数学常考易错点《二次函数》
二次函数(易错30题7个考点)(解析版)-2024学年九年级数学上册《重难点题型高分突破》(人教版)
第2单元二次函数(易错30题7个考点)一.二次函数的性质(共1小题)1.如图,抛物线y=ax2+bx+c交x轴于(﹣1,0)、(3,0)两点,则下列判断中,错误的是()A.图象的对称轴是直线x=1B.当x>1时,y随x的增大而减小C.一元二次方程ax2+bx+c=0的两个根是﹣1和3D.当﹣1<x<3时,y<0【答案】D【解答】解:A、对称轴为直线x==1,正确,故本选项错误;B、当x>1时,y随x的增大而减小,正确,故本选项错误;C、一元二次方程ax2+bx+c=0的两个根是﹣1和3正确,故本选项错误;D、应为当﹣1<x<3时,y>0,故本选项正确.故选:D.二.二次函数图象与系数的关系(共3小题)2.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,对称轴为x=﹣,下列结论中,正确的是()A.abc>o B.b2﹣4ac<0C.2b+c>0D.4a﹣2b+c<0【答案】D【解答】解:A、图象开口向上,与y轴交于负半轴,对称轴在y轴左侧,能得到:a>0,c<0,﹣<0,b>0,∴abc>0,错误;B、图象与x轴有2个交点,依据根的判别式可知b2﹣4ac>0,错误;C、∵﹣=﹣,∴b=a,∵x=1时,a+b+c<0,∴2b+c<0,错误;D、∵图象与x轴交于左边的点在﹣2和﹣3之间,∴x=﹣2时,4a﹣2b+c<0,正确;故选:D.3.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,有下列结论:①a﹣b+c >0;②2abc>0;③4a﹣2b+c>0;④b2﹣4ac>0;⑤3a+c>0;⑥a﹣c>0,其中正确的结论的个数是()A.2B.3C.4D.5【答案】C【解答】解:当x=﹣1时,y<0,则a﹣b+c<0,所以①错误;抛物线开口向上,则a>0;对称轴在y轴右侧,x=﹣>0,则b<0;抛物线与y轴的交点坐标在x轴下方,则c<0,于是abc>0,所以②正确;当x=﹣2,y>0,则4a﹣2b+c>0,所以③正确;抛物线与x轴有两个交点,则b2﹣4ac>0,所以④正确;x=﹣=1,即b=﹣2a,而a﹣b+c<0,则3a+c<0,所以⑤错误;a>0,c<0,则a﹣c>0,所以⑥正确.故选:C.4.二次函数y=ax2+bx+c(a≠0)的图象如图所示.下列结论:①abc>0;②2a+b=0;③m为任意实数,则a+b>am2+bm;④a﹣b+c>0;⑤若ax12+bx1=ax22+bx2且x1≠x2,则x1+x2=2.其中正确的有()A.①④B.③④C.②⑤D.②③⑤【答案】C【解答】解:①抛物线开口方向向下,则a<0.抛物线对称轴位于y轴右侧,则a、b异号,即ab<0.抛物线与y轴交于正半轴,则c>0.所以abc<0.故①错误.②∵抛物线对称轴为直线x==1,∴b=﹣2a,即2a+b=0,故②正确;③∵抛物线对称轴为直线x=1,∴函数的最大值为:a+b+c,∴a+b+c≥am2+bm+c,即a+b≥am2+bm,故③错误;④∵抛物线与x轴的一个交点在(3,0)的左侧,而对称轴为直线x=1,∴抛物线与x轴的另一个交点在(﹣1,0)的右侧∴当x=﹣1时,y<0,∴a﹣b+c<0,故④错误;⑤∵ax12+bx1=ax22+bx2,∴ax12+bx1﹣ax22﹣bx2=0,∴a(x1+x2)(x1﹣x2)+b(x1﹣x2)=0,∴(x1﹣x2)[a(x1+x2)+b]=0,而x1≠x2,∴a(x1+x2)+b=0,即x1+x2=,∵b=﹣2a,∴x1+x2=2,故⑤正确.综上所述,正确的有②⑤.故选:C.三.二次函数图象上点的坐标特征(共1小题)5.若抛物线y=2x2﹣px+4p+1中不管p取何值时都通过定点,则定点坐标为(4,33).【答案】见试题解答内容【解答】解:y=2x2﹣px+4p+1可化为y=2x2﹣p(x﹣4)+1,分析可得:当x=4时,y=33;且与p的取值无关;故不管p取何值时都通过定点(4,33).四.二次函数的最值(共1小题)6.若函数y=x2﹣6x+5,当2≤x≤6时的最大值是M,最小值是m,则M﹣m=9.【答案】见试题解答内容【解答】解:原式可化为y=(x﹣3)2﹣4,可知函数顶点坐标为(3,﹣4),当y=0时,x2﹣6x+5=0,即(x﹣1)(x﹣5)=0,解得x1=1,x2=5.如图:m=﹣4,当x=6时,y=36﹣36+5=5,即M=5.则M﹣m=5﹣(﹣4)=9.故答案为9.五.抛物线与x轴的交点(共1小题)7.二次函数y=x2+bx+c的图象如图所示,则下列结论正确的是()A.顶点坐标(﹣1,﹣4)B.当x>﹣1时,y随x的增大而减小C.线段AB的长为3D.当﹣3<x<1时,y>0【答案】A【解答】解:由图可知,对称轴为﹣=﹣1,b=2;c=﹣3,则函数解析式为y=x2+2x﹣3.其顶点坐标为(﹣1,﹣4).由图可知,当x>﹣1时,y随x的增大而增大;当y=0时,x2+2x﹣3=0,解得x1=1;x2=﹣3.可知线段AB长为1﹣(﹣3)=4,由图可知当﹣3<x<1时,y<0.可见,只有A正确,故选:A.六.二次函数的应用(共4小题)8.施工队要修建一个横断面为抛物线的公路隧道,其高度为6米,宽度OM为12米.现以O点为原点,OM所在直线为x轴建立直角坐标系(如图1所示).(1)求出这条抛物线的函数解析式,并写出自变量x的取值范围;(2)隧道下的公路是双向行车道(正中间是一条宽1米的隔离带),其中的一条行车道能否行驶宽2.5米、高5米的特种车辆?请通过计算说明;(3)施工队计划在隧道门口搭建一个矩形“脚手架”CDAB,使A、D点在抛物线上.B、C点在地面OM线上(如图2所示).为了筹备材料,需求出“脚手架”三根木杆AB、AD、DC的长度之和的最大值是多少,请你帮施工队计算一下.【答案】见试题解答内容【解答】解:(1)∵M(12,0),P(6,6).∴设这条抛物线的函数解析式为y=a(x﹣6)2+6,∵抛物线过O(0,0),∴a(0﹣6)2+6=0,解得a=﹣,∴这条抛物线的函数解析式为y=﹣(x﹣6)2+6,即y=﹣x2+2x.(0≤x≤12)(2)当x=6﹣0.5﹣2.5=3(或x=6+0.5+2.5=9)时y=4.5<5故不能行驶宽2.5米、高5米的特种车辆.(3)设点A的坐标为(m,﹣m2+2m)则OB=m,AB=DC=﹣m2+2m根据抛物线的轴对称,可得:OB=CM=m,故BC=12﹣2m,即AD=12﹣2m令L=AB+AD+DC=﹣m2+2m+12﹣2m﹣m2+2m=﹣m2+2m+12=﹣(m ﹣3)2+15故当m=3,即OB=3米时,三根木杆长度之和L的最大值为15米.9.嘉兴某公司抓住“一带一路”的机遇不断创新发展,生产销售某产品,该产品销售量y(万件)与售价x(元件)之间存在图1(一条线段)所示的变化趋势,总成本P(万元)与销售量y(万件)之间存在图2所示的变化趋势,当6≤y≤10时可看成一条线段,当10≤y≤18时可看成抛物线P=﹣y2+8y+m(1)写出y与x之间的函数关系式(2)若销售量不超过10万件时,利润为45万元,求此时的售价为多少元/件?(3)当售价为多少元时,利润最大,最大值是多少万元?(利润=销售总额一总成本)【答案】见试题解答内容【解答】解:(1)将点(18,6)、(6,18)代入一次函数表达式:y=kx+b 得:,解得:,函数表达式为:y=﹣x+24;(2)当6≤y≤10时,同理可得:P=10y,由题意得:利润w=yx﹣P=﹣(x﹣10)(x﹣24)=45,解得:x=15或19(舍去19),即:此时的售价为15;(3)①当6≤y≤10时,w1=yx﹣P=﹣(x﹣10)(x﹣24),当x=17时,w1有最大值为49万元;②10≤y≤18时,把点(10,100)代入二次函数并解得:m=40,w2=yx﹣P=(24﹣x)2+(24﹣x)(x﹣8)﹣40=﹣x2+x﹣,当x=﹣=14时,w2的最大值为40万元,49>40,故:x=17元时,w有最大值为49万元.10.某商场经营某种品牌的童装,购进时的单价是60元.根据市场调查,在一段时间内,销售单价是80元时,销售量是200件,而销售单价每降低1元,就可多售出20件.(1)写出销售量y件与销售单价x元之间的函数关系式;写出销售该品牌童装获得的利润w元与销售单价x元之间的函数关系式;(2)若童装厂规定该品牌童装销售单价不低于76元,且商场要完成不少于240件的销售任务,则商场销售该品牌童装获得的最大利润是多少?【答案】(1)y=﹣20x+1800(60≤x≤80),W=﹣20x2+3000x﹣108000;(2)4480元.【解答】解:(1)根据题意得,y=200+(80﹣x)×20=﹣20x+1800,所以销售量y件与销售单价x元之间的函数关系式为y=﹣20x+1800(60≤x ≤80);W=(x﹣60)y=(x﹣60)(﹣20x+1800)=﹣20x2+3000x﹣108000,所以销售该品牌童装获得的利润w元与销售单价x元之间的函数关系式W=﹣20x2+3000x﹣108000;(2)根据题意得,﹣20x+1800≥240,解得x≤78,∴76≤x≤78,w=﹣20x2+3000x﹣108000,对称轴为x=﹣=75,∵a=﹣20<0,∴抛物线开口向下,∴当76≤x≤78时,W随x的增大而减小,∴x=76时,W有最大值,最大值=(76﹣60)(﹣20×76+1800)=4480(元).所以商场销售该品牌童装获得的最大利润是4480元.11.为了落实国务院的指示精神,某地方政府出台了一系列“精准扶贫”优惠政策,使贫困户收入大幅度增加.某农户生产经销一种农产品,已知这种产品的成本价为每千克20元,市场调查发现,该产品每天的销售量y(千克)与销售价x(元/千克)有如下关系:y=﹣2x+80.设这种产品每天的销售利润为w元.(1)求w与x之间的函数关系式;(2)该产品销售价定为每千克多少元时,每天的销售利润最大?最大利润是多少元?(3)如果物价部门规定这种产品的销售价不高于每千克30元,该农户想要每天获得150元的销售利润,销售价应定为每千克多少元?【答案】(1)w=﹣2x2+120x﹣1600;(2)该产品销售价定为每千克30元时,每天销售利润最大,最大销售利润200元;过程见解答;(3)该农户想要每天获得150元的销售利润,销售价应定为每千克25元,过程见解答.【解答】解:(1)由题意得出:w=(x﹣20)•y=(x﹣20)(﹣2x+80)=﹣2x2+120x﹣1600,故w与x的函数关系式为:w=﹣2x2+120x﹣1600;(2)w=﹣2x2+120x﹣1600=﹣2(x﹣30)2+200,∵﹣2<0,∴当x=30时,w有最大值.w最大值为200.答:该产品销售价定为每千克30元时,每天销售利润最大,最大销售利润200元.(3)当w=150时,可得方程﹣2(x﹣30)2+200=150.解得x1=25,x2=35.∵35>30,∴x2=35不符合题意,应舍去.答:该农户想要每天获得150元的销售利润,销售价应定为每千克25元.七.二次函数综合题(共19小题)12.如图(1)所示,E为矩形ABCD的边AD上一点,动点P,Q同时从点B 出发,点P沿折线BE﹣ED﹣DC运动到点C时停止,点Q沿BC运动到点C 时停止,它们运动的速度都是1cm/秒.设P、Q同时出发t秒时,△BPQ的面积为ycm2.已知y与t的函数关系图象如图(2)(曲线OM为抛物线的一部分),则下列结论:①AD=BE=5;②;③当0<t≤5时,;④当秒时,△ABE∽△QBP;其中正确的结论是()A.①②③B.②③C.①③④D.②④【答案】C【解答】解:根据图(2)可得,当点P到达点E时,点Q到达点C,∵点P、Q的运动的速度都是1cm/秒,∴BC=BE=5,∴AD=BE=5,故①小题正确;又∵从M到N的变化是2,∴ED=2,∴AE=AD﹣ED=5﹣2=3,在Rt△ABE中,AB===4,∴cos∠ABE==,故②小题错误;过点P作PF⊥BC于点F,∵AD∥BC,∴∠AEB=∠PBF,∴sin∠PBF=sin∠AEB==,∴PF=PB sin∠PBF=t,∴当0<t≤5时,y=BQ•PF=t•t=t2,故③小题正确;当t=秒时,点P在CD上,此时,PD=﹣BE﹣ED=﹣5﹣2=,PQ=CD﹣PD=4﹣=,∵=,==,∴=,又∵∠A=∠Q=90°,∴△ABE∽△QBP,故④小题正确.综上所述,正确的有①③④.故选:C.13.如图,分别过点P i(i,0)(i=1、2、…、n)作x轴的垂线,交的图象于点A i,交直线于点B i.则=.【答案】见试题解答内容【解答】解:根据题意,知A1、A2、A3、…A n的点都在函与直线x=i(i=1、2、…、n)的图象上,B1、B2、B3、…B n的点都在直线与直线x=i(i=1、2、…、n)图象上,∴A1(1,)、A2(2,2)、A3(3,)…A n(n,n2);B1(1,﹣)、B2(2,﹣1)、B3(3,﹣)…B n(n,﹣);∴A1B1=|﹣(﹣)|=1,A2B2=|2﹣(﹣1)|=3,A3B3=|﹣(﹣)|=6,…A nB n=|n2﹣(﹣)|=;∴=1,=,…=.∴,=1++…+,=2[+++…+],=2(1﹣+﹣+﹣+…+﹣),=2(1﹣),=.故答案为:.14.如图,已知二次函数y=ax2+bx+c(a≠0)的顶点是(1,4),且图象过点A(3,0),与y轴交于点B.(1)求二次函数y=ax2+bx+c的解析式;(2)求直线AB的解析式;=3,如果存在,(3)在直线AB上方的抛物线上是否存在一点C,使得S△ABC 请求出C点的坐标,如果不存在,请说明理由.【答案】(1)y=﹣x2+2x+3;(2)y=﹣x+3;(3)C(1,4)或C(2,3).【解答】解:(1)∵(1,4)是二次函数的顶点,∴设二次函数的解析式为y=a(x﹣1)2+4.又∵图象过点A(3,0),∴代入可得4a+4=0,解得a=﹣1,∴y=﹣(x﹣1)2+4或y=﹣x2+2x+3;(2)由y=﹣x2+2x+3可知,B为(0,3).设直线AB的解析式为:y=kx+t(k≠0),将A(3,0)和B(0,3)代入可得k=﹣1,b=3∴直线AB的解析式为:y=﹣x+3;(3)∵C在直线AB上方的抛物线上,∴可设C(x,﹣x2+2x+3)其中x>0,过C作CD∥y轴,交AB于D点.则D坐标为(x,﹣x+3),=3,又∵S△ABC∴[(﹣x2+2x+3)﹣(﹣x+3)]×3=3,解得x1=1,x2=,2,代入﹣x2+2x+3得4或3.∴C点坐标为(1,4)或(2,3).15.如图,已知抛物线y=﹣x2+bx+c经过B(﹣3,0),C(0,3)两点,与x 轴的另一个交点为A.(1)求抛物线的解析式;(2)若直线y=mx+n经过B,C两点,则m=1;n=3;(3)在抛物线对称轴上找一点E,使得AE+CE的值最小,直接写出点E的坐标;(4)设点P为x轴上的一个动点,是否存在使△BPC为等腰三角形的点P,若存在,直接写出点P的坐标;若不存在,说明理由.【答案】(1)y=﹣x2﹣2x+3;(2)1,3;(3)E的坐标为(﹣1,2);(4)点P的坐标为(﹣3﹣3,0)或(3﹣3,0)或(0,0)或(3,0).【解答】解:(1)把点B(﹣3,0),C(0,3)代入y=﹣x2+bx+c得:,解得:,∴抛物线的解析式是y=﹣x2﹣2x+3;(2)把B(﹣3,0),C(0,3)代入y=mx+n中得:,解得:;故答案为:1,3;(3)如图1,由(2)知:直线BC的解析式为y=x+3,抛物线的对称轴为直线x=﹣=﹣1,直线BC与直线x=﹣1相交于点E,则EB=EA,此时AE+CE最小,此时点E的坐标为(﹣1,2);(4)∵B(﹣3,0),C(0,3),∴OB=OC=3,∴BC=3,分三种情况:①BC=BP,如图2,此时点P的坐标为(﹣3﹣3,0)或(3﹣3,0);②当P与O重合时,△BPC也是等腰三角形,此时P(0,0);③BC=CP,如图3,此时点P的坐标为(3,0);综上所述,点P的坐标为(﹣3﹣3,0)或(3﹣3,0)或(0,0)或(3,0).16.在平面直角坐标系xOy中,已知抛物线y=ax2﹣2(a+1)x+a+2(a≠0).(1)当a=﹣时,求抛物线的对称轴及顶点坐标;(2)请直接写出二次函数图象的对称轴(用含a的代数式表示)及二次函数图象经过的定点坐标是(1,0).(3)若当1≤x≤5时,函数值有最大值为8,求二次函数的解析式;(4)已知点A(0,﹣3)、B(5,﹣3),若抛物线与线段AB只有一个公共点,请直接写出a的取值范围.【答案】(1)直线x=﹣7,(﹣7,8);(2)(1,0);(3)y=x2﹣4x+3;(4)a的取值范围是:a=或0<a<或﹣5<a<0.【解答】解:(1)a=﹣时,y=﹣x2﹣x+∴对称轴为直线x=﹣=﹣7,把x=﹣7代入y=﹣x2﹣x+得,y=8,∴顶点坐标为(﹣7,8);(2)∵y=ax2﹣2(a+1)x+a+2(a≠0).∴对称轴为直线x=﹣=1+,∵y=ax2﹣2(a+1)x+a+2=a(x﹣1)2﹣2(x﹣1)=(x﹣1)[a(x﹣1)﹣2],∴二次函数经过的定点坐标为(1,0);故答案为:(1,0);(3)由(2)知:二次函数图象的对称轴为直线x=1+,分两种情况:①当a<0时,1+<1,在自变量x的值满足1≤x≤5的情况下,y随x的增大而减小,∴当x=1时,y=0,而当1≤x≤5时,函数值有最大值为8,所以此种情况不成立;②当a>0时,1+>1,i)当1<1+≤3时,即a≥,当x=5时,二次函数的最大值为y=25a﹣10(a+1)+a+2=8,∴a=1,此时二次函数的解析式为y=x2﹣4x+3;ii)当1+>3时,在自变量x的值满足1≤x≤5的情况下,y随x的增大而减小,即x=1有最大值,所以此种情况不成立;综上所述:此时二次函数的解析式为:y=x2﹣4x+3;(4)分三种情况:①当抛物线的顶点在线段AB上时,抛物线与线段AB只有一个公共点,即当y=﹣3时,ax2﹣2(a+1)x+a+2=﹣3,ax2﹣2(a+1)x+a+5=0,Δ=4(a+1)2﹣4a(a+5)=0,∴a=,当a=时,x2﹣x+=0,解得:x1=x2=4(符合题意,如图1),②当a>0时,如图2,当x=0时,y>﹣3;当x=5时,y<﹣3,∴,解得:﹣5<a<,∴0<a<;③当a<0时,如图3,当x=0时,y>﹣3;当x=5时,y<﹣3,∴,解得:﹣5<a<,∴﹣5<a<0;综上所述,a的取值范围是:a=或0<a<或﹣5<a<0.17.如图,抛物线y=﹣x2+bx+c与x轴交于A,B两点,与y轴交于点C,抛物线的对称轴交x轴于点D.已知A(﹣1,0),C(0,3).(1)求抛物线的解析式;(2)在抛物线的对称轴上有一点M,使得MA+MC的值最小,求此点M的坐标;(3)在抛物线的对称轴上是否存在P点,使△PCD是等腰三角形,如果存在,求出点P的坐标,如果不存在,请说明理由.【答案】(1)y=﹣x2+2x+3;(2)点M(1,2);(3)点P的坐标为(1,6)或(1,)或(1,﹣)或(1,).【解答】解:(1)∵抛物线y=﹣x2+bx+c经过A(﹣1,0),C(0,3)两点,∴,解得:,∴该抛物线的解析式为y=﹣x2+2x+3;(2)由对称性可知,直线BC与抛物线对称轴的交点就是点M,抛物线y=﹣x2+2x+3的对称轴是直线x=﹣=1,由于点A(﹣1,0),则点B(3,0),设直线BC的解析式为y=kx+d,则,解得,∴直线BC的解析式为y=﹣x+3,当x=1时,y=﹣1+3=2,∴点M(1,2);(3)设P(1,t),则PC2=12+(t﹣3)2,CD2=32+12=10,PD2=t2,根据△PCD为等腰三角形,分三种情况讨论:①当PC=CD时,则12+(t﹣3)2=10,解得:t=6或t=0(此时点P与D重合,舍去),∴P(1,6);②当CD=PD时,则10=t2,解得:t=±,∴P1(1,),P2(1,﹣);③当PC=PD时,则12+(t﹣3)2=t2,解得:t=,P(1,);综上所述,点P的坐标为(1,6)或(1,)或(1,﹣)或(1,).18.如图1,抛物线y=ax2+x+c与x轴交于点A、B(4,0)(A点在B点左侧),与y轴交于点C(0,6),点P是抛物线上一个动点,连接PB,PC,BC(1)求抛物线的函数表达式;(2)若点P的横坐标为3,求△BPC的面积;(3)如图2所示,当点P在直线BC上方运动时,连接AC,求四边形ABPC 面积的最大值,并写出此时P点坐标.(4)若点M是x轴上的一个动点,点N是抛物线上一动点,P的横坐标为3.试判断是否存在这样的点M,使得以点B,M,N,P为顶点的四边形是平行四边形,若存在,请直接写出点M的坐标;若不存在,请说明理由.【答案】(1)该抛物线的函数表达式为y=﹣x2+x+6;=;(2)S△BPC的最大值为24,此时,点P的坐标为(2,6);(3)S四边形ABPC(4)点M的坐标为(8,0)或(﹣,0)或(,0)或(0,0).【解答】解:(1)∵抛物线y=ax2+x+c经过点B(4,0)、C(0,6),∴,解得:,∴该抛物线的函数表达式为y=﹣x2+x+6;(2)设直线BC的解析式为y=kx+b,则,解得:,∴直线BC的解析式为y=x+6,∵点P的横坐标为3,∴P(3,),如图1,过点P作PE∥y轴,交BC于点E,则E(3,),∴PE=﹣=,=S△BPE+S△CPE=××(4﹣3)+××3=;∴S△BPC(3)∵y=﹣x2+x+6,∴抛物线的对称轴为直线x=1,∵点A和点B(4,0)关于直线x=1对称,∴A(﹣2,0),∴AB=4﹣(﹣2)=6,∵C(0,6),∴OC=6,=AB•OC=×6×6=18,∴S△ABC如图2,过点P作PE∥y轴交BC于点E,设P(t,﹣t2+t+6),则E(t,t+6),∴PE=﹣t2+t+6﹣(t+6)=﹣t2+3t,=S△PBE+S△PCE=PE•(x B﹣x P)+PE•(x P﹣x C)=×(﹣t2+3t)∴S△PBC×4=﹣t2+6t,=S△PBC+S△ABC=﹣t2+6t+18=﹣(t﹣2)2+24,∴S四边形ABPC∵﹣<0,有最大值,最大值为24.