18÷(6×2)D .(l8÷6)÷26.当 a=-3,b= 0,c=-4,d=9时,(a-b )×(c+d )的值是( ) A .10B .13C .-14D .-157.运用分配律计算 (-3)×(-4+2-3),下面有四种不同的结果,其中正确的是( ) A .(-3)×4-3×2-3×3 B .(-3)×(-4)-3×2-3×3 C .(-3)×(-4)+3×2-3×3D .(-3)×(-4)-3×2+3×38.10 个不全相等的有理数之和为0,这 10 个有理数之中( ) A .至少有一个为0B .至少有5个正数C .至少有一个负数D .至少有6个负数 9.下列说法错误的是( )A .一个教同 0相乘,仍得0B .一个数同 1 相乘,仍得原教C .一个数同一 1 相乘,得原教的相反数D .互为相反数的两数积为负数10.某一天,早晨的气温是-3℃,中午的气温比早晨上升了8℃,晚上的气温比中午下降了9℃,那么晚上的气温是( ) A .1℃B .-4℃C .-12℃D .-2℃11.用科学记数法表示430000是( ) A .43×104B . 4.3×l05C .4.3×104D .4.3×10612.两个数的差为负数,这两个数( ) A .都是负数B .一个是正数,一个是负数C .减数大于被减数D . 减数小于被减数13.+8 比 -5 大( ) A .13B .-13C .8D .5.14.两个有理数和的绝对值与这两个数绝对值的和相等,那么这两个数( ) A .都是正数 B. 两数同号或有一个数为 0 C .都是负数 D .无法确定 15.计算11(3)()333⨯-÷-⨯等于( ) A .1B .9C .-3D . 2716.若a 、b 互为倒数,a 、c 互为相反数,且||2d =,则式子23()2a c ab d d ++-的值为( ) A .334B . 334或144C . 144D .233或14317.7 的相反数的14减去-8 的倒数的 2 倍的差等于( )A .2B . -2C .112-D .11218.下列运算中,结果为负数的是( ) A .(-5)×(-3)B .(-8)×O×(-6)C . (-6)+(-8)D . (-6)-(-8)19.7个有理数相乘的积是负数,那么其中负因数的个数最多有( ) A .2 种可能B .3 种可能C .4 种可能D .5 种可能20.两个负数与一个正数相加,其和为( ) A .负数 B .正数 C .零D .以上都有可能21.按表示算式( ) A .72÷(-5)×3.2B .-72÷5×3.2C .-72÷5×(-3.2)D .72÷(-5)×(-3.2)22.将长为1m 的绳子,截去一半,然后将剩下的再截去一半,如此下去,若余下的绳子长不足1cm ,则至少..需截几次( ) A .6次 B .7次 C .8次 D .9次23.“鸟巢”的座席数是91000个,这个数用科学记数法表示为( ) A .0.91×105B .9.1×104C .91×103D .9.1×10324.如果两个有理数的积是正数,和也是正数,那么这两个有理数( ) A .同号,且均为负数 B .异号,且正数的绝对值比负数的绝对值大 C .同号,且均为正数 D .异号,且负数的绝对值比正数的绝对值大25.小明编制了一个计算程序,当输入任一有理数,显示屏的结果总等于所输入有理数的平方与1之和,若输入-2,显示的结果应当是( )A .2B .3C .4D .526.如图,数轴上一动点A 向左移动2个单位长度到达点B ,再向右移动5个单位长度到达点C .若点C 表示的数为1,则点A 表示的数为( ) A .7B .3C .3-D .2-27.数轴上点A 表示3-,点B 表示1,则表示A B ,两点间的距离的算式是( ) A .31-+B .31--C .1(3)--D .13-28.把1-,0,1,2,3这五个数,填入下列方框中,使行、列三个数的和相等,其中错误..的是( )29.下列计算:①0-(-5)=-5;②(-3)+(-9)=-12;③293()342⨯-=-;④(-36)÷(-9)=-4.其中正确的个数是( ) A .1个 B .2个 C .3个 D .4个30.两个不为 0的数相除,如果交换它们的位置,商不变,那么( ) A .两数相等 B .两数互为相反数 C .两数互为倒数 D .两数相等或互为相反数 31.用计算器求233.54-,按键顺序正确的是( )A .B .C .D .