∴当t=2时,S四边形ABPC此时,点P的坐标为(2,6);(4)由(2)知P(3,),B(4,0),∵点M是x轴上的一个动点,点N是抛物线上一动点,∴设M(m,0),N(n,﹣n2+n+6),当BP、MN为对角线时,BP与MN的中点重合,则,解得:,(此时点N与点P重合,舍去),∴M(8,0);当BM、PN为对角线时,BM与PN的中点重合,则,解得:,,∴M(﹣,0)或(,0);当BN、PM为对角线时,BN与PM的中点重合,则,解得:,(此时点N与点P重合,舍去),∴M(0,0);综上所述,点M的坐标为(8,0)或(﹣,0)或(,0)或(0,0).19.如图,抛物线y=﹣x2+2x+3与x轴交于A、B两点(点A在点B的左边),与y轴交于点C,点D和点C关于抛物线的对称轴对称.(1)求直线AD的解析式;(2)如图,直线AD上方的抛物线上有一点F,过点F作FG⊥AD于点G,求线段FG的最大值;(3)点M是抛物线的顶点,点P是y轴上一点,点Q是坐标平面内一点,以A,M,P,Q为顶点的四边形是以AM为边的矩形,求点Q的坐标.(2)FG的最大值为:;(3)或.【解答】(1)解:当x=0时,y=﹣x2+2x+3=3,则C(0,3),当y=0时,﹣x2+2x+3=0,解得x1=﹣1,x2=3,则A(﹣1,0),B(3,0),∵y=﹣x2+2x+3=﹣(x﹣1)2+4,∴抛物线对称轴为直线x=1,而点D和点C关于直线x=1对称,∴D(2,3),设直线AD的解析式为y=kx+b,把A(﹣1,0),D(2,3)分别代入得,解得,∴直线AD的解析式为y=x+1;(2)记AD于y轴的交点为E,当x=0时,y=x+1=1,则E(0,1),∴OA=OE,∴△OAE为等腰直角三角形,∴∠EAO=∠AEO=45°,过F作FN∥y轴交AD于N,∴∠FNG=45°,∴△FGN为等腰直角三角形,∴,设F(x,﹣x2+2x+3),则N(x,x+1),∴,当时,FN有最大值,∴FG的最大值为:;(3)如图,当P在AM的右边,记直线AM交y轴于R,y=﹣x2+2x+3=﹣(x﹣1)2+4,则M(1,4),设直线AM的解析式为y=mx+n,把A(﹣1,0)、M(1,4)分别代入得,解得,∴直线AM的解析式为y=2x+2,当x=0时,y=2x+2=2,则R(0,2),设P(0,y),而四边形APQM为矩形,∴∠RAP=90°,∴(2﹣y)2=12+y2+12+22,解得:,即,由平移的性质可得:;如图,当P在AM的左边,同理可得:(y﹣2)2=(1﹣0)2+(4﹣2)2+(0﹣1)2+(y﹣4)2,解得:,即,由平移的性质可得:;综上:或.20.如图所示,在平面直角坐标中,抛物线的顶点P到x轴的距离是4,抛物线与x轴相交于O、M两点,OM=4;矩形ABCD的边BC在线段的OM上,点A、D在抛物线上.(1)求这条抛物线的解析式;(2)设点D的横坐标是m,矩形ABCD的周长为L,求L与m的关系式,并求出L的最大值;(3)点E在抛物线的对称轴上,在抛物线上是否存在点F,使得以E、F、O、M为顶点的四边形是平行四边形?如果存在,求F点的坐标.【答案】(1)y=﹣x2+4x;(2)当m=1时,周长L有最大值10;(3)点F(﹣2,﹣12)或(6,﹣12)或(2,4)时,以E、F、O、M为顶点的四边形是平行四边形.【解答】解:(1)依题意得顶点P的坐标(2,4),设抛物线的解析式为y=a(x﹣2)2+4,把点M(4,0)代入解析式,解得a=﹣1,所以y=﹣(x﹣2)2+4=﹣x2+4x,所以抛物线的解析式为:y=﹣x2+4x.(2)∵点D的横坐标是m,∴点D的纵坐标是﹣m2+4m,BC=4﹣2m,∴矩形ABCD的周长L=2(﹣m2+4m+4﹣2m)=﹣2(m﹣1)2+10,∴当m=1时,周长L有最大值10.(3)①OM是平行四边形的边时:点F的横坐标:2﹣4=﹣2,纵坐标:y=﹣(﹣2)2+4×(﹣2)=﹣12,此时,点F(﹣2,﹣12);或点F的横坐标:2+4=6,纵坐标:y=﹣62+4×6=﹣12,此时,点F(6,﹣12).②OM是平行四边形的对角线时,EF所在的直线经过OM的中点,∴EF都在抛物线的对称轴上,∴点F与点P重合,∴点F(2,4).综上所述,点F(﹣2,﹣12)或(6,﹣12)或(2,4)时,以E、F、O、M 为顶点的四边形是平行四边形.21.如图,一次函数y=x+1的图象与x轴交于点A,与y轴交于点B,二次函数y=x2+bx+c的图象与一次函数y=x+1的图象交于B、C两点,与x轴交于D、E两点,且D点坐标为(1,0).(1)求抛物线的解析式;(2)在x轴上找一点P,使|PB﹣PC|最大,求出点P的坐标;(3)在x轴上是否存在点P,使得△PBC是以点P为直角顶点的直角三角形?若存在,求出点P的坐标,若不存在,请说明理由.【答案】(1)y=x2﹣x+1;(2)P(﹣2,0);(3)存在,P(1,0)或(3,0).【解答】解:(1)将B(0,1),D(1,0)的坐标代入y=x2+bx+c,得:,解得,∴解析式y=x2﹣x+1.(2)当P在x轴上的任何位置(点A除外)时,根据三角形两边之差小于第三边得|PB﹣PC|<BC,当点P在点A处时,|PB﹣PC|=BC,这时,|PB﹣PC|最大,即P在A点时,|PB﹣PC|最大.∵直线y=x+1交x轴与A点,令y=0,x=﹣2,即A(﹣2,0),∴P(﹣2,0).(3)设符合条件的点P存在,令P(a,0):当P为直角顶点时,如图:过C作CF⊥x轴于F;∵∠BPO+∠OBP=90°,∠BPO+∠CPF=90°,∴∠OBP=∠FPC,∴Rt△BOP∽Rt△PFC,∴,即,整理得a2﹣4a+3=0,解得a=1或a=3;∴所求的点P的坐标为(1,0)或(3,0),综上所述:满足条件的点P共有2个.22.如图,抛物线y=﹣x2+bx+c与x轴交于A,B两点,与y轴交于点C,抛物线的对称轴交x轴于点D,已知A(﹣1,0),C(0,2).(1)求抛物线的解析式;(2)在抛物线的对称轴上是否存在点P,使△PCD是以CD为腰的等腰三角形?如果存在,直接写出点P的坐标;如果不存在,请说明理由;(3)点E是线段BC上的一个动点,过点E作x轴的垂线与抛物线相交于点F,求△CBF的最大面积及此时点E的坐标.【答案】(1)y=﹣x2+x+2;(2)存在,点P的坐标为(,)或(,﹣)或(,4);(3)△CBF的最大面积为4,E(2,1).【解答】解:(1)∵A(﹣1,0),C(0,2)在抛物线y=x2+bx+c上,则,解得,∴抛物线解析式为y=﹣x2+x+2;(2)存在,理由:∵y=﹣x2+x+2=﹣(x﹣)2+,∴抛物线对称轴为直线x=,∴D(,0),且C(0,2),∴CD==,∵点P在对称轴上,∴可设P(,t),∴PD=|t|,PC=,当PD=CD时,则有|t|=,解得t=±,此时P点坐标为(,)或(,﹣);当PC=CD时,则有=,解得t=0(与D重合,舍去)或t=4,此时P点坐标为(,4);综上可知存在满足条件的点P,其坐标为(,)或(,﹣)或(,4);(3)当y=0时,即﹣x2+x+2=0,解得x=﹣1或x=4,∴A(﹣1,0),B(4,0),设直线BC解析式为y=kx+s,由题意可得,解得,∴直线BC解析式为y=﹣x+2,∵点E是线段BC上的一个动点,∴可设E(m,﹣m+2),则F(m,﹣m2+m+2),∴EF=﹣m2+m+2﹣(﹣m+2)=﹣m2+2m=﹣(m﹣2)2+2,=×4•EF=2[﹣(m﹣2)2+2]=﹣(m﹣2)2+4,∴S△CBF∵﹣1<0,有最大值,最大值为4,∴当m=2时,S△CBF此时﹣x+2=1,∴E(2,1),即E为BC的中点,∴当E运动到BC的中点时,△CBF的面积最大,最大面积为4,此时E点坐标为(2,1).23.已知二次函数y=﹣x2+bx+c的图象与直线y=x+3相交于点A和点B,点A 在x轴上,点B在y轴上.抛物线的顶点为P.(1)求这个二次函数的解析式;(2)现将抛物线向右平移m个单位,当抛物线与△ABP有且只有一个公共点时,求m的值;=2S△ABP,若存在,(3)在直线AB下方的抛物线上是否存在点Q,使得S△ABQ请求出点Q的坐标,若不存在,请说明理由.【答案】(1)这个二次函数的解析式为:y=﹣x2﹣2x+3;(2)m的值为2;(3)点Q的坐标为(﹣4,﹣5)或(1,0).【解答】解:(1)当x=0时,y=3,∴B(0,3),当y=0时,x+3=0,∴x=﹣3,∴A(﹣3,0),把A(﹣3,0)和B(0,3)代入二次函数y=﹣x2+bx+c中得:,解得:,∴这个二次函数的解析式为:y=﹣x2﹣2x+3;(2)y=﹣x2﹣2x+3=﹣(x+1)2+4,∴P(﹣1,4),将抛物线向右平移m个单位,P对应点为(﹣1+m,4),∴平移后的抛物线解析式为y=﹣(x+1﹣m)2+4,把B(0,3)代入得,3=﹣(1﹣m)2+4,解得m1=2,m2=0(舍去),故m的值为2;=S△APD+S梯形PDOB﹣S△AOB=+×(3+4)×1﹣(3)∵S△ABP=3,=2S△ABP=6,∴S△ABQ设点Q的坐标为(a,﹣a2﹣2a+3),分两种情况:①如图1,当Q在对称轴的左侧,过点P作PD⊥x轴于点D,过点Q作QE ∥y轴交直线AB于E,=(a+3+a2+2a﹣3)(﹣a+3+a)=6,∴S△ABQ解得:a1=﹣4,a2=1(舍),∴Q(﹣4,﹣5);②如图2,当Q在对称的右侧,过点P作PD⊥x轴于点D,过点Q作QE∥y 轴交直线AB于E,同理可得a=1,∴Q(1,0),综上,点Q的坐标为(﹣4,﹣5)或(1,0).24.如图1和图2,已知抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=﹣1,且抛物线经过B(1,0),C(0,3)两点,与x轴交于点A.(1)求抛物线的解析式;(2)如图1,在抛物线的对称轴直线x=﹣1上找一点M,使点M到点B的距离与到点C的距离之和最小,求出点M的坐标;(3)如图2,点Q为直线AC上方抛物线上一点,若∠CBQ=45°,请求出点Q坐标.【答案】见试题解答内容【解答】解:(1)点B的坐标为(1,0),函数的对称轴为x=﹣1,故点A (﹣3,0),则抛物线的表达式为:y=a(x+3)(x﹣1)=a(x2+2x﹣3),即﹣3a=3,解得:a=﹣1,故抛物线的表达式为:y=﹣x2﹣2x+3…①;(2)点B关于函数对称轴的对称点为点A,则AC交函数对称轴于点M,则点M为所求,由点A、C的坐标得,直线AC的表达式为:y=x+3,当x=﹣1时,y=2,故点M(﹣1,2);(3)如图,设直线BQ交y轴于点H,作HG⊥BC于点G,tan∠OCB=,∠CBQ=45°,则设:BG=HG=x,则CG=3x,则BC=BG+CG=4x==,解得x=,CH=x=,则点H(0,),由点B、H的坐标可得,直线BQ的表达式为:y=﹣x+…②,联立①②并解得:x=1(舍去)或﹣,故点Q(﹣,).25.如图,二次函数y=ax2+bx+c(a≠0)的图象与x轴交于点A(﹣1,0)、B (3,0)两点,与y轴交于点C(0,3),D为抛物线的顶点.(1)求此二次函数的表达式;(2)求△CDB的面积.(3)在其对称轴右侧的抛物线上是否存在一点P,使△PDC是等腰三角形?若存在,请直接写出点P的坐标;若不存在,请说明理由.【答案】见试题解答内容【解答】解:(1)设解析式为:y=a(x﹣x1)(x﹣x2)(a≠0),即y=a (x+1)(x﹣3).把点C(0,3)代入,得a(0+1)(0﹣3)=3.a=﹣1.故该抛物线解析式是y=﹣(x+1)(x﹣3)或y=﹣x2+2x+3.(2)由y=﹣x2+2x+3=﹣(x﹣1)2+4知,顶点坐标D为(1,4).∵B(3,0),C(0,3),∴BC2=18,BD2=(3﹣1)2+(0﹣4)2=20,CD2=(0﹣1)2+(3﹣4)2=2,∴BD2=BC2+CD2.∴△BCD是直角三角形,且∠BCD=90°.=CD•BC=××3=3,即△CDB的面积是3.∴S△BCD(3)存在,由y=﹣x2+2x+3得,D点坐标为(1,4),对称轴为x=1,①若以CD为底边,则PD=PC,设P点坐标为(x,y),根据勾股定理得:x2+(3﹣y)2=(x﹣1)2+(4﹣y)2,即y=4﹣x,又∵P点(x,y)在抛物线上,∴4﹣x=﹣x2+2x+3,即x2﹣3x+1=0,解得x1=,x2=<1(舍去),∴x=,∴y=4﹣x=,即点P坐标为(,).②若以CD为一腰,因为点P在对称轴右侧的抛物线上,由抛物线对称性知,点P与点C关于直线x=1对称,此时点P坐标为(2,3),∴符合条件的点P坐标为(,)或(2,3).26.如图,在平面直角坐标系中,已知抛物线y=ax2﹣2x+c与直线y=kx+b都经过A(0,﹣3),B(3,0)两点,该抛物线的顶点为C.(1)求此抛物线和直线AB的解析式;(2)设点P是直线AB下方抛物线上的一动点,当△PAB面积最大时,试求出点P的坐标,并求出△P AB面积的最大值;(3)设直线AB与该抛物线的对称轴交于点E,在射线EB上是否存在一点M,过点M作x轴的垂线交抛物线于点N,使点M、N、C、E是平行四边形的四个顶点?若存在,试求出点M的坐标;若不存在,请说明理由.【答案】(1)y=x2﹣2x﹣3;y=x﹣3;(2),P(,﹣);(3)(2,﹣1)或(,),【解答】解:(1)∵抛物线y=ax2﹣2x+c经过A(0,﹣3),B(3,0)两点,∴,解得,∴抛物线的解析式为y=x2﹣2x﹣3,∵直线y=kx+b经过A(0,﹣3),B(3,0)两点,∴,解得,∴直线AB的解析式为y=x﹣3;(2)如图1,作PQ∥y轴交直线AB于点Q,设P(m,m2﹣2m﹣3),则Qm,m﹣3),∴PQ=m﹣3﹣(m2﹣2m﹣3)=﹣m2+3m,=×3×(﹣m2+3m)∴S△P AB=﹣m2+m=﹣(m﹣)2+,∴当m=时,△PAB面积有最大值,最大值是,此时P点坐标为(,﹣).(3)存在,理由如下:∵y=x2﹣2x﹣3=(x﹣1)2﹣4,∴抛物线的顶点C的坐标为(1,﹣4),∵CE∥y轴,∴E(1,﹣2),∴CE=2,①如图2,若点M在x轴下方,四边形CEMN为平行四边形,则CE=MN,设M(a,a﹣3),则N(a,a2﹣2a﹣3),∴MN=a﹣3﹣(a2﹣2a﹣3)=﹣a2+3a,∴﹣a2+3a=2,解得:a=2,a=1(舍去),∴M(2,﹣1),②如图3,若点M在x轴上方,四边形CENM为平行四边形,则CE=MN,设M(a,a﹣3),则N(a,a2﹣2a﹣3),∴MN=a2﹣2a﹣3﹣(a﹣3)=a2﹣3a,∴a2﹣3a=2,解得:a=,a=(舍去),∴M(,),综合可得M点的坐标为(2,﹣1)或(,),27.矩形OABC在直角坐标系中的位置如图所示,A,C两点的坐标分别为A(6,0),C(0,3),直线y=x与BC边相交于点D.(1)求点D的坐标;(2)若抛物线y=ax2+bx经过D,A两点,试确定此抛物线的表达式;(3)设(2)中抛物线的对称轴与直线OD交于点M,点P为对称轴上一动点,以P,O,M为顶点的三角形与△OCD相似,求符合条件的P点的坐标.【答案】(1)D(4,3);(2)y=﹣x2+x;(3)P1(3,0),P2(3,﹣4).【解答】解:(1)∵四边形OABC是矩形,∴BC∥OA,∵直线y=x与BC边相交于点D,∴点D的纵坐标为3,令y=3,得3=x,解得:x=4,∴D(4,3);(2)∵抛物线y=ax2+bx经过D(4,3),A(6,0)两点,∴,解得:,∴该抛物线的解析式为y=﹣x2+x;(3)如图2:抛物线的对称轴与x轴交于点P1,符合条件.∵CB∥OA,∴∠P1OM=∠CDO,∵∠DCO=∠OP1M=90°,∴Rt△P1OM∽Rt△CDO.∵x=﹣=3,∴该点坐标为P1(3,0).过点O作OD的垂线交抛物线的对称轴于点P2,∵对称轴平行于y轴,∴∠P2MO=∠DOC,∴Rt△P2OM∽Rt△DCO.在△P2P1O和△DCO中,,,∴△P2P1O≌△DCO(AAS).∴CD=P1P2=4,∵点P2位于第四象限,∴P2(3,﹣4).∴符合条件的点P有两个,分别是P1(3,0),P2(3,﹣4).28.已知一次函数y1=﹣3x+3与x轴,y轴分别交于点A,B两点,抛物线y2=ax2﹣2ax+a+4(a<0);(1)若抛物线经过点B,求出抛物线的解析式;(2)抛物线是否经过一定点,若经过定点,求出定点坐标,若不经过,请说明理由;(3)在(1)的条件下,第一象限一点M是抛物线上一动点,连接AM,BM,设点M的横坐标为t,四边形BOAM的面积为S,求出S与t的函数关系式,当t取何值时,S有最大值是多少?【答案】(1)y=﹣x2+2x+3;(2)抛物线经过一定点,定点坐标为(1,4);(3)S=﹣t2++(0<t<3),当t=时,S有最大值是.【解答】解:(1)当x=0时,y=3,∴B(0,3),将B(0,3)代入y2=ax2﹣2ax+a+4中得:a+4=3,∴a=﹣1,∴抛物线的解析式为:y=﹣x2+2x+3;(2)抛物线y2=ax2﹣2ax+a+4=a(x﹣1)2+4,当x=1时,y2=4,∴抛物线经过一定点,定点坐标为(1,4);(3)如图,连接OM,当y=0时,﹣3x+3=0,∴x=1,∴A(1,0),由题意得:M(t,﹣t2+2t+3)(0<t<3),+S△AOM∴S=S△OBM=•OB•x M+•OA•y M=×3t+×1×(﹣t2+2t+3)=﹣t2++(0<t<3)=﹣(t﹣)2+;∵﹣<0,∴当t=时,S有最大值是.29.已知抛物线y=﹣x2+x+3与x轴交于点A、B(A在B的左侧),与y 轴交于点C.∠BAC的平分线AD交y轴于点D.过点D的直线l与射线AC、AB分别交于点M、N.(1)求抛物线的对称轴;(2)当实数a>﹣2时,求二次函数y=﹣x2+x+3在﹣2<x≤a时的最大值;(可用含a的代数式表示)(3)当直线l绕点D旋转时,试证明为定值,并求出该定值.【答案】(1)x=;(2)当a≤时,最大值为﹣a2+a+3;当a>时,最大值为4;(3)证明见解答过程,定值是.【解答】解:(1)抛物线对称轴为:x==;(2)①当a≤时,如图:此时二次函数y=﹣x2+x+3在﹣2<x≤a时的最大值,在x=a时取得,最大值为y=﹣a2+a+3,②当a>时,如图:此时二次函数y=﹣x2+x+3在﹣2<x≤a时的最大值,在x=时取得,最大值为y=4,综上所述,当a≤时,最大值为﹣a2+a+3;当a>时,最大值为4;(3)过M作ME⊥x轴于E,在y=﹣x2+x+3中令x=0得y=3,令y=0得x1=﹣,x2=3,∴A(﹣,0),B(3,0),C(0,3),∴OA=,OC=3,∴tan∠OAC==,∴∠OAC=60°,即∠BAC=60°,∵∠BAC的平分线AD交y轴于点D,∴∠OAD=30°,∴OD=OA•tan30°=1,∴D(0,1),①当M在线段AC上时,如图:设AM=a,AN=b,则ON=AN﹣OA=b﹣,∴N(b﹣,0),设直线DN解析式为y=kx+m,将D(0,1),N(b﹣,0)代入得:,解得,∴直线DN解析式为y=x+1,在Rt△AME中,∠OAC=60°,AM=a,∴AE=a,ME=a,∴OE=﹣a=,∴M(,a),将M(,a)代入y=x+1得:a=×+1,变形为:ab=2(a+b),∴a+b=ab,∴=+===,∴为定值,是;②当M在线段AC延长线上时,如图:设AM=a,AN=b,则ON=OA﹣AN=﹣b,∴N(b﹣,0),设直线DN解析式为y=tx+n,将D(0,1),N(b﹣,0)代入得:,解得,∴直线DN解析式为y=x+1,在Rt△AME中,∠OAC=60°,AM=a,∴AE=a,ME=a,∴OE=a﹣=,∴M(,a),将M(,a)代入y=x+1,得:a=×+1,变形为:ab=2(a+b),∴a+b=ab,∴=+===,∴为定值,是;综上所述,直线l绕点D旋转时,为定值,该定值是.30.如图,已知关于x的二次函数y=﹣x2+bx+c(c>0)的图象与x轴相交于A、B两点(点A在点B的左侧),与y轴交于点C,且OB=OC=3,顶点为M.(1)求出二次函数的关系式;(2)点P为线段MB上的一个动点,过点P作x轴的垂线PD,垂足为D.若OD=m,△PCD的面积为S,求S关于m的函数关系式,并写出m的取值范围;(3)探索线段MB上是否存在点P,使得△PCD为直角三角形?如果存在,求出P的坐标;如果不存在,请说明理由.【答案】见试题解答内容【解答】解:(1)∵OB=OC=3,∴B(3,0),C(0,3)∴,解得,∴二次函数的解析式为y=﹣x2+2x+3;(2)∵y=﹣x2+2x+3=﹣(x﹣1)2+4,∴M(1,4)设直线MB的解析式为y=kx+n,则有解得:,∴直线MB的解析式为y=﹣2x+6∵PD⊥x轴,OD=m,∴点P的坐标为(m,﹣2m+6)S三角形PCD=×(﹣2m+6)•m=﹣m2+3m(1≤m<3);(3)∵若∠PDC是直角,则点C在x轴上,由函数图象可知点C在y轴的正。
二次函数常见易错题解析_二次函数易错题
二次函数常见易错题解析_二次函数易错题常见易错题解析二次函数是数学中的重要知识点,也是高中数学课程中常见的考点。
在解题过程中,往往容易出现一些易错的情况。
下面是二次函数常见易错题解析,希望帮助同学们更好地理解和掌握这一部分内容。
易错点一:求解二次函数的零点时,难以正确计算平方根。
解析:在求解二次函数的零点时,往往需要计算平方根。
但是,由于平方根涉及到较为复杂的计算过程,容易出现计算错误的情况。
为了避免此类错误,我们可以注意以下几个方面:首先,注意根号内部的计算是否正确,特别是针对负数进行开平方根计算时,要注意虚数的概念;其次,在计算过程中可以采用分步骤进行计算,减少出错的可能性;最后,可以借助计算器等工具来进行计算,以提高准确性。
易错点二:对二次函数的图像特征理解不准确。
解析:二次函数的图像特征是学习和掌握二次函数的关键。
在解决二次函数相关问题时,往往需要根据图像特征进行分析和判断,但是很多同学对于图像的凹凸性、顶点位置等特征理解不准确,从而导致答案出错。
因此,在学习和掌握二次函数图像特征时,要注意以下几个方面:首先,要理解凹凸性的概念,搞清楚何时是凹、何时是凸;其次,要能够正确理解和计算顶点的坐标,特别是对于带有负号的情况,要仔细计算;最后,可以利用绘图工具进行练习,加深对图像特征的理解。
易错点三:对二次函数的平移、缩放等变换理解不准确。
解析:二次函数的平移、缩放等变换是解决二次函数相关题目的常见方法。
但是,很多同学对于变换的理解不准确,从而导致计算错误。
为了避免此类错误,我们可以注意以下几个方面:首先,要熟悉常见的变换规律,如平移、缩放等;其次,在计算过程中要仔细区分横坐标和纵坐标的变化情况;最后,可以通过绘图工具进行辅助,帮助理解变换的效果。
易错点四:对应用题中二次函数的建立和求解不准确。
解析:二次函数的应用是数学中的重要内容,也是考试中常见的题型。
但是,在应用题中,往往需要建立二次函数模型,并进行求解。
二次函数易错题汇编及答案
二次函数易错题汇编及答案一、选择题1.若二次函数y=x2-2x+2在自变量x满足mwxwm+l时的最小值为6,则m的值为( )A.V15,-<'5,1+<5,1-V12B. —J5,+5 +1C. 1D. —5,1—\ 5【答案】B【解析】【分析】由抛物线解析式确定出其对称轴为x=1,分m>1或m+1<1两种情况,分别确定出其最小值,由最小值为6,则可得到关于m的方程,可求得m的值.【详解】*/y=x2 - 2x+2=(x - 1) 2+1,・••抛物线开口向上,对称轴为x=1,当m>1时,可知当自变量x满足m<x<m+1时,y随x的增大而增大,.,.当x=m时,y有最小值,二m2 - 2m+2 = 6,解得m = 1+*.:5 或m = 1 - <5 (舍去),当m+1<1时,可知当自变量x满足m<x<m+1时,y随x的增大而减小,.,.当x=m+1时,y有最小值,/.(m+1) 2 - 2 (m+1) +2 = 6,解得m=。
5 (舍去)或m=- %:'5 ,综上可知m的值为1+ %区•或-、丐.故选B.【点睛】本题主要考查二次函数的性质,用m表示出其最小值是解题的关键.2.抛物线y = -x2+bx+3的对称轴为直线x = -1.若关于x的一元二次方程—x2+bx+3 - t=0 (t为实数)在-2<x<3的范围内有实数根,则t的取值范围是( )A. - 12<t<3B. - 12<t<4C. - 12<t<4D. - 12<t<3【答案】C【解析】【分析】根据给出的对称轴求出函数解析式为y=—x2-2x+3,将一元二次方程一x2 + bx+3-t=0的实数根看做是y=—x2-2x+3与函数y=t的交点,再由-2<x<3确定y的取值范围即可求解.【详解】解:・・・y=—x2+bx+3的对称轴为直线x=-1,, b = -2,.*.y= —X2-2X+3,,一元二次方程一x2 + bx+3-t = 0的实数根可以看做是y=-X2-2X+3与函数y=t的交点,\•当x=-l 时,y=4;当x=3 时,y=-12,二函数y=—x2-2x+3 在-2Vx<3 的范围内一12<yW4,.,.-12<t<4,故选:C.【点睛】本题考查二次函数的图象及性质,能够将方程的实数根问题转化为二次函数与直线的交点问题是解题关键.3.已知,二次函数y=ax2+bx+a2+b (aM)的图象为下列图象之一,则a的值为()A. -1B. 1C. -3D. -4【答案】A【解析】【分析】分别对图形进行讨论:若二次函数的图形为第一个,则b=0,其顶点坐标为(0, a2),与图形中的顶点坐标不符;若二次函数的图形为第二个,则b=0,根据顶点坐标有a2=3,由抛物线与x的交点坐标得到x2=-a,所以a=-4,它们相矛盾;若二次函数的图形为第三个,把点(-1, 0)代入解析式得到a-b+a2+b=0,解得a=-1;若二次函数的图形为第四个,把(-2, 0) 和(0,0)分别代入解析式可计算出a的值.【详解】解:若二次函数的图形为第一个,对称轴为y轴,则b=0, y=ax2+a2,其顶点坐标为(0,a2),而a2>0,所以二次函数的图形不能为第一个;若二次函数的图形为第二个,对称轴为y轴,则b=0, y=ax2+a2, a2=3,而当y=0时,x2=-a,所以-a=4, a=-4,所以二次函数的图形不能为第二个;若二次函数的图形为第三个,令x=-1, y=0,则a-b+a2+b=0,所以a=-1;若二次函数的图形为第四个,令x=0, y=0,则a2+b=0①;令x=-2, y=0,则4a-2b+a2+b=0②,由①②得a=-2,这与图象开口向上不符合,所以二次函数的图形不能为第四个.故选A.【点睛】本题考查了二次函数y=ax2+bx+c(a/0)的图象与系数的关系:a>0,开口向上;a<0,开口. ... ......................................... b 一,,,一、,b 4ac - b2, ........ ... ................. 向下;抛物线的对称轴为直线x=-;顶点坐标为(-,--------- );也考查了点在抛物线2a 2a 4a上则点的坐标满足抛物线的解析式.4.已知二次函数y=ax2+bx+c (。
二次函数课堂易错点盘点
二次函数课堂易错点盘点二次函数是高中数学中非常重要的一章内容,它在多个领域中都有广泛的应用。
学习二次函数时,由于其中的一些概念和性质相对复杂,容易引起学生的困惑和错误。
本文将盘点二次函数课堂中的易错点,帮助同学们更好地理解和掌握该知识点。
一、函数与方程的区别与联系在学习二次函数时,首先要明确函数与方程的区别与联系。
函数是一种映射关系,它将自变量和因变量一一对应起来;而方程则是一个等式,其中自变量和因变量之间可以有多个解。
理解函数和方程的本质差异是理解二次函数的基础。
二、二次函数的标准形式与一般形式二次函数可以用标准形式和一般形式两种方式进行表示。
标准形式为y = ax^2 + bx + c,其中a、b、c分别是二次、一次和常数项的系数。
一般形式为y = a(x-h)^2 + k,其中(h, k)表示顶点坐标。
理解并能够熟练转换二次函数的不同表示形式是解题的关键。
三、二次函数的图像特征学习二次函数时,了解其图像的基本特征非常重要。
二次函数的图像是一个抛物线,其开口方向由二次项的系数a的正负决定。
a>0时,抛物线开口向上;a<0时,抛物线开口向下。
同时,顶点坐标(h, k)表示抛物线的最值点。
四、求解二次函数的零点与顶点求解二次函数的零点和顶点是常见的考点。
二次函数的零点即为方程y=0的解,可以通过解二次方程的方法求得。
而顶点即为二次函数图像的最值点,可以通过求解顶点坐标的方法获得。
注意在求解时要注意化简、配方、整理等步骤,避免计算错误。
五、二次函数的平移与缩放平移和缩放是二次函数的重要变换方式。
二次函数的图像可以通过平移和缩放进行位置和大小的调整。
平移可以通过改变顶点坐标实现,而缩放可以通过改变二次项系数a的绝对值实现。
理解平移和缩放对图像的影响,是解决与二次函数相关问题的必备技巧。
六、二次函数与一次函数的关系二次函数与一次函数之间存在密切的关系。
通过分析二次函数的一次项和常数项,可以将二次函数与一次函数进行对比,进一步认识二次函数的特点。
中考数学常考易错点:《二次函数》知识点梳理
中考数学常考易错点:《二次函数》知识点梳理二次函数知识点总结一、二次函数概念:1.二次函数的概念:一般地,形如(是常数,)的函数,叫做二次函数。
这里需要强调:和一元二次方程类似,二次项系数,而可以为零.二次函数的定义域是全体实数.2. 二次函数的结构特征:⑴ 等号左边是函数,右边是关于自变量的二次式,的最高次数是2.⑵ 是常数,是二次项系数,是一次项系数,是常数项.二、二次函数的基本形式1. 二次函数基本形式:的性质:a 的绝对值越大,抛物线的开口越小。
的符号开口方向顶点坐标对称轴性质向上轴时,随的增大而增大;时,随的增大而减小;时,有最小值.向下轴时,随的增大而减小;时,随的增大而增大;时,有最大值.2. 的性质:上加下减。
的符号开口方向顶点坐标性质向上轴时,随的增大而增大;时,随的增大而减小;时,有最小值.向下轴时,随的增大而减小;时,随的增大而增大;时,有最大值.3. 的性质:左加右减。
的符号开口方向顶点坐标对称轴性质向上X=h时,随的增大而增大;时,随的增大而减小;时,有最小值.向下X=h时,随的增大而减小;时,随的增大而增大;时,有最大值.4. 的性质:的符号开口方向顶点坐标对称轴性质向上X=h时,随的增大而增大;时,随的增大而减小;时,有最小值.X=h时,随的增大而减小;时,随的增大而增大;时,有最大值.三、二次函数图象的平移1. 平移步骤:方法一:⑴ 将抛物线解析式转化成顶点式,确定其顶点坐标;⑵ 保持抛物线的形状不变,将其顶点平移到处,具体平移方法如下:2. 平移规律在原有函数的基础上“值正右移,负左移;值正上移,负下移”.概括成八个字“左加右减,上加下减”.方法二:⑴沿轴平移:向上(下)平移个单位,变成(或)⑵沿轴平移:向左(右)平移个单位,变成(或)四、二次函数与的比较从解析式上看,与是两种不同的表达形式,后者通过配方可以得到前者,即,其中.五、二次函数图象的画法五点绘图法:利用配方法将二次函数化为顶点式,确定其开口方向、对称轴及顶点坐标,然后在对称轴两侧,左右对称地描点画图.一般我们选取的五点为:顶点、与轴的交点、以及关于对称轴对称的点、与轴的交点,(若与轴没有交点,则取两组关于对称轴对称的点).画草图时应抓住以下几点:开口方向,对称轴,顶点,与轴的交点,与轴的交点.六、二次函数的性质1. 当时,抛物线开口向上,对称轴为,顶点坐标为.当时,随的增大而减小;当时,随的增大而增大;当时,有最小值.2. 当时,抛物线开口向下,对称轴为,顶点坐标为.当时,随的增大而增大;当时,随的增大而减小;当时,有最大值.七、二次函数解析式的表示方法1. 一般式:(,,为常数,);2. 顶点式:(,,为常数,);3. 两根式:(,,是抛物线与轴两交点的横坐标).注意:任何二次函数的解析式都可以化成一般式或顶点式,但并非所有的二次函数都可以写成交点式,只有抛物线与轴有交点,即时,抛物线的解析式才可以用交点式表示.二次函数解析式的这三种形式可以互化.八、二次函数的图象与各项系数之间的关系1. 二次项系数二次函数中,作为二次项系数,显然.⑴ 当时,抛物线开口向上,的值越大,开口越小,反之的值越小,开口越大;⑵ 当时,抛物线开口向下,的值越小,开口越小,反之的值越大,开口越大.总结起来,决定了抛物线开口的大小和方向,的正负决定开口方向,的大小决定开口的大小.2. 一次项系数在二次项系数确定的前提下,决定了抛物线的对称轴.⑴ 在的前提下,当时,,即抛物线的对称轴在轴左侧;当时,,即抛物线的对称轴就是轴;当时,,即抛物线对称轴在轴的右侧.⑵ 在的前提下,结论刚好与上述相反,即当时,,即抛物线的对称轴在轴右侧;当时,,即抛物线的对称轴就是轴;当时,,即抛物线对称轴在轴的左侧.总结起来,在确定的前提下,决定了抛物线对称轴的位置.的符号的判定:对称轴在轴左边则,在轴的右侧则,概括的说就是“左同右异”总结:3. 常数项⑴ 当时,抛物线与轴的交点在轴上方,即抛物线与轴交点的纵坐标为正;⑵ 当时,抛物线与轴的交点为坐标原点,即抛物线与轴交点的纵坐标为;⑶ 当时,抛物线与轴的交点在轴下方,即抛物线与轴交点的纵坐标为负.总结起来,决定了抛物线与轴交点的位置.总之,只要都确定,那么这条抛物线就是唯一确定的.二次函数解析式的确定:根据已知条件确定二次函数解析式,通常利用待定系数法.用待定系数法求二次函数的解析式必须根据题目的特点,选择适当的形式,才能使解题简便.一般来说,有如下几种情况:1. 已知抛物线上三点的坐标,一般选用一般式;2. 已知抛物线顶点或对称轴或最大(小)值,一般选用顶点式;3. 已知抛物线与轴的两个交点的横坐标,一般选用两根式;4. 已知抛物线上纵坐标相同的两点,常选用顶点式.九、二次函数图象的对称二次函数图象的对称一般有五种情况,可以用一般式或顶点式表达1. 关于轴对称关于轴对称后,得到的解析式是;关于轴对称后,得到的解析式是;2. 关于轴对称关于轴对称后,得到的解析式是;关于轴对称后,得到的解析式是;3. 关于原点对称关于原点对称后,得到的解析式是;关于原点对称后,得到的解析式是;4. 关于顶点对称(即:抛物线绕顶点旋转180°)关于顶点对称后,得到的解析式是;关于顶点对称后,得到的解析式是.5. 关于点对称关于点对称后,得到的解析式是根据对称的性质,显然无论作何种对称变换,抛物线的形状一定不会发生变化,因此永远不变.求抛物线的对称抛物线的表达式时,可以依据题意或方便运算的原则,选择合适的形式,习惯上是先确定原抛物线(或表达式已知的抛物线)的顶点坐标及开口方向,再确定其对称抛物线的顶点坐标及开口方向,然后再写出其对称抛物线的表达式.十、二次函数与一元二次方程:1. 二次函数与一元二次方程的关系(二次函数与轴交点情况):一元二次方程是二次函数当函数值时的特殊情况.图象与轴的交点个数:① 当时,图象与轴交于两点,其中的是一元二次方程的两根.这两点间的距离.② 当时,图象与轴只有一个交点;③ 当时,图象与轴没有交点.当时,图象落在轴的上方,无论为任何实数,都有;当时,图象落在轴的下方,无论为任何实数,都有.2. 抛物线的图象与轴一定相交,交点坐标为,;3. 二次函数常用解题方法总结:⑴ 求二次函数的图象与轴的交点坐标,需转化为一元二次方程;⑵ 求二次函数的最大(小)值需要利用配方法将二次函数由一般式转化为顶点式;⑶ 根据图象的位置判断二次函数中,,的符号,或由二次函数中,,的符号判断图象的位置,要数形结合;⑷ 二次函数的图象关于对称轴对称,可利用这一性质,求和已知一点对称的点坐标,或已知与轴的一个交点坐标,可由对称性求出另一个交点坐标.⑸ 与二次函数有关的还有二次三项式,二次三项式本身就是所含字母的二次函数;下面以时为例,揭示二次函数、二次三项式和一元二次方程之间的内在联系:。
中考数学常考易错点《二次函数》知识点梳理
中考数学常考易错点《二次函数》知识点梳理一、基本概念1. 二次函数的定义:二次函数是形如y=ax²+bx+c(a≠0)的函数。
2.二次函数的系数a与开口方向:当a>0时,二次函数的图像开口向上;当a<0时,二次函数的图像开口向下。
3. 二次函数的零点:二次函数的零点即函数的解,即满足方程y=ax²+bx+c=0的x的值。
4.二次函数的顶点:二次函数的顶点是函数图像的最低点(a>0,开口向上)或最高点(a<0,开口向下)。
二、图像与性质1. 平移变换:对于二次函数y=ax²+bx+c,若将函数向左平移h个单位,记作y=a(x-h)²+bx+c;向上平移k个单位,记作y=a(x-h)²+bx+(c+k)。
2. 对称轴:对于二次函数y=a(x-h)²+bx+c,其对称轴为x=h。
3.最值:当二次函数开口向上时,最小值等于顶点的纵坐标;当二次函数开口向下时,最大值等于顶点的纵坐标。
4.单调性:若a>0,则二次函数是单调递增的;若a<0,则二次函数是单调递减的。
1. 因式分解:二次函数可以通过因式分解的方法求解,对于形如y=x²+bx+c的二次函数,可以通过找到满足(x+p)(x+q)=0的p和q来求解。
2. 二次方程的解与二次函数的零点:对于二次函数y=ax²+bx+c,当y=0时,可以得到ax²+bx+c=0,即二次方程。
所以二次函数的零点就是二次方程的根。
3.二次函数与坐标变换:二次函数可以通过坐标变换的方法进行图像的绘制与分析。
根据函数中的系数和平移变化,我们可以找到相关的坐标点,进而绘制出图像。
四、易错点1.没有注意二次函数系数与开口方向之间的关系,导致图像的绘制错误。
2.对于二次函数的平移变换不够熟练,不能正确确定平移的方向和单位。
3.没有理解二次函数的最值和单调性,导致在题目中的应用出现错误。
中考数学常考易错点《二次函数》知识点梳理
中考数学常考易错点《二次函数》知识点梳理《二次函数》是中考数学中的重要知识点之一,也是考试中容易出错的部分。
为了帮助同学们复习和避免常见错误,下面将对《二次函数》的知识点进行梳理,详细介绍其中的易错点。
《二次函数》是形如y = ax² + bx + c的函数,其中a、b和c是常数,并且a ≠。
它的图像是一个开口向上或向下的抛物线。
下面我们来逐个讲解常见易错点。
1.函数的定义域和值域:在解析式中,x可以取任意实数值,所以函数的定义域是全体实数集R。
而在图像上,如果a>,则函数的值域是[,+∞);如果a<,则函数的值域是(-∞,]。
错误经常出在对值域的判断上,容易忽略函数的开口方向。
2.抛物线的开口和对称轴:当a>时,抛物线开口向上,对称轴是x=-b/2a;当a<时,抛物线开口向下,对称轴是x=-b/2a。
易错点在于判断抛物线的开口方向和对称轴的判断。
3.抛物线的顶点和轴对称性:顶点坐标为(-b/2a,f(-b/2a)),其中f(x) = ax² + bx + c。
抛物线与对称轴关于顶点具有轴对称性,即对称轴上的点到顶点的距离与对称轴上的点到抛物线的距离相等。
4.求解方程和不等式:与二次函数相关的方程和不等式是中考数学考试中的常见题型。
对于二次方程ax² + bx + c = ,可以使用因式分解、配方法和求根公式等方法求解。
对于二次不等式ax² + bx + c > 或ax² + bx + c < ,可以通过画图法或求解方程法来确定解集。
5.函数的增减性和极值:二次函数的增减性与a的正负有关,当a>时,函数递增;当a<时,函数递减。
相应地,函数的极值与抛物线的开口方向相反,开口向上时有最小值,开口向下时有最大值。
6.函数与坐标轴的交点:函数与x轴的交点称为零点,可以通过求解方程ax² + bx + c = 来求得。
二次函数知识点、易错点、解题技巧
二次函数知识点、易错点、解题技巧第一部分知识点总结第二部分学习口诀二次函数图像与性质口诀二次函数抛物线,图象对称是关键; 开口、顶点和交点,它们确定图象限;开口、大小由a断,c与Y轴来相见,b的符号较特别,符号与a 相关联;顶点位置先找见,Y轴作为参考线,左同右异中为0,牢记心中莫混乱;顶点坐标最重要,一般式配方它就现,横标即为对称轴,纵标函数最值见。
若求对称轴位置,符号反,一般、顶点、交点式,不同表达能互换。
第三部分易错分析函数是初中数学知识的主线,而二次函数是这条主线上的高潮.我们通过探索二次函数与方程的关系,让我们领悟到事物之间相互联系的辨证关系.我们能够利用二次函数解决实际问题,培养数学建模的能力.【知识结构】【知识梳理】3、性质注意:二次函数的性质要结合图象,认真理解,灵活应用,不要死记硬背.4、二次函数与一元二次方程的关系【易错点剖析】一、忽略二次项系数不等于0二、忽略隐含条件三、忽略数形结合思想方法的应用四、求顶点坐标时混淆符号五、忽视根的判别式的作用第四部分巧选解析式二次函数解析式的确定是中考的高频考点,在压轴题的第一问就难倒了不少小伙伴。
那么如何巧选表达式来确定二次函数的解析式呢?【小试牛刀】【几种特殊情况】第五步法动态最值专题第六部分解题技巧学好函数还是有诀窍的,要结合图像说性质,结合性质画图像,正所谓数形结合,函数无敌!第七部分变式13解在初中三年数学学习中,二次函数一直是重难点,正是因为很多学生都没学会,因此让出题老师们钻了空子,在中考中最喜欢出二次函数的题,不管是选择,填空还是大题压轴题。
老师最喜欢给学生出难题,可是学生们就该叫苦不迭了,趁着中考前这段时间,多复习这一类知识,再做一个巩固加深印象。
以二次函数进行考查的题目,命题形式都是比较固定的,一般都是给一个含有字母系数的二次函数,通过给出条件确定解析式,然后讨论交点问题,往往看着简单的题目,最不容易做出来,出题稍微有点变化,学生就看不出来。
第22章二次函数易错点汇总
第22章二次函数易错点汇总易错点一、配方时,不能直接除去(或丢掉)二次项系数,同时在提出二次项系数后,不能在括号内加,同时在括号外减去所加的常数.【例1】求二次函数y=-2x2+8x-2图象的顶点坐标.二、对于抛物线的平移问题,要么对“括号内左加右减,括号外上加下减”掌握不透,导致图象的平移方向出错,要么未将一般式化为顶点式,而将平移规律直接错误地运用到一般式中.【例2】将抛物线y=-x2+2x向左平移2个单位后,得到的抛物线的解析式是什么?三、对于含有字母系数的函数,要仔细审题,分类讨论,合理取舍,寻求准确答案.【例3】当a为何值时,函数y=ax2-3x+1的图象与x轴只有一个交点?四、利用二次函数模型解决实际问题时,忽略所得二次函数中自变量的取值范围,将实际问题的图象看成了一条完整的抛物线,导致所求的解不符合实际问题的意义.【例4】为鼓励大学毕业生自主创业,某市政府出台了相关政策:由政府协调,本市企业按成本价提供产品给大学毕业生自主销售,成本价与出厂价之间的差价由政府承担.李明按照相关政策投资销售本市生产的一种新型节能灯. 已知这种节能灯的成本价为每件10元,出厂价为每件12元,每月销售量y(件)与销售单价x(元)之间的关系近似满足一次函数:y=-10x+500.(1)李明在开始创业的第一个月将销售单价定为20元,那么政府这个月为他承担的总差价为多少元?(2)设李明获得的利润为W(元),当销售单价定为多少元时,每月可获得最大利润?(物价部门规定,这种节能灯的销售单价不得高于25元)学以致用1. 用配方法求y=2x2-8x-10的对称轴和顶点坐标.2. (2017贵港)将如图M22-1所示的抛物线向右平移1个单位长度,再向上平移3个单位长度后,得到的抛物线解析式是()A. y=(x-1)2+1B. y=(x+1)2+1C. y=2(x-1)2+1D. y=2(x+1)2+13. 已知函数y=(k-3)x2+2x+1的图象与x轴有交点,则k的取值范围是()A. k<4B. k≤4C. k<4且k≠3D. k≤4且k≠34. (2017营口)夏季空调销售供不应求,某空调厂接到一份紧急订单,要求在10天内(含10天)完成任务. 为提高生产效率,工厂加班加点,接到任务的第一天就生产了空调42台,以后每天生产的空调都比前一天多2台,由于机器损耗等原因,当日生产的空调数量达到50台后,每多生产一台,当天生产的所有空调,平均每台成本就增加20元. (1)设第x天生产空调y台,直接写出y与x之间的函数解析式,并写出自变量x的取值范围;(2)若每台空调的成本价(日生产量不超过50台时)为2 000元,订购价格为每台2 920元,设第x天的利润为W元,试求W与x之间的函数解析式,并求工厂哪一天获得的利润最大,最大利润是多少.。