以上都不正确32.下列四个算式中,误用分配律的是( ) A .111112(2)12212123636⨯-+=⨯-⨯+⨯B.1111 (2)1221212123636-+⨯=⨯-⨯+⨯C.1111 12(2)12212123636÷-+=÷-÷+÷D.1111 (2)1221212123636-+÷=÷-÷+÷33.下列说法中正确的是()A.近似数32与32.0的精确度相同 B.近似数32与32.0的有效数字相同C.近似数5万与近似数50000的精确度相同D.近似数0.0110与近似数3.20×105的有效数字的个数相同34.给出下述几种说法,其中正确的说法有()①763万精确到万位;②1.2亿精确到0.1;③8067保留2个有效数字的近似值是8.1 ×103;④22.20精确到0.01.A.3个B.2个C.1个D.0个35.近似数36.0是由四舍五入得到的近似数,在下列关于其精确度的叙述中正确的是()A.36.0与36精确度相同B.36.0精确到个数C.36.0有三个有效数字D.36.0有两个有效数字36.1999年国家财政收入达到11377亿元,用四舍五人法保留两个有效数字的近似值为()A.1.1×1012元B.1.1×1013元C.11.4×103亿元D.11.3×103亿元37.近似数0.07030的有效数字和精确度分别是()A.4个,精确到万分位 B.3个,精确到万分位C.4个,精确到十万分位D.3个,精确到十万分位38.3.1449精确到百分位的近似数是()A.3.14 B.3.15 C.3.20 D.3.14539.将0.36×45×105的计算结果用科学记数来表示,正确的是()A.16.2×105B. 1.62×106 C.16.2×106D.16.2×10000040.下面结论中,错误的是()A.一个数的平方不可能是负数 B.一个数的平方一定是正数C.一个非 0有理数的偶数次方是正数 D.一个负数的奇数次方还是负数41.五个有理数的积是负数,这五个数中负因数个数是()A.1 个 B.3 个 C.5 个D.以上选项都有可能二,填空题1.比215-小 2 的数是 .2.在横线上填上适当的符号,使下列式子成立. (1)( 6)+(-18)=-12; (2)(+30)+( 30)=0; (3)(-25)+( 38)=+1 (4) (115)+( 415)=25- 3.200629的个位数是 ;200623的个位数是 . 4.2007(1)-= ,20070= ,4(0.1)-= . 5.确定 a 是正数还是负数. (1)若||1a a =-,则a 是 ;(2)若1||a a =,则a 是 . 6.16()6÷-= ;1620--= . 7. 计算:32()5-= ;332⨯= ;3(32)⨯= ;32(3)(4)-⨯-= ; 22233()44--= . 8.观察下列每列数,按规律在横线上填上适当的数: (1) -31,-25,-19, , ; (2)28,316-,432,564-, , ;9.水星与太阳的距离约为5.79×102km ,则这个数为 km .10.若2(4)|2|0a b -+-=,则b a = ;2a ba b+-= . 11.3 的平方的相反数与 3 的倒数的积是 .12.高度每增加 1 km ,气温大约降低 6℃. 今测得气球的温度是 -37℃,地面温度是 5℃,则气球高度大约是 km. 13.填一填:(1) (-5) ×0.2= ;(2) (-8)× (-0.25)= ; (3) (132-)×(27-)= ;(4)0.1×(-0. 01) = ;(5) ( -59 )×0.01 ×0= ; (6)(-2)×( )=12-;(7)(-1)×( )=15;(8) (13-)×( )=1.14. 在存折中有 3000 元,取出 2600 元,又存入500 元后,如果不考虑利息,存折中还有 元. 15.式子13215472--+中的各项分别是 .16.两个数的积是-1,其中一个数是135-,则另一个数是 .17.72-的倒数是_________. 18.比较大小:(1)13- 0;(2) 0.05 -1;(3)23- -0.6.19.按规律在横线上填上一个适当的数:-8,12,-16,20, . 20.比较下列各组数的大小:(1) -22 (-2)2;(2)(-3)3 -33.21.(-2)3的底数是 ,指数是 ,幂是 .22.535353⨯⨯写成乘方的形式为 .23.71()4-的底数是 ,指数是 ,表示的意义是 .24.2021年5月18日晚,中央电视台举办了“爱的奉献”大型募捐活动.据了解,本次活动社会各界共捐款大约1514000000元人民币,这个数字用科学记数法可表示为 元人民币. 25.28x x ++ =2(___)x +.26.一电冰箱冷冻室的温度是-18℃,冷藏室的温度是5℃,该电冰箱冷藏室的温度比冷冻室的温度高 ℃.27.把139500 四舍五人取近似数,保留 3 个有效数字是 . 28.23-的倒数是 ,23-的绝对值是 .29.用四舍五入法取l29543的近似值,保留3个有效数字,并用科学记数法表示是 . 30.近似数0.0300精确到 位,含有 个有效数字,l .20万精确到 位,有效数字是 . 31.下列叙述中,哪些数是准确数?哪些数是近似数? (1)我们班里有18位女同学,“l8”是 数; (2)小红体重约38千克,“38”是 数;(3)2021年7月1日香港回归祖国,“1999”、“7”、“1”都是 数; (4)我国科盲达5亿之多,5是 数;(5)2020年首都机场起降各类飞机159307架次,“l59307”是 数. 32.绝对值小于4的所有负整数的和是 ,积是 . 三,解答题1.有一正方形的纸片,可将它剪成如图所示的四个小正方形,用同样的方法,每一个小正方形又能剪成四个更小的正方形. 这样连续做 5 次后,共能得到多少个小正方形?2.计算:(1)31+(-28)+28+69; (2)21( 1.125)(3)()(0.6)58++-+-+-(3)11(6)( 3.2)(3)5(6)( 3.2)44++-+-++-++(4) ( -25)+34+(-65) +156.3.计算:(+1)+(-3)+(+ 5)+ (-7 )+…+(+97)+(-99)4.请在钟面的某些数字前添上负号,使钟面上所有数字之和等于 0,想一想,这样的负号至少需添几个?5.在数轴上-7 与 37 之间插入三个数,使这五个数的每相邻两个点之间的距离相等. 求插入的三个数.6.检查一个商店里 10 袋白糖的重量,以 5 g 为基准,超出记为“+”,不足记为“-”,情况如下:-30 g,+20 g,-20 g,-10 g,-50 g,+30 g, -20 g, +30 g, +10 g, -10 g.(1)总的情况是超出还是不足?超出或不足的数量为多少?(2)最多的与最少的相差多少?7.已知a、b互为相反数,c、d互为倒数,m的绝对值是 2,求()a b c d m+-⋅+的值.8.下列用科学记数法表示的数原来各是什么数?(1)3.7×105;(2)6.38×l04; (3)5.010×106; (4)7.86×l07.9.滴水成河,若20滴水流在一起为1cm3,现有一条河流总体积为l万m3.试求该河流相当于多少滴具有相同体积的水滴?10.计算:(1) -10+8÷(-2)2-3 ×(-4)-15;(2)321 ()(8)433-⨯-+-;(3)1313[1()24]524864-+-⨯÷(4)4211(10.5)[2(3)]3---⨯⨯--11.下面有三组数,请你填上合适的运算符号或括号,使每一组数的结果都为 10.(1)1 5 5 9=10 (2)3 3 3 3=10 (3)1 1 9 9=1012.有一种“24 点”的扑克牌游戏规则是:任抽4张牌,用各张牌上的数和加、减、乘、除四则运算(可用括号)列一个算式,先得计算结果为“24”者获胜(J、Q、K 分别表示11、12、13,A表示 1). 小明、小聪两人抽到的 4 张牌如图所示,这两组牌都能算出“24 点”吗?为什么?如果算式中允许包含乘方运算,你能列出符合要求的不同的算式吗?13.计算:(1)(-4)×5×(-0. 25 ); (2)(-4)×8×(-2.5)×O. 1×(-0.125)×1O;(3)3137 ()(3)(4) 8888-⨯--⨯-;(4)71199(36)72⨯-; (5)111()(24)346+-⨯-14.第一次从外面向仓库运进化肥 48. 5 t,第二次从仓库里运出化肥 54 t,结果怎样?试列出有理教运算的算式,通过计算作答.15.(1)被除数是334-,除数比被除数大112,商是多少?(2)被除数是113-的倒数,除数是23-,商是多少?16.已知=3a ,24b =,且a b >,求a b +的值.17.(1)已知两个数的和是17-,其中一个加数是37-,求另一个加数.