初中数学 二次函数 知识点 易错题精选(含答案)
数学数学二次函数知识点+易错题精选一、二次函数基本概念:1.二次函数的概念:一般地,形如y=ax2+bx+c(a,b,c是常数,a≠0)的函数,叫做二次函数。
这里需要强调:和一元二次方程类似,二次项系数a≠0,而b,c可以为零.二次函数的定义域是全体实数.2. 二次函数y=ax2+bx+c的结构特征:⑴等号左边是函数,右边是关于自变量x的二次式,x的最高次数是2.⑵ a,b,c是常数,a是二次项系数,b是一次项系数,c是常数项.二、基本形式1. 二次函数基本形式:y=ax2的性质:a 的绝对值越大,抛物线的开口越小。
2. y=ax2+c的性质:(上加下减)3. y=a(x-h)2的性质:(左加右减)4. y=a(x-h)2+k的性质:三、二次函数图象的平移1. 平移步骤:方法1:⑴将抛物线解析式转化成顶点式y=a(x-h)2+k,确定其顶点坐标(h,k);⑵保持抛物线y=ax2的形状不变,将其顶点平移到(h,k)处,具体平移方法如下:2. 平移规律在原有函数的基础上“h值正右移,负左移;k值正上移,负下移”.概括成八个字“左加右减,上加下减”.四、二次函数y=a(x-h)2+k与y=ax2+bx+c的比较从解析式上看,y=a(x-h)2+k与y=ax2+bx+c是两种不同的表达形式,后者通过配方可以得到前者,即,其中.五、二次函数y=ax2+bx+c图象的画法五点绘图法:利用配方法将二次函数y=ax2+bx+c化为顶点式y=a(x-h)2+k,确定其开口方向、对称轴及顶点坐标,然后在对称轴两侧,左右对称地描点画图.一般我们选取的五点为:顶点、与y轴的交点(0,c)、以及(0,c)关于对称轴对称的点(2h,c)、与x轴的交点(x1,0),(x2,0)(若与x轴没有交点,则取两组关于对称轴对称的点).画草图时应抓住以下几点:开口方向,对称轴,顶点,与x轴的交点,与y轴的交点.六、二次函数y=ax2+bx+c的性质七、二次函数解析式的表示方法1. 一般式:y=ax2+bx+c(a,b,c为常数,a≠0);2. 顶点式:y=a(x-h)2+k(a,h,k为常数,a≠0);3. 两根式:y=a(x-x1)(x-x2)(a≠0,x1,x2是抛物线与x轴两交点的横坐标).注意:任何二次函数的解析式都可以化成一般式或顶点式,但并非所有的二次函数都可以写成交点式,只有抛物线与x轴有交点,即b2-4ac≥0时,抛物线的解析式才可以用交点式表示.二次函数解析式的这三种形式可以互化.八、二次函数的图象与各项系数之间的关系1. 二次项系数a二次函数y=ax2+bx+c中,a作为二次项系数,显然a≠0.⑴当a>0时,抛物线开口向上,a的值越大,开口越小,反之a的值越小,开口越大;⑵当a<0时,抛物线开口向下,a的值越小,开口越小,反之a的值越大,开口越大.总结起来,a决定了抛物线开口的大小和方向,a的正负决定开口方向,∣a∣的大小决定开口的大小.2. 一次项系数b3. 常数项c⑴当c>0时,抛物线与y轴的交点在x轴上方,即抛物线与y轴交点的纵坐标为正;⑵当c=0时,抛物线与y轴的交点为坐标原点,即抛物线与y轴交点的纵坐标为0;⑶当c<0时,抛物线与y轴的交点在x轴下方,即抛物线与y轴交点的纵坐标为负.总结起来,c决定了抛物线与y轴交点的位置.总之,只要a,b,c都确定,那么这条抛物线就是唯一确定的.二次函数解析式的确定:根据已知条件确定二次函数解析式,通常利用待定系数法.用待定系数法求二次函数的解析式必须根据题目的特点,选择适当的形式,才能使解题简便.一般来说,有如下几种情况:1. 已知抛物线上三点的坐标,一般选用一般式;2. 已知抛物线顶点或对称轴或最大(小)值,一般选用顶点式;3. 已知抛物线与x轴的两个交点的横坐标,一般选用两根式;4. 已知抛物线上纵坐标相同的两点,常选用顶点式.九、二次函数图象的对称二次函数图象的对称一般有五种情况,可以用一般式或顶点式表达十、二次函数与一元二次方程:1. 二次函数与一元二次方程的关系(二次函数与x轴交点情况):一元二次方程ax2+bx+c=0是二次函数y=ax2+bx+c当函数值y=0时的特殊情况.图象与x轴的交点个数:2. 抛物线y=ax2+bx+c的图象与y轴一定相交,交点坐标为(0,c)3. 二次函数常用解题方法总结:⑴求二次函数的图象与x轴的交点坐标,需转化为一元二次方程;⑵求二次函数的最大(小)值需要利用配方法将二次函数由一般式转化为顶点式;⑶根据图象的位置判断二次函数y=ax2+bx+c中a,b,c的符号,或由二次函数中a,b,c的符号判断图象的位置,要数形结合;⑷二次函数的图象关于对称轴对称,可利用这一性质,求和已知一点对称的点坐标,或已知与轴的一个交点坐标,可由对称性求出另一个交点坐标.⑸与二次函数有关的还有二次三项式,二次三项式ax2+bx+c本身就是所含字母x的二次函数;下面以a>0时为例,揭示二次函数、二次三项式和一元二次方程之间的内在联系:二次函数易错题精选一、选择题1.已知二次函数y=2(x+1)(x﹣a),其中a>0,且对称轴为直线x=2,则a的值是( )A.3B.5C.7D.不确定2.将抛物线y=-2x2+1向右平移1个单位长度,再向上平移1个单位长度所得的抛物线解析式为( )A.y=-2(x+1)2B.y=-2(x+1)2+2C.y=-2(x-1)2+2D.y=-2(x-1)2+13.若二次函数y=(m+1)x2-mx+m2-2m-3的图象经过原点,则m的值必为( )A.-1或3B.-1C.3D.-3或14.如图,二次函数y=ax2+bx+c(a>0)的图象与直线y=1交点坐标为(1,1),(3,1),则不等式ax2+bx+c﹣1>0的解集为()A.x>1B.1<x<3C.x<1或x>3D.x>35.下表是满足二次函数y=ax2+bx+c的五组数据,x1是方程ax2+bx+c=0的一个解,则下列选项的正确是()A.1.6<x<1.8B.1.8<x<2.0C.2.0<x<2.2D.2.2<x<2.46.在学习“一次函数与二元一次方程”时,我们知道了两个一次函数图像的交点坐标与其相应的二元一次方程组的解之间的关系.请通过此经验推断:在同一平面直角坐标系中,函数y=5x2-3x+4与y=4x2-x+3的图像交点个数有 ( )A.0个B.1个C.2个D.无数个7.在一定条件下,若物体运动的路程s(米)与时间t(秒)的关系式为s=5t2+2t,则当t=4时,该物体所经过的路程为( )A.88米B.68米C.48米D.28米8.图(1)是一个横断面为抛物线形状的拱桥,当水面在l时,拱顶(拱桥洞的最高点)离水面2m,水面宽4m.如图(2)建立平面直角坐标系,则抛物线的关系式是()A.y=﹣2x2B.y=2x2C.y=﹣0.5x2D.y=0.5x29.如图,二次函数y=ax2+bx+c(a≠0)的图象经过点(1,2)且与x轴交点的横坐标分别为x1,x2,其中﹣1<x1<0,1<x2<2,下列结论:4a+2b+c<0,2a+b<0,b2+8a>4ac,a<﹣1,其中结论正确的有()A.1个 B.2个 C.3个 D.4个10.如图,点A的坐标为(0,1),点B是x轴正半轴上的一动点,以AB为边作等腰Rt△ABC,使∠BAC=90°,设点B的横坐标为x,设点C纵坐标为y,能表示y与x的函数关系图象大致是()11.已知二次函数y=a(x-2)2+c,当x=x时,函数值为y1;当x=x2时,函数值为y2,若|x1﹣2|>|x2﹣2|,则下列表达1式正确的是()A.y1+y2>0B.y1﹣y2>0C.a(y1﹣y2)>0D.a(y1+y2)>012.如图,正方形ABCD中,AB=8 cm,对角线AC,BD相交于点O,点E,F分别从B,C两点同时出发,以1 cm/s 的速度沿BC,CD运动,到点C,D时停止运动,设运动时间为t(s),△OEF的面积S(cm2),则S(cm2)与t(s)的函数关系可用图象表示为( B )二、填空题13.如果函数y=(k﹣3)+kx+1是二次函数,那么k的值一定是.14.抛物线y=2x2+x-3与x轴交点个数为_____个.15.如图,是二次函数y=ax2+bx+c图象的一部分,其对称轴为直线x=1,若其与x轴一交点为A(3,0),则由图象可知,不等式ax2+bx+c<0的解集是.16.如图是某公园一圆形喷水池,水流在各个方向沿形状相同的抛物线落下,建立如图所示的坐标系,如果喷头所在处A(0,1.25),水流路线最高处M(1,2.25),如果不考虑其他因素,那么水池的半径至少要m,才能使喷出的水流不至落到池外.17.已知实数m,n满足m﹣n2=1,则代数式m2+2n2+4m﹣1的最小值等于.18.如图,抛物线y=ax2+bx+c的对称轴是x=-1.且过点(0.5,0),有下列结论:①abc>0;②a﹣2b+4c=0;③25a ﹣10b+4c=0;④3b+2c>0;⑤a﹣b≥m(am﹣b);其中所有正确的结论是.(填写正确结论的序号)三、解答题19.如图所示,抛物线y=ax2+bx+c与直线y=﹣x+6分别交于x轴和y轴上同一点,交点分别是点B和点C,且抛物线的对称轴为直线x=4.(1)求出抛物线与x轴的两个交点A,B的坐标.(2)试确定抛物线的解析式.20.如图,有一个长为24米的篱笆,一面利用墙(墙的最大长度a为10米)围成中间隔有一道篱笆的长方形花圃.设花圃的宽AB为x米,面积为S平方米.(1)求S与x的函数关系式;(2)如果要围成面积为45平方米的花圃,AB的长为多少米?21.设抛物线y=mx2-2mx+3(m≠0)与x轴交于点A(a,0)和B(b,0).(1)若a=-1,求m,b的值;(2)若2m+n=3,求证:抛物线的顶点在直线y=mx+n上;(3)抛物线上有两点P(x1,p)和Q(x2,q),若x1<1<x2,且x1+x2>2,试比较p与q的大小.22.已知二次函数y=ax2-4x+c的图象过点(-1, 0)和点(2,-9).(1) 求该二次函数的解析式并写出其对称轴;(2) 已知点P(2 , -2),连结OP , 在x轴上找一点M,使△OPM是等腰三角形,请直接写出点M的坐标(不写求解过程).23.如图,在平面直角坐标系中,O是坐标原点,点A的坐标是(-2,4),过点A作AB⊥y轴,垂足为B,连结OA。
二次函数易错点剖析
二次函数常见错解示例一、忽略二次项系数不等于0例1已知二次函数263y kx x =-+的图象与x 轴有交点,则k 的取值范围 是( )(A )k <3 (B) k <3 且k ≠0 (C) k ≤3 (D) k ≤3 且k ≠0 错解:选C.由题意,得△=()26--4 k ×3≥0,解得k ≤3,故选C.错解分析:当k =0时,二次项系数为0,此时原函数不是二次函数.欲求k 的取值范围,须同时满足:①函数是二次函数;②图象与x 轴有交点,上面的解法只注重了△≥0而忽略了二次项系数不等于0的条件.正解: 选D.由题意,得△=()26--4 k ×3≥0且k ≠0,即k ≤3 且k ≠0,故应选D.二、忽略隐含条件例2如图,已知二次函数2y x bx c =++的图象与y 轴交于点A, 与x 轴正半轴交于B,C 两点,且BC =2,ABC S ∆ =3,则b 的值为( )(A )-5 (B)4或-4 (C) 4 (D)-4错解: 选B.依题意BC =2,ABC S ∆ =3,得点A(0,3),即c =3.又BC =2,得方程20x bx c ++=的两根之差为2,故222b b -+---=,解得b =±4.故选B. 错解分析:上面的解法忽略了“抛物线的对称轴x =-2b 在y 轴的右侧”这一隐含条件,正确的解法应是同时考虑-2b >0,得b <0,∴b =4应舍去,故应选D.正解: 选D.例3 若y关于x的函数y=(a-2)x2-(2a-1)x+a的图象与坐标轴有两个交点,则a可取的值是多少?错解:因为函数y=(a-2)x2-(2a-1)x+a的图象与坐标轴有两个交点,而其中与y轴有一个交点(0,a),则与x轴就只有一个交点,所以关于x的一元二次方程y=(a-2)x2-(2a-1)x+a有两个相等的实数根,所以判别式[-(2a-1)]2-4×(a-2)a=0,解得a=-14.错解分析:本题关于函数的描述是“y关于x的函数”,并没有指明是二次函数,所以需要分“y关于x的一次函数”和“y关于x的二次函数”两种情况进行讨论.正解:当函数y是关于x的一次函数时,a=2,函数的解析式为y=-3x+2,函数图象与y轴的交点坐标为(0,2),与x轴的交点坐标为(23,0).所以a=2符合题意.当函数y是关于x的二次函数时,函数y=(a-2)x2-(2a-1)x+a的图象与y轴有一个交点(0,a),与坐标轴共有两个交点,所以与x轴只有一个交点,则关于x的一元二次方程y=(a-2)x2-(2a-1)x+a有两个相等的实数根,所以判别式△=[-(2a-1)]2-4×(a-2)a=0,解得a=-14.而当a=0时,与y轴的交点为原点,此时,y=-2x2+x与x轴还有一个交点(12,0).综上可得a=2或a=0或a=-14.三、忽略数形结合思想方法的应用例4 求二次函数y=2x+4x+5(-3≤x≤0)的最大值和最小值.错解:当x=-3时,y=2; 当x=0时,y=5;所以,-3≤x≤0时,y最小=2,y最大=5.错解分析:上面的解法错在忽略了数形结合思想方法的应用,误以为端点的值就是这段函数的最值.解决此类问题,画出函数图象,借助图象的直观性求解即可.正解:∵y =2x +4x +5=()2+2x +1,∴对称轴是直线x =-2,顶点坐标是(-2,1),画出大致的图象,如图是抛物线位于-3≤x ≤0的一段,显然图象上最高点是C,最低点是顶点B 而不是端点A,所以当-3≤x ≤0时, y 最大值为5, y 最小值为1.图2四、求顶点坐标时混淆符号例5 求二次函数y =-x 2+2x -2的顶点坐标. 错解1 用配方法y =-x 2+2x -2=-(x 2-2x )-2=-(x 2-2x +1-1)-2=-(x 2-2x +1) -1=-(x -1) 2 -1所以二次函数y =-x 2+2x -2的顶点坐标为(-1,-1).错解2 用公式法 在二次函数y =-x 2+2x -2中,a =-1,b =2,c =-2,则2122(1)b a ==-⨯-,22424(1)(2)142(1)b ac a --⨯-⨯-==⨯- 所以二次函数y =-x 2+2x -2的顶点坐标为(-1,1).错解分析:二次函数y =a (x -h )2+k 的顶点坐标为(h ,k ),即横坐标与配方后完全平方式中的常数项互为相反数,而非相等,也就是说不是(-h ,k ).二次函数y =ax 2+bx +c (a ≠0)的顶点坐标为(-2b a,244b aca -),横坐标前面带“-”,纵坐标的分子为4ac -b 2,不要与一元二次方程根的判别式b 2-4ac 混淆.另外,把一般式转化为顶点式,常用配方法,如果二次项系数是1,则常数项为一次项系数一半的平方;如果二次项系数不是1,则先提出二次项系数(注意:不能像解方程一样把二次项系数消去),使括号中的二次项系数变为1,再对括号中进行配方.正解:(1)用配方法y =-x 2+2x -2=-(x -1) 2 -1所以二次函数y =-x 2+2x -2的顶点坐标为(1,-1).(2)用公式法 -2122(1)b a =-=⨯-,2244(1)(2)2142(1)ac b a -⨯-⨯--==-⨯- 所以二次函数y =-x 2+2x -2的顶点坐标为(1,-1). 五、忽视根的判别式的作用例6 已知抛物线y =-12x 2)x +m -3与x 轴有两个交点A ,B ,且A ,B 关于y 轴对称,求此抛物线解析式.错解:因为A 与B 关于y 轴对称,所以抛物线对称轴为y 轴,即直线x=-022()2b a ==⨯-. 解得m =6或m =-6.当m =6时,方程抛物线解析式为y =-12x 2+3.错解分析:抛物线与x 轴有两个交点为A ,B ,等价于:相应的一元二次方程有两个不相等的实数根,所以b 2-4ac >0.如果忽视根的判别式在解题中的作用,就不能排除不符合题意的解,扩大了解的范围,导致错误.正解:因为A 与B 关于y 轴对称,所以抛物线对称轴为y 轴,即直线x=-2ba02()2=⨯- ,解得m =6,或者m =-6. 当m =6时,抛物线解析式为y =-12x 2+3.此时,b 2-4ac =02-4×(-12)×3=6>0,方程-12x 2+3=0有两个不相等的实数根,抛物线y=-12x2+3与x轴有两个交点,符合题意.当m=-6时,方程抛物线解析式为y=-12x2-9.此时,b2-4ac=02-4×(-12)×(-9)=-18<0,方程-12x2-9=0没有实数根,抛物线y=-12x2-9与x轴有两个交点,不符合题意,舍去.因此所求抛物线解析式为y=-12x2+3.。
九年级上册 二次函数易错题(Word版 含答案)
九年级上册二次函数易错题(Word版含答案)一、初三数学二次函数易错题压轴题(难)1.如图,抛物线y=﹣x2+bx+c与x轴交于A,B两点,其中A(3,0),B(﹣1,0),与y轴交于点C,抛物线的对称轴交x轴于点D,直线y=kx+b1经过点A,C,连接CD.(1)求抛物线和直线AC的解析式:(2)若抛物线上存在一点P,使△ACP的面积是△ACD面积的2倍,求点P的坐标;(3)在抛物线的对称轴上是否存在一点Q,使线段AQ绕Q点顺时针旋转90°得到线段QA1,且A1好落在抛物线上?若存在,求出点Q的坐标;若不存在,请说明理由.【答案】(1)2y x2x3=-++;3y x=-+;(2)(﹣1,0)或(4,﹣5);(3)存在;(1,2)和(1,﹣3)【解析】【分析】(1)将点A,B坐标代入抛物线解析式中,求出b,c得出抛物线的解析式,进而求出点C 的坐标,再将点A,C坐标代入直线AC的解析式中,即可得出结论;(2)利用抛物线的对称性得出BD=AD,进而判断出△ABC的面积和△ACP的面积相等,即可得出结论;(3)分点Q在x轴上方和在x轴下方,构造全等三角形即可得出结论.【详解】解:(1)把A(3,0),B(﹣1,0)代入y=﹣x2+bc+c中,得93010b cb c-++=⎧⎨--+=⎩,∴23bc=⎧⎨=⎩,∴抛物线的解析式为y=﹣x2+2x+3,当x=0时,y=3,∴点C的坐标是(0,3),把A(3,0)和C(0,3)代入y=kx+b1中,得11303k bb+=⎧⎨=⎩,∴113kb=-⎧⎨=⎩∴直线AC的解析式为y=﹣x+3;(2)如图,连接BC,∵点D是抛物线与x轴的交点,∴AD=BD,∴S△ABC=2S△ACD,∵S△ACP=2S△ACD,∴S△ACP=S△ABC,此时,点P与点B重合,即:P(﹣1,0),过B点作PB∥AC交抛物线于点P,则直线BP的解析式为y=﹣x﹣1①,∵抛物线的解析式为y=﹣x2+2x+3②,联立①②解得,1xy=-⎧⎨=⎩或45xy=⎧⎨=-⎩,∴P(4,﹣5),∴即点P的坐标为(﹣1,0)或(4,﹣5);(3)如图,①当点Q在x轴上方时,设AC与对称轴交点为Q',由(1)知,直线AC的解析式为y=﹣x+3,当x=1时,y=2,∴Q'坐标为(1,2),∵Q'D=AD=BD=2,∴∠Q'AB=∠Q'BA=45°,∴∠AQ'B=90°,∴点Q'为所求,②当点Q在x轴下方时,设点Q(1,m),过点A1'作A1'E⊥DQ于E,∴∠A1'EQ=∠QDA=90°,∴∠DAQ+∠AQD=90°,由旋转知,AQ=A1'Q,∠AQA1'=90°,∴∠AQD+∠A1'QE=90°,∴∠DAQ=∠A1'QE,∴△ADQ≌△QEA1'(AAS),∴AD=QE=2,DQ=A1'E=﹣m,∴点A1'的坐标为(﹣m+1,m﹣2),代入y=﹣x2+2x+3中,解得,m=﹣3或m=2(舍),∴Q的坐标为(1,﹣3),∴点Q的坐标为(1,2)和(1,﹣3).【点睛】本题考查的是二次函数的综合题,涉及解析式的求解,与三角形面积有关的问题,三角形“k”字型全等,解题的关键是利用数形结合的思想,设点坐标并结合几何图形的性质列式求解.2.如图1,抛物线y=mx2﹣3mx+n(m≠0)与x轴交于点C(﹣1,0)与y轴交于点B (0,3),在线段OA上有一动点E(不与O、A重合),过点E作x轴的垂线交直线AB 于点N,交抛物线于点P,过点P作PM⊥AB于点M.(1)分别求出抛物线和直线AB的函数表达式;(2)设△PMN的面积为S1,△AEN的面积为S2,当1236 25SS时,求点P的坐标;(3)如图2,在(2)的条件下,将线段OE绕点O逆时针旋转的到OE′,旋转角为α(0°<α<90°),连接E′A、E′B,求E'A+23E'B的最小值.