(2)求45-的绝对值的相反数与265的相反数的差.18.列式求三个数-10、-2、+4 的和比它们的绝对值的和小多少?19.连续 5 天测量某地每天的最高气温与最低气温,记录如下表所示:哪一天的温差(最高气温与最低气温的差)最大?哪一天的温差最小?20.1公顷生长茂盛的树林每天大约可以吸收二氧化碳lt ,成人每小时平均呼出二氧化碳38g ,如果要吸收一万个人一天呼出的二氧化碳,那么至少需要多少公顷的树林?(结果保留2个有效数字)21.用计算器计算:(1)23π⨯(保留1位小数) (2)5 1.43 4.25÷-÷(精确到0.01)22.某冷冻厂的一个冷库,现在室温是c3-,现有批一批食品,需要在-27c下冷藏,如果每小时能降温4c,要降到所需的温度,需要几小时?23.8箱苹果,以每箱5千克为准,称重记录如下:(超过记为正数,单位:千克) 1.5, -1,3,0, 0.5, -1.5,2, -0.5 这8箱苹果的总重量是多少?24.用牙签按下图方式搭图.……(1)根据上面的图形,填写下表:(2)第n 个图形有多少根牙签? (1)3;9;18;30;45;(2)()213+=n n s 25.计算下列各题:(1)331(1)222-⨯+; (2)22332(2)2(2)----+-;.(3)4231(5)()0.815-÷-⨯-+- .26. 将下列表格补充完整: 从表中你能发现 2的n 次幂的个位数有什么规律?20052的个位数是什么数字?27.一支考古队在某地挖掘出一枚正方体古代金属印章,其棱长为 4.5厘米,质量为1069克,则这枚印章每立方厘米约重多少克(结果精确到0.01克)?28.先到中国人民银行去调查一下最新的银行存款利率情况,将利率填入下表,然后回答下面的问题. ①②③如果你的手中现有 10万元人民币,有以下几种存款方式供你选择:(1)担心政策变化,每次存一年,到期将本息取出,再一并存入银行,共存 6次;(2)考虑生活所需,每次存两年,到期将利息取出后,再将本金存入银行,共存 3次;(3)考虑做生意,先存3年,到期将利息取出后,再将本金存3年.请你估算上述三种方式的最终收益.29.现在规定两数a、b通过“⊕”运算得到3ab,如 2⊕5=3×2×5=30.(1)求 5⊕(13-)的值;(2)不论x是什么数,总有a⊕x= x,则a 的值是多少?【参考答案】一,单选题1.C 2.A 3.A 4.B 5.B 6.D 7.D 8.C 9.D 10.B 11.B 12.C13.A 14.B 15.B 16.B 17.C 18.C 19.C 20.D 21.A 22.B 23.B24.C 25.D 26.D 27.C 28.D 29.B 30.D 31.B 32.C 33.D 34.A 35.C 36.A 37.C 38.A 39.B 40.B 41.D二,填空题1.235-2.(1)+ (2)- (3)+ (4)-,+ 3.1,9 4.-1,0,0.0001 5.(1)负数 (2)正数6.-36,457.8125-,24,216,432,45168.(1)-13,-7 (2)6128,7256-9.57900000 10.16,1 11.-3 12.713.(1)-1 (2)2 (3)1 (4)-0. 001 (5)0 (6)14 (7)15- (8)-314.900 15.15,34- ,27- ,12+16.51617.略18.<,>,< 19.-24 20.(1)<;(2)=21.略 22.略 23.14-,7,7 个(14-)相乘24.910514.1⨯ 25.16,4 26.23 27.1.40×10528.32-,2329.1.30×105 30.万分;三;百;1,2,0 31.(1)准确 (2)近似(3)准确 (4)近似 (5)准确 32.-6,-6三,解答题1.1024 个 2.(1)100 (2)-3 (3)2 (4)100 3.-504.至少需添 4个,分别是:-12,-11,-10,-6 或-12,-10,-9,-8 或-12,-11,-95.4,15,26 6.(1)不足 50g (2)80 g 7.1 或-38.(1) 370000 (2)63800 (3)5010000 (4)786000009.2×1O 11滴 10.(1)3 (2)354 (3)5124 (4)1611.(1)1×5÷5+9=10 (2)3×3+3÷3=10 (3)(1+1÷9)×9 =1012.(1)小明抽到的牌可以这样算:①(3-2+5)×4=24,②(3+4+5)×2 = 24 ,③ 52 - 4 + 3 = 24 , ④5+3+42 =24 ,允许包含乘方运算时可列式为 5+3+24 =24 (2)小聪抽到的牌可以这样算:①(11 + 10)+(5-2) =24 ,②11×10÷5+2 = 24 ,③11×2+10÷5=24,④lO÷5×11+2=24,允许包含乘方运算时可列式为 52-11+10 =24 13.(1)5 (2)-10 (3)3 (4)135992- (5)-10 14.运出5. 5 t 15.(1)53 (2)9816.题意,可知3a =或3a =-,2b =或2b =-,又∵a b >,∴3a =,2b =或2b =-. 当3a =,2b =时,5a b +=;当3a =,2b =-时,1a b +=.17.(1)27 (2)35518.2419.星期三的温差最大,星期一的温差最小20.9.1 公顷21.(1)28.3;(2)2.8722.6小时23.44千克24.略 25.(1)-25;(2)-24;(3)415 26.表中依次填32、64、128、256、512.当n= 1,2,3,4,5,6,7,…时,2的n 次幂的个位数依次为 2,4,8,6,2,4,8,…,按此规律循环.2 005除以4余数为 1,因此20052的个位数与12的个位数相同,是2. 27.正方体的棱长为 4.5 厘米,所以其体积为34.5立方厘米.因印章的重量为1069克,因此这枚印章每立方厘米的重量约为31069 4.511.73÷≈(克)28.略29.(1)-5 (2)13。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、初一数学有理数解答题压轴题精选(难)1.如图在数轴上A点表示数a,B点表示数b,a、b满足|a+2|+|b﹣4|=0;(1)点A表示的数为________;点B表示的数为________;(2)若在原点O处放一挡板,一小球甲从点A处以1个单位/秒的速度向左运动;同时另一小球乙从点B处以2个单位/秒的速度也向左运动,在碰到挡板后(忽略球的大小,可看作一点)以原来的速度向相反的方向运动,设运动的时间为t(秒),①当t=1时,甲小球到原点的距离=________;乙小球到原点的距离=________;当t=3时,甲小球到原点的距离=________;乙小球到原点的距离=________;②试探究:甲,乙两小球到原点的距离可能相等吗?若不能,请说明理由.若能,请直接写出甲,乙两小球到原点的距离相等时经历的时间.________【答案】(1)-2;4(2)3;2;5;2;能.理由:当0<t≤2时,t+2=4-2t解之:当t>2时,t+2=2t-4解之:t=6∴当或6时,甲乙两小球到原点的距离相等.【解析】【解答】解:(1)∵a、b满足|a+2|+|b﹣4|=0,∴a+2=0且b-4=0解之:a=-2且b=4,∵在数轴上A点表示数a,B点表示数b,∴点A表示的数是-2,点B表示的数是4.故答案为:-2,4.(2)当0<t≤2时,甲小球距离原点为(t+2)个单位长度;乙小球距离原点为(4-2t)个单位长度;当t>2时,甲小球距离原点为(t+2)个单位长度;乙小球距离原点为(2t-4)个单位长度;①当t=1时,甲小球到原点的距离为:1+2=3;乙小球到原点的距离为4-2×1=2;当t=3时,甲小球到原点的距离为:3+2=5;乙小球到原点的距离为2×3-4=2;故答案为:3,2;5,2【分析】(1)利用几个非负数之和为0,则每一个数都是0,建立关于a,b的方程组,解方程组求出a,b的值,就可得到点A,B所表示的数。
(2)①根据两个小球的运动方向及速度,可以分别用含t的代数式表示出当0<t≤2时,甲小球距离原点的距离和乙小球离原点的距离,当t>2时,甲小球距离原点的距离和乙小球离原点的距离,然后将t=1和t=3分别代入相关的代数式,即可求解;②利用(2)中的结论,分情况分别根据甲,乙两小球到原点的距离相等时经历的时间,建立关于t的方程,解方程求出t的值。