【答案】(1)抛物线y =﹣34 x 2+94 x +3,直线AB 解析式为y =﹣34x +3;(2)P (2,32);(3【解析】 【分析】(1)由题意令y =0,求出抛物线与x 轴交点,列出方程即可求出a ,根据待定系数法可以确定直线AB 解析式;(2)根据题意由△PNM ∽△ANE ,推出65PN AN =,以此列出方程求解即可解决问题; (3)根据题意在y 轴上 取一点M 使得OM′=43,构造相似三角形,可以证明AM′就是E′A+23E′B 的最小值. 【详解】解:(1)∵抛物线y =mx 2﹣3mx+n (m≠0)与x 轴交于点C (﹣1,0)与y 轴交于点B (0,3),则有330n m m n ⎧⎨⎩++==,解得433m n ⎧⎪⎨⎪-⎩==, ∴抛物线239344y x x =-++, 令y =0,得到239344x x -++=0, 解得:x =4或﹣1, ∴A (4,0),B (0,3),设直线AB 解析式为y =kx+b ,则340b k b +⎧⎨⎩==,解得334k b ⎧-⎪⎨⎪⎩==, ∴直线AB 解析式为y =34-x+3. (2)如图1中,设P (m ,239344m m -++),则E (m ,0),∵PM ⊥AB ,PE ⊥OA , ∴∠PMN =∠AEN , ∵∠PNM =∠ANE , ∴△PNM ∽△ANE ,∵△PMN 的面积为S 1,△AEN 的面积为S 2,123625S S =, ∴65PN AN =, ∵NE ∥OB , ∴AN AEAB OA=, ∴AN =54545454(4﹣m ),∵抛物线解析式为y =239344x x -++, ∴PN =239344m m -++﹣(34-m+3)=34-m 2+3m , ∴2336455(4)4m mm -+=-, 解得m =2或4(舍弃), ∴m =2, ∴P (2,32). (3)如图2中,在y 轴上 取一点M′使得OM′=43,连接AM′,在AM′上取一点E′使得OE′=OE .∵OE′=2,OM′•OB =43×3=4, ∴OE′2=OM′•OB , ∴OE OBOM OE '='', ∵∠BOE′=∠M′OE′, ∴△M′OE′∽△E′OB ,∴M E OE BE OB '''='=23, ∴M′E′=23BE′,∴AE′+23BE′=AE′+E′M′=AM′,此时AE′+23BE′最小(两点间线段最短,A 、M′、E′共线时),最小值=AM′2244()3+410. 【点睛】本题属于二次函数综合题,考查相似三角形的判定和性质、待定系数法、最小值问题等知识,解题的关键是构造相似三角形,找到线段AM ′就是AE′+23BE′的最小值,属于中考压轴题.3.如图,直线y =12x ﹣2与x 轴交于点B ,与y 轴交于点A ,抛物线y =ax 2﹣32x+c 经过A ,B 两点,与x 轴的另一交点为C . (1)求抛物线的解析式;(2)M 为抛物线上一点,直线AM 与x 轴交于点N ,当32MN AN =时,求点M 的坐标; (3)P 为抛物线上的动点,连接AP ,当∠PAB 与△AOB 的一个内角相等时,直接写出点P 的坐标.【答案】(1)y=12x2﹣32x﹣2;(2)点M的坐标为:(5,3)或(﹣2,3)或(2,﹣3)或(1,﹣3);(3)点P的坐标为:(﹣1,0)或(32,﹣258)或(173,509)或(3,﹣2).【解析】【分析】(1)根据题意直线y=12x﹣2与x轴交于点B,与y轴交于点A,则点A、B的坐标分别为:(0,-2)、(4,0),即可求解;(2)由题意直线MA的表达式为:y=(12m﹣32)x﹣2,则点N(43m-,0),当MNAN=32时,则NHON=32,即4343mmm---=32,进行分析即可求解;(3)根据题意分∠PAB=∠AOB=90°、∠PAB=∠OAB、∠PAB=∠OBA三种情况,分别求解即可.【详解】解:(1)直线y=12x﹣2与x轴交于点B,与y轴交于点A,则点A、B的坐标分别为:(0,﹣2)、(4,0),则c=﹣2,将点B的坐标代入抛物线表达式并解得:a=12,故抛物线的表达式为:y=12x2﹣32x﹣2①;(2)设点M(m,12m2﹣32m﹣2)、点A(0,﹣2),将点M、A的坐标代入一次函数表达式:y=kx+b并解得:直线MA的表达式为:y=(12m﹣32)x﹣2,则点N(43m-,0),当MNAN=32时,则NHON=32,即:4343mmm---=32,解得:m=5或﹣2或2或1,故点M的坐标为:(5,3)或(﹣2,3)或(2,﹣3)或(1,﹣3);(3)①∠PAB=∠AOB=90°时,则直线AP的表达式为:y=﹣2x﹣2②,联立①②并解得:x=﹣1或0(舍去0),故点P(﹣1,0);②当∠PAB=∠OAB时,当点P在AB上方时,无解;当点P在AB下方时,将△OAB沿AB折叠得到△O′AB,直线OA交x轴于点H、交抛物线为点P,点P为所求,则BO=OB=4,OA=OA=2,设OH=x,则sin∠H=BO OAHB HA'=,即:2444x x=++,解得:x=83,则点H(﹣83,0),.则直线AH的表达式为:y=﹣34x﹣2③,联立①③并解得:x=32,故点P(32,﹣258);③当∠PAB=∠OBA时,当点P在AB上方时,则AH=BH,设OH=a,则AH=BH=4﹣a,AO=2,故(4﹣a)2=a2+4,解得:a=32,故点H(32,0),则直线AH的表达式为:y=43x﹣2④,联立①④并解得:x=0或173(舍去0),故点P(173,509);当点P在AB下方时,同理可得:点P(3,﹣2);综上,点P的坐标为:(﹣1,0)或(32,﹣258)或(173,509)或(3,﹣2).【点睛】本题考查的是二次函数综合运用,涉及到一次函数、解直角三角形、勾股定理的运用等,要注意分类讨论,解题全面.4.如图,抛物线y=﹣x2+mx+n与x轴交于A、B两点,与y轴交于点C,抛物线的对称轴交x轴于点D,已知A(﹣1,0),C(0,2).(1)求抛物线的表达式;(2)在抛物线的对称轴上是否存在点P,使△PCD是以CD为腰的等腰三角形?如果存在,直接写出P点的坐标;如果不存在,请说明理由;(3)点E时线段BC上的一个动点,过点E作x轴的垂线与抛物线相交于点F,当点E运动到什么位置时,四边形CDBF的面积最大?求出四边形CDBF的最大面积及此时E点的坐标.【答案】(1)抛物线的解析式为:y=﹣x2+x+2(2)存在,P1(,4),P2(,),P3(,﹣)(3)当点E运动到(2,1)时,四边形CDBF的面积最大,S四边形CDBF的面积最大=.【解析】试题分析:(1)将点A、C的坐标分别代入可得二元一次方程组,解方程组即可得出m、n的值;(2)根据二次函数的解析式可得对称轴方程,由勾股定理求出CD的值,以点C为圆心,CD为半径作弧交对称轴于P1;以点D为圆心CD为半径作圆交对称轴于点P2,P3;作CH 垂直于对称轴与点H,由等腰三角形的性质及勾股定理就可以求出结论;(3)由二次函数的解析式可求出B点的坐标,从而可求出BC的解析式,从而可设设E点的坐标,进而可表示出F的坐标,由四边形CDBF的面积=S△BCD+S△CEF+S△BEF可求出S与a的关系式,由二次函数的性质就可以求出结论.试题解析:(1)∵抛物线y=﹣x2+mx+n经过A(﹣1,0),C(0,2).解得:,∴抛物线的解析式为:y=﹣x2+x+2;(2)∵y=﹣x2+x+2,∴y=﹣(x﹣)2+,∴抛物线的对称轴是x=.∴OD=.∵C(0,2),∴OC=2.在Rt△OCD中,由勾股定理,得CD=.∵△CDP是以CD为腰的等腰三角形,∴CP1=CP2=CP3=CD.作CH⊥x轴于H,∴HP1=HD=2,∴DP1=4.∴P1(,4),P2(,),P3(,﹣);(3)当y=0时,0=﹣x2+x+2∴x1=﹣1,x2=4,∴B(4,0).设直线BC的解析式为y=kx+b,由图象,得,解得:,∴直线BC 的解析式为:y=﹣x+2.如图2,过点C 作CM ⊥EF 于M ,设E (a ,﹣a+2),F (a ,﹣a 2+a+2), ∴EF=﹣a 2+a+2﹣(﹣a+2)=﹣a 2+2a (0≤x≤4). ∵S 四边形CDBF =S △BCD +S △CEF +S △BEF =BD•OC+EF•CM+EF•BN , =+a (﹣a 2+2a )+(4﹣a )(﹣a 2+2a ), =﹣a 2+4a+(0≤x≤4).=﹣(a ﹣2)2+∴a=2时,S 四边形CDBF 的面积最大=, ∴E (2,1).考点:1、勾股定理;2、等腰三角形的性质;3、四边形的面积;4、二次函数的最值5.定义:对于已知的两个函数,任取自变量x 的一个值,当0x ≥时,它们对应的函数值相等;当0x <时,它们对应的函数值互为相反数,我们称这样的两个函数互为相关函数.例如:正比例函数y x =,它的相关函数为(0)(0)x x y x x ≥⎧=⎨-<⎩. (1)已知点()5,10A -在一次函数5y ax =-的相关函数的图像上,求a 的值; (2)已知二次函数2142y x x =-+-. ①当点3,2B m ⎛⎫ ⎪⎝⎭在这个函数的相关函数的图像上时,求m 的值;②当33x -≤≤时,求函数2142y x x =-+-的相关函数的最大值和最小值. (3)在平面直角坐标系中,点M 、N 的坐标分别为1,12⎛⎫-⎪⎝⎭、9,12⎛⎫ ⎪⎝⎭,连结MN .直接写出线段MN 与二次函数24y x x n =-++的相关函数的图像有两个公共点时n 的取值范围.【答案】(1)1;(2)①22- ;②max 432y =,min 12y =-;(3)31n -<≤-,514n <≤【解析】【分析】 (1)先求出5y ax =-的相关函数,然后代入求解,即可得到答案;(2)先求出二次函数的相关函数,①分为m <0和m ≥0两种情况将点B 的坐标代入对应的关系式求解即可;②当-3≤x <0时,y=x 2-4x+12,然后可 此时的最大值和最小值,当0≤x≤3时,函数y=-x 2+4x-12,求得此时的最大值和最小值,从而可得到当-3≤x≤3时的最大值和最小值; (3)首先确定出二次函数y=-x 2+4x+n 的相关函数与线段MN 恰好有1个交点、2个交点、3个交点时n 的值,然后结合函数图象可确定出n 的取值范围.【详解】解:(1)根据题意,一次函数5y ax =-的相关函数为5,(0)5,(0)ax x y ax x -≥⎧=⎨-+<⎩, ∴把点()5,10A -代入5y ax =-+,则(5)510a -⨯-+=,∴1a =;(2)根据题意,二次函数2142y x x =-+-的相关函数为2214,(0)214,(0)2x x x y x x x ⎧-+-≥⎪⎪=⎨⎪-+<⎪⎩, ①当m <0时,将B (m ,32)代入y=x 2-4x+12得m 2-4m+1322=, 解得:m=2当m≥0时,将B (m ,32)代入y=-x 2+4x-12得:-m 2+4m-12=32, 解得:或m=2.综上所述:m=25-或m=22+或m=22-.②当-3≤x <0时,y=x 2-4x+12,抛物线的对称轴为x=2,此时y 随x 的增大而减小, ∴当3x =-时,有最大值,即2143(3)4(3)22y =--⨯-+=, ∴此时y 的最大值为432. 当0≤x≤3时,函数y=-x 2+4x 12-,抛物线的对称轴为x=2, 当x=0有最小值,最小值为12-, 当x=2时,有最大值,最大值y=72. 综上所述,当-3≤x≤3时,函数y=-x 2+4x 12-的相关函数的最大值为432,最小值为12-; (3)如图1所示:线段MN 与二次函数y=-x 2+4x+n 的相关函数的图象恰有1个公共点.∴当x=2时,y=1,即-4+8+n=1,解得n=-3.如图2所示:线段MN 与二次函数y=-x 2+4x+n 的相关函数的图象恰有3个公共点.∵抛物线y=x 2-4x-n 与y 轴交点纵坐标为1,∴-n=1,解得:n=-1.∴当-3<n≤-1时,线段MN 与二次函数y=-x 2+4x+n 的相关函数的图象恰有2个公共点. 如图3所示:线段MN 与二次函数y=-x 2+4x+n 的相关函数的图象恰有3个公共点.∵抛物线y=-x2+4x+n经过点(0,1),∴n=1.如图4所示:线段MN与二次函数y=-x2+4x+n的相关函数的图象恰有2个公共点.∵抛物线y=x2-4x-n经过点M(12,1),∴14+2-n=1,解得:n=54.∴1<n≤54时,线段MN与二次函数y=-x2+4x+n的相关函数的图象恰有2个公共点.综上所述,n的取值范围是-3<n≤-1或1<n≤54.【点睛】本题主要考查的是二次函数的综合应用,解答本题主要应用了二次函数的图象和性质、函数图象上点的坐标与函数解析式的关系,求得二次函数y=-x2+4x+n的相关函数与线段MN 恰好有1个交点、2个交点、3个交点时n的值是解题的关键.6.如图,抛物线y=ax2+bx+2经过点A(−1,0),B(4,0),交y轴于点C;(1)求抛物线的解析式(用一般式表示);(2)点D为y轴右侧抛物线上一点,是否存在点D使S△ABC=23S△ABD?若存在,请求出点D坐标;若不存在,请说明理由;(3)将直线BC绕点B顺时针旋转45°,与抛物线交于另一点E,求BE的长.【答案】(1)213222y x x =-++(2)存在,D (1,3)或(2,3)或(5,3-)(3)10【解析】【分析】 (1)由A 、B 的坐标,利用待定系数法可求得抛物线解析式;(2)由条件可求得点D 到x 轴的距离,即可求得D 点的纵坐标,代入抛物线解析式可求得D 点坐标;(3)由条件可证得BC ⊥AC ,设直线AC 和BE 交于点F ,过F 作FM ⊥x 轴于点M ,则可得BF=BC ,利用平行线分线段成比例可求得F 点的坐标,利用待定系数法可求得直线BE 解析式,联立直线BE 和抛物线解析式可求得E 点坐标,则可求得BE 的长.【详解】解:(1)∵抛物线y=ax 2+bx+2经过点A (-1,0),B (4,0),∴2016420a b a b -+=⎧⎨++=⎩,解得:1232a b ⎧=-⎪⎪⎨⎪=⎪⎩, ∴抛物线解析式为:213222y x x =-++; (2)由题意可知C (0,2),A (-1,0),B (4,0),∴AB=5,OC=2,∴S △ABC =12AB•OC=12×5×2=5, ∵S △ABC =23S △ABD , ∴S △ABD =315522⨯=, 设D (x ,y ), ∴11155222AB y y •=⨯•=, 解得:3y =;当3y =时,2132322y x x =-++=, 解得:1x =或2x =,∴点D 的坐标为:(1,3)或(2,3);当3y =-时,2132322y x x =-++=-, 解得:5x =或2x =-(舍去),∴点D 的坐标为:(5,-3);综合上述,点D 的坐标为:(1,3)或(2,3)或(5,-3);(3)∵AO=1,OC=2,OB=4,AB=5,∴22125AC =+=,222425BC =+=,∴222AC BC AB +=,∴△ABC 为直角三角形,即BC ⊥AC ,如图,设直线AC 与直线BE 交于点F ,过F 作FM ⊥x 轴于点M ,由题意可知∠FBC=45°,∴∠CFB=45°,∴25CF BC ==∴AO AC OM CF =,即1525OM = 解得:2OM =, ∴OC AC FM AF =,即2535FM = 解得:6FM =,∴点F 为(2,6),且B 为(4,0),设直线BE 解析式为y=kx+m ,则2640k m k m +=⎧⎨+=⎩,解得312k m =-⎧⎨=⎩,∴直线BE解析式为:312y x =-+;联立直线BE 和抛物线解析式可得:231213222y x y x x =-+⎧⎪⎨=-++⎪⎩, 解得:40x y =⎧⎨=⎩或53x y =⎧⎨=-⎩, ∴点E 坐标为:(5,3)-, ∴22(54)(3)10BE =-+-=.【点睛】 本题为二次函数的综合应用,涉及待定系数法、三角形面积、勾股定理及其逆定理、平行线分线段成比例、函数图象的交点、等腰直角三角形的性质、方程思想及分类讨论思想等知识.在(1)中注意待定系数法的应用,在(2)中求得D 点的纵坐标是解题的关键,在(3)中由条件求得直线BE 的解析式是解题的关键.本题考查知识点较多,综合性较强,特别是最后一问,有一定的难度.7.如图①抛物线y =ax 2+bx +4(a ≠0)与x 轴,y 轴分别交于点A (﹣1,0),B (4,0),点C 三点.(1)试求抛物线的解析式;(2)点D (3,m )在第一象限的抛物线上,连接BC ,BD .试问,在对称轴左侧的抛物线上是否存在一点P ,满足∠PBC =∠DBC ?如果存在,请求出点P 点的坐标;如果不存在,请说明理由;(3)点N 在抛物线的对称轴上,点M 在抛物线上,当以M 、N 、B 、C 为顶点的四边形是平行四边形时,请直接写出点M 的坐标.【答案】(1)y =﹣x 2+3x +4;(2)存在.P (﹣34,1916).(3)1539(,)24M -- 21139(,)24M - 3521(,)24M 【解析】【分析】(1)将A,B,C 三点代入y =ax 2+bx+4求出a,b,c 值,即可确定表达式;(2)在y轴上取点G,使CG=CD=3,构建△DCB≌△GCB,求直线BG的解析式,再求直线BG与抛物线交点坐标即为P点,(3)根据平行四边形的对边平行且相等,利用平移的性质列出方程求解,分情况讨论.【详解】解:如图:(1)∵抛物线y=ax2+bx+4(a≠0)与x轴,y轴分别交于点A(﹣1,0),B(4,0),点C三点.∴4016440a ba b-+=⎧⎨++=⎩解得13ab=-⎧⎨=⎩∴抛物线的解析式为y=﹣x2+3x+4.(2)存在.理由如下:y=﹣x2+3x+4=﹣(x﹣32)2+254.∵点D(3,m)在第一象限的抛物线上,∴m=4,∴D(3,4),∵C(0,4)∵OC=OB,∴∠OBC=∠OCB=45°.连接CD,∴CD∥x轴,∴∠DCB=∠OBC=45°,∴∠DCB=∠OCB,在y轴上取点G,使CG=CD=3,再延长BG交抛物线于点P,在△DCB和△GCB中,CB=CB,∠DCB=∠OCB,CG=CD,∴△DCB≌△GCB(SAS)∴∠DBC=∠GBC.设直线BP解析式为y BP=kx+b(k≠0),把G(0,1),B(4,0)代入,得k=﹣14,b=1,∴BP解析式为y BP=﹣14x+1.y BP=﹣14x+1,y=﹣x2+3x+4当y=y BP时,﹣14x+1=﹣x2+3x+4,解得x1=﹣34,x2=4(舍去),∴y=1916,∴P(﹣34,1916).(3)1539 (,)24M--21139 (,) 24M-3521 (,) 24M理由如下,如图B(4,0),C(0,4) ,抛物线对称轴为直线32x=,设N(32,n),M(m, ﹣m2+3m+4)第一种情况:当MN与BC为对边关系时,MN∥BC,MN=BC,∴4-32=0-m,∴m=52-∴﹣m2+3m+4=39 4 -,∴1539 (,)24M--;或∴0-32=4-m,∴m=11 2∴﹣m2+3m+4=39 4 -,∴21139 (,) 24M-;第二种情况:当MN与BC为对角线关系,MN与BC交点为K,则K(2,2),∴322 2m∴m=5 2∴﹣m2+3m+4=21 4∴3521 (,) 24M综上所述,当以M、N、B、C为顶点的四边形是平行四边形时,点M的坐标为1539 (,)24M--21139 (,) 24M-3521 (,) 24M.【点睛】本题考查二次函数与图形的综合应用,涉及待定系数法,函数图象交点坐标问题,平行四边形的性质,方程思想及分类讨论思想是解答此题的关键.8.如图,在平面直角坐标系中,二次函数y=﹣x2+6x﹣5的图象与x轴交于A、B两点,与y轴交于点C,其顶点为P,连接PA、AC、CP,过点C作y轴的垂线l.(1)P的坐标,C的坐标;(2)直线1上是否存在点Q,使△PBQ的面积等于△PAC面积的2倍?若存在,求出点Q 的坐标;若不存在,请说明理由.【答案】(1)(3,4),(0,﹣5);(2)存在,点Q的坐标为:(92,﹣5)或(212,﹣5)【解析】【分析】(1)利用配方法求出顶点坐标,令x=0,可得y=-5,推出C(0,-5);(2)直线PC的解析式为y=3x-5,设直线交x轴于D,则D(53,0),设直线PQ交x轴于E,当BE=2AD时,△PBQ的面积等于△PAC的面积的2倍,分两种情形分别求解即可解决问题.【详解】解:(1)∵y=﹣x2+6x﹣5=﹣(x﹣3)2+4,∴顶点P(3,4),令x=0得到y=﹣5,∴C(0,﹣5).故答案为:(3,4),(0,﹣5);(2)令y=0,x2﹣6x+5=0,解得:x=1或x=5,∴A(1,0),B(5,0),设直线PC的解析式为y=kx+b,则有534 bk b=-⎧⎨+=⎩,解得:35 kb=⎧⎨=-⎩,∴直线PC的解析式为:y=3x﹣5,设直线交x轴于D,则D(53,0),设直线PQ交x轴于E,当BE=2AD时,△PBQ的面积等于△PAC的面积的2倍,∵AD=23,∴BE=43,∴E(113,0)或E′(193,0),则直线PE的解析式为:y=﹣6x+22,∴Q(92,﹣5),直线PE ′的解析式为y =﹣65x +385, ∴Q ′(212,﹣5), 综上所述,满足条件的点Q 的坐标为:(92,﹣5)或(212,﹣5); 【点睛】本题考查抛物线与x 轴的交点、二次函数的性质等知识,解题的关键是熟练掌握待定系数法,学会用转化的思想思考问题,属于中考常考题型.9.