2.如图,已知点A、B分别为数轴上的两点,点A对应的数是-20,点B对应的数是80.现在有一动点P从A点出发,以每秒3个单位长度的速度向右运动,同时另一动点Q 从点B出发以每秒2个单位长度的速度向左运动.(1)与、两点相等的点所对应的数是________.(2)两动点、Q相遇时所用时间为________秒;此时两动点所对应的数是________.(3)动点P所对应的数是时,此时动点Q所对应的数是________.(4)当动点P运动秒钟时,动点P与动点Q之的距离是________单位长度.(5)经过________秒钟,两动点P、Q在数轴上相距个单位长度.【答案】(1)30(2)20;40(3)52(4)25(5)12或28【解析】【解答】(1)AB的中点C所对应的数为:;(2)设两动点相遇时间为t秒,(2+3)t=80-(-20) 解得:t=20(秒)80-2t=80-2×20=40,或-20+3×20=40∴此时两动点所对应的点为40;(3)22-(-20)=42, 80-42÷3×2=52∴动点所对应的数是时,此时Q所对应的数为52;(4)∵20秒相遇,∴(2+3) ×25-[80-(-20)]=25(5)P、Q两点相距40个单位长度,分两种情况AB=80-(-20)=100①相遇前,(100-40) ÷(3+2)=60÷5=12(秒)②相遇后,(100+40)÷(2+3)=140÷5 =28(秒)∴经过12或28秒钟,两动点、在数轴上相距个单位长度.【分析】(1)根据数轴上A、B两点所表示的数为a、b,则AB的中点所表示的数可以用公式计算;(2)设两动点相遇时间为t秒,P、Q两点运动的路程之和为总路程,列方程求解即可;用80-2t即可求得此时两动点对应的数;(3)先求出动点P对应的点是22时运动的时间,再根据Q和P运动时间相等计算Q点运动路程,进而求得点Q对应的数;(4)根据题意P、Q两点25秒运动的路程和减去总路程就是PQ两点间的距离;(5)根据题意,分两种情况进行解答,即: ①相遇前相距40个单位长度,②相遇后相距40个单位长度,分别列方程求解即可.3.认真阅读下面的材料,完成有关问题:材料:在学习绝对值时,我们已了解绝对值的几何意义,如|5-3|表示5、3在数轴上对应的两点之间的距离;又如|5+3|=|5-(-3)|,所以|5+3|表示5、-3在数轴上对应的两点之间的距离。
因此,一般地,点A,B在数轴上分别表示有理数a,b,那么A,B之间的距离(也就是线段AB的长度)可表示为|a-b|。
因此我们可以用绝对值的几何意义按如下方法求的最小值;即数轴上x与1对应的点之间的距离,即数轴上x与2对应的点之间的距离,把这两个距离在同一个数轴上表示出来,然后把距离相加即可得原式的值.设A、B、P三点对应的数分别是1、2、x.当1≤x≤2时,即P点在线段AB上,此时;当x>2时,即P点在B点右侧,此时= PA+PB=AB+2PB>AB;当x <1时,即P点在A点左侧,此时=PA+PB=AB+2PA>AB;综上可知,当1≤x≤2时(P点在线段AB上),取得最小值为1.请你用上面的思考方法结合数轴完成以下问题:(1)满足的x的取值范围是________。
(2)求的最小值为________,最大值为________。
备用图:【答案】(1)当x<-3或x>4(2)-3;3【解析】【解答】解:(1)由,在数轴上表示-3和4两点,当x<-3时, >7;当-3≤x≤4时, .当x>4时, .故当x<-3或x>4时 .( 2 )当x<-1,当-1≤x≤2,,此时当x=2时,取得最大值3,当x=-1时,取得最小值-3;当x>2时, .故的最小值为-3,最大值为3.【分析】(1)此题实质就是求表示x的点与-3的对应点的距离及表示x的点与4的对应点的距离和大于7时,x的取值范围,从而分当x<-3时、当-3≤x≤4时、当x>4时三种情况根据绝对值的意义分别去绝对值符号后一一判断即可得出答案;(2)此题实质就是求表示x的点与-1的对应点的距离及表示x的点与2的对应点的距离差最小值与最大值,从而分当x<-1、当-1≤x≤2、当x>2时三种情况根据绝对值的意义分别去绝对值符号考虑即可得出答案.4.如图,数轴的单位长度为1,点,,,是数轴上的四个点,其中点,表示的数是互为相反数.(1)请在数轴上确定原点“O”的位置,并用点表示;(2)点表示的数是________,点表示的数是________,,两点间的距离是________;(3)将点先向右移动4个单位长度,再向左移动2个单位长度到达点,点表示的数是________,在数轴上距离点3个单位长度的点表示的数是________.【答案】(1)解:距离A点和B点的距离相等的点即AB的中点,点 .如图所示,点即为所求.(2);5;9(3);或1【解析】【解答】解:(2)点表示的数是,点表示的数是5,所以,两点间的距离是 .故答案为9.( 3 )如图,将点先向右移动4个单位长度是0,再向左移动2个单位长度到达点,得点表示的数是 .到点距离3个单位长度的点表示的数是-2-3= 或-2+3=1.故答案为,或1.【分析】(1)由点A和点B表示的数互为相反数,因此原点到点A和点B的距离相等,可得到原点的位置。
(2)先再数轴上标出数,可得到点M和点N表示的数,再求出点M,N之间的距离。
(3)利用数轴上点的平移规律:左减右加,可得到点C表示的数,与点C距离3个单位长度表示的数为-2±3,计算可求解。
5.如图,已知数轴上点A表示的数为-3,B是数轴上位于点A右侧一点,且AB=12.动点P从点A出发,以每秒2个单位长度的速度沿数轴向点B方向匀速运动,设运动时间为t秒.(1)数轴上点B表示的数为________;点P表示的数为________(用含t的代数式表示). (2)动点Q从点B出发,以每秒1个单位长度的速度沿数轴向点A方向匀速运动;点P、点Q同时出发,当点P与点Q重合后,点P马上改变方向,与点Q继续向点A方向匀速运动(点P、点Q在运动过程中,速度始终保持不变);当点P到达A点时,P、Q停止运动.设运动时间为t秒.①当点P与点Q重合时,求t的值,并求出此时点P表示的数.②当点P是线段AQ的三等分点时,求t的值.【答案】(1)9;-3+2t(2)解:①根据题意,得:(1+2)t=12,解得:t=4,∴-3+2t=-3+2×4=5,答:当t=4时,点P与点Q重合,此时点P表示的数为5;②P与Q重合前:当2AP=PQ时,有2t+4t+t=12,解得t= ;当AP=2PQ时,有2t+t+t=12,解得t=3;P与Q重合后:当AP=2PQ时,有2(8-t)=2(t-4),解得t=6;当2AP=PQ时,有4(8-t)=t-4,解得t= ;综上所述,当t= 秒或3秒或6秒或秒时,点P是线段AQ的三等分点【解析】【解答】解:(1)由题意知,点B表示的数是-3+12=9,点P表示的数是-3+2t,故答案为:9,-3+2t;【分析】(1)根据数轴上两点间的距离等于两坐标之差的绝对值可求得点B所表示的数;根据路程=速度×时间可得点P运动的距离,再根据平移的点的坐标的性质可得点P表示的数;(2)①由题意可列方程求解;②分两种情况讨论求解:P与Q重合前:当2AP=PQ时,可得关于t的方程求解;当AP=2PQ时,可得关于t的方程求解;P与Q重合后:当AP=2PQ时,可得关于t的方程求解;当2AP=PQ时,可得关于t的方程求解。
6.已知 a、b、c 在数轴上的位置如图:(1)用“<”或“>”填空:a+1________0;c-b________0;b-1________0;(2)化简:;(3)若a+b+c=0,且b与-1的距离和c与-1的距离相等,求下列式子的值:2b -c - (a - 4c - b).【答案】(1)>;<;<(2)解:∵a+1>0,c-b<0,b-1<0,∴原式=a+1-(b-c)-(1-b)=a+1-b+c-1+b=a+c(3)解:由已知得:b+1=-1-c,即b+c=-2,∵a+b+c=0,即-2+a=0,∴a=2,则2b -c - (a - 4c - b).=2b -c - a + 4c + b=3(b+c)-2=【解析】【解答】解:(1)根据题意得:c<0<b<1<a∴a+1>0;c-b<0;b-1<0【分析】(1)根据数轴上点的位置进行计算比较大小即可;(2)利用数轴上点的位置判断出绝对值里边式子的正负,利用绝对值的代数意义化简,去括号合并即可得到结果(3)根据题意列出关系式,求出a与b+c的值,原式去括号合并得到最简结果,将a与b+c的值代入计算即可求出值.7.点P,Q在数轴上分别表示的数分别为p,q,我们把p,q之差的绝对值叫做点P,Q之间的距离,即.如图,在数轴上,点A,B,O,C,D的位置如图所示,则;;.请探索下列问题:(1)计算 ________,它表示哪两个点之间的距离? ________(2)点M为数轴上一点,它所表示的数为x,用含x的式子表示PB=________;当PB=2时,x=________;当x=________时,|x+4|+|x-1|+|x-3|的值最小.(3)|x-1|+|x-2|+|x-3|+…+|x-2018|+|x-2019|的最小值为________.