如图,已知二次函数1L :()22311y mx mx m m =+-+≥和二次函数2L :()2341y m x m =--+-()1m ≥图象的顶点分别为M 、N ,与x 轴分别相交于A 、B 两点(点A 在点B 的左边)和C 、D 两点(点C 在点D 的左边),(1)函数()22311y mx mx m m =+-+≥的顶点坐标为______;当二次函数1L ,2L 的y 值同时随着x 的增大而增大时,则x 的取值范围是_______;(2)判断四边形AMDN 的形状(直接写出,不必证明);(3)抛物线1L ,2L 均会分别经过某些定点;①求所有定点的坐标;②若抛物线1L 位置固定不变,通过平移抛物线2L 的位置使这些定点组成的图形为菱形,则抛物线2L 应平移的距离是多少?【答案】(1)()1,41m --+,13x ;(2)四边形AMDN 是矩形;(3)①所有定点的坐标,1L 经过定点()3,1-或()1,1,2L 经过定点()5,1-或()1,1-;②抛物线2L 应平移的距离是423+423-.【解析】【分析】(1)将已知抛物线解析式转化为顶点式,直接得到点M 的坐标;结合函数图象填空; (2)利用抛物线解析式与一元二次方程的关系求得点A 、D 、M 、N 的横坐标,可得AD 的中点为(1,0),MN 的中点为(1,0),则AD 与MN 互相平分,可证四边形AMDN 是矩形;(3)①分别将二次函数的表达式变形为1:(3)(1)1L y m x x =+-+和2:(1)(5)1L y m x x =----,通过表达式即可得出所过定点;②根据菱形的性质可得EH 1=EF=4即可,设平移的距离为x ,根据平移后图形为菱形,由勾股定理可得方程即可求解.【详解】解:(1)12b x a=-=-,顶点坐标M 为(1,41)m --+, 由图象得:当13x 时,二次函数1L ,2L 的y 值同时随着x 的增大而增大. 故答案为:(1,41)m --+;13x ;(2)结论:四边形AMDN 是矩形.由二次函数21:231(1)L y mx mx m m =+-+和二次函数22:(3)41(1)L y m x m m =--+-解析式可得:A 点坐标为41(1m m ---,0),D 点坐标为41(3m m -+,0), 顶点M 坐标为(1,41)m --+,顶点N 坐标为(3,41)m -,AD ∴的中点为(1,0),MN 的中点为(1,0),AD ∴与MN 互相平分,∴四边形AMDN 是平行四边形,又AD MN =,∴□AMDN 是矩形;(3)①二次函数21:231(3)(1)1L y mx mx m m x x =+-+=+-+,故当3x =-或1x =时1y =,即二次函数21:231L y mx mx m =+-+经过(3,1)-、(1,1)两点,二次函数22:(3)41(1)(5)1L y m x m m x x =--+-=----,故当1x =或5x =时1y =-,即二次函数22:(3)41L y m x m =--+-经过(1,1)-、(5,1)-两点,②二次函数21:231L y mx mx m =+-+经过(3,1)-、(1,1)两点,二次函数22:(3)41L y m x m =--+-经过(1,1)-、(5,1)-两点,如图:四个定点分别为(3,1)E -、(1,1)F ,(1,1)H -、(5,1)G -,则组成四边形EFGH 为平行四边形, ∴FH ⊥HG ,FH=2,HM=4-x ,设平移的距离为x ,根据平移后图形为菱形,则EH 1=EF=H 1M=4,由勾股定理可得:FH 2+HM 2=FM 2,即22242(4)x =+-,解得:423x =±,抛物线1L 位置固定不变,通过左右平移抛物线2L 的位置使这些定点组成的图形为菱形,则抛物线2L 应平移的距离是423+或423-.【点睛】本题考查了二次函数的解析式的求法和与几何图形结合的综合能力的培养.要会利用数形结合的思想把代数和几何图形结合来,利用点的坐标的意义表示线段的长度,从而求出线段之间的关系.10.在平面直角坐标系中,二次函数y =ax 2+bx +2的图象与x 轴交于A (﹣3,0),B (1,0)两点,与y 轴交于点C .(1)求这个二次函数的关系解析式;(2)点P 是直线AC 上方的抛物线上一动点,是否存在点P ,使△ACP 的面积最大?若存在,求出点P 的坐标;若不存在,说明理由;(3)在平面直角坐标系中,是否存在点Q ,使△BCQ 是以BC 为腰的等腰直角三角形?若存在,直接写出点Q 的坐标;若不存在,说明理由;【答案】(1)224233y x x =--+;(2)存在,点P 35,22⎛⎫- ⎪⎝⎭,使△PAC 的面积最大;(3)存在点Q ,使△BCQ 是以BC 为腰的等腰直角三角形.Q 点坐标为:Q 1(2,3),Q 2(3,1),Q 3(﹣1,﹣1),Q 4(﹣2,1).【解析】【分析】(1)直接把点A (﹣3,0),B (1,0)代入二次函数y =ax 2+bx+2求出a 、b 的值即可得出抛物线的解析式;(2)设点P 坐标为(m ,n ),则n =﹣23m 2﹣43m+2,连接PO ,作PM ⊥x 轴于M ,PN ⊥y 轴于N .根据三角形的面积公式得出△PAC 的表达式,再根据二次函数求最大值的方法得出其顶点坐标即可;(3)以BC 为边,在线段BC 两侧分别作正方形,正方形的其他四个顶点均可以使得“△BCQ 是以BC 为腰的等腰直角三角形”,因此有四个点符合题意要求,再过Q 1点作Q 1D ⊥y 轴于点D ,过点Q 2作Q 2E ⊥x 轴于点E ,根据全等三角形的判定定理得出△Q 1CD ≌△CBO ,△CBO ≌△BQ 2E ,故可得出各点坐标.【详解】(1)∵抛物线y =ax 2+bx+2过点A (﹣3,0),B (1,0),∴093202a b a b =-+⎧⎨=++⎩ 2343a b ⎧=-⎪⎪⎨⎪=-⎪⎩解得 ∴二次函数的关系解析式为y =﹣23x 2﹣43x+2; (2)存在.∵如图1所示,设点P 坐标为(m ,n ),则n =﹣23m 2﹣43m+2. 连接PO ,作PM ⊥x 轴于M ,PN ⊥y 轴于N .则PM=﹣23m2﹣43m+2.,PN=﹣m,AO=3.∵当x=0时,y=﹣23×0﹣43×0+2=2,∴OC=2,∴S△PAC=S△PAO+S△PCO﹣S△ACO=12AO•PM+12CO•PN﹣12AO•CO=12×3×(﹣23m2﹣43m+2)+12×2×(﹣m)﹣12×3×2=﹣m2﹣3m∵a=﹣1<0∴函数S△PAC=﹣m2﹣3m有最大值∴当m=﹣2ba=﹣32时,S△PAC有最大值.∴n=﹣23m2﹣43m+2=﹣23×(﹣32)2﹣43×(﹣32)+2=52,∴存在点P(﹣32,52),使△PAC的面积最大.(3)如图2所示,以BC为边在两侧作正方形BCQ1Q2、正方形BCQ4Q3,则点Q1,Q2,Q3,Q4为符合题意要求的点.过Q1点作Q1D⊥y轴于点D,过点Q2作Q2E⊥x轴于点E,∵∠1+∠2=90°,∠2+∠3=90°,∠3+∠4=90°,∴∠1=∠3,∠2=∠4,在△Q1CD与△CBO中,∵11324Q C BC∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△Q1CD≌△CBO,∴Q1D=OC=2,CD=OB=1,∴OD=OC+CD=3,∴Q1(2,3);同理可得Q4(﹣2,1);同理可证△CBO≌△BQ2E,∴BE=OC=2,Q2E=OB=1,∴OE=OB+BE=1+2=3,∴Q2(3,1),同理,Q3(﹣1,﹣1),∴存在点Q,使△BCQ是以BC为腰的等腰直角三角形.Q点坐标为:Q1(2,3),Q2(3,1),Q3(﹣1,﹣1),Q4(﹣2,1).【点睛】本题考查的是二次函数综合题,涉及到用待定系数法求二次函数解析式,二次函数极值、全等三角形的判定与性质,正方形及等腰直角三角形的性质等知识,涉及面较广,难度较大.。
第二十二章 二次函数 易错必考63题(13个考点)专练(解析版)
第二十二章二次函数易错必考63题(13个考点)专练易错必考题一、根据二次函数的定义求参数1.(2023·全国·九年级专题练习)若函数2221m m y m m x =(+)是二次函数,那么m 的值是()A .2B .1 或3C .3D .12【答案】C【分析】根据二次函数的定义: 20y ax bx c a ,进行计算即可.【详解】解:由题意得:221=2m m ,解得:1m 或=3m ;又∵2+0m m ,解得:1m 且0m ,∴=3m .故选C .【点睛】本题考查二次函数的定义.熟练掌握二次函数的定义是解题的关键.注意二次项系数不为零.2.(2023春·江苏南京·九年级校联考阶段练习)点 ,1m 是二次函数221y x x 图像上一点,则236m m 的值为【答案】6【分析】把点 ,1m 代入221y x x 即可求得22m m 值,将236m m 变形 232m m ,代入即可.【详解】解:∵点 ,1m 是二次函数221y x x 图像上,∴2121m m 则222m m .∴ 223632326m m m m 故答案为:6.【点睛】本题考查了二次函数图象上点的坐标特征,根据点坐标求待定系数是解题的关键.3(2023春·广东河源·九年级校考开学考试)已知函数21(1)3m y m x x 为二次函数,求m 的值.【答案】m=﹣1【分析】根据二次函数的定义,列出一个式子即可解决问题.【详解】解:由题意:21012m m ,解得1m ,1m 时,函数21(1)3m y m x x 为二次函数.【点睛】本题考查二次函数的定义,记住二次函数的定义是解题的关键,形如2(y ax bx c a 、b 、c 是常数,0)a 的函数,叫做二次函数.易错必考题二、二次函数与一次函数、反比例函数图象的综合判断4.(2023春·浙江杭州·八年级校考阶段练习)二次函数2y ax bx c 的图象如图所示,则一次函数24y ax b ac 与反比例函数a b cy x在同一坐标系内的图象大致为()A .B .C .D .【答案】C【分析】由抛物线的图象可知,横坐标为1的点,即 1a b c ,在第四象限可得0a b c ,从而得到反比例函数a b cy x的图象分布在二、四象限,由抛物线的开口方向和与x 的交点个数得到2040a b ac ,,从而得到一次函数24y ax b ac 的图象经过一、二、三象限,即可得到答案.【详解】解:由抛物线的图象可知,横坐标为1的点,即 1a b c ,在第四象限,0a b c ,反比例函数a b cy x的图象分布在二、四象限,∵抛物线的开口向上,0a ,∵抛物线与x 轴有两个交点,240b ac ,一次函数24y ax b ac 的图象经过一、二、三象限,故选:C .【点睛】本题主要考查了一次函数、反比例函数、二次函数的图象与系数的关系,熟练掌握一次函数、反比例函数、二次函数的图象与系数的关系,采用数形结合的思想解题,是解此题的关键.5.(2023秋·四川南充·九年级校考期末)在同一坐标系中,一次函数y ax c 与二次函数2y ax c 的图象可能是()A .B .C .D .【答案】B【分析】可先确定每一选项中的一次函数图象,得到a 、c 的符号,再验证二次函数图象是否一致即可.【详解】解:A 、由一次函数y ax c 的图象得0a ,0c ,则二次函数2y ax c 图象开口向上,故该选项不符合题意;B 、由一次函数y ax c 的图象得a<0,0c ,则二次函数2y ax c 图象开口向下,与y 轴正半轴相交,故该选项符合题意;C 、由一次函数y ax c 的图象得a<0,0c ,则二次函数2y ax c 图象开口向下,故该选项不符合题意;D 、由一次函数y ax c 的图象得a<0,0c ,则二次函数2y ax c 图象开口向下,故该选项不符合题意,故答案为:B .【点睛】本题考查一次函数、二次函数图象综合判断,熟知一次函数、二次函数的图象与系数的关系是解答的关键.6.(2023春·山东日照·九年级校考期中)在同一直角坐标系中,反比例函数ky x与二次函数2y x kx k 的大致图像可能是()A .B .C .D .【答案】B【分析】根据k 的取值范围分当0k 时和当0k 时两种情况进行讨论,根据反比例函数的图像与性质以及二次函数的图像与性质进行判断即可.【详解】解:当0k 时,反比例函数ky x的图像经过一、三象限,二次函数2y x kx k 的图像开口向上,其对称轴2kx在y 轴右侧,且与y 轴交于负半轴,故选项C 、D 不符合题意;当0k 时,反比例函数ky x的图像经过二、四象限,二次函数2y x kx k 的图像开口向上,其对称轴2kx在y 轴左侧,且与y 轴交于正半轴,故选项A 不符合题意,选项B 符合题意.故选:B .【点睛】本题主要考查了反比例函数的图像与性质以及二次函数的图像与性质,解题关键是根据k 的取值范围分当0k 时和当0k 时两种情况进行讨论.7.(2023春·安徽安庆·九年级校考阶段练习)二次函数2y ax bx 和反比例函数by x在同一平面直角坐标系中的大致图象可能是()A .B .C .D .【答案】B【分析】根据b 的取值范围分当0b 时和当0b 时两种情况进行讨论,根据反比例函数图象与性质,二次函数图象和性质进行判断即可.【详解】当0b 时,反比例函数by x的图象经过第一、三象限,当0a 时,二次函数2y ax bx 图象,开口向上,对称轴2bx a在y 轴左侧,则A 选项不符合题意,当a<0时,二次函数2y ax bx 图象,开口向下,对称轴2bx a在y 轴右侧,则C 选项不符合题意,B 选项符合题意;当0b 时,反比例函数by x的图象经过第二、四象限,当0a 时,二次函数2y ax bx 图象,开口向上,对称轴2bx a在y 轴右侧,则D 选项不符合题意;故选:B .【点睛】本题考查反比例函数的性质及二次函数的性质,解题的关键是根据题意对b 的取值进行分类讨论(当0b 时和当0b 时),注意运用数形结合的思想方法,充分观寻找图象中的关键点,结合函数解析式进行求解.易错必考题三、二次函数的图象与性质8.(2023春·陕西咸阳·九年级统考期中)已知二次函数2220y mx mx m ()在22x 时有最小值2 ,则m ()A .4 或12B .4或12C .4 或12D .4或12【答案】B【分析】先求出二次函数对称轴为直线1x ,再分0m 和0m 两种情况,利用二次函数的性质进行求解即可.【详解】解:∵二次函数 222212y mx mx m x m ,∴对称轴为直线1x ,①当0m ,抛物线开口向上,1x 时,有最小值22y m ,解得:4m ;②当0m <,抛物线开口向下,∵对称轴为直线1x ,在22x 时有最小值2 ,∴2x 时,有最小值922y m m ,解得:12m .故选:B .【点睛】本题主要考查了二次函数图像的性质,掌握分类讨论的思想是解题的关键.9.(2023春·江苏泰州·九年级校考阶段练习)已知点 12,P y , 24,Q y , 3,M m y 均在抛物线2y ax bx c 上,其中20am b .若321y y y ,则m 的取值范围是()A .2mB .1mC .21m D .14m 【答案】B【分析】由20am b 得到2bm a,此时3y y ,判断 3M m y ,为抛物线的顶点,且抛物线开口向下,然后分4m 和4m 两种情况分类讨论解题即可.【详解】解:∵20am b ,2b m a,∵直线2bx a是抛物线²y ax bx c 的对称轴,且此时3y y ,且321y y y ,∴ 3M m y ,为抛物线的顶点,且抛物线开口向下,①当4m 时,点P Q 、都在M 左侧(或Q 与M 重合),此时一定有321y y y 符合题意,②当4m 时,∵321y y y ,∴M 在点P 右侧,即2m ,且点P 到对称轴的距离大于点Q 到对称轴的距离,即 24m m ,解得:�>1,∴14m ,综上所述,m 的取值范围是1m 故选:B .【点睛】本题考查二次函数的图像和性质,掌握分类讨论的数学思想是解题的关键.10.(2023秋·全国·九年级专题练习)设0ab ,且函数 1²24f x x ax b 与 2²42f x x ax b 有相同的最小值u ;函数 3²24f x x bx a 与 4²42f x x bx a 有相同的最大值v ;则u v 的值()A .必为正数B .必为负数C .必为0D .符号不能确定【答案】C【分析】本题给出四个函数的解析式及两条重要信息 1f x 与有相同的最小值u ; 3f x 与 4f x 有相同的最大值v ,将函数化为顶点式,再根据条件列出等式即可求解此题.【详解】∵ 2221²2444f x x ax b x a b a b a , 2222²4222424f x x ax b x a b a b a ,则22424b a u b a ,得223b a ①∵0ab ,∴0b ,又∵ 2222234²4422424f x x b a b a b f x x b a b a b ,;则22424a b v a b ,得223a b ,②∵0ab ,∴ 0a ,∴3320a b ,∴②① 得, 2223a b b a ,解得0a b 或23b a (舍去),当0a b 时,2226565650u v b a a b a b b a ,∴ 0u v ,故选:C .【点睛】本题考查了二次函数的最值,难度较大,解题的关键是将函数的标准形式化为顶点形式.11.(2023秋·全国·九年级专题练习)已知抛物线243y x x 上两点 1122,,,A x y B x y ,且212x x ,则下列说法一定正确的是()A .若11x 时,则120y yB .若11x 时,则120y yC .若111x 时,则120y yD .若111x 时,则210y y 【答案】D【分析】求得抛物线的开口方向,对称轴以及抛物线与x 轴的交点,然后利用二次函数的性质判断即可;【详解】解:∵抛物线 22433121y x x x x x ,∴抛物线开口向上,对称轴为直线2x ,抛物线与x 轴的交点为 (3,0),1,0 ,若11x 时,212x x ∵,∴21x ,∴无法确定1y 、2y 的大小,故A 、B 不正确,不合题意;若111x 时,∵抛物线243y x x 上两点 1122,,,A x y B x y ,且212x x ,∴213x ,∴210y y ,故C 不正确,D 正确.故选:D .【点睛】本题考查了二次函数图象上点的坐标特征,抛物线与x 轴的交点,熟知二次函数的性质是解题的关键12.(2023秋·福建福州·九年级福建省福州第八中学校考开学考试)已知抛物线 220y ax ax b a 经过 13,A n y , 221, B n y 两点,若A ,B 分别位于抛物线对称轴的两侧,且12y y ,则n 的取值范围是.【答案】01n /10n 【分析】根据二次函数的增减性,进行求解即可.【详解】解:∵ 220y ax ax b a ,对称轴为直线212ax a,∴抛物线开口向下,抛物线上的点离对称轴越远,函数值越小;∵A ,B 分别位于抛物线对称轴的两侧,且12y y ,①当3121n n 时,此不等式无解,不符合题意;②2113n n ,即:21n 时,31121n n ,解得:0n ,综上:01n .故答案为:01n .【点睛】本题考查二次函数的图象和性质.解题的关键是掌握二次函数的增减性.13.(2023秋·湖北孝感·九年级校考开学考试)关于抛物线2y x ,给出下列说法:①抛物线开口向下,顶点是 0,4.②当1x 时,y 随x 的增大而减小.③当23x 时,50y .④若,m p ,n p 是该抛物线上两个不同的点,则0m n .其中正确的说法有.(填序号)【答案】②④/④②【分析】直接根据二次函数的图象和性质逐项判断即可.【详解】解:∵2y x ,∴①抛物线开口向下,顶点是原点,故该项错误;②对称轴为0x ,当1x 时,y 随x 的增大而减小,故该项正确;③当23x 时,0x 时取最大值0,3x 时取最小值9 ,因此90y ,故该项错误;④若 ,m p 、 ,n p 是该抛物线上两点,则两点关于直线0x 对称,因此0m n ,故该项正确.故答案为:②④.【点睛】本题主要考查二次函数的图象和性质,掌握该知识点并熟练运用数形结合思想是解题的关键.14.(2023秋·福建福州·九年级校考开学考试)若函数2y ax bx c (0a )图象过点(1,0) ,(0,2) 且抛物线的顶点位于第四象限,设35P a b c ,则P 的取值范围为.【答案】88P 【分析】根据(1,0) 和(0,2) 得到a ,b ,c 的关系,通过0a ,对称轴大于0,得到0b ,进而求出a 的准确范围,最终求出P 的取值范围.【详解】解:由题意可知,0a b c ,2c ,20a b ,2b a ,0a ∵,且对称轴bx 02a,0b ,20a ,02a ,353510288P a b c a a a ∵,8888a ,88P .故答案为:88P .【点睛】本题考查二次函数的性质,解题关键是掌握二次函数与方程的关系,掌握二次函数图象与系数的关系.15、(2023春·吉林长春·九年级校考期中)如图,在平面直角坐标系中,线段PQ 的端点坐标分别为(12)P ,,(13)Q ,,抛物线2223y x mx m (m 为常数,0m )和线段PQ 有公共点时,m 的取值范围是,【答案】1713m【分析】抛物线和线段PQ 有公共点可知23y ,当点(12)P ,在抛物线上时,可算出此时的m 的值,当点(13)Q ,在抛物线上时,算出此时的m 的值,由此即可求解.【详解】解:抛物线2223y x mx m (m 为常数,0m )和线段PQ 有公共点,(12)P ,,(13)Q ,,∴23y ,∴当点(12)P ,在抛物线上时,21232m m ,解得,11m ,213m ;当点(13)Q ,在抛物线上时,21233m m ,解得,3173m ,4173m ;∵当23y 时,有公共点,且0m ,∴m 的取值范围是1713m ,故答案为:1713m.