【答案】(1)5;A与C(2)x+2;-4或0;1(3)1019090【解析】【解答】解:(1)|1−(−4)|=|1+4|=|5|=5,|1−(−4)|表示点A与C之间的距离,故答案为:5,点A与C;(2)∵点P为数轴上一点,它所表示的数为x,点B表示的数为−2,∴PB=|x−(−2)|=|x+2|,当PB=2时,|x+2|=2,得x=0或x=−4,当x≤−4时,|x+4|+|x−1|+|x−3|=−x−4+1−x+3−x=−x≥4;当−4<x<1时,|x+4|+|x−1|+|x−3|=x+4+1−x+3−x=8−x,当1≤x≤3时,|x+4|+|x−1|+|x−3|=x+4+x−1+3−x=6+x,当x>3时,|x+4|+|x−1|+|x−3|=x+4+x−1+x−3=3x>9,∴当x=1时,|x+4|+|x−1|+|x−3|有最小值;故答案为:|x+2|;−4或0;1(3)|x−1|+|x−2019|≥|1−2019|=2018,当且仅当1≤x≤2019时,|x−1|+|x−2019|=2018,当且仅当2≤x≤2018时,|x−2|+|x−2018|≥|2−2018|=2016,…同理,当且仅当1009≤x≤1011时,|x−1009|+|x−1011|≥|1009−1011|=2,|x−1010|≥0,当x=1010时,|x−1010|=0,∴|x−1|+|x−2|+|x−3|+…+|x−2018|+|x−2019|≥0+2+4+…+2018=1019090,∴|x−1|+|x−2|+|x−3|+…+|x−2018|+|x−2019|的最小值为1019090;故答案为1019090.【分析】(1)由所给信息,结合绝对值的性质可求;(2)由绝对值的性质,分段去掉绝对值符号,在不同的x范围内确定|x+4|+|x−1|+|x−3|的最小值;(3)由所给式子的对称性,结合绝对值的性质,将所求绝对值式子转化为求0+2+4+…+2018的和.8.阅读下列材料:我们给出如下定义:数轴上给定两点,以及一条线段,若线段的中点在线段上(点可以与点或重合),则称点与点关于线段径向对称.下图为点与点关于线段径向对称的示意图.解答下列问题:如图1,在数轴上,点为原点,点表示的数为-1,点表示的数为2.(1)①点,,分别表示的数为-3,,3,在,,三点中,________与点关于线段径向对称;②点表示的数为,若点与点关于线段径向对称,则的取值范围是________;(2)在数轴上,点,,表示的数分别是-5,-4,-3,当点以每秒1个单位长度的速度向正半轴方向移动时,线段同时以每秒3个单位长度的速度向正半轴方向移动.设移动的时间为()秒,问为何值时,线段上至少存在一点与点关于线段径向对称.【答案】(1)点C和点D;1≤x≤5(2)解:移动时间t(t>0)秒时,点H,K,L表示的数分别是-5+t,-4+3t,-3+3t,此时,线段HK的中点设为R1,表示的数为,线段HL的中点设为R2,表示的数为,当线段R1R2,在线段OM上运动时,线段KL上至少存在一点与点H关于线段OM径向对称,当R2经过点O时,2t-4=0时,t=2,当R1经过点M时,时,,所以当时,线段R1 R2在OM上运动,所以当时,线段KL上至少存在一点与点H关于线段OM径向对称.【解析】【解答】解:(1)①与点A点关于线段径向对称需要满足:这个点与A点的中点在线段OM上,点B表示的数是-3,与点A表示的-1的中点是-2,不在线段OM上,所以点B不是;点C表示的数,与点A表示的-1的中点是,在线段OM上,所以点C 是;点D表示的3与点A表示的-1的中点是1,在线段OM上,所以点D是;综上,答案为点C,点D;②结合数轴可知当点x与点A的中点落在点O与点M之间时(包括端点O与M)正确,即,解得,故答案为;【分析】(1)根据题干中给出的径向对称的定义,进行验证解答即可;(2)根据题干中给出的径向对称的定义,列出点x与点A中点的取值范围,即可求出答案;(3)用含t的代数式分别表示出点H,K,L和线段HK与线段HL的中点列式计算即可.9.操作探究:小聪在一张长条形的纸面上画了一条数轴(如图所示),(1)操作一:折叠纸面,使1表示的点与−1的点重合,则−3的点与________表示的点重合;(2)操作二:折叠纸面,使−2表示的点与6表示的点重合,请你回答以下问题:① −5表示的点与数()表示的点重合;② 若数轴上A、B两点之间距离为20,其中A在B的左侧,且A、B两点经折叠后重合,求A、B两点表示的数各是多少③ 已知在数轴上点M表示的数是m,点M到第②题中的A、B两点的距离之和为30,求m的值。