【点睛】本题主要考查二次函数图像与线段的交点问题,掌握二次函数图像的性质,线段与图像的位置关系,数形结合分析是解题的关键.16.(2023春·浙江杭州·九年级校考阶段练习)已知二次函数 2220y x mx m m m .(1)若2m ,求该函数图象的顶点坐标.(2)若当1x 时,y 随x 的增大而减小;当2x 时,y 随x 的增大而增大,求m 的取值范围.(3)若函数1y y m ,点(2,),(,)M m s N n t 都在函数1y 的图象上,且s t ,求n 的取值范围.(用含m 的代数式表示)【答案】(1)2,2 (2)12m (3)2n m 或3n m 【分析】(1)把2m 代入 2220y x mx m m m 求出解析式,然后配方即可;(2)先求出 2220y x mx m m m 的对称轴,可得当x m 时,y 随x 的增大而减小;当x >m 时,y随x 的增大而增大,再结合条件即可求出;(3)根据代入法求出s t 、,结合s t 即可求出答案.【详解】(1)解:当2m 时,242y x x ,将242y x x 配方得:2(2)2y x ,∴该函数图象的顶点坐标是 2,2 ;(2)解:在 2220y x mx m m m 中,222b m x m a 轴,当x m 时,y 随x 的增大而减小;当x >m 时,y 随x 的增大而增大,∵当1x 时,y 随x 的增大而减小;当2x 时,y 随x 的增大而增大,∴12m ;(3)解:∵1y y m , 2220y x mx m m m ,∴221(12)y x m x m m ,∵点(2,),(,)M m s N n t 都在函数1y 的图象上,当2x m 时,6s ,当x n 时,22211(12)()24m t n m n m m n ,∵s t ,∴21216()24m n,∴212125()6244m n ,∴12522m n 或12522m n ,∴2n m 或3n m ;【点睛】本题是二次函数的一个综合题,主要考查了求顶点坐标,二次函数的性质,熟练掌握相关知识是关键.17.(2023秋·全国·九年级专题练习)已知抛物线2(0)y ax bx c a 经过(1)A t ,,(3)B t ,两点.(1)当1a 时,求b 的值;(2)当0 t ,且10x ≤≤时,y 的最大值为3.①求抛物线的解析式;②抛物线与y 轴交于点C ,直线(1)y kx k 与抛物线交于点D ,与直线BC 交于点F ,连接CD ,当:3:2COF CDF S S 时,求k 的值.【答案】(1)2b (2)①223y x x ;②32k =或4【分析】(1)根据(1)A t ,,(3)B t ,对称,写出对称轴方程1x ,根据对称轴是2b x a,且1a ,求出2b ;(2)①10x ≤≤在对称轴1x 的左侧,0x 时时,y 有最大值为3,得到0x 时,3y c ,根据0 t ,得到方程组,解方程组即可求解;②利用三角形的面积关系,得到点F 与点D 的横坐标的比为3:5,设点F 的横坐标为3t ,则点D 的横坐标为5t ,利用待定系数法用含t 的代数式求得直线OF 的解析式,进而得到点D 的坐标,将点D 坐标代入抛物线的解析式求得t 值即可求得结论.【详解】(1)解:抛物线2(0)y ax bx c a 经过(1)A t ,,(3)B t ,两点,1312x ,∵2b x a,1a ,2b ;(2)解:①∵(1)A t ,,(3)B t ,,0 t ,(10)A ,,(30)B ,,∵对称轴是直线1x ,0a ,当1x 时,y 随x 的增大而增大,∵10x ≤≤时,y 的最大值为3,当0x 时,3y c ,抛物线解析式为23y ax bx ,把(10)A ,,(30)B ,,代入得:309330a b a b, 12a b, 抛物线解析式为223y x x ;②由①得:(10)A ,,(30)B ,,(03)C ,,设直线BC 的解析式为 10y kx b k ,11330b k b,解得:13k b , 直线BC 的解析式为3y x ,∵:3:2COF CDF S S ,:3:5COF COD S S ,点F 与点D 的横坐标的比为3:5,设点F 的横坐标为3t ,则点D 的横坐标为5t ,∵点F 在直线BC 上,3,33F t t .∵点F 在直线(1)y kx k 上,333t k t ,解得:1t k t, 直线OF 的解析式为1t y x t,∵点D 在直线OF 上, 5,55D t t ,∵点D 在抛物线上,2525355t t t ,解得:15t 或25,当15t 时,115415k ,当25t 时,2135225x ,综上所述,32k =或4.【点拨】本题考查了二次函数性质,待定系数法求函数解析式,三角形面积,熟练掌握根据二次函数值随自变量变化情况确定二次函数的最值,待定系数法求二次函数的解析式,同高的两个三角形面积与底边成比例,是解决本题的关键.易错必考题四、二次函数图象的平移问题18.(2023秋·全国·九年级专题练习)将抛物线22y ax bx (a 、b 是常数,0a )向下平移2个单位长度后,得到的新抛物线恰好和抛物线2142y x x关于y 轴对称,则a 、b 的值为()A .1a ,2b B .12a ,1b =-C .12a ,1b =-D .1a ,2b 【答案】C【分析】先求出抛物线2142y x x 关于y 轴对称的抛物线为 219122y x ,再根据抛物线平移的性质得出抛物线22y ax bx 向下平移2个单位长度后为24y ax bx ,即可得出a 和b 的值.【详解】解:∵ 2211941222y x x x,∴抛物线2142y x x 关于y 轴对称的抛物线为 219122y x ,∵抛物线22y ax bx 向下平移2个单位长度后为24y ax bx ,∵24y ax bx 与2142y x x关于y 轴对称,∴ 22419122y ax bx x ,整理得:224412y x x a bx x,∴12a ,1b =-,故选:C .【点睛】本题主要考查了二次函数的平移规律,解题的关键是掌握将二次函数化为顶点式的方法和步骤,以及二次函数的平移规律:上加下减,左加右减.19.(2023春·浙江金华·九年级校考期中)如图,一条抛物线与x 轴相交于M ,N 点(点M 在点N 的左侧),其顶点P 在线段AB 上移动,点A ,B 的坐标分别为 2,3 , 1,3,点N 的横坐标的最大值为4,则点M 的横坐标的最小值为()A .1B .3C .5D .7【答案】C 【分析】其顶点P 在线段AB 上移动,点A ,B 的坐标分别为 2,3 , 1,3,分别求出对称轴过点A 和B 时的情况,即可判断出M 点横坐标的最小值.【详解】解:根据题意知,∵点N 的横坐标的最大值为4,此时点P 和点B 重合,即抛物线的对称轴为:1x ,N 点坐标为 4,0,则M 点坐标为 2,0 ,点P 和点A 重合,点M 的横坐标最小,此时抛物线的对称轴为:2x ,N 点坐标为 1,0,则M 点的坐标为 5,0 ,点M 的横坐标的最小值为5 ,故选:C .【点睛】本题考查了抛物线与x 轴的交点,二次函数的图象与性质,解答本题的关键是理解二次函数在平行于x 轴的直线上移动时,两交点之间的距离不变.20.(2023春·湖北恩施·九年级统考期中)在平面直角坐标系xOy 中,将抛物线223y x x 先绕原点O 旋转180 ,再向上平移3个单位,则平移后的抛物线解析式为.【答案】22y x x【分析】先把抛物线配方为顶点式,求出顶点坐标,求出旋转后的抛物线,再根据“上加下减,左加右减”的法则进行解答即可.【详解】解:∵ 2223=12y x x x ,∴抛物线的顶点为 12,,将抛物线223y x x 先绕原点旋转180 抛物线顶点为 12 ,-,旋转后的抛物线为 212y x ,再向上平移3个单位, 2212+32y x x x .故答案为:22y x x .【点睛】本题考查的是抛物线的图象与几何变换,解题的关键是熟知函数图象旋转与平移的法则.21.(2023秋·河北张家口·九年级统考期末)如图,坐标平面上有一透明片,透明片上有一抛物线L : 227y x .(1)写出L 的对称轴和y 的最小值;(2)点P 为透明片上一点,P 的坐标为 9,6.平移透明片,平移后,P 的对应点为P ,抛物线L 的对应抛物线为L ,其表达式恰为267y x x ,求PP 移动的最短路程.【答案】(1)对称轴为直线:7x ,y 的最小值为2(2)42PP 【分析】(1)直接根据解析式进行作答即可;(2)求出平移后的抛物线的顶点坐标,PP 移动的最短路程为两个顶点间的距离,进行求解即可.【详解】(1)解:∵ 222277y x x ,顶点坐标为 7,2,∴对称轴为直线7x ,y 的最小值为2;(2)∵ 226732y x x x ,顶点坐标为 3,2 ,∵抛物线L 的顶点坐标为 7,2,∴PP 移动的最短路程为 22732242 .【点睛】本题考查二次函数的图象与性质,二次函数图象的平移.熟练掌握二次函数的图象和性质,是解题的关键.22.(2023秋·陕西安康·九年级统考期末)已知二次函数 2420y ax x a 图像的对称轴为直线2x .(1)求a 的值;(2)将该二次函数的图像沿x 轴向右平移2个单位后得到一个新的二次函数,求新二次函数的解析式.【答案】(1)1a (2)2814y x x 【分析】(1)根据对称轴列式求解即可解答;(2)将a 的值代入,结合抛物线解析式求平移后图像所对应的二次函数的表达式即可.【详解】(1)解:∵二次函数 2420y ax x a 图像的对称轴为直线2x ∴422a,解得1a .(2)解:∵1a ,∴242y x x ,∴平移后为: 222422814y x x x x .∴新二次函数的解析式为2814y x x .【点睛】本题主要考查了二次根式的性质、二次根式的平移等知识点,掌握二次根式的性质是解答本题的关键.23.(2023·山东·九年级专题练习)如图,抛物线过点 0,0O , 10,0E ,矩形ABCD 的边AB 在线段OE 上(点B 在点A 的左侧),点C ,D 在抛物线上,设 ,0B t ,当2t 时,4BC .(1)求抛物线的函数表达式;(2)当t 为何值时,矩形ABCD 的周长有最大值?最大值是多少?(3)保持2t 时的矩形ABCD 不动,向右平移抛物线,当平移后的抛物线与矩形的边有两个交点G ,H ,且直线GH 平分矩形ABCD 的面积时,求抛物线平移的距离.【答案】(1)21542y x x (2)当1t 时,矩形ABCD 的周长有最大值,最大值为412(3)4【分析】(1)设抛物线的函数表达式为 100y ax x a ,求出点C 的坐标,将点C 的坐标代入即可求出该抛物线的函数表达式;(2)由抛物线的对称性得AE OB t ,则102AB t ,再得出21542BC t t ,根据矩形的周长公式,列出矩形周长的表达式,并将其化为顶点式,即可求解;(3)连接A C ,BD 相交于点P ,连接OC ,取OC 的中点Q ,连接PQ ,根据矩形的性质和平移的性质推出四边形OCHG 是平行四边形,则PQ CH ,12PQ OA .求出2t 时,点A 的坐标为 8,0,则142CH OA ,即可得出结论.【详解】(1)解:设抛物线的函数表达式为 100y ax x a .∵当2t 时,4BC ,∴点C 的坐标为 2,4 .将点C 坐标代入表达式,得 22104a ,解得14a .∴抛物线的函数表达式为21542y x x.(2)解:由抛物线的对称性得:AE OB t ,∴102AB t .当x t 时,21542BC t t .∴矩形ABCD 的周长为2152210242AB BC t t t21202t t 2141122t .∵102,∴当1t 时,矩形ABCD 的周长有最大值,最大值为412.(3)解:连接AC ,BD 相交于点P ,连接OC ,取OC 的中点Q ,连接PQ .∵直线GH 平分矩形ABCD 的面积,∴直线GH 过点P ..由平移的性质可知,四边形OCHG 是平行四边形,∴PQ CH .∵四边形ABCD 是矩形,∴P 是AC 的中点.∴12PQ OA .当2t 时,点A 的坐标为 8,0,∴142CH OA .∴抛物线平移的距离是4.【点睛】本题主要考查了求二次函数的解析式,二次函数的图象和性质,矩形的性质,平移的性质,解题的关键是掌握用待定系数法求解二次函数表达式的方法和步骤,二次函数图象上点的坐标特征,矩形的性质,以及平移的性质.易错必考题五、根据二次函数的图象判断式子符号24.(2023秋·全国·九年级专题练习)如图,抛物线 21y a x k 与x 轴交于 1,0A ,B 两点,下列判断正确的是()A .0a B .当0x 时,y 随x 的增大而减小C .点B 的坐标为3,0D .0a k 【答案】C 【分析】根据二次函数的图象和性质,逐一进行判断即可.【详解】解:A 、抛物线开口向下,a<0,选项错误,不符合题意;B 、 21y a x k ,对称轴为1x ,当1x 时,y 随x 的增大而减小,选项错误,不符合题意;C 、∵抛物线 21y a x k 与x 轴交于 1,0A ,对称轴为1x ,∴点B 的坐标为 3,0,选项正确,符合题意;D 、∵抛物线 21y a x k 与x 轴交于 1,0A ,∴ 2011a k ,∴4k a ,∴430a k a a a ,故选项D 错误,不符合题意;故选C .【点睛】本题考查二次函数的图象和性质,熟练掌握二次函数的图象和性质,是解题的关键.25.(2023秋·全国·九年级专题练习)如图,根据二次函数2y ax bx c 的图象得到如下结论:①0abc ②20a b ③0a b c ④30a c ⑤当2x 时,y 随x 的增大而增大⑥一定存在实数0x ,使得200ax bx a b 成立.上述结论,正确的是()A .①②⑤B .②③④C .②③⑥D .③④⑤【答案】C 【分析】根据抛物线开口向上得出0a ,根据抛物线和y 轴的交点在y 轴的负半轴上得出0c ,根据图象关于=1x 对称,得到12b a,即2a b ,故0b ,根据图象与x 轴的一个交点为3x ,即可得到图象与x 轴的另一个交点为1x ,根据方程20ax bx c 的根,把1x 代入2y ax bx c 求出0a b c ,再将2a b 代入0a b c 得到30a c ,根据抛物线的对称轴和图象得出当1x 时,y 随x 的增大而增大,根据函数最小值为a b c ,当01x 时,则200ax bx c a b c ,即0ax bx a b ,故一定存在实数0x ,使得200ax bx a b 成立.【详解】解:∵抛物线开口向上、顶点在y 轴左侧、抛物线与y 轴交于负半轴,0a ,0c ,∵抛物线关于=1x 对称,12b a,即20a b , 0b ,<0abc ,故①错误,故②正确;∵抛物线过点 3,0 ,对称轴为直线=1x ,∴抛物线过点 1,0,把1x 代入2y ax bx c ,得到0a b c 0a b c ,故③正确;2b a ,0a b c ,30a c ,故④错误;∵抛物线开口向上,对称轴是直线=1x ,∴当1x 时,y 随x 的增大而增大;故⑤错误;∵函数最小值为a b c ,∴当01x 时,则200ax bx c a b c ,即0ax bx a b ,∴一定存在实数0x ,使得200ax bx a b 成立,故⑥正确;故选:C .【点睛】本题考查二次函数图象与系数的关系,解答本题的关键是明确题意,利用二次函数的性质和数形结合的思想解答.26.(2023·黑龙江齐齐哈尔·统考模拟预测)如图,已知二次函数 20y ax bx c a 的图象如图所示,对于下列结论,其中正确结论的个数是()①0abc ;② 220a c b ;③30a c ;④若m 为任意实数;则26am bm b a ;⑤当22x k 时,y 随x 增大而先增大后减小.A .1B .2C .3D .4【答案】B【分析】根据二次函数的性质进行判断求解.【详解】解:由于图像开口向上,0a ,∵抛物线对称轴为12b x a,20b a ,∵抛物线与y 轴的交点在x 轴下方,0c ,<0abc ,①错误;有图像知,将1x 代入得0a b c ,将=1x 代入得<0a b c ,22()()0a c b a b c a c b ,②错误;有图像知,将1x 代入得0a b c ,2b a ∵,30a c ,③正确;当=1x 时,函数有最小值y a b c ,若m 为任意实数;则2am bm c a b c ,2am bm a b ,22am bm b a b ,2b a ∵,243am bm b a a a ,0a ∵,36a a ,26am bm b a ,④正确;20k ∵,222k ,根据图像可知,22x k 时,y 随x 增大而先减小后增大.⑤错误;故选:B .【点睛】本题主要考查二次函数的图像和性质,熟练掌握二次函数的性质是解题的关键.27.(2023·山东·九年级专题练习)如图,二次函数2(0)y ax bx c a 的图象与x 轴的正半轴交于点A ,对称轴为直线1x .下面结论:①<0abc ;②20a b ;③30a c ;④方程20(0)ax bx c a 必有一个根大于1 且小于0.其中正确的是.(只填序号)【答案】①②④【分析】根据题意和函数图象,可以判断各个小题中的结论是否成立,本题得以解决.【详解】解:由图象可得,000,,,a b c 则<0abc ,故①正确;∵12b a,∴2b a ,∴20a b ,故②正确;∵函数图象与x 轴的正半轴交点在点(2,0)和(3,0)之间,对称轴是直线1x ,∴函数图象与x 轴的另一个交点在点(0,0)和点 1,0 之间,故④正确;∴当=1x 时,0y a b c ,∴20y a a c ,∴30a c ,故③错误;故答案为:①②④.【点睛】本题考查二次函数图象与系数的关系、二次函数图象上点的坐标特征、抛物线与x 轴的交点,解答本题的关键是明确题意,利用二次函数的性质和数形结合的思想解答.28.(2023秋·全国·九年级专题练习)已知二次函数 20y ax bx c a 的图像如图所示,有下列5个结论:①0abc ;②b a c ;③420a b c ;④23c b ;⑤ a b m am b (1m 的实数).其中正确的结论有(填序号)【答案】③④⑤【分析】由抛物线的开口方向可以得出a<0,由抛物线与y 轴的交点可以判断0c ,由抛物线的对称轴可以判断0b ,再根据抛物线与x 轴的交点情况以及抛物线的顶点进行推理即可得到答案.【详解】解:①∵二次函数 20y ax bx c a 的图象开口方向向下,与y 轴交于正半轴,对称轴为直线1x ,0002b a c a,,,>0b ,<0abc ,故①错误,不符合题意;②∵二次函数 20y ax bx c a 的图象与x 轴的交点在 10 ,的右边,图象开口方向向下, 当=1x 时,0y ,0a b c ,b ac ,故②错误,不符合题意;③∵二次函数 20y ax bx c a 的图象与x 轴的另一个交点在 20,的右边,图象开口方向向下, 当2x 时,0y ,420a b c ,故③正确,符合题意;④由①得:12b a,12a b ,由②得:<0a b c ,102b bc ,23c b ,故④正确,符合题意;⑤∵二次函数 20y ax bx c a 的图象的对称轴为直线1x ,当1x 时,y 取最大值,最大值为a b c ,当 1x m m 时,2am bm c a b c ,1a b m am b m ,故⑤正确,符合题意;综上所述:正确的结论有:③④⑤,故答案为:③④⑤.【点睛】本题主要考查了二次函数的图象与各项系数符号的关系,根据二次函数的图象判断式子的符号,熟练掌握二次函数的性质,采用数形结合的方法解题,是解此题的关键.29.(2023秋·全国·九年级专题练习)如图,二次函数2y ax bx c 的图象过点 3,0A ,对称轴为直线1x .给出以下结论:①0abc <;② 21a ax x b ;③若 211,M n y , 222,N n y 为函数图象上的两点,则12y y ;④若关于x 的一元二次方程 20ax bx c p p 有整数根,则对于a 的每一个值,对应的p 值有3个.其中正确的有.(写出所有正确结论的序号)【答案】①②③【分析】由抛物线的开口方向判断a 与0的关系,由抛物线与y 轴的交点判断c 与0的关系,然后根据对称轴及抛物线与x 轴交点情况进行推理,进而对所得结论进行判断.【详解】∵抛物线开口向下,0a ;∵抛物线的对称轴为直线x 2b a10 ,0b ;∵抛物线与y 轴的交点在x 轴上方,0c ,0abc ,故①正确;∵当1x 时,函数有最大值,2a b c ax bx c ,即 21a ax x b故②正确;∵抛物线的对称轴是1x ,则2212(1,2,())M n y N n y ,在对称轴右侧,2212n n ,12y y ,。
九(上)数学《二次函数》经典易错题归纳,带答案
九(上)数学《二次函数》经典易错题归纳,带答案
《二次函数》章节包括的知识点有:二次函数的图像与性质、二次函数与一元二次方程、实际问题与二次函数。
很多同学都觉得很难,特别是一些压轴题,这期我们就来分享一下关于《二次函数》的一些经典易错题型,都是高频考点哦,同学们一定要下载下来做一做,需要完整电子版的朋友们,关注加转发获取!后面都配有详细的答案解析,可以独立完成后对照学习!
同学们在学习的过程中有任何的疑惑,都可以在评论区留言互动,也可以私信,我会挑选一些典型的题目录制视频解析,为同学们答疑解惑!
专栏
九年级上学期数学模型和方法总结。
第22章 二次函数(易错必刷30题11种题型专项训练)(原卷版)-2024-2025学年九年级数学上
第22章二次函数(易错必刷30题11种题型专项训练)一.二次函数的定义(共4小题)1.(2022秋•宜昌期中)下列选项描述的y与x之间的关系是二次函数的是()A.正方体的体积y与棱长x之间的关系B.某商品在6月的售价为30元,7月和8月连续两次降价销售,平均每月降价的百分率为x,该商品8月的售价y与x之间的关系C.距离一定时,汽车匀速行驶的时间y与速度x之间的关系D.等腰三角形的顶角度数y与底角度数x之间的关系2.(2022秋•岫岩县期中)下列各式中,y是x的二次函数的是()A.y=ax2+bx+c B.y=2+x(x+1)C.y=x2﹣(x+2)2D.y=3.(2022秋•长沙期中)二次函数y=x2﹣2x+3的一次项系数是()A.1B.2C.﹣2D.34.(2022秋•库车市期中)若y=(m+2)+(m﹣2)x+m是关于x的二次函数,则m的值为.二.二次函数的图象(共2小题)5.(2022秋•黔东南州期中)如图所示的抛物线是二次函数y=(m﹣2)x2﹣3x+m2+m﹣6的图象,那么m 的值是.6.(2022秋•黔东南州期中)在同一坐标系中,二次函数y=ax2+bx与一次函数y=bx﹣a的图象可能是()A.B.C.D.三.二次函数的性质(共2小题)7.(2022秋•嘉祥县期中)下列关于二次函数y=3(x+1)(2﹣x)的图象和性质的叙述中,正确的是()A.点(0,2)在函数图象上B.开口方向向上C.对称轴是直线x=1D.与直线y=3x有两个交点8.(2022秋•平潭县校级期中)下列关于抛物线y=﹣(x+2)2+6的说法,正确的是()A.抛物线开口向上B.抛物线的顶点坐标为(2,6)C.抛物线的对称轴是直线x=6D.抛物线经过点(0,2)四.二次函数图象与系数的关系(共2小题)9.(2022秋•福山区期中)如图,已知抛物线y=ax2+bx﹣2的对称轴是直线x=﹣1,直线l∥x轴,且交抛物线于点P(x1,y1),Q(x2,y2),下列结论错误的是()A.b2>﹣8aB.若实数m≠﹣1,则a﹣b<am2+bmC.3a﹣2>0D.当y>﹣2时,x1•x2<010.(2022秋•武昌区校级期中)如图,抛物线y=ax2+bx+c与x轴交于点A(—1,0),顶点坐标为(1,n),与y轴的交点在(0,2),(0,3)之间(包含端点).有下列结论:①a+b+c>0;②3a+b>0;③﹣1≤a ≤﹣;④≤n≤4,其中正确的有.五.二次函数图象上点的坐标特征(共2小题)11.(2022秋•新丰县期中)设A(0,y1),B(1,y2),C(2,y3)是抛物线y=﹣(x+1)2+k上的三点,则y1,y2,y3的大小关系为()A.y3>y2>y1B.y1>y3>y2C.y1>y2>y3D.y3>y1>y212.(2022秋•闽清县校级期中)已知点A(x1,y1),B(x2,y2)均在抛物线y=ax2﹣2ax+4(a≠0)上,若x1<x2,x1+x2=1﹣a,则()A.当a>﹣1时,y1<y2B.当a>﹣1时,y1>y2C.当a<﹣1时,y1<y2D.当a<﹣1时,y1>y2六.二次函数图象与几何变换(共2小题)13.(2022秋•乐陵市期中)抛物线y=﹣x2+x+1经平移后,不可能得到的抛物线是()A.y=﹣x2+x B.y=﹣x2﹣4C.y=﹣x2+2021x﹣2022D.y=﹣x2+x+114.(2022秋•横县期中)如果将抛物线y=x2向左平移2个单位,再向下平移1个单位,所得到的抛物线解析式为()A.y=(x+2)2﹣1B.y=(x﹣2)2﹣1C.y=(x+2)2+1D.y=(x﹣2)2+1七.二次函数的最值(共3小题)15.(2022秋•伊州区校级期中)如图,已知二次函数y=(x+1)2﹣4,当﹣2≤x≤2时,则函数y的最小值和最大值()A.﹣3和5B.﹣4和5C.﹣4和﹣3D.﹣1和516.(2022秋•黑龙江期中)若实数x,y满足x+y2=3,设s=x2+8y2,则s的取值范围是.17.(2022秋•海安市期中)已知关于x的函数y,当t≤x≤t+1时,函数y的最大值为P,最小值为Q,令函数g=,则称函数g为函数y的“关联函数”.(1)若y=x+1,t=0,求函数y的“关联函数”g的值;(2)若y=x2﹣2x+k.①当k=1,t≤0时,求函数y的“关联函数”g的最小值;②当函数y的“关联函数”g的值为时,求t的值.八.待定系数法求二次函数解析式(共2小题)18.(2022秋•无为市期中)在一条笔直的滑道上有黑、白两个小球同向运动,黑球在A处开始减速,此时白球在黑球前面70cm处.小聪测量黑球减速后的运动速度v(单位:cm/s)、运动距离y(单位:cm)随运动时间t(单位:s)变化的数据,整理得下表.运动时间t/s01234运动速度109.598.58v/cm/s运动距离y/cm09.751927.7536小聪探究发现,黑球的运动速度v与运动时间t之间成一次函数关系,运动距离y与运动时间t之间成二次函数关系.(1)直接写出v关于t的函数解析式和y关于t的函数解析式(不要求写出自变量的取值范围);(2)当黑球减速后运动距离为64cm时,求它此时的运动速度;(3)若白球一直以2cm/s的速度匀速运动,问黑球在运动过程中会不会碰到白球?请说明理由.19.(2022秋•启东市期中)已知抛物线y=ax2+bx﹣1(a>0)经过点(2,﹣1),当1﹣2m≤x≤1+3m时,y的最小值为﹣2.(1)求抛物线的解析式;(2)当n<x<n+1时,y的取值范围是2n+1<y<2n+4,求n的值.九.抛物线与x轴的交点(共2小题)20.(2022秋•黔东南州期中)抛物线y=ax2+bx+c上部分点的横坐标x,纵坐标y的对应值如表:x…﹣2﹣1012…y…04664…从表中可知,下列说法中正确的是()A.抛物线的对称轴是直线x=0B.抛物线与x轴的一个交点为(3,0)C.函数y=ax2+bx+c的最大值为6D.在对称轴右侧,y随x增大而增大21.(2022秋•岫岩县期中)已知函数y=mx2+3mx+m﹣1的图象与坐标轴恰有两个公共点,则实数m的值为.一十.二次函数的应用(共7小题)22.(2022秋•慈溪市期中)如图,小明以抛物线为灵感,在平面直角坐标系中设计了一款高OD为14的奖杯,杯体轴截面ABC是抛物线的一部分,则杯口的口径AC为.23.(2022秋•宾阳县期中)如图,一名男生推铅球,铅球行进高度y(m)与水平距离x(m)之间的关系是y=﹣x2+8x+20,则他将铅球推出的距离是m.24.(2022秋•临潼区期中)如图是抛物线型拱桥,当拱顶离水面2m时,水面宽4m,如果水面下降0.5m,那么水面宽度增加m.25.(2022秋•海安市期中)从地面竖直向上抛出一小球,小球的高度h(单位;m)与小球的运动时间t(单位:s)之间的关系式是h=30t﹣5t2(0≤t≤6).小球运动的时间是s时,小球最高.26.(2022秋•萨尔图区期中)荔枝是夏季的时令水果,储存不太方便.某水果店将进价为18元/千克的荔枝,以28元/千克售出时,每天能售出40千克.市场调研表明:当售价每降低1元/千克时,平均每天能多售出10千克.设降价x元.(1)降价后平均每天可以销售荔枝千克.(用含x的代数式表示)(2)设销售利润为y,请写出y关于x的函数关系式.(3)该水果店想要使荔枝的销售利润平均每天达到480元,且尽可能地减少库存压力,应将价格定为多少元/千克?27.(2022秋•射洪市期中)某商店将进价为8元的商品按每件10元售出,每天可售出200件,现在采取提高商品售价减少销售量的办法增加利润,如果这种商品每件的销售价每提高0.5元其销售量就减少10件.(1)应将每件售价定为多少元时,才能使每天利润为640元?(2)每件售价定为多少元时,才能使利润最大?其最大利润是多少?28.(2022秋•滨城区期中)某公园要修建一个圆形喷水池,在池中心竖直安装一根水管,水管OA长2.25m.在水管的顶端安装一个喷水头,使喷出的抛物线形水柱在与池中心的水平距离为1m处达到最高,高度为3m.(1)建立如图所示平面直角坐标系,求抛物线(第一象限部分)的解析式;(2)不考虑其它因素,水池的直径至少要多少米才能使喷出的水流不落到池外?(3)实际施工时,经测量,水池的最大半径只有2.5m,在不改变喷出的抛物线形水柱形状的情况下,且喷出的抛物线形水柱在与池中心的水平距离为1m处达到最高,需对水管的长度进行调整,求调整后水管的最大长度.一十一.二次函数综合题(共2小题)29.(2022秋•永吉县期中)如图,在平面直角坐标系中,抛物线y=﹣x2+bx+c与直线交于A,B两点,点A在x轴上,点B的横坐标为2.(1)点A坐标为,点B坐标为.(2)求此抛物线所对应的函数解析式.(3)点P是抛物线上一点,点P与点B不重合,设点P的横坐标为m,过点P作PC∥y轴,交直线AB 于点C,设PC的长为h.①若点P在直线AB的上方,求h关于m的函数解析式;②若点P在x轴的上方,当h随m的增大而增大时,直接写出m的取值范围.30.(2022秋•普陀区期中)在平面直角坐标系xOy中(如图),抛物线的顶点是A(1,﹣5),且经过点B (﹣1,﹣1),过点B作BC∥x轴,交抛物线的对称轴于点C.(1)求抛物线的表达式和点C的坐标;(2)联结AB,如果点D是该抛物线上一点,且位于第一象限,当∠DBC=∠BAC时,求点D的坐标.。
初中数学考点:二次函数易错点讲解
数学考点:二次函数1.二次函数在数学中,二次函数最高次必须为二次,二次函数表示形式为y=ax²+bx+c(a≠0)的多项式函数。
二次函数的图像是一条对称轴平行于y轴的抛物线。
二次函数表达式y=ax²+bx+c的定义是一个二次多项式,因为x的最高次数是2。
如果令二次函数的值等于零,则可得一个二次方程。
该方程的解称为方程的根或函数的零点。
2.二次函数的图象3.二次函数主要特点(1)二次函数图像与X轴交点的情况当△=b²-4ac>0时,函数图像与x轴有两个交点。
当△=b²-4ac=0时,函数图像与x轴只有一个交点。
当△=b²-4ac<0时,函数图像与x轴没有交点。
(2)二次函数图像在平面直角坐标系中作出二次函数y=ax^2+bx+c的图像,可以看出,二次函数的图像是一条永无止境的抛物线。
如果所画图形准确无误,那么二次函数图像将是由一般式平移得到的。
1.如何学习二次函数(1)二次函数对比一次函数学习。
(2)掌握重点。
(3)多做题.熟练度高一些自然简单了。
(4)要举一反三.延伸更多做题技巧。
2.二次函数知识要点(1)要理解函数的意义。
(2)要记住函数的几个表达形式,注意区分。
(3)一般式,顶点式,交点式,等,区分对称轴,顶点,图像,y随着x的增大而减小(增大)等的差异性。
(4)联系实际对函数图像的理解。
(5)计算时,看图像时切记取值范围。
(6)随图像理解数字的变化而变化。
二次函数考点及例题二次函数知识很容易与其它知识综合应用,而形成较为复杂的综合题目。
因此,以二次函数知识为主的综合性题目是中考的热点考题,往往以大题形式出现,而且综合性很强,一般会综合四边形.三角形.一次函数出现。
3.误区提醒(1)对二次函数概念理解有误,漏掉二次项系数不为0这一限制条件;(2)对二次函数图象和性质存在思维误区;(3)忽略二次函数自变量取值范围;(4)平移抛物线时,弄反方向;(5)二次函数既不是正比例函数也不是反比例函数.1.二次函数的一般式:y=ax²+bx+c(a≠0,a、b、c为常数),顶点坐标为[-b/2a,(4ac-b²)/4a]把三个点代入式子得出一个三元一次方程组,就能解出a、b、c的值。
中考数学常考易错点:3-3-1《二次函数的图象与性质》
中考数学常考易错点:3-3-1《二次函数的图象与性质》二次函数的图象与性质易错清单1. 二次函数的图象与系数a,b,c的符号的确定.【例1】二次函数y=ax2+bx+c(a≠0)的部分图象如图,图象过点(-1,0),对称轴为直线x=2,下列结论:① 4a+b=0;② 9a+c>3b;③ 8a+7b+2c>0;④ 当x>-1时,y的值随x值的增大而增大.其中正确的结论有( ).A. 1个B. 2个C. 3个D. 4个【解析】根据抛物线的对称轴为直线x=2,则有4a+b=0;观察函数图象得到当x=-3时,函数值小于0,则9a-3b+c<0,即9a+c<3b;由于x=-1时,y=0,则a-b+c=0,易得c=-5a,所以8a+7b+2c=8a-28a-10a=-30a.再根据抛物线开口向下得a<0,于是有8a+7b+2c>0;由于对称轴为直线x=2,根据二次函数的性质得到当x>2时,y随x的增大而减小.【答案】∵抛物线的对称轴为直线x=2,∴b=-4a,即4a+b=0,所以①正确.∵当x=-3时,y<0,∴9a-3b+c<0,即9a+c<3b.所以②错误.∵抛物线与x轴的一个交点为(-1,0),∴a-b+c=0.而b=-4a,∴a+4a+c=0,即c=-5a.∴8a+7b+2c=8a-28a-10a=-30a.∵抛物线开口向下,∴a<0.∴8a+7b+2c>0.所以③正确.∵对称轴为直线x=2,∴当-1<x<2时,y的值随x值的增大而增大,当x>2时,y随x的增大而减小.所以④错误.故选B.【误区纠错】本题考查了二次函数图象与系数的关系:二次函数y=ax2+bx+c(a≠0),二次项系数a决定抛物线的开口方向和大小,当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;一次项系数b和二次项系数a共同决定对称轴的位置,当a与b同号时(即ab>0),对称轴在y轴左; 当a与b异号时(即ab<0),对称轴在y轴右;常数项c决定抛物线与y轴交点. 抛物线与y轴交于(0,c);抛物线与x轴交点个数由Δ决定,Δ=b2-4ac>0时,抛物线与x轴有2个交点;Δ=b2-4ac=0时,抛物线与x轴有1个交点;Δ=b2-4ac<0时,抛物线与x轴没有交点.2. 二次函数和最值问题【例2】当-2≤x≤1时,二次函数y=-(x-m)2+m2+1有最大值4,则实数m的值为( ).【解析】二次函数的最值得分类讨论问题,根据对称轴的位置,分三种情况讨论求解即可.【答案】二次函数的对称轴为直线x=m,①m<-2时,x=-2时二次函数有最大值,此时-(-2-m)2+m2+1=4,解得m=-,与m<-2矛盾,故m值不存在.②当-2≤m≤1时,x=m时,二次函数有最大值,此时,m2+1=4,【误区纠错】本题易错点在于不知分类讨论导致漏解.考点点拨1. 掌握二次函数的定义,能利用定义判断二次函数.2. 能利用顶点式、交点式、三点式确定二次函数的解析式.3. 会利用描点法画二次函数的图象并能说明其性质.4. 能利用二次函数解析式中系数确定函数的对称轴、顶点坐标、开口方向与坐标轴的交点坐标等.提分策略1. 二次函数的图象与性质的应用.(1)求二次函数的图象的顶点坐标有两种方法:①配方法;②顶点公式法,顶点坐标为.(2)画抛物线y=ax2+bx+c的草图,要确定五个方面,即①开口方向;②对称轴;③顶点;④与y轴交点;⑤与x轴交点.【例1】(1)用配方法把二次函数y=x2-4x+3变成y=(x-h)2+k 的形式;(2)在直角坐标系中画出y=x2-4x+3的图象;(3)若A(x1,y1),B(x2,y2)是函数y=x2-4x+3图象上的两点,且x1< x2<1,请比较y1、y2的大小关系(直接写结果);(4)把方程x2-4x+3=2的根在函数y=x2-4x+3的图象上表示出来.【解析】(1)根据配方法的步骤进行计算.(2)由(1)得出抛物线的对称轴,顶点坐标列表,注意抛物线与x轴、y 轴的交点及对称点等特殊点的坐标,不要弄错.(3)开口向上,在抛物线的左边,y随x的增大而减小.(4)抛物线y=x2-4x+3与直线y=2的交点的横坐标即为方程x2-4x+3=2的两根.【答案】(1)y=x2-4x+3=(x2-4x+4)+3-4=(x-2)2-1.(2)由(1)知图象的对称轴为直线x=2,顶点坐标为(2,-1),列表如下:x…1234…y…3-13…描点作图如图.(3)y1>y2.(4)如图,点C,D的横坐标x3,x4即为方程x2-4x+3=2的根.2. 二次函数的解析式的求法.二次函数的关系式有三种:(1)一般式y=ax2+bx+c;(2)顶点式y=a(x-m)2+n,其中(m,n)为顶点坐标;(3)交点式y=a(x-x1)(x-x2),其中(x1,0),(x2,0)为抛物线与x轴的交点.一般已知三点坐标用一般式求关系式;已知顶点及另一个点坐标用顶点式;已知抛物线与x轴的两个交点坐标及另一个点的坐标用交点式.【例2】已知抛物线经过点A(-5,0),B(1,0),且顶点的纵坐标为,求二次函数的解析式.【解析】根据题目要求,本题可选用多种方法求关系式.3. 二次函数的图象特征与系数的关系的应用.二次函数y=ax2+bx+c=0(a≠0)系数的符号与抛物线二次函数y=ax2+bx+c=0(a≠0)的图象有着密切的关系,我们可以根据a,b,c的符号判断抛物线的位置,也可以根据抛物线的位置确定a,b,c的符号.抛物线的位置由顶点坐标、开口方向、对称轴的位置确定,顶点所在象限由的符号确定.【例3】已知二次函数y=ax2+bx+c(a≠0)的图象如图,且关于x 的一元二次方程ax2+bx+c-m=0没有实数根,有下列结论:①b2-4ac>0;②abc<0;③m>2.其中,正确结论的个数是( ).A. 0B. 1C. 2D. 3【解析】由图象可知二次函数y=ax2+bx+c与x轴有两个交点,进而判断①;先根据抛物线的开口向下可知a<0,由抛物线与y轴的交点判断c 与0的关系,根据对称轴在y轴右侧得出b与0的关系,然后根据有理数乘法法则判断②;一元二次方程ax2+bx+c-m=0没有实数根,则可转化为ax2+bx+c=m,即可以理解为y=ax2+bx+c和y=m没有交点,即可求出m的取值范围,判断③即可.【答案】①∵二次函数y=ax2+bx+c与x轴有两个交点,∴b2-4ac>0,故①正确.②∵抛物线的开口向下,∴a<0.∵抛物线与y轴交于正半轴,∴c>0.∵对称轴,∴ab<0.∵a<0,∴b>0.∴abc<0,故②正确.③∵一元二次方程ax2+bx+c-m=0没有实数根,∴y=ax2+bx+c和y=m没有交点.由图可得,m>2,故③正确.故选D.4. 二次函数的图象的平移规律的应用.(1)采用由“点”带“形”的方法.图形在平移时,图形上的每一个点都按照相同的方向移动相同的距离,抛物线的平移问题往往可转化为顶点的平移问题来解决.(2)平移的变化规律可为:①上、下平移:当抛物线y=a(x-h)2+k向上平移m(m>0)个单位后,所得的抛物线的关系式为y=a(x-h)2+k+m;当抛物线y=a(x-h)2+k向下平移m(m>0)个单位后,所得的抛物线的关系式为y=a(x-h)2+k-m.②左、右平移:当抛物线y=a(x-h)2+k向左平移n(n>0)个单位后。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
象为抛物线,当 a>0,抛物线开口向上;对称轴为直线
-;抛物线与 y 轴的交点坐标为
(0,c);当 b2-4ac>0,抛物线与 x 轴有两个交点;当 b2-4ac=0,抛物线与 x 轴有一个交点;当
b2-4ac<0,抛物线与 x 轴没有交点.
2. 用二次函数解决实际问题.
【例 2】 某研究所将某种材料加热到 1000℃时停止加热,并立即将材料分为 A,B 两组,采
第 - 11 - 页 共 19 页
(2)利用已知表示出包装盒的表面积,进而利用函数最值求出即可.
∵ 0<x<12,
∴ 当 x=8 时,S 取得最大值 384cm2.
专项训练
一、 选择题
1.如图,抛物线 y=x2 与直线 y=x 交于点 A,沿直线 y=x 平移抛物线,
使得平移后的抛物线顶点恰好为 A 点,则平移后抛物线的解析式是( ).
易错清单
二次函数
1. 二次函数与方程、不等式的联系.
【例 1】抛物线 y=ax2+bx+c 的顶点为 D(-1,2),与 x 轴的一个交点 A 在点(-3,0)和(-2,0)之
间,其部分图象如图,则以下结论:
①b2-4ac<0;②a+b+c<0;③c-a=2;④方程 ax2+bx+c-2=0 有两个相等的实数根.
(3)△AOC 绕点 C 逆时针旋转 90°,CO 落在 CE 所在的直线上,由(2)可知 OA=1, ∴ 点 A 对应点 G 的坐标为(3,2). 当 x=3 时,y=-32+2×3+3=0≠2, ∴ 点 G 不在该抛物线上. 2. 利用二次函数解决抛物线形问题. 利用二次函数解决抛物线形问题,一般是先根据实际问题的特点建立直角坐标系,设出合适 的二次函数的解析式,把实际问题中已知条件转化为点的坐标,代入解析式求解,最后要把求 出的结果转化为实际问题的答案. 【例 2】 如图,排球运动员站在点 O 处练习发球,将球从点 O 正上方 2 m 的 A 处发出,把球 看成点,其运行的高度 y(m)与运行的水平距离 x(m)满足关系式 y=a(x-6)2+h.已知球网与点 O 的水平距离为 9 m,高度为 2.43 m,球场的边界距点 O 的水平距离为 18m. (1)当 h=2.6 时,求 y 与 x 的关系式;(不要求写出自变量 x 的取值范围) (2)当 h=2.6 时,球能否越过球网?球会不会出界?请说明理由; (3)若球一定能越过球网,又不出边界,求 h 的取值范围.
综合两种情形,得 b≥380,即该店最早需要 380 天能还清所有债务,此时每件服装的价格应定 为 55 元. 4. 二次函数在几何图形中的应用. 二次函数在几何图形中的应用,实际上是数形结合思想的运用,将代数与几何融为一体,把代 数问题与几何问题进行互相转化,充分运用三角函数解直角三角形,相似、全等、圆等来解决 问题,充分运用几何知识求解析式是关键.二次函数与三角形、圆等几何知识结合时,往往涉 及最大面积、最小距离等问题,解决的过程中需要建立函数关系,运用函数的性质求解. 【例 4】 如图,在边长为 24 cm 的正方形纸片 ABCD 上,剪去图中阴影部分的四个全等的等 腰直角三角形,再沿图中的虚线折起,折成一个长方体形状的包装盒(A,C,D 四个顶点正好重 合于上底面上一点).已知 E、F 在边 AB 上,是被剪去的一个等腰直角三角形斜边的两个端点, 设 AE=BF=x(cm). (1)若折成的包装盒恰好是个正方体,试求这个包装盒的体积 V; (2)某广告商要求包装盒的表面(不含下底面)面积 S 最大,试问 x 应取何值?
第 - 9 - 页 共 19 页
【解析】 (1)根据待定系数法,可得函数解析式; (2)根据收入等于指出,可得一元一次方程,根据解一元一次方程,可得答案; (3)分类讨论 40≤x≤58,或 58≤x≤71,根据收入减去支出大于或等于债务,可得不等式,根 据解不等式,可得答案.
第 - 10 - 页 共 19 页
∵ 抛物线的对称轴为直线
=1,
∴ b=2a. ∴ a-2a+c=2,即 c-a=2,所以③正确. ∵ 当 x=-1 时,二次函数有最大值为 2, 即只有 x=1 时,ax2+bx+c=2, ∴ 方程 ax2+bx+c-2=0 有两个相等的实数根,所以④正确. 故选 C. 【误区纠错】 本题考查了二次函数的图象与系数的关系:二次函数 y=ax2+bx+c(a≠0)的图
第 - 8 - 页 共 19 页
3. 二次函数的实际应用. 【例 3】 某店因为经营不善欠下 38400 元的无息贷款的债务,想转行经营服装专卖店又缺 少资金.“中国梦想秀”栏目组决定借给该店 30000 元资金,并约定利用经营的利润偿还债务 (所有债务均不计利息).已知该店代理的品牌服装的进价为每件 40 元,该品牌服装日销售量 y(件)与销售价 x(元/件)之间的关系可用图中的一条折线(实线)来表示.该店应支付员工的 工资为每人每天 82 元,每天还应支付其他费用为 106 元(不包含债务). (1)求日销售量 y(件)与销售价 x(元/件)之间的函数关系式; (2)若该店暂不考虑偿还债务,当某天的销售价为 48 元/件时,当天正好收支平衡(收人=支 出),求该店员工的人数; (3)若该店只有 2 名员工,则该店最早需要多少天能还清所有债务,此时每件服装的价格应定 为多少元?
其中正确结论的个数为( ).
A. 1 个
B. 2 个
C. 3 个
D. 4 个
【解析】 由抛物线与 x 轴有两个交点得到 b2-4ac>0;由抛物线顶点坐标得到抛物线的对称
轴为直线
-1,则根据抛物线的对称性得抛物线与 x 轴的另一个交点在点(0,0)和
(1,0)之间,所以当 x=1 时,y<0,则 a+b+c<0;由抛物线的顶点为 D(-1,2)得 a-b+c=2,由抛物线
的对称轴为直线
=1,得 bபைடு நூலகம்2a,所以 c-a=2;根据二次函数的最大值问题,当 x=-1 时,
二次函数有最大值为 2,即只有 x=1 时,ax2+bx+c=2,所以说方程 ax2+bx+c-2=0 有两个相等的
实数根.
【答案】 ∵ 抛物线与 x 轴有两个交点, ∴ b2-4ac>0,所以①错误.
∵ 顶点为 D(-1,2),
A. ①②
B. ③④
C. ①③
D. ①③④
(第 3 题) 3. 如图,在四边形 ABCD 中,∠BAD=∠ACB=90°,AB=AD,AC=4BC,设 CD 的长为 x,四边形 ABCD 的面积为 y,则 y 与 x 之间的函数关系式是( ).
二、 填空题 4. 点 P 在抛物线 y=(x-2)2+1 上,设点 P 的坐标为(x,y),当 0 ≤x≤3 时,y 的取值范围为 . 5.已知二次函数 y=ax2+bc+c 中,函数 y 与自变量 y=(x>0)的部分对应值如下表:
提分策略 1. 抛物线对称性的应用. (1)二次函数的图象是抛物线,是轴对称图形,充分利用抛物线的轴对称性,是研究利用二次 函数的性质解决问题的关键. (2)已知二次函数图象上几个点的坐标,一般用待定系数法直接列方程(组)求二次函数的解 析式.
第 - 6 - 页 共 19 页
(3)已知二次函数图象上的点(除顶点外)和对称轴,便能确定与此点关于对称轴对称的另一 点的坐标.
用不同工艺做降温对比实验,设降温开始后经过 xmin 时,A,B 两组材料的温
度分别为 yA℃,yB℃,yA,yB 与 x 的函数关系式分别为 yA=kx+b, 象如图所示),当 x=40 时,两组材料的温度相同. (1)分别求 yA,yB 关于 x 的函数关系式; (2)当 A 组材料的温度降至 120℃时,B 组材料的温度是多少? (3)在 0<x<40 的什么时刻,两组材料温差最大?
∴ 抛物线所对应的函数解析式为 y=-x2+2x+3.
(2)∵ y=-x2+2x+3=-(x-1)2+4,
∴ 抛物线的顶点坐标为 D(1,4).
∴ △ABD 中边 AB 的高为 4.
令 y=0,得-x2+2x+3=0,
解得 x1=-1,x2=3. 所以 AB=3-(-1)=4.
第 - 7 - 页 共 19 页
∴ yA=-20x+1000. (2)当 A 组材料的温度降至 120℃时, 120=-20x+1000, 解得 x=44. ∴ B 组材料的温度是 164℃.
∴ 当 x=20 时,两组材料温差最大为 100℃. 【误区纠错】 此题主要考查了二次函数的应用以及待定系数法求一次函数解析式以及二次 函数最值求法等知识,得出两种材料的函数关系式是解题关键. 3. 二次函数存在性问题的讨论.
.
三、 解答题
7. 如图,矩形 OABC 在平面直角坐标系 xOy 中,点 A 在 x轴的正半轴上,点 C 在 y 轴的正半轴
上,OA=4,OC=3,若抛物线的顶点在边 BC 上,且抛物线经过O,A 两点,直线 AC 交抛物线于点 D.
(1)求抛物线的解析式; (2)求点 D 的坐标.
(第 7 题)
【例 1】 如图,抛物线 y=-x2+bx+c 与 x 轴交于 A,B 两点,与 y 轴交于点 C,点 D 为抛物线的 顶点,点 E 在抛物线上,点 F 在 x 轴上,四边形 OCEF 为矩形,且 OF=2,EF=3. (1)求该抛物线所对应的函数关系式; (2)求△ABD 的面积; (3)将三角形 AOC 绕点 C 逆时针旋转 90°,点 A 对应点为点 G,问点 G 是否在该抛物线上?请说 明理由. 【解析】 (1)在矩形 OCEF 中,已知 OF,EF 的长,先表示出 C,E 的坐标,然后利用待定系数法 确定该函数的关系式. (2)根据(1)的函数关系式求出 A,B,D 三点的坐标,以 AB 为底、点 D 纵坐标的绝对值为高,可 求出△ABD 的面积. (3)首先根据旋转条件求出点 G 的坐标,然后将点 G 的坐标代入抛物线对应的函数关系式中直 接